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Abstract

Antibodies have become an important class of therapeutic agents to treat human
diseases. To accelerate therapeutic antibody discovery, computational methods,
especially machine learning, have attracted considerable interest for predicting
specific interactions between antibody candidates and target antigens such as
viruses and bacteria. However, the publicly available datasets in existing works
have notable limitations, such as small sizes and the lack of non-binding samples
and exact amino acid sequences. To overcome these limitations, we have developed
AVIDa-hIL6, a large-scale dataset for predicting antigen-antibody interactions in
the variable domain of heavy chain of heavy chain antibodies (VHHs), produced
from an alpaca immunized with the human interleukin-6 (IL-6) protein, as antigens.
By leveraging the simple structure of VHHs, which facilitates identification of full-
length amino acid sequences by DNA sequencing technology, AVIDa-hIL6 contains
573,891 antigen-VHH pairs with amino acid sequences. All the antigen-VHH pairs
have reliable labels for binding or non-binding, as generated by a novel labeling
method. Furthermore, via introduction of artificial mutations, AVIDa-hIL6 contains
30 different mutants in addition to wild-type IL-6 protein. This characteristic
provides opportunities to develop machine learning models for predicting changes
in antibody binding by antigen mutations. We report experimental benchmark
results on AVIDa-hIL6 by using machine learning models. The results indicate that
the existing models have potential, but further research is needed to generalize them
to predict effective antibodies against unknown mutants. The dataset is available at
https://avida-hil6.cognanous.com.

1 Introduction

Antibodies are proteins that play an essential role in the immune system. When antigens such as
viruses and bacteria invade the body, the immune system protects the body by producing large
numbers of antibodies that bind to the antigens to inhibit their function or mark them for removal.
Antibodies have become an important class of therapeutic agents to treat human diseases because
of their high target specificity and binding affinity [2]. An essential step in therapeutic antibody
discovery is the identification of specific interactions between antibody candidates and target antigens,
which has traditionally relied heavily on expensive, time-consuming experiments [24]. Therefore,
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computational approaches are increasingly used to complement and accelerate traditional processes
for therapeutic antibody discovery [46, 25].

In particular, there is growing interest in using machine learning to predict antigen-antibody interac-
tions [39, 28, 20], which can be used to virtually screen binding antibodies against specific target
antigens. Schneider et al. [39] developed the structure-based deep learning for antibodies virtual
screening (DLAB-VS) by using the structural antibody database (SAbDab) [17], which contains
collections of antigen-antibody complex structures. Lim et al. [28] generated datasets of antibody
sequences from mice immunized with cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and
programmed cell death protein 1 (PD-1); then, they built deep learning models to predict binder
and non-binder antibodies to CTLA-4 and PD-1. Huang et al. [20] proposed AbAgIntPre, a deep
learning-assisted prediction method that was trained using only the amino acid sequences in two
public databases: SAbDab and the coronavirus antibody database (CoV-AbDab) [35].

Despite these promising developments, progress in therapeutic antibody discovery has lagged behind
progress in other areas of drug discovery. A major reason for this is the lack of availability of
high-quality, large-scale datasets of antigen-antibody interactions. First, most existing datasets have
small sample sizes. For example, as of May 2023, SAbDab and Lim et al.’s datasets [28] contain
5,737 and 3,064 binder samples, respectively. In addition, SAbDab only has samples for binding
antigen-antibody pairs. In previous studies [39, 20] using SAbDab, antigens and antibodies were
randomly paired to form non-binding pairs. CoV-AbDab contains 12,021 entries, from which more
than 30,000 antigen-antibody pairs, including non-binding pairs, are available. However, CoV-AbDab
provides only the variant name and not the amino acid sequence. As the variant name is defined by
representative mutations, the exact amino acid sequence may vary between publications, thus making
it difficult to use CoV-AbDab for antibody discovery because a single amino acid change can be
critical for an antigen-antibody interaction.

To overcome these limitations, we have developed AVIDa-hIL6, an antigen-variable domain of heavy
chain of heavy chain antibody (VHH) interaction dataset produced by an alpaca immunized with
the human interleukin-6 (IL-6) protein. IL-6 is a relatively small protein, a simply structured, well-
characterized cytokine that exists as a monomer in the body and is associated with many inflammatory
diseases and cancers. To ensure a wide variety of antibody sequences, we used VHHs, whose
simple structures enable much easier identification of full-length amino acid sequences by DNA
sequencing technologies such as next-generation sequencing (NGS) than for conventional antibodies.
By leveraging these advantages, AVIDa-hIL6 contains 573,891 antigen-VHH pairs, including 20,980
binding pairs, with their amino acid sequences. In addition, we have developed a novel labeling
method to obtain reliable labels for binding and non-binding.

Furthermore, AVIDa-hIL6 contains information on the interaction of diverse VHHs with 30 different
mutants produced by artificial point mutations, in addition to the wild-type IL-6 protein. As the
COVID-19 pandemic has shown, viruses continuously evolve through mutation to evade the immune
system. Because emerging mutations involving amino acid substitutions can lead to profound changes
in antibody binding, prediction of their effects is critical in the development of therapeutic antibodies.
Notably, AVIDa-hIL6 contains antibody sequences that are positive for most IL-6 mutants but negative
for specific IL-6 mutants, or vice versa, thus providing important insights for understanding how
antigen mutations affect antibody binding.

The main contributions of this paper are summarized as follows.

• We release AVIDa-hIL6, which is the largest existing dataset for predicting antigen-antibody
interactions (10 times larger than any other public dataset) and contains amino acid sequences
of antigens and antibodies and binary labels for binding and non-binding pairs.

• AVIDa-hIL6 has the wild type and 30 mutants of the IL-6 protein as antigens, and it includes
many sensitive cases in which point mutations in IL-6 enhance or inhibit antibody binding.

• We have designed a novel data generation method, including data labeling, by using the
immune system of a live alpaca. This method can be applied to any target antigen, in
addition to IL-6.

• We report benchmark results for the prediction of antigen-antibody interactions by using
machine-learning-based baseline models. These results confirm that AVIDa-hIL6 provides
valuable benchmarks for assessing a model’s performance in capturing the impact of antigen
mutations on antibody binding.
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Table 1: Characteristics of public datasets for predicting antigen-antibody interactions. The numbers
of samples were obtained in May 2023. X* denotes that relevant information was missing or not
available for part of the dataset.

#Samples Sequence
Dataset Binder Non-binder Antibody Antigen Structure Antibody type Data collection

SAbDab-nano [40] 1,114 - X X X VHH Curation
sdAb-DB [47] 1,452 - X X* X* VHH Curation
SAbDab [17] 5,737 - X X X Conventional,VHH Curation
Lim et al. [28] 3,064 12,055 X X Conventional Experiment

CoV-AbDab [35] 32,064 5,303 X X* X* Conventional,VHH Curation
AVIDa-hIL6 20,980 552,911 X X VHH Experiment

2 Related Work

In this section, we put our work into context with public datasets for predicting antigen-antibody
interactions. Recent advances in NGS technology now enable the construction of large-scale databases
of antibody sequences, such as the observed antibody space (OAS) [31] and iReceptor [14]. However,
those databases cannot be directly used as training data for predicting antigen-antibody interactions
because of the lack of information on the antigen corresponding to each antibody. Thus, those
databases are primarily used to build antibody-specific language models [37, 32, 26] and to generate
new antibody sequences via deep generative models [3]. Here, we focus on datasets with information
on antigen-antibody interactions, as summarized in Table 1.

Antibody Type. The datasets listed in Table 1 contain two types of antibodies: conventional and
VHH. A conventional antibody comprises two pairs of heavy and light chains. A conventional
antibody acts as a single functional unit by combining the heavy and light chains encoded on separate
chromosomes. For example, in humans, the heavy chain is encoded on chromosome 14, and the
light chain is encoded on chromosome 2 or 22. Therefore, purification of a single-cell lymphocyte is
essential for DNA sequencing of the antigen-determining regions on an antibody. Such cell cloning
comprises several steps and is time-consuming, making analysis on the order of 10 to the third
power or more virtually impossible. In contrast, a VHH, found in camelids such as alpacas and
llamas, comprises only heavy chains. The heavy-chain antibodies are derived from a single gene,
e.g., they are encoded on chromosome 4 in alpacas; moreover, a VHH is the smallest functional unit
of heavy-chain antibodies, and the sequencing for the antigen-determining regions does not require
cell cloning. Thus, we can perform exhaustive analysis on the order of six powers of 10 or more by
simply extracting DNA from a bulk sample of lymphocytes. Additionally, VHHs have recently gained
interest as therapeutic agents because of their small size, high stability, good human tolerability, and
relative ease of production [22, 21]. SAbDab-nano [40] and sdAb-DB [47] are public databases that
collect only VHHs, but they both have too few samples for machine learning drug discovery or design
applications. Hence, we use immunized alpacas as a data source to generate a large amount of VHH
sequence data.

Sequence and Structure Information. SAbDab [17] and its sub-database, SAbDab-nano [40],
collect all the available antigen-antibody complex structures in the Protein Data Bank (PDB) [8].
Also, some data in sdAb-DB [47] and CoV-AbDab [35] include structural information from the
PDB. Because accurate knowledge of antibody structures is important for understanding the antigen-
binding function of antibodies, SAbDab is increasingly used for antibody structure prediction via
deep learning [38, 1]. However, experimental methods for antibody structure determination, such as
X-ray crystallography and cryo-electron microscopy, are relatively expensive and time-consuming,
making it difficult to increase the amount of data. More recently, machine learning methods such as
AlphaFold [23] and RoseTTAFold [6], which accurately predict a protein’s structure from the amino
acid sequence, have greatly accelerated progress in the biological sciences. AVIDa-hIL6 focuses
on amino acid sequences of antigens and antibodies to generate sufficient training data for machine
learning.

Number of Labeled Samples. Some existing datasets only have samples for binding antigen-
antibody pairs. One reason is that the identification of non-binding antigen-antibody pairs has
little clinical significance. In previous studies [39, 20] using SAbDab, antigens and antibodies
were randomly paired to form non-binding pairs. This process was based on the assumption that
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Figure 1: Overview of the data generation process for AVIDa-hIL6.

randomly sampled pairs are unlikely to bind because of antibodies’ high target specificity. Lim et
al. [28] generated a dataset of antibody sequences labeled as “binder” and “non-binder” through an
experimental approach using mice immunized with CTLA-4 and PD-1. The number of samples in
Table 1 is the total for CTLA-4 and PD-1. As with AVIDa-hIL6, Lim et al. created their dataset from
their original experiments, thus revealing the potential to increase the amount and diversity of data
by the same approach using arbitrary antigens. CoV-AbDab collects antibodies that bind to at least
one beta coronavirus and currently contains 12,021 entries. Because each entry has “Binds to” and
“Doesn’t Bind to” columns and contains zero to multiple antigens for a specific antibody, the number
of samples in Table 1 was counted for each possible antigen/antibody pair. However, CoV-AbDab
only provides variant names, e.g., SARS-CoV1_Omicron-BA2 or SARS-CoV2_Alpha, and each
antigen’s exact amino acid sequence is only available if it was provided in the original publication.

3 AVIDa-hIL6: Antigen-VHH Interaction Dataset Produced from Alpaca
Immunized with Human IL-6 Protein

AVIDa-hIL6 is a dataset of antigen-VHH interactions with amino acid sequences and binary labels
for binding and non-binding. In this section, we introduce the dataset generation process, dataset
statistics, and verification of label reliability. A labeled dataset and the raw data are available at
https://avida-hil6.cognanous.com. The dataset is released under a CC BY-NC 4.0 license.

3.1 Dataset Generation

Figure 1 shows an overview of the data generation process. The KYODOKEN Institutional Animal
Care and Use Committee approved the protocols for the experiments (see Appendix A.1). Appendix
A.2 gives the detailed experimental procedures and the amino acid sequences of the IL-6 proteins.

Step 1. Immunization To ensure the diversity of antibodies binding to the IL-6 protein that we
used as an antigen, we used the immune system of a live alpaca. We introduced a site-directed
mutation with alanine at intervals of three to six amino acids, like the alanine scanning technique [15],
which is used in molecular biology to determine the contribution of a specific amino acid; as a result,
we obtained 30 types of mutants in addition to the wild-type IL-6 protein. A mutant is denoted, for
example, as IL6_P42A, which means that an amino acid in the wild type is substituted from proline
to alanine at position 42. We immunized a single alpaca with a cocktail of 31 different IL-6 proteins
four times at about two-week intervals. After each immunization, one blood sample and one or more
lymph nodes from different body sites were collected, yielding a total of 12 libraries. We provide
additional information about the collection process at https://avida-hil6.cognanous.com.
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Step 2. Phage Library Construction We used phage display [43] to identify VHHs that bind to
the IL-6 protein. Phage display is a technique for displaying the target proteins on a phage surface in
a form that allows them to bind to other molecules. This versatile technique enables generation of
protein libraries containing up to 1010 different variants and is often used for affinity screening of
antibodies for their binding partners [7]. We cloned the VHH genes obtained from each library into
the pMES4 phagemid vector to display the VHHs on the phagemid surface. As a result, 12 phage
libraries corresponding to each of the above libraries were generated and designated as the mother
libraries.

Step 3. Affinity Selection Affinity selection by biopanning using the mother libraries can enrich
a phage with displayed VHHs that bind to the target molecule. For the target molecules, we used
the wild type and 30 mutants of IL-6 and a negative control sample that did not contain any IL-6
protein. Only experiments targeting the wild-type IL-6 protein were performed in triplicate to ensure
reproducibility. The mother library was added to the container and incubated with target-coated
magnet beads. Then, non-binding phages were washed away, and the remaining phages that bound
to the beads were eluted. Consequently, by performing one round of biopanning on each of the 12
mother libraries, we generated a total of 408 sublibraries.

Step 4. Sequence Analysis The amino acid sequences of VHHs displayed on a phage surface
can be identified by analyzing the phage genome’s DNA with NGS technology. Approximately
100,000 paired reads were generated for each library by NGS, and singletons were removed to avoid
sequencing errors. The DNA sequences were translated into amino acid sequences. We counted
the number of occurrences of each unique VHH amino acid sequence from the paired reads, which
reflected the concentration of each VHH in the library. For each of the 12 mother libraries before
panning and 408 sublibraries after panning, we created a table with the VHH amino acid sequences
and their read counts.

Step 5. Data Labeling We designed a labeling method to distinguish whether a VHH binds to
each IL-6 protein type by applying a statistical test for differences in the proportions of each VHH in
a library before and after panning. Here, we focused on examining the binding between a specific
VHH and a specific target molecule. Let p1 and p2 denote the population proportions of a specific
VHH in the libraries before and after panning. We identified some of the VHH sequences in the
libraries by NGS analysis. Let n1 and n2 denote the libraries’ total read counts before and after
panning, respectively, and let x1 and x2 denote the read counts of a specific VHH in the libraries.
Then, the respective sample proportions of a specific VHH in each library are p̂1 = x1

n1
and p̂2 = x2

n2
.

Given that the minimum value of all possible n1 and n2 was over 10,000, we assumed that p̂1 and p̂2
follow normal distributions with mean p1 and p2 and variance p1(1−p1)

n1
and p2(1−p2)

n2
, respectively,

according to the central limit theorem. Furthermore, the difference in the proportions p̂1− p̂2 can also
be approximated by a normal distribution due to the reproductive property of the normal distribution.
Thus, the test statistic Z under null hypothesis H0 : p1 = p2 was calculated as follows.

Z =
p̂1 − p̂2√

p(1− p)( 1
n1

+ 1
n2

)
(1)

where p is the pooled proportion calculated as p = x1+x2

n1+n2
. The p-value of Z was calculated using

the standard normal distribution. In the same way, p-values were calculated for all VHH-target
pairs in the sublibraries with respect to the 12 corresponding mother libraries. Because we had 12
sublibraries associated with the same target molecule, we adopted the smallest p-value, indicating
the most significant difference in proportion, among identical VHH-target pairs. If a specific VHH’s
proportion in a sublibrary increased from the proportion in the corresponding mother library and
the p-value was 0.05 or less (our chosen significance level), the VHH-target pair was labeled with
“binder.” Similarly, if the proportion decreased and the p-value was 0.05 or less, the pair was labeled
with “non-binder.” Finally, if the p-value exceeded 0.05, the pair was labeled with “non-significant.”
Our dataset contains 1,998,127 samples labeled non-significant, including 325,865 unique VHH
sequences that are present in the alpaca body. These labels were not used for supervised learning to
predict antigen-antibody interactions. However, these samples may be helpful for pre-training via
self-supervised learning as used by existing antibody-specific language models [37, 32, 26].
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Figure 2: (a) Number of samples for each antigen type. (b) Visualization of the labels for pairs of
100 VHH sequences and each antigen type. Each cell represents a unique VHH-antigen pair. White
cells denote non-significant or noise labels. (c) Distribution of the pairwise identities of the VHH
sequences.

The results of biological experiments always contain background noise, such as binding to contami-
nating proteins. Therefore, we developed a novel noise reduction algorithm to avoid false positives
and improve label reliability. We reconfirmed VHHs labeled as “binder” to any of the IL-6 proteins
by comparing the labels to negative control samples under the following conditions.

1. If the VHH was a non-binder to the negative control sample, the label remained “binder.”
2. If the VHH was a binder to the negative control sample, the label was reassigned from

“binder” to “noise” because of possible false positives.
3. If the VHH was “non-significant” with respect to the negative control sample, the ratio of

the p-value of the negative control sample to that of the IL-6 protein was compared to 102.5.
This value was empirically determined by an author (a biologist) according to feedback
from biological experiments in our previous studies [29].
(a) If the ratio of p-values was below 102.5, the label was reassigned from “binder” to

“non-significant” because of possible false positives.
(b) If the ratio of p-values was 102.5 or more, the label remained “binder.”

We carefully verified the reliability of our labels, as discussed in section 3.3. The code for data
labeling is available at https://github.com/cognano/AVIDa-hIL6.

3.2 Dataset Statistics

AVIDa-hIL6 contains 573,891 data samples, comprising 20,980 binding pairs and 552,911 non-
binding pairs. The proportion of binding pairs is about 3.7 %. Figure 2(a) shows the number of
samples for each antigen type. Although the number of samples varied for each IL-6 protein type, we
successfully generated at least 10,000 samples for the wild type and 30 different mutants. Furthermore,
at least 250 binder VHH sequences existed for each IL-6 protein type. Because we labeled the VHH
sequences in the mother library for each IL-6 protein type, AVIDa-hIL6 has information on whether
the same VHH sequence binds to each of multiple targets. The number of unique VHH sequences
in AVIDa-hIL6 is 38,599, including 4,425 sequences that bind to at least one IL-6 protein type.
Importantly, 650 VHH sequences, about 14.7 % of the VHH binders, show binding to specific IL-6
protein types but non-binding to others. We visualized whether 100 sequences extracted randomly
from these 650 VHH sequences bound to each antigen type, as shown in Figure 2(b). These samples
have valuable information on which mutations enhance or inhibit antibody binding, which should be
strongly associated with the IL-6 protein’s binding site. Furthermore, when focusing on the same
VHH sequence, i.e., one row, we observe that mutants with mutations at closer positions tend to have
the same label.

To gain a better understanding of the distribution of VHH sequences, we compared it to the distri-
butions in the existing VHH datasets SAbDab-nano and sdAb-DB. We used only the binders from
AVIDa-hIL6 because the existing datasets only contain binders. The numbers of unique VHH binders
in SAbDab-nano, sdAb-DB, and AVIDa-hIL6 are 828, 1,414, and 4,425, respectively. To mitigate
the computational complexity, we randomly sampled 700 unique VHH sequences from each dataset
and calculated all pairwise sequence identities with Biopython v1.81 [13]. Figure 2(c) shows the
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Figure 3: Immunofluorescence staining analysis using three VHHs labeled with (a) binder, (b)
non-binder, and (c) noise. HA-tagged IL-6 proteins were introduced into cells and stained with
His-tagged VHHs. Subsequently, HA-tags were visualized in green and His-tags in red. The ONU is
our identifier to distinguish the VHH sequence.

Table 2: Numbers of samples in the training and test sets.

#Samples
Dataset Binder Non-binder Total Antigen types

Training 10,564 282,279 292,843 Wild-type, Q45A, D54A, G63A, C72A, L90A, P93A, D99A,
F102A, G105A, E108A, T117A, S135A, E138A, F153A, D168A

Test 10,416 270,632 281,048 P42A, T48A, E51A, I57A, I60A, K69A, C78A, S81A, E87A,
L120A, L126A, L129A, Q144A, D162A, T165A

distributions of sequence identities for these datasets. The results indicate that AVIDa-hIL6 has peaks
at regions of higher sequence identity than the other datasets. Interestingly, AVIDa-hIL6 has a peak
at 97 % sequence identity, which is absent for the others. As a living organism’s immune response
progresses, effective antibodies with high binding affinity to the antigen are selected through a process
called affinity maturation and are further mutated by repeated exposure to the antigen. Thus, these
results may reflect that a live alpaca’s immune system selects VHH sequences with high sequence
identity that specifically bind to target IL-6 proteins through affinity maturation.

3.3 Label Reliability

To verify our label reliability, we tested the antibody binding ability by immunofluorescence staining.
Because the number of VHHs that could be verified was limited by the time and cost of biological
experiments, VHHs were selected under the following conditions to verify label reliability efficiently.
First, we examined only the wild-type IL-6 protein as a target antigen. Next, the amino acid sequences
of all labeled VHHs with higher than 93 % identity were clustered by the UCLUST algorithm [18] to
validate diverse sequences. When two or more VHHs with the same label were in the same cluster, the
one with the highest read count was selected. We know empirically that if all the VHHs in a cluster
have the same label, these labels are likely to be true. Therefore, such VHHs were excluded from the
candidates. Then, VHHs with suspect labels were selected in order of their read counts. Finally, we
tested 10 binder-labeled, six non-binder-labeled, and four noise-labeled VHHs for validation.

Immunofluorescence analysis showed that all 10 binder-labeled VHHs actually bound to the wild-type
IL-6 protein, whereas the six non-binder-labeled and four noise-labeled VHHs did not. Figure 3
shows the results for a representative clone of the three types of labeled VHHs. Appendix A.3.2 gives
the results for all the tested clones and their amino acid sequences. We could observe the overlapping
of IL-6 signals and VHH signals in the binder group, whereas the VHH signals were lost in the
non-binder group. The VHH signals did not coincide with the IL-6 signals in the noise group, which
can be interpreted as noise-labeled VHHs binding nonspecifically to cells. These results indicate that
our noise reduction algorithm contributed to reducing false positives. In addition, these results were
also confirmed by kinetic assay via biolayer interferometry (BLI), as described in Appendix A.3.2.
As a result, we could ensure that AVIDa-hIL6 has highly reliable labels.

4 Benchmarks

4.1 Benchmark Task

To demonstrate the use of AVIDa-hIL6 for antibody discovery, we performed an experiment on
binary classification of whether a given antigen-antibody pair binds. By leveraging information on
the binding of diverse antibodies to antigen mutants, we defined a benchmark task to assess the model
performance in capturing the impact of antigen mutations on antibody binding. First, we randomly
selected 15 mutants and reserved the data samples for those mutants as a test set. The remaining 15
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mutants and the wild type were reserved for model training. Table 2 lists the numbers of samples in
the training and test sets. As we used artificial point mutations, each mutant’s sequence identity with
respect to the wild type was the same, differing only in the position where the alanine was introduced.
Next, we trained models by using only the wild-type IL-6 protein and evaluated their performance
in predicting antibody bindings in the test set. Then, we randomly selected one mutant from the
remaining 15 mutants outside the test set and added it to the training set to evaluate each model’s
predictive performance. By repeating this process, we tracked the model’s predictive performance for
unknown mutants contained only in the test set. Because the order of adding mutants to the training
set affected the model performance, we ran the same experiment five times in shuffled order, and we
report the averaged results here. For all model training, we randomly selected 10 % of the training
set for model validation. This experimental scenario assumes that antigen mutants emerge one after
another to evade the immune system, as in the COVID-19 pandemic. In such a scenario, we evaluated
the model’s performance in predicting antibody candidates that will bind to future emerging mutants
according to the binding information of antigens that have already been observed.

4.2 Baseline Models

We adopted three neural network-based models and one classical machine learning model as baselines.
The model inputs were the amino acid sequence of an IL-6 protein with a length of 218 and a VHH
with a maximum length of 152.

• AbAgIntPre [20] is a state-of-the-art model designed for antigen-antibody interactions
based on amino acid sequences. It combines the composition of k-spaced amino acid
pairs (CKSAAP) [11] encoding and a convolutional neural network (CNN) model with a
Siamese-like architecture. We used the model parameters reported in the original paper [20].

• PIPR [10] is a residual recurrent convolutional neural network (RCNN) for protein-protein
interaction (PPI) prediction. Following the PIPR strategy, we used an amino acid encoding
that combined a five-dimensional vector obtained from a pretrained skip-gram model using
the STRING database [44] and a seven-dimensional vector describing the categorization of
electrostaticity and hydrophobicity. We changed the number of RCNN units from five to
three because our sequence length was more than nine times shorter than the protein input in
the original PIPR. The other model parameters were the same as in the paper [10]. Although
PIPR was not specifically designed for antigen-antibody interactions, such interactions
that ignore non-protein antigens can be considered a subset of PPI, meaning that models
designed for PPI can also apply to antigen-antibody interactions.

• A Multi-Layer Perceptron (MLP) with one hidden layer of 512 neurons was used as a
simpler neural network-based model than the above two models. We used one-hot encoding
to represent amino acid sequences. One-hot vectors of the VHHs and IL-6 proteins were
flattened and concatenated for input to the MLP.

• Logistic Regression (LR) was used as a classical machine learning model that is commonly
used for binary classification tasks. As with the MLP, we used flattened and concatenated
one-hot vectors of the VHH and IL-6 proteins as input.

In this experiment, the three neural-network-based models were trained for 100 epochs on one
NVIDIA Tesla V100 GPU on Google Colaboratory with an initial learning rate of 0.0001 and a
batch size of 256. The LR was trained using one Intel(R) Xeon(R) CPU on Google Colaboratory.
Appendixes A.4.2 and A.4.3 give more details on the model implementation and training. The code
to run the benchmark models is available at https://github.com/cognano/AVIDa-hIL6.

4.3 Results

Figure 4(a) shows the prediction performance of the baseline models as a function of the number of
IL-6 protein types used for model training. We used the precision, recall, and F1-score as evaluation
metrics because the prediction of antibody binders, which are fewer in number than non-binders, is
much more important for drug discovery. Figure 4(b) shows the precision-recall curves when 1 and
16 IL-6 protein types were used for training. When the number of antigens was 1—that is, when
only the wild-type IL-6 protein was used for training—the recalls of AbAgIntPre, PIPR, MLP, and
LR were 67.9, 57.6, 67.2, and 67.1 %, respectively. These results indicate that the models failed
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Figure 4: (a) Precision, recall, and F1-score as a function of the number of IL-6 protein types used
for model training. (b) Precision-recall curves when 1 and 16 antigen types were used for training.
The legend shows the area under the curve (AUC) values.

to predict over 30 % of the effective VHHs that bound to mutants in the test set. All the metrics
improved as the number of IL-6 protein types used for training increased, and this trend is clearly
evident in the precision-recall curves and the area under the curve (AUC) values. After adding 15
mutants for training, the precisions of all baseline models reached about 95 %, but the recalls were
still only about 85 %, even for the three neural-network-based models. A possible factor in this result
is that the proportion of binding pairs was only about 3.7 %. Hence, techniques to address imbalanced
labels, such as oversampling and undersampling, would be useful to improve the model performance.

For drug discovery applications, the construction of a generalized model for unknown mutations
from as little antigen-binding information as possible is ideal, because the number of possible
mutations in antigens is tremendously large. As shown by the F1 scores and AUCs in Figures 4(a)
and (b), respectively, AbAgIntPre outperformed the other three models, but there was still room for
improvement. Furthermore, the performance of AbAgIntPre was not significant as compared to that
of the simpler MLP. AVIDa-hIL6 differs significantly from the existing datasets used for training by
AbAgIntPre and PIPR because it includes cases in which changes of a few amino acids enhance or
inhibit antibody binding. Given this difference in properties, AbAgIntPre and PIPR may not have
a clear performance advantage over the MLP. Hence, these results indicate the need for research
on model architectures that are dedicated to predicting antibody binding to antigen mutants, and
AVIDa-hIL6 will be a useful benchmark for evaluating such models.

5 Discussion

5.1 Binding Site Prediction

Antibodies recognize specific regions of antigens, called epitopes, and the regions of antibodies
that are directly involved in recognition are called paratopes. The antigen-antibody interaction is
defined between the epitope and the paratope and is governed by van der Waals forces, electrostatic
forces, hydrogen bonding, hydrophobic interactions, and entropic changes at the binding site, which
comprise amino acids and their chemical modifications such as phosphorylation, glycosylation,
lipidation, methylation, acetylation, or ubiquitylation. Because epitopes and paratopes are crucial
for the affinity and specificity of antigen-antibody interactions, many studies have been devoted to
predicting epitopes [42, 45] and paratopes [27, 12]. AVIDa-hIL6 has highly sensitive information on
changes of a few amino acids in both the antigen and antibody that can significantly affect binding,
which should be strongly associated with epitopes and paratopes. Thus, AVIDa-hIL6 may facilitate
research on predicting epitopes and paratopes from amino acid sequences.
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5.2 Potential Risk

In recent years, VHH technology has rapidly developed not only as a research and diagnostic tool
but also as a therapeutic agent. VHHs are known to have low toxicity to humans, and several VHH
drugs have been approved to date [4]. Antibody genes are activated in B lymphocytes, and their
complementarity-determining regions coding paratopes are the only genes in which unrestricted
mutations occur in vivo. Hence, antibodies that happen to bind to their own tissues can be produced.
Mammals have an immune tolerance system that minimizes the production of such autoreactive
antibodies through several mechanisms [19]. As our dataset was derived from alpacas, even if the
risk of autoimmune adverse events is low for alpacas, it may not be for humans. Therefore, a phase I
clinical trial cannot be omitted for each clone for the time being.

5.3 Potential Data Biases

Close examination of our data revealed that the probability of the presence of binder VHHs varied
dynamically depending on when and where the mother library was collected. Furthermore, because
our dataset was produced in an alpaca’s body, antibodies that strongly interact with proteins in an
alpaca’s body were likely to be excluded because they cause autoimmune disease. Therefore, our
dataset potentially contains data biases derived from the timing and body site of the library collection
and the specific alpaca used in the experiments. To reduce these data biases, it would be beneficial to
collect samples at multiple times of immunization, from multiple individuals with different VHH
gene sequences, and from multiple animals of different species.

5.4 Limitations and Future Works

We introduce two potential limitations of AVIDa-hIL6 and describe future works to address them.
The first limitation is that AVIDa-hIL6 uses artificial mutations. Such mutations offer the advantage
of investigating binding to an arbitrary number of mutants; however, natural mutations are more
complex, as different sites mutate simultaneously. Furthermore, natural mutants include those that
have similar functions and structures even with different amino acid sequences, and point mutations
that cause loss or gain of the antigenic protein’s function. Because simple artificial mutants have
little chance of reproducing these rare properties, the efficiency of data collection for predicting
antigen-antibody interactions of mutants with these properties is low. The second limitation is the
lack of antigen diversity: specifically, AVIDa-hIL6 only has the IL-6 protein as an antigen. Our
experimental scenario is to predict antibody binding to unknown mutants of a known antigen. In drug
discovery applications, there is also a need to find effective antibodies against new emerging antigens.
These limitations lead to the narrow applicability of a model trained on AVIDa-hIL6.

An essential approach to overcome these limitations will be to accumulate labeled data for a wider
variety of antigens and their mutants. Because our data generation method described in section 3.1
is applicable to any target antigen, it can be a fundamental technology for establishing a more
comprehensive database of antigen-antibody interactions. In fact, we used the same approach to
generate a dataset for SARS-CoV-2 variants and successfully found effective antibodies [29]. In the
future, we plan to generate and release datasets for various antigens, which should be more practical
for building models to predict antigen-antibody interactions. Furthermore, we will explore combining
AVIDa-hIL6 with other data sources, such as those listed in Table 1.

6 Conclusion

In this paper, we have described AVIDa-hIL6, a large-scale dataset of IL-6 protein-VHH pairs
containing amino acid sequence information and reliable labels for binding or non-binding pairs. By
introducing artificial mutations into the IL-6 protein used as an antigen, we generated an interaction
dataset for 30 types of mutants in addition to wild-type IL-6. This design enabled AVIDa-hIL6 to
include many sensitive cases in which point mutations in the IL-6 protein enhance or inhibit antibody
binding, thus providing researchers with valuable insights into the effects of antigen mutations on
antibody binding. We envision that AVIDa-hIL6 will help democratize antibody discovery and
serve as a valuable benchmark for machine learning research in the growing field of predicting
antigen-antibody interactions.
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[22] Jovčevska, I., Muyldermans, S.: The therapeutic potential of nanobodies. BioDrugs 34(1),
11–26 (2020)

[23] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021)

[24] Kandari, D., Bhatnagar, R.: Antibody engineering and its therapeutic applications. International
Reviews of Immunology pp. 156–183 (2021)

[25] Kim, J., McFee, M., Fang, Q., Abdin, O., Kim, P.M.: Computational and artificial intelligence-
based methods for antibody development. Trends in Pharmacological Sciences 44(3), 175–189
(2023)

[26] Leem, J., Mitchell, L.S., Farmery, J.H., Barton, J., Galson, J.D.: Deciphering the language of
antibodies using self-supervised learning. Patterns 3(7), 100513 (2022)
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A Appendix

A.1 Ethics Statement for Animal Experiments

All animal experiments on an alpaca were conducted in accordance with the KYODOKEN Institute
for Animal Science Research and Development (Kyoto, Japan) and the ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines2. Veterinarians performed breeding, health maintenance,
and immunization by adhering to the published Guidelines for Proper Conduct of Animal Experiments
by the Science Council of Japan. The KYODOKEN Institutional Animal Care and Use Committee
approved the protocols for these studies (KYODOKEN protocol number 20190216).

Our data generation method uses animal models immunized with a target protein that could potentially
harm the animals, such as a particular toxin, pathogen, or allergen. Hence, the risk to the animal
should be minimized by treating the immune source to inactivate or detoxify it.

A.2 Dataset Generation

Here, we describe the detailed experimental procedures and conditions for each step.

Step 1. Immunization We immunized a single alpaca with purified recombinant hu-
man IL-6 protein and several single-amino-acid mutants. Specifically, the gene en-
coding the human IL-6 protein was codon-optimized, synthesized, and sub-cloned
in the pcDNA3.1(+) vector (Thermo Fisher Scientific K.K., Tokyo, Japan). The
amino acid sequence of the wild-type IL-6 protein with a C-terminal 6×His-tag was
“MNSFSTSAFGPVAFSLGLLLVLPAAFPAPVPPGEDSKDVAAPHRQPLTSSERIDKQIRY-
ILDGISALRKETCNKSNMCESSKEALAENNLNLPKMAEKDGCFQSGFNEETCLVKIITGL-
LEFEVYLEYLQNRFESSEEQARAVQMSTKVLIQFLQKKAKNLDAITTPDPTTNASLLTKL-
QAQNQWLQDMTTHLILRSFKEFLQSSLRALRQMHHHHHH.” We introduced a site-directed
mutation with alanine at intervals of three to six amino acids, like the alanine scanning technique [15],
which is used in molecular biology to determine the contribution of a specific amino acid. A total of
30 single-amino-acid mutants was prepared: P42A, Q45A, T48A, E51A, D54A, I57A, I60A, G63A,
K69A, C72A, C78A, S81A, E87A, L90A, P93A, D99A, F102A, G105A, E108A, T117A, L120A,
L126A, L129A, S135A, E138A, Q144A, F153A, D162A, T165A, and D168A. Here, for example,
P42A means that an amino acid in the wild type was substituted from proline to alanine at position
42. The antigen cocktail mixture was emulsified in Titermax (Funakoshi, Tokyo, Japan) adjuvant at a
dose of 600 µg and subcutaneously injected into an alpaca four times at about two-week intervals.
Lymph nodes and blood samples were each collected four times, resulting in a total of 12 libraries.

Step 2. Phage Library Construction Peripheral blood mononuclear cells (PBMCs) were obtained
from blood samples by sucrose density gradient centrifugation using Ficoll (Nacalai Tesque, Ky-
oto, Japan). The lymph nodes and PBMC samples were washed with phosphate-buffered saline
(PBS, Nacalai Tesque) and suspended in an RNAlater solution (Thermo Fisher Scientific K.K.,
Tokyo, Japan). Total RNA was isolated from these samples by using Direct-Zol RNA MiniPrep
(Zymo Research, Irvine, CA). Complementary DNA was synthesized from 1 µg of total RNA as
a template by using random hexamer primers and SuperScript II reverse transcriptase (Thermo
Fisher Scientific K.K.). The coding regions of the VHH domain were amplified using LA Taq
polymerase (TAKARA Bio Inc., Shiga, Japan) with two PAGE-purified primers (CALL001, 5’-
GTCCTGGCTGCTCTTCTACAAGG-3’ and CALL002, 5’-GGTACGTGCTGTTGAACTGTTCC-
3’), and they were separated on a 1.5 % low-melting-temperature agarose gel (Lonza Group AG, Basel,
Switzerland). Approximately 700 base-pair bands were extracted using a QIAquick Gel Extraction
Kit (Qiagen K.K., Tokyo, Japan). Nested PCR was performed to amplify the VHH genes by using two
primers that contained flanking PstI (forward) and BstEII (reverse) restriction sites to enable cloning
into the pMES4 phagemid vector with a C-terminal His-tag. Electroporation-competent Escherichia
coli TG1 cells (Agilent Technologies Japan, Ltd., Tokyo, Japan) were transformed with the ligated
plasmids under chilled conditions (Bio-Rad Laboratories, Inc., Hercules, CA). The library densities
were monitored and maintained at >107 colony-forming units per microliter with limiting dilution.
Colonies from 8 mL of cultured cells were harvested, pooled, and reserved in frozen glycerol stock
as a mother library. Thus, the 12 phagemid libraries were designated as the mother libraries.

2ARRIVE guidelines: https://arriveguidelines.org
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Step 3. Affinity Selection One round of biopanning was performed using each target protein-
coated magnet beads in 50-mM phosphate buffer (pH 7.4) containing 0.1 % Triton X-100 (Nacalai
Tesque), 0.3 % (w/v) bovine serum albumin (BSA, Nacalai Tesque), and 500 mM of NaCl. Every IL-6
mutant was used at 1.2 mL bead slurry, which was saturated with 240 µg of protein, except for P93A
(90 µg), E108A (190 µg), and L126A (180 µg). To distinguish nonspecific signals, a negative control
sample that did not contain any IL-6 protein was also used. The wild-type IL-6 protein libraries
were obtained in triplicate to confirm the reproducibility. After three washes with the same buffer,
the remaining phages bound to the beads were eluted with a trypsin-ethylenediaminetetraacetic acid
(EDTA, Nacalai Tesque) solution at room temperature for 30 minutes. The eluate was neutralized with
a PBS-diluted protein inhibitor cocktail (cOmplete, EDTA-free, protease inhibitor cocktail tablets,
Roche Diagnostics GmbH, Mannheim, Germany) and used to infect electroporation-competent cells.
The infected cells were cultured in LB Miller broth containing 100 µg/mL of ampicillin (Nacalai
Tesque) at 37 ◦C overnight. The genes of the phagemids selected by biopanning were collected
with a QIAprep Miniprep Kit (Qiagen), amplified by PCR, and purified using AMPure XP beads
(Beckman Coulter, High Wycombe, UK). Then, dual-indexed libraries were prepared and sequenced
on an Illumina MiSeq (Illumina, San Diego, CA) by using a MiSeq Reagent Kit v3 with paired-end
300-bp reads (Bioengineering Lab. Co., Ltd., Kanagawa, Japan).

Step 4. Sequence Analysis Approximately 100,000 paired reads for each library were generated
by NGS analysis. The raw read data were trimmed to remove the adaptor sequence by using cutadapt
v1.18 [30] and to remove low-quality reads by using Trimmomatic v0.39 [9]. The remaining paired
reads were merged using fastq-join [5], and then the VHH coding sequences were extracted using
seqkit v0.10.1 [41]. The DNA sequences were translated to amino acid sequences with EMBOSS
v6.6.0.0 [36], and the VHH sequences were cropped from start to stop codon. Finally, each phagemid
library was converted to a FASTA file containing tens of thousands of VHH sequences.

A.3 Label Reliability

A.3.1 Experimental Procedures

VHH Substantiation The gene sequences encoding each selected VHH clone, which were con-
nected with a 4×(GGGGS) linker for expression as a tandem dimer, were codon-optimized and
synthesized (Eurofins Genomics Inc., Tokyo, Japan). The synthesized genes were subcloned into
the pMES4 vector to express N-terminal PelB signal peptide-conjugated and C-terminal 6×His-
tagged VHHs. BL21 (DE3) E. coli cells transformed with the plasmids were plated on LB agar with
ampicillin and incubated at 37 ◦C overnight. Grown colonies were picked and cultured at 37 ◦C
to reach an OD of 0.6 AU, and the cells were then cultured at 37 ◦C for three hours with 1 mM
of IPTG (isopropyl-β-D-thiogalactopyranoside, Nacalai Tesque). Lastly, the cultured cells were
pelleted by centrifugation and stored in a freezer until use. VHHs were eluted from the periplasm by
soaking in TES buffer (200 mM Tris, 0.125 mM EDTA, 125 mM sucrose, and pH 8.0) at 4 ◦C for
one hour. They were further incubated with a 2× volume of 0.25× diluted TES buffer with a trace
amount of benzonase nuclease (Merck) at 4 ◦C for 45 minutes. The supernatants were centrifuged
(20,000 ×g, 4 ◦C for 10 minutes), sterilized by adding gentamicin (Thermo), and passed through a
0.22 µm filter (Sartorius AG, Gottingen, Germany). The filtered supernatants were then applied to
a HisTrap HP nickel column (Cytiva) on an ÄKTA pure HPLC system, and the bound His-tagged
VHHs were eluted with 300 mM of imidazole. The eluted fraction was collected and concentrated
with a VIVAspin 3000-molecular-weight cutoff filter column (Sartorius) and applied to a Superdex75
10/300 GL gel-filtration column (Cytiva) on an ÄKTA pure HPLC system. Finally, the protein purity
was measured via Coomassie brilliant blue (CBB) staining (Rapid Stain CBB Kit, Nacalai Tesque).

Immunofluorescence Staining Analysis HEK293T cells were transiently transfected with a
plasmid-encoding C-terminally HA-tagged wild-type IL-6 protein by using Lipofectamine 3000
(Thermo) according to the manufacturer’s instructions. The next day, the cells were seeded on colla-
gen type-I-coated culture plates (IWAKI, AGC TECHNO GLASS CO., LTD., Shizuoka, Japan) and
cultured for 24 hours before being fixed with 2 % paraformaldehyde (PFA) at 4 ◦C overnight. After
three washes with PBST (PBS with 0.005 % Tween 20), the cells were blocked with PBST containing
2 % goat serum (blocking solution) at room temperature for one hour. Each well was soaked with
100 µL of the blocking solution containing 100 ng of purified VHH at 4 ◦C overnight. After washing
with PBST, 1:3000-diluted anti-His-tag rabbit antibodies and 1:100-diluted anti-HA 7C9 mouse
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Table 3: Amino acid sequences of the VHHs used for label verification.

VHH Label Amino acid sequence

ONU7 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRRAPGKGLEWVSHISTSGG

FTTYLDSVKGRFTISRDNAKNMLYLQMSSLKPEDTAVYYCAESRGMVGASYAAYVDKGTQVTVSSHHHHHH

ONU14 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCAASGIASINALGYYRQAPGKQRELVAAVTGGGRT

NYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAKRWGSDYWGQGTQVTVSSHHHHHH

ONU54 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCVTSGFTSDYYAIGWFRQAPGKAREGVSCISSSGG
GVDYEDSVKGRFTISRDNAENTVHLQMNSLKPEDTAVYYCAAYRSKYGCSRDLRLYDYWGQGTQVTVSSHHHHHH

ONU65 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGGSLKLSCAASGSSESNYAMGWFRQAPGKEREFVAAISWSGG

STYYADSVKGRFTISRGNAKNTVYLQMNSLKPEDTAVYYCAAKPIAYYNDEYEYWGQGTQVTVSSHHHHHH

ONU88 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLTQPGGSLRLSCAASGNSRSINAMGWSRQAPGKQRDLVALITSGGT

TAYGESVKGRFTISRDNADNTVWLQMNSLKPEDTAVYYCYAVSDGNSRQYWGQGTQVTVSSHHHHHH

ONU90 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGGSLRLSCAASGLTFTRYHMAWFRQAPGKEREMVAAISWSGS

TTDYQDSVKGRFTISRDNAKNTVSLQMNNLKPDDTAVYYCAASQTRALAPLIGRYDYWGQGTQVTVSSHHHHHH

ONU174 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVEPGGSLRLSCAASKFTLAYYDIAWFRQAPGKEREGVSCISSYDG
STYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAIYFCATDHTGAPKCSMKTIGEYNYRGQGTQVTVSSHHHHHH

ONU191 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCVASGFTSDPYAIGWFRQAPGKEREGVSCISSSGG
SIEYEDSVKGRFTISRDNAENTVHLQMNSLKPEDTAVYYCAAYRSKYGCARELDLYDYWGQGTQVTVSSHHHHHH

ONU290 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLGQAGGSLTLSCAASEGIGSVNAMGWYRQAPGKQRELVAAISRGGG

IMYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADRVILLFDSRSADYWGQGTQVTVSSHHHHHH

ONU455 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGGSLRLSCAASGTIFTINTMGWYRQAPGKQRELVASITSDGS

TNYANSLKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAGWYDRGDDYWGQGTQVTVSSHHHHHH

ONU1160 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCTASGFTLDDYAIGWFRQGPGKEREGVSCISSSDG

STYYLDSVKGRFTISRDNAKNTVYLSMNSLNVEDTGVYYCAADRSCWAYMDYWGKGTQVTVSSHHHHHH

ONU1881 binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCAASRFTLAYYDIGWFRQAPGKEREGVSCISSYDG
STYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAIYYCATDHTGAPTCSTKSIGQYDYRGQGTQVTVSSHHHHHH

ONU57 non-binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLTLACAASGSILDIDIMRWYRQAPGEQREIVATITNSGT
TTYRDSVKGRFTISRDTAENTVYLQMNSLKPEDTAVYTCQADVYVNGDDDKFQFFGFWGQGTQVTVSSHHHHHH

ONU60 non-binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCAASGFTLDVYAIAWFRQAPGKEREWVSCISESVG

ATLYAESVKGRFTISRDNAKNTVYLQMNKLKPEDTAVYYCAPPLECSGYGLTKLHDSRSQGTQVTVSSHHHHHH

ONU82 non-binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCAASGRMGNINVLGWYRQAPEKQRELVATITNFGT

IKYGDSVKGRFIISKNSAWNMVYLQMNSLKPEDTAVYYCNAANRIGPEKKMDDYWGQGTQVTVSSHHHHHH

ONU84 non-binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGDSLRLSCAASGGIFSRYAMGWFRQAPGKEREIVAAISWSGG
STRYGDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAATISPTYYTGTYAYTSTYDDWGQGTQVTVSSHHHHHH

ONU171 non-binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGGSLRLSCAASGFAFGDYAIGWFRQAPGKEREAVSCISNTDG

ITHYVDSVKGRFTISSDNAKNTVYLQMSSLKPEDTAVYYCAASSQGSGYHYCSGSAYIRVGMDWWGKGTQVTVSSHHHHHH

ONU232 non-binder
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGGSLRLSCTASGLTFSIYAMSWVRQAPGKGLEWVSDINSDGD
NAYYADSVKGRFTISRDNAKNTVDLQMNSLKPEDTGVYYCATDRRSTIARMVRRTDFGSWGQGTQVTVSSHHHHHH

ONU2 noise
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQPGESLRLSCAASGRTDSRYAVAWFRQAPGKARELVSSISWDAG

LTHYADFVKGRFAISRDNAKNMVYLQMNSLEFEDTAVYYCAAAYYDGSRLFKVIYDYWGQGTQVTVSSHHHHHH

ONU3 noise
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGGSLRLSCIASGSTFSSYRMGWFRQAPGKEREFVAAISHFGI
STYYADSVKGRFTISRDNAKNIVYLQMNSLKPEDTASYYCAADGDPYHRNYERLGEYDYWGQGTQVTVSSHHHHHH

ONU4 noise
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQSGGSLRLSCAASGFSLDYYNIGWFRQAPDKDREGVSCISSSGS

STNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCVVDDGRVGCTEARRTLAYDYWGQGTQVTVSSHHHHHH

ONU5 noise
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQAGGSLTLSCAASGRTFSTDAMGWFRQAPGKEREFVATVSWGGG

NTYYADTVKGRFTIFRDNAKNTVYLQMNNLEPEDTAVYYCATSLTTTHMRAREVDYWGQGTQVTVSSHHHHHH

ONU250 noise
MKYLLPTAAAGLLLLAAQPAMAQVQLQESGGGLVQSGGSLRLSCAASGFSLDYYNIGWFRQAPDKDREGVSCISSSAS

SSTNYADPVKGRFTISRDNAKNTVYLQMNSLKPEDTAIYYCVVDDGRVGCTEARRTLAYDYWGQGTQVTVSSHHHHHH

monoclonal antibodies (ChromoTek GmbH, Planegg-Martinsried, Germany) in blocking buffer were
added and reacted at room temperature for one hour. Finally, after washing, Alexa-Fluor-conjugated
anti-rabbit IgG (594 nm emission) antibodies at 1:3000 dilution and Alexa-Fluor-conjugated anti-
mouse IgG (488 nm emission) antibodies at 1:3000 dilution in blocking buffer were added to the
wells, and the fixed cells were labeled at room temperature for one hour before washing three times
with PBST. The cell nuclei were visualized with 4’,6-diamidino-2-phenylindole (DAPI). The stained
cells were imaged with an 8-ms exposure time (594 nm emission), a 40-ms exposure time (488 nm
emission), or an automatically adjusted exposure time (DAPI) by using an IX71S1F-3 microscope
(Olympus Corporation, Tokyo, Japan) with the cellSens Standard 1.11 application (Olympus). Each
full observed field corresponding to a 165 µm × 220 µm square was photographed.

Kinetic Assays via Biolayer Interferometry (BLI) Real-time binding experiments were per-
formed using an Octet Red96 instrument (fortèBIO, Pall Life Science, Portsmouth, NH). Each
purified VHH clone was biotinylated with EZ-Link Sulfo-NHS-LC-Biotin (Thermo) according to
the manufacturer’s protocol; uncoupled biotin was excluded with a size exclusion spin column (PD
SpinTrap G-25, Cytiva) in PBS (pH 7.4). Assays were performed at 30 ◦C with shaking at 1000
rpm. Biotin-conjugated clones at 10 µg/mL were captured on a streptavidin-coated sensor chip (SA,
fortèBIO) to reach the signals at 1 nm. One unrelated VHH P17-coated sensor chip was monitored as
a baseline. The loaded concentration of the wild-type IL-6 was 200 µg, corresponding to 0.625 µM.
Assays were performed with PBS containing 0.005 % Tween 20 (Nacalai Tesque). After baseline
equilibration for 180 s in the buffer, association and dissociation were each performed for 180 s. The
data were then subtracted from the baseline data and analyzed with fortèBIO data analysis software
9.0.

A.3.2 Additional Results

As listed in Table 3, we selected 12 binder-labeled, six non-binder-labeled, and five noise-labeled
clones for substantiation. Of the 12 binder-labeled clones, two could not be isolated by the E. coli
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Figure 5: Immunofluorescence staining analysis using (a) 10 binder-labeled, (b) six non-binder-
labeled, and (c) four noise-labeled VHHs. HA-tagged IL-6 proteins were introduced into the cells and
stained with His-tagged VHHs. Subsequently, HA-tags were visualized in green and His-tags in red.
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Figure 6: Biolayer interferometry analysis using (a) 10 binder-labeled, (b) six non-binder-labeled,
and (c) four noise-labeled VHHs. Each line represents the association and dissociation curve of each
VHH on the wild-type IL-6. When a line moves up from the base point in the association phase, the
VHH is considered a binder.

protein synthesis system because of the limitations of the phage display method. Even if a protein of
interest functioned as a fusion protein with the g3p protein on a phage, it was not always possible to
express the protein alone in a soluble form with function [16]. However, if a sufficient signal was
observed in the mother library, then the clones must have been truly present as heavy-chain antibodies,
at least in the alpaca body. The remaining 10 clones all showed binding to the wild-type IL-6 protein,
as shown in Figure 5(a). The immunofluorescence staining analysis showed strong to weak signals,
which probably reflected avidity differences between the clones. Note that the calculated p-values did
not correlate with the staining intensity by a simple inverse relationship. The biolayer interferometry
(BLI) analysis revealed that the clones positively associated with the wild-type IL-6 protein with
different association curves (Kon), dissociation curves (Koff ), and KDs (Koff /Kon), as shown in
Figure 6(a), although the sensitivity was relatively lower than that of the immunostaining analysis. All
six non-binder-labeled clones showed negative results in both the immunostaining and BLI analyses,
as shown in Figures 5(b) and 6(b), respectively. Of the five noise-labeled clones, one could not be
isolated. The immunostaining analysis showed that the remaining four clones likely had nonspecific
binding, as shown in Figure 5(c), but not to the wild-type IL-6 protein, as confirmed by the BLI
analysis results shown in Figure 6(c). Accordingly, the sensitivity and specificity of our labeling
method can be considered sufficiently high.

A.4 Benchmarks

A.4.1 Data Splitting

For a test set, we randomly selected 15 mutants: P42A, T48A, E51A, I57A, I60A, K69A, C78A,
S81A, E87A, L120A, L126A, L129A, Q144A, D162A, and T165A. The remaining 15 mutants and
the wild type were used for model training. First, we trained the models by using only the wild-type
IL-6 protein and evaluated the model performance on the test set. Then, we randomly selected one
mutant from the mutants not contained in the test set and added it to the training set to evaluate each
model’s predictive performance on the test set. By repeating this procedure, we tracked each model’s
predictive performance for unknown mutants contained only in the test set. Because the order of
adding mutants to the training set affected the model performance, we ran the same experiment five
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times in shuffled order, and we report the averaged results in section 4.3. Table 4 summarizes the
order in which mutants were added and the number of samples in each set.

A.4.2 Model Implementations

We adopted AbAgIntPre because it is a state-of-the-art model designed for the same task setting as
ours of predicting interactions solely from antigen and antibody sequences. At present, fewer studies
have focused on developing machine learning models for predicting antigen-antibody interactions
based only on amino acid sequences, as compared to PPI. However, antigen-antibody interactions
that ignore non-protein antigens can be considered a subset of PPI, meaning that models designed for
PPI are also applicable to antigen-antibody interactions. Thus, we adopted PIPR as a representative
neural-network-based model designed for PPI. In addition, we used MLP as a simpler, shallower
neural network model than AbAgIntPre and PIPR. Lastly, we chose LR as a classical machine
learning model other than neural networks. The implementations of all the benchmark models are
available at https://github.com/cognano/AVIDa-hIL6.

• AbAgIntPre [20]. We used the implementation3 that is provided by AbAgIntPre’s devel-
opers and released under Apache License 2.0 for the composition of k-spaced amino acid
pairs (CKSAAP) [11] encoding. The calculation was performed using k = 0, 1, 2, 3, thus
yielding a 1600-dimensional vector for each amino acid sequence. We also used the original
PyTorch [33] implementation released under Apache License 2.0 for the AbAgIntPre model.
We used the model parameters reported in the original paper [20].

• PIPR [10]. We reimplemented PIPR by using PyTorch with reference to the original
implementation4 released under Apache License 2.0. We changed the number of RCNN
units from five to three, while the other parameters were the same as in the original paper [10].
Each RCNN unit had a one-dimensional max pooling with a kernel size of three, which
shortened the sequence length by a third. Our dataset’s maximum sequence length is 218,
and the application of five RCNN units would have resulted in a sequence length shorter than
one; thus, we reduced the number of units. In addition, we used the pretrained embeddings
published by PIPR’s developers in their original implementation as “vec5_CTC.txt.”

• Multi-Layer Perceptron (MLP). We implemented one-hot encoding and an MLP with
one hidden layer of 512 neurons and the rectified linear unit (ReLU) activation function
by using PyTorch. The one-hot vectors of the VHHs and IL-6 proteins were flattened and
concatenated for input to the MLP. We used zero padding to match the dimensions, thus
yielding 8000-dimensional vectors for each VHH and IL-6 protein pair.

• Logistic Regression (LR). We implemented LR by using scikit-learn [34]. We used the
default settings of scikit-learn v1.2.2 as model parameters. As with the MLP, the one-hot
vectors of the VHHs and IL-6 proteins were flattened and concatenated for input to the LR
model. We used zero padding to match the dimensions, thus yielding 8000-dimensional
vectors for each VHH and IL-6 protein pair.

A.4.3 Model Training

All three neural network-based models were trained on one NVIDIA Tesla V100 GPU on Google
Colaboratory. The models were trained for 100 epochs with a batch size of 256. We used the
Adam optimizer with a fixed learning rate of 0.0001 and no weight decay. Also, we used the binary
cross-entropy with sigmoid activation as the loss function. During the model training, the GPU
memory consumptions for AbAgIntPre, PIPR, and MLP were approximately 1.4, 1.6, and 1.1 GB,
respectively. When using 16 IL protein types for training, the training times for AbAgIntPre, PIPR,
and MLP were approximately 0.5, 1, and 0.5 hours, respectively.

The LR model, with L2 penalization, was trained using one Intel(R) Xeon(R) CPU @ 2.20 GHz
on Google Colaboratory. The solver was the LBFGS algorithm, with 1,000 as the maximum
number of iterations for convergence. When using 16 IL protein types for training, the training
time for LR was approximately 0.5 hours. More detailed training information is available at https:
//github.com/cognano/AVIDa-hIL6.

3AbAgIntPre: https://github.com/emersON106/AbAgIntPre
4PIPR: https://github.com/muhaochen/seq_ppi
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Table 4: Details of the data splitting.

#Samples
Experiment #Antigen types Added antigen Binder Non-binder Total

Run 1

1 Wild-type 540 12,480 13,020
2 G63A 1,074 39,629 40,703
3 F153A 2,232 49,940 52,172
4 T117A 2,967 64,508 67,475
5 Q45A 3,799 80,574 84,373
6 E108A 4,424 99,729 104,153
8 C72A, F102A 5,503 148,208 153,711

10 P93A, E138A 7,249 178,334 185,583
12 D54A, S135A 8,737 222,447 231,184
14 D168A, D99A 9,452 257,265 266,717
16 L90A, G105A 10,564 282,279 292,843

Run 2

1 Wild-type 540 12,480 13,020
2 E138A 1,942 22,052 23,994
3 C72A 2,406 47,106 49,512
4 L90A 2,656 59,150 61,806
5 F153A 3,814 69,461 73,275
6 E108A 4,439 88,616 93,055
8 D99A, G105A 5,737 124,168 129,905

10 D168A, D54A 6,509 165,155 171,664
12 G63A, P93A 7,387 212,858 220,245
14 Q45A, S135A 9,214 244,286 253,500
16 F102A, T117A 10,564 282,279 292,843

Run 3

1 Wild-type 540 12,480 13,020
2 G63A 1,074 39,629 40,703
3 L90A 1,324 51,673 52,997
4 G105A 2,186 64,643 66,829
5 F102A 2,801 88,068 90,869
6 Q45A 3,633 104,134 107,767
8 D99A, D54A 4,562 155,467 160,029

10 E138A, E108A 6,589 184,194 190,783
12 S135A, C72A 8,048 224,610 232,658
14 P93A, D168A 8,671 257,400 266,071
16 F153A, T117A 10,564 282,279 292,843

Run 4

1 Wild-type 540 12,480 13,020
2 F102A 1,155 35,905 37,060
3 D99A 1,591 58,487 60,078
4 L90A 1,841 70,531 72,372
5 G105A 2,703 83,501 86,204
6 D54A 3,196 112,252 115,448
8 E138A, P93A 4,942 142,378 147,320

10 C72A, E108A 6,031 186,587 192,618
12 F153A, G63A 7,723 224,047 231,770
14 Q45A, T117A 9,290 254,681 263,971
16 D168A, S135A 10,564 282,279 292,843

Run 5

1 Wild-type 540 12,480 13,020
2 D99A 976 35,062 36,038
3 E108A 1,601 54,217 55,818
4 F102A 2,216 77,642 79,858
5 G63A 2,750 104,791 107,541
6 D168A 3,029 117,027 120,056
8 F153A, Q45A 5,019 143,404 148,423

10 T117A, G105A 6,616 170,942 177,558
12 D54A, C72A 7,573 224,747 232,320
14 P93A, S135A 8,912 260,663 269,575
16 L90A, E138A 10,564 282,279 292,843
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