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Abstract

We address the problem of designing a sublinear-time spectral clustering oracle
for graphs that exhibit strong clusterability. Such graphs contain k latent clusters,
each characterized by a large inner conductance (at least φ) and a small outer
conductance (at most ε). Our aim is to preprocess the graph to enable clustering
membership queries, with the key requirement that both preprocessing and query
answering should be performed in sublinear time, and the resulting partition should
be consistent with a k-partition that is close to the ground-truth clustering. Previous
oracles have relied on either a poly(k) log n gap between inner and outer conduc-
tances or exponential (in k/ε) preprocessing time. Our algorithm relaxes these
assumptions, albeit at the cost of a slightly higher misclassification ratio. We also
show that our clustering oracle is robust against a few random edge deletions. To
validate our theoretical bounds, we conducted experiments on synthetic networks.

1 Introduction
Graph clustering is a fundamental task in the field of graph analysis. Given a graph G = (V,E) and
an integer k, the objective of graph clustering is to partition the vertex set V into k disjoint clusters
C1, . . . , Ck. Each cluster should exhibit tight connections within the cluster while maintaining
loose connections with the other clusters. This task finds applications in various domains, including
community detection [32, 12], image segmentation [11] and bio-informatics [29].

However, global graph clustering algorithms, such as spectral clustering [27], modularity maxi-
mization [26], density-based clustering [10], can be computationally expensive, especially for large
datasets. For instance, spectral clustering is a significant algorithm for solving the graph clustering
problem, which involves two steps. The first step is to map all the vertices to a k-dimensional
Euclidean space using the Laplacian matrix of the graph. The second step is to cluster all the points
in this k-dimensional Euclidean space, often employing the k-means algorithm. The time complexity
of spectral clustering, as well as other global clustering algorithms, is poly(n), where n = |V |
denotes the size of the graph. As the graph size increases, the computational demands of these global
clustering algorithms become impractical.

Addressing this challenge, an effective approach lies in the utilization of local algorithms that operate
within sublinear time. In this paper, our primary focus is on a particular category of such algorithms
designed for graph clustering, known as sublinear-time spectral clustering oracles [30, 14]. These
algorithms consist of two phases: the preprocessing phase and the query phase, both of which can
be executed in sublinear time. During the preprocessing phase, these algorithms sample a subset
of vertices from V , enabling them to locally explore a small portion of the graph and gain insights
into its cluster structure. In the query phase, these algorithms utilize the cluster structure learned
during the preprocessing phase to respond to WHICHCLUSTER(G, x) queries. The resulting partition
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defined by the output of WHICHCLUSTER(G, x) should be consistent with a k-partition that is close
to the ground-truth clustering.

We study such oracles for graphs that exhibit strong clusterability, which are graphs that contain
k latent clusters, each characterized by a large inner conductance (at least φ) and a small outer
conductance (at most ε). Let us assume φ > 0 is some constant. In [30] (see also [8]), a robust
clustering oracle was designed with preprocessing time approximately O(

√
n · poly(k logn

ε )), query
time approximately O(

√
n · poly(k logn

ε )), misclassification error (i.e., the number of vertices that are
misclassified with respect to a ground-truth clustering) approximately O(kn

√
ε). The oracle relied on

a poly(k) log n gap between inner and outer conductance. In [14], a clustering oracle was designed
with preprocessing time approximately 2poly( k

ε )poly(log n) · n1/2+O(ε), query time approximately
poly(k logn

ε ) · n1/2+O(ε), misclassification error O(log k · ε)|Ci| for each cluster Ci, i ∈ [k] and it
takes approximately O(poly(kε ) · n

1/2+O(ε) · poly(log n)) space. This oracle relied on a log k gap
between inner and outer conductance.

One of our key contributions in this research is a new sublinear-time spectral clustering oracle that
offers enhanced preprocessing efficiency. Specifically, we introduce an oracle that significantly
reduces both the preprocessing and query time, performing in poly(k log n) · n1/2+O(ε) time and
reduces the space complexity, taking O(poly(k)·n1/2+O(ε) ·poly(log n)) space. This approach relies
on a poly(k) gap between the inner and outer conductances, while maintaining a misclassification
error of O(poly(k) · ε1/3)|Ci| for each cluster Ci, i ∈ [k]. Moreover, our oracle offers practical
implementation feasibility, making it well-suited for real-world applications. In contrast, the clustering
oracle proposed in [14] presents challenges in terms of implementation (mainly due to the exponential
dependency on k/ε).

We also investigate the sensitivity of our clustering oracle to edge perturbations. This analysis holds
significance in various practical scenarios where the input graph may be unreliable due to factors such
as privacy concerns, adversarial attacks, or random noises [31]. We demonstrate the robustness of our
clustering oracle by showing that it can accurately identify the underlying clusters in the resulting
graph even after the random deletion of one or a few edges from a well-clusterable graph.

Basic definitions. Graph clustering problems often rely on conductance as a metric to assess
the quality of a cluster. Several recent studies ([8, 9, 30, 14, 22]) have employed conductance in
their investigations. Hence, in this paper, we adopt the same definition to characterize the cluster
quality. We state our results for d-regular graphs for some constant d ≥ 3, though they can be easily
generalized to graphs with maximum degree at most d (see Appendix B).

Definition 1.1 (Inner and outer conductance). Let G = (V,E) be a d-regular n-vertex graph.
For a set S ⊆ C ⊆ V , we let E(S,C\S) denote the set of edges with one endpoint in S and
the other endpoint in C\S. The outer conductance of a set C is defined to be ϕout(C, V ) =
|E(C,V \C)|

d|C| . The inner conductance of a set C is defined to be ϕin(C) = min
S⊆C,0<|S|≤ |C|

2

ϕout(S,C) =

min
S⊆C,0<|S|≤ |C|

2

|E(S,C\S)|
d|S| if |C| > 1 and one otherwise. Specially, the conductance of graph G is

defined to be ϕ(G) = min
C⊆V,0<|C|≤n

2

ϕout(C, V ).

Note that based on the above definition, for a cluster C, the smaller the ϕout(C, V ) is, the more
loosely connected with the other clusters and the bigger the ϕin(C) is, the more tightly connected
within C. For a high quality cluster C, we have ϕout(C, V ) ≪ ϕin(C) ≤ 1.

Definition 1.2 (k-partition). Let G = (V,E) be a graph. A k-partition of V is a collection of disjoint
subsets C1, . . . , Ck such that ∪k

i=1Ci = V .

Based on the above, we have the following definition of clusterable graphs.

Definition 1.3 ((k, φ, ε)-clustering). Let G = (V,E) be a d-regular graph. A (k, φ, ε)-clustering of
G is a k-partition of V , denoted by C1, . . . , Ck, such that for all i ∈ [k], ϕin(Ci) ≥ φ, ϕout(Ci, V ) ≤
ε and for all i, j ∈ [k] one has |Ci|

|Cj | ∈ O(1). G is called a (k, φ, ε)-clusterable graph if there exists a
(k, φ, ε)-clustering of G.
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Main results. Our main contribution is a sublinear-time spectral clustering oracle with improved
preprocessing time for d-regular (k, φ, ε)-clusterable graphs. We assume query access to the adja-
cency list of a graph G, that is, one can query the i-th neighbor of any vertex in constant time.
Theorem 1. Let k ≥ 2 be an integer, φ ∈ (0, 1). Let G = (V,E) be a d-regular n-vertex graph that
admits a (k, φ, ε)-clustering C1, . . . , Ck, ε

φ2 ≪ γ3

k
9
2 ·log3 k

and for all i ∈ [k], γ n
k ≤ |Ci| ≤ n

γk , where

γ is a constant that is in (0.001, 1]. There exists an algorithm that has query access to the adjacency
list of G and constructs a clustering oracle in O(n1/2+O(ε/φ2) · poly(k logn

γφ )) preprocessing time

and takes O(n1/2+O(ε/φ2) · poly(k logn
γ )) space. Furthermore, with probability at least 0.95, the

following hold:

1. Using the oracle, the algorithm can answer any WHICHCLUSTER query in O(n1/2+O(ε/φ2) ·
poly(k logn

γφ )) time and a WHICHCLUSTER query takes O(n1/2+O(ε/φ2) · poly(k logn
γ )) space.

2. Let Ui := {x ∈ V : WHICHCLUSTER(G, x) = i}, i ∈ [k] be the clusters recovered by the
algorithm. There exists a permutation π : [k] → [k] such that for all i ∈ [k], |Uπ(i)△Ci| ≤
O(k

3
2

γ · ( ε
φ2 )

1/3)|Ci|.

Specifically, for every graph G = (V,E) that admits a k-partition C1, . . . , Ck with constant in-
ner conductance φ and outer conductance ε ≪ O( 1

poly(k) ), our oracle has preprocessing time

≈ n1/2+O(ε) · poly(k log n), query time ≈ n1/2+O(ε) · poly(k log n), space ≈ O(n1/2+O(ε/φ2) ·
poly(k log n)) and misclassification error ≈ O(poly(k) · ε1/3)|Ci| for each cluster Ci, i ∈ [k]. In
comparison to [30], our oracle relies on a smaller gap between inner and outer conductance (specif-
ically O(poly(k) log n)). In comparison to [14], our oracle has a smaller preprocessing time and
a smaller space at the expense of a slightly higher misclassification error of O(poly(k) · ε1/3)|Ci|
instead of O(log k · ε)|Ci| and a slightly worse conductance gap of ε ≪ O(φ2/poly(k)) instead of
ε ≪ O(φ3/log(k)). It’s worth highlighting that our space complexity significantly outperforms that
of [14] (i.e., O(n1/2+O(ε/φ2) · poly(kε · log n))), particularly in cases where k is fixed and ε takes on
exceptionally small values, such as ε = 1

nc for sufficiently small constant c > 0, since the second
term in our space complexity does not depend on ε in comparison to the one in [14].

Another contribution of our work is the verification of the robustness of our oracle against the deletion
of one or a few random edges. The main idea underlying the proof is that a well-clusterable graph is
still well-clusterable (with a slightly worse clustering quality) after removing a few random edges,
which in turn is built upon the intuition that after removing a few random edges, an expander graph
remains an expander. For the complete statement and proof of this claim, we refer to Appendix E.
Theorem 2 (Informal; Robust against random edge deletions). Let c > 0 be a constant. Let G0 be a
graph satisfying the similar conditions as stated in Theorem 1. Let G be a graph obtained from G0

by randomly deleting c edges. Then there exists a clustering oracle for G with the same guarantees
as presented in Theorem 1.

1.1 Related work
Sublinear-time algorithms for graph clustering have been extensively researched. Czumaj et al. [8]
proposed a property testing algorithm capable of determining whether a graph is k-clusterable or
significantly far from being k-clusterable in sublinear time. This algorithm, which can be adapted
to a sublinear-time clustering oracle, was later extended by Peng [30] to handle graphs with noisy
partial information through a robust clustering oracle. Subsequent improvements to both the testing
algorithm and the oracle were introduced by Chiplunkar et al. [6] and Gluchowski et al. [14].
Recently, Kapralov et al. [16, 17] presented a hierarchical clustering oracle specifically designed
for graphs exhibiting a pronounced hierarchical structure. This oracle offers query access to a high-
quality hierarchical clustering at a cost of poly(k) · n1/2+O(γ) per query. However, it is important to
note that their algorithm does not provide an oracle for flat k-clustering, as considered in our work,
with the same query complexity. Sublinear-time clustering oracles for signed graphs have also been
studied recently [25].

The field of local graph clustering [33, 1, 3, 2, 34, 28] is also closely related to our research. In this
framework, the objective is to identify a cluster starting from a given vertex within a running time
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that is bounded by the size of the output set, with a weak dependence on n. Zhu et al. [34] proposed
a local clustering algorithm that produces a set with low conductance when both inner and outer
conductance are used as measures of cluster quality. It is worth noting that the running times of these
algorithms are sublinear only if the target set’s size (or volume) is small, for example, at most o(n).
In contrast, in our setting, the clusters of interest have a minimum size that is Ω(n/k).

Extensive research has been conducted on fully or partially recovering clusters in the presence of
noise within the “global algorithm regimes”. Examples include recovering the planted partition in
the stochastic block model with modeling errors or noise [4, 15, 24, 21], correlation clustering on
different ground-truth graphs in the semi-random model [23, 5, 13, 20], and graph partitioning in
the average-case model [18, 19, 20]. It is important to note that all these algorithms require at least
linear time to run.

2 Preliminaries
Let G = (V,E) denote a d-regular undirected and unweighted graph, where V := {1, . . . , n}.
Throughout the paper, we use i ∈ [n] to denote 1 ≤ i ≤ n. For any two vectors x,y ∈ Rn, we
let ⟨x,y⟩ = xTy denote the dot product of x and y. For a graph G, we let A ∈ Rn×n denote the
adjacency matrix of G and let D ∈ Rn×n denote a diagonal matrix with D(i, i) = deg(i), where
deg(i) is the degree of vertex i, i ∈ [n]. We denote with L the normalized Laplacian of G where
L = D−1/2(D − A)D−1/2 = I − A

d . For L, we use 0 ≤ λ1 ≤ ... ≤ λn ≤ 2 [7] to denote its
eigenvalues and we use u1, . . . , un ∈ Rn to denote the corresponding eigenvectors. Note that the
corresponding eigenvectors are not unique, in this paper, we let u1, . . . , un be an orthonormal basis
of eigenvectors of L. For any two sets S1 and S2, we let S1△S2 denote the symmetric difference
between S1 and S2.

Due to space constraints, we present only the key preliminaries here; the complete preliminaries will
be presented in Appendix A.

Our algorithms in this paper are based on the properties of the dot product of spectral embeddings, so
we also need the following definition.

Definition 2.1 (Spectral embedding). For a graph G = (V,E) with n = |V | and an integer
2 ≤ k ≤ n, we use L denote the normalized Laplacian of G. Let U[k] ∈ Rn×k denote the matrix
of the bottom k eigenvectors of L. Then for every x ∈ V , the spectral embedding of x, denoted by
fx ∈ Rk, is the x-row of U[k], which means fx(i) = ui(x), i ∈ [k].

Definition 2.2 (Cluster centers). Let G = (V,E) be a d-regular graph that admits a (k, φ, ε)-
clustering C1, . . . , Ck. The cluster center µi of Ci is defined to be µi =

1
|Ci|

∑
x∈Ci

fx, i ∈ [k].

The following informal lemma shows that the dot product of two spectral embeddings can be
approximated in Õ(n1/2+O(ε/φ2) · poly(k)) time.

Lemma 2.1 (Informal; Theorem 2, [14]). Let G = (V,E) be a d-regular graph that
admits a (k, φ, ε)-clustering C1, . . . , Ck, ε ≤ φ2

105 . Then for every pair of vertices
x, y ∈ V , SPECTRALDOTPRODUCT(G, x, y, 1/2, ξ,D) computes an output value ⟨fx, fy⟩apx in

Õ(n1/2+O(ε/φ2) · poly(k)) time such that with high probability:
∣∣∣⟨fx, fy⟩apx − ⟨fx, fy⟩

∣∣∣ ≤ ξ
n .

For the completeness of this paper, we will show the formal Lemma 2.1 and algorithm
SPECTRALDOTPRODUCT(G, x, y, 1/2, ξ,D) in Appendix C.

3 Spectral clustering oracle
3.1 Our techniques
We begin by outlining the main concepts of the spectral clustering oracle presented in [14]. Firstly, the
authors introduce a sublinear time oracle that provides dot product access to the spectral embedding
of graph G by estimating distributions of short random walks originating from vertices in G (as
described in Lemma 2.1). Subsequently, they demonstrate that (1) the set of points corresponding to
the spectral embeddings of all vertices exhibits well-concentrated clustering around the cluster center
µi (refer to Definition 2.2), and (2) all the cluster centers are approximately orthogonal to each other.
The clustering oracle in [14] operates as follows: it initially guesses the k cluster centers from a set of
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Figure 1: The angle between embeddings of vertices in the same cluster is small and the angle
between embeddings of vertices in different clusters is close to orthogonal (k = 3).

poly(k/ε) sampled vertices, which requires a time complexity of 2poly(k/ε)n1/2+O(ε). Subsequently,
it iteratively employs the dot product oracle to estimate ⟨fx, µi⟩. If the value of ⟨fx, µi⟩ is significant,
it allows them to infer that vertex x likely belongs to cluster Ci.

Now we present our algorithm, which builds upon the dot product oracle in [14]. Our main insight is
to avoid relying directly on cluster centers in our algorithm. By doing so, we can eliminate the need
to guess cluster centers and consequently remove the exponential time required in the preprocessing
phase described in [14]. The underlying intuition is as follows: if two vertices, x and y, belong to the
same cluster Ci, their corresponding spectral embeddings fx and fy will be close to the cluster center
µi. As a result, the angle between fx and fy will be small, and the dot product ⟨fx, fy⟩ will be large
(roughly on the order of O( kn )). Conversely, if x and y belong to different clusters, their embeddings
fx and fy will tend to be orthogonal, resulting in a small dot product ⟨fx, fy⟩ (close to 0). We prove
that this desirable property holds for the majority of vertices in d-regular (k, φ, ε)-clusterable graphs
(see Figure 1 for an illustrative example). Slightly more formally, we introduce the definitions of
good and bad vertices (refer to Definition 3.1) such that the set of good vertices corresponds to the
core part of clusters and each pair of good vertices satisfies the aforementioned property; the rest
vertices are the bad vertices. Leveraging this property, we can directly utilize the dot product of
spectral embeddings to construct a sublinear clustering oracle.

Based on the desirable property discussed earlier, which holds for d-regular (k, φ, ε)-clusterable
graphs, we can devise a sublinear spectral clustering oracle. Let G = (V,E) be a d-regular (k, φ, ε)-
clusterable graph that possesses a (k, φ, ε)-clustering C1, . . . , Ck. In the preprocessing phase, we
sample a set S of s vertices from V and construct a similarity graph, denoted as H , on S. For each
pair of vertices x, y ∈ S, we utilize the dot product oracle from [14] to estimate ⟨fx, fy⟩. If x and y
belong to the same cluster Ci, yielding a large ⟨fx, fy⟩, we add an edge (x, y) to H . Conversely, if
x and y belong to different clusters, resulting in a ⟨fx, fy⟩ close to 0, we make no modifications to
H . Consequently, only vertices within the same cluster Ci(i ∈ [k]) can be connected by edges. We
can also establish that, by appropriately selecting s, the sampling set S will, with high probability,
contain at least one vertex from each C1, . . . , Ck. Thus, the similarity graph H will have k connected
components, with each component corresponding to a cluster in the ground-truth. We utilize these k
connected components, denoted as S1, . . . , Sk, to represent C1, . . . , Ck.

During the query phase, we determine whether the queried vertex x belongs to a connected component
in H . Specifically, we estimate ⟨fx, fy⟩ for all y ∈ S. If there exists a unique index i ∈ [k] for which
⟨fx, fu⟩ is significant (approximately O( kn )) for all u ∈ Si, we conclude that x belongs to cluster Ci,
associated with Si. If no such unique index is found, we assign x a random index i, where i ∈ [k].

3.2 The clustering oracle

Next, we present our algorithms for constructing a spectral clustering oracle and handling the WHICH-
CLUSTER queries. In the preprocessing phase, the algorithm CONSTRUCTORACLE(G, k, φ, ε, γ)
learns the cluster structure representation of G. This involves constructing a similarity graph H on a
sampled vertex set S and assigning membership labels ℓ to all vertices in S. During the query phase,
the algorithm WHICHCLUSTER(G, x) determines the clustering membership index to which vertex x
belongs. More specifically, WHICHCLUSTER(G, x) utilizes the function SEARCHINDEX(H, ℓ, x)
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Algorithm 1: CONSTRUCTORACLE(G, k, φ, ε, γ)

1 Let ξ =
√
γ

1000 and let s = 10·k log k
γ

2 Let θ = 0.96(1− 4
√
ε

φ )γkn −
√
k

n ( ε
φ2 )

1/6 − ξ
n

3 Sample a set S of s vertices independently and uniformly at random from V
4 Generate a similarity graph H = (S, ∅)
5 Let D = INITIALIZEORACLE(G, 1/2, ξ)
6 for any u, v ∈ S do
7 Let ⟨fu, fv⟩apx = SPECTRALDOTPRODUCTORACLE(G, u, v, 1/2, ξ,D)
8 if ⟨fu, fv⟩apx ≥ θ then
9 Add an edge (u, v) to the similarity graph H

10 if H has exactly k connected components then
11 Label the connected components with 1, 2, . . . , k (we write them as S1, . . . , Sk)
12 Label x ∈ S with i if x ∈ Si

13 Return H and the vertex labeling ℓ
14 else
15 return fail

to check whether the queried vertex x belongs to a unique connected component in H . If it does,
SEARCHINDEX(H, ℓ, x) will return the index of the unique connected component in H .

The algorithm in preprocessing phase is given in Algorithm 1 CONSTRUCTORACLE(G, k, φ, ε, γ).

See Appendix C for algorithm INITIALIZEORACLE and SPECTRALDOTPRODUCTORACLE invoked
by CONSTRUCTORACLE(G, k, φ, ε, γ).

Our algorithms used in the query phase are described in Algorithm 2 SEARCHINDEX(H, ℓ, x) and
Algorithm 3 WHICHCLUSTER(G, x).

Algorithm 2: SEARCHINDEX(H, ℓ, x)
1 for any vertex u ∈ S do
2 Let ⟨fu, fx⟩apx = SPECTRALDOTPRODUCTORACLE(G, u, x, 1/2, ξ,D)
3 if there exists a unique index 1 ≤ i ≤ k such that ⟨fu, fx⟩apx ≥ θ for all u ∈ Si then
4 return index i
5 else
6 return outlier

Algorithm 3: WHICHCLUSTER(G, x)
1 if preprocessing phase fails then
2 return fail
3 if SEARCHINDEX(H, ℓ, x) return outlier then
4 return a random index∈ [k]
5 else
6 return SEARCHINDEX(H, ℓ, x)

3.3 Analysis of the oracle
We now prove the following property: for most vertex pairs x, y, if x, y are in the same cluster, then
⟨fx, fy⟩ is rough O( kn ) (Lemma 3.4); and if x, y are in the different clusters, then ⟨fx, fy⟩ is close
to 0 (Lemma 3.5). We make use of the following three lemmas. Due to the limited space, all the
missing proofs will be given in Appendix D.

The following lemma shows that for most vertices x, the norm ∥fx∥2 is small.

6



Lemma 3.1. Let α ∈ (0, 1). Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε ∈ (0, 1). Let G = (V,E)

be a d-regular (k, φ, ε)-clusterable graph with |V | = n. There exists a subset V̂ ⊆ V with

|V̂ | ≥ (1− α)|V | such that for all x ∈ V̂ , it holds that ∥fx∥2 ≤
√

1
α · k

n .

We then show that for most vertices x, fx is close to its center µx of the cluster containing x.
Lemma 3.2. Let β ∈ (0, 1). Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε ∈ (0, 1). Let G = (V,E) be
a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck with |V | = n. There exists a subset

Ṽ ⊆ V with |Ṽ | ≥ (1− β) |V | such that for all x ∈ Ṽ , it holds that ∥fx − µx∥2 ≤
√

4kε
βφ2 · 1

n .

The next lemma shows that for most vertices x in a cluster Ci, the inner product ⟨fx, µi⟩ is large.
Lemma 3.3. Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε

φ2 be smaller than a sufficiently small constant.
Let G = (V,E) be a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Let Ci denote
the cluster corresponding to the center µi, i ∈ [k]. Then for every Ci, i ∈ [k], there exists a subset
C̃i ⊆ Ci with |C̃i| ≥ (1− 104ε

φ2 )|Ci| such that for all x ∈ C̃i, it holds that ⟨fx, µi⟩ ≥ 0.96∥µi∥22.

For the sake of description, we introduce the following definition.
Definition 3.1 (Good and bad vertices). Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε

φ2 be smaller
than a sufficiently small constant. Let G = (V,E) be a d-regular n-vertex graph that admits a
(k, φ, ε)-clustering C1, . . . , Ck. We call a vertex x ∈ V a good vertex with respect to α ∈ (0, 1) and
β ∈ (0, 1) if x ∈ (V̂ ∩ Ṽ ∩ (∪k

i=1C̃i)), where V̂ is the set as defined in Lemma 3.1, Ṽ is the set as
defined in Lemma 3.2 and C̃i (i ∈ [k]) is the set as defined in Lemma 3.3. We call a vertex x ∈ V a
bad vertex with respect to α ∈ (0, 1) and β ∈ (0, 1) if it’s not a good vertex with respect to α and β.

Note that for a good vertex x with respect to α ∈ (0, 1) and β ∈ (0, 1), the following hold: (1)

∥fx∥2 ≤
√

1
α · k

n ; (2) ∥fx − µx∥2 ≤
√

4kε
βφ2 · 1

n ; (3) ⟨fx, µx⟩ ≥ 0.96∥µx∥22. For a bad vertex x with
respect to α ∈ (0, 1) and β ∈ (0, 1), it does not satisfy at least one of the above three conditions.

The following lemma shows that if vertex x and vertex y are in the same cluster and both of them are
good vertices with respect to α and β (α and β should be chosen appropriately), then the spectral dot
product ⟨fx, fy⟩ is roughly 0.96 · 1

|Ci| .

Lemma 3.4. Let k ≥ 2, φ ∈ (0, 1) and ε
φ2 be smaller than a sufficiently small constant. Let

G = (V,E) be a d-regular n-vertex graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Suppose
that x, y ∈ V are in the same cluster Ci, i ∈ [k] and both of them are good vertices with respect to

α = 2
√
k · ( ε

φ2 )
1/3 and β = 2

√
k · ( ε

φ2 )
1/3. Then ⟨fx, fy⟩ ≥ 0.96

(
1− 4

√
ε

φ

)
1

|Ci| −
√
k

n ·
(

ε
φ2

)1/6

.

The following lemma shows that if vertex x and vertex y are in different clusters and both of them
are good vertices with respect to α and β (α and β should be chosen appropriately), then the spectral
dot product ⟨fx, fy⟩ is close to 0.
Lemma 3.5. Let k ≥ 2, φ ∈ (0, 1) and ε

φ2 be smaller than a sufficiently small constant. Let
G = (V,E) be a d-regular n-vertex graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Suppose
that x ∈ Ci, y ∈ Cj , (i, j ∈ [k], i ̸= j) and both of them are good vertices with respect to
α = 2

√
k · ( ε

φ2 )
1/3 and β = 2

√
k · ( ε

φ2 )
1/3, the following holds:

⟨fx, fy⟩ ≤
√
k

n
·
(

ε

φ2

)1/6

+

√
2k1/4√
n

·
(

ε

φ2

)1/3

·

√(
1 +

4
√
ε

φ

)
1

|Cj |
+

8
√
ε

φ
· 1√

|Ci| · |Cj |
.

Proof of Theorem 1. Now we prove our main result Theorem 1.

Proof. Let s = 10k log k
γ be the size of sampling set S, let α = β = 2

√
k · ( ε

φ2 )
1/3. Recall that we

call a vertex x a bad vertex, if x ∈ (V \V̂ ) ∪ (V \Ṽ ) ∪ (V \(∪k
i=1C̃i)), where V̂ , Ṽ , C̃i, i ∈ [k] are

defined in Lemma 3.1, 3.2, 3.3 respectively. We use B to denote the set of all bad vertices. Then
we have |B| ≤ (α+ β + 104ε

φ2 ) · n = (4
√
k · ( ε

φ2 )
1/3 + 104ε

φ2 ) · n. We let κ ≤ 4
√
k · ( ε

φ2 )
1/3 + 104ε

φ2

7



be the fraction of B in V . Since ε
φ2 < γ3

43·109·k
9
2 ·log3 k

, we have κ ≤ 4
√
k ·

(
ε
φ2

)1/3

+ 104ε
φ2 ≤

γ
103k log k + γ3

43·105·k
9
2 log3 k

≤ 2γ
103k log k = 1

50s .

Therefore, by union bound, with probability at least 1− κ · s ≥ 1− 1
50s · s = 1− 1

50 , all the vertices
in S are good (we fixed α = β = 2

√
k · ( ε

φ2 )
1/3, so we will omit “with respect to α and β” in the

following). In the following, we will assume all the vertices in S are good.

Recall that for i ∈ [k], |Ci| ≥ γ n
k , so with probability at least 1− (1− γ

k )
s = 1− (1− 1

k
γ

)
k
γ ·10 log k ≥

1− 1
k10 ≥ 1− 1

50k , there exists at least one vertex in S that is from Ci. Then with probability at least
1− 1

50 , for all k clusters C1, . . . , Ck, there exists at least one vertex in S that is from Ci.

Let ξ =
√
γ

1000 . By Lemma 2.1, we know that with probability at least 1− 1
n100 , for any pair of x, y ∈ V ,

SPECTRALDOTPRODUCTORACLE(G, x, y, 1/2, ξ,D) computes an output value ⟨fx, fy⟩apx such

that
∣∣∣⟨fx, fy⟩apx − ⟨fx, fy⟩

∣∣∣ ≤ ξ
n . So, with probability at least 1 − s·s

n100 ≥ 1 − 1
n50 , for all

pairs x, y ∈ S, SPECTRALDOTPRODUCTORACLE(G, x, y, 1/2, ξ,D) computes an output value
⟨fx, fy⟩apx such that

∣∣∣⟨fx, fy⟩apx − ⟨fx, fy⟩
∣∣∣ ≤ ξ

n . In the following, we will assume the above
inequality holds for any x, y ∈ S.

By Lemma 3.4, we know that if x, y are in the same cluster and both of them are good vertices, then we
have ⟨fx, fy⟩ ≥ 0.96(1− 4

√
ε

φ ) 1
|Ci|−

√
k

n ·( ε
φ2 )

1/6 ≥ 0.96(1− 4
√
ε

φ )γkn −
√
k

n ( ε
φ2 )

1/6 since |Ci| ≤ n
γk .

By Lemma 3.5, we know that if x, y are in the different clusters and both of them are good vertices,

then we have ⟨fx, fy⟩ ≤
√
k

n · ( ε
φ2 )

1/6 +
√
2k1/4
√
n

· ( ε
φ2 )

1/3 ·
√
(1 + 4

√
ε

φ ) 1
|Cj | +

8
√
ε

φ · 1√
|Ci|·|Cj |

≤
√
k

n · ( ε
φ2 )

1/6 +
√

2
γ

k3/4

n

√
1 + 4

√
ε

φ · ( ε
φ2 )

1/3 + 8
√
ε

φ · k
γn since γn

k ≤ |Ci| for all i ∈ [k].

Recall that ε
φ2 < γ3

43·109·k
9
2 ·log3 k

and γ ∈ (0.001, 1]. Let θ = 0.96(1− 4
√
ε

φ )γkn −
√
k

n ( ε
φ2 )

1/6 − ξ
n ,

then we have θ >
√
γ

n · (0.96√γk − 0.48
109/2·k5/4 log3/2 k

− 1
2·103/2·k1/4 log1/2 k

− 1
1000 ) > 0.034 ·

√
γ

n .
Let S satisfies that all the vertices in S are good, and S contains at least one vertex from Ci for all
i = 1, . . . , k. For any x, y ∈ S, then:

1. If x, y belong to the same cluster, by above analysis, we know that ⟨fx, fy⟩ ≥ 0.96(1 −
4
√
ε

φ )γkn −
√
k

n ( ε
φ2 )

1/6. Then it holds that ⟨fx, fy⟩apx ≥ ⟨fx, fy⟩− ξ
n ≥ 0.96(1− 4

√
ε

φ )γkn −
√
k

n ( ε
φ2 )

1/6 − ξ
n = θ. Thus, an edge (x, y) will be added to H (at lines 8 and 9 of Alg.1).

2. If x, y belong to two different clusters, by above analysis, we know that ⟨fx, fy⟩ ≤
√
k

n ·

( ε
φ2 )

1/6 +
√

2
γ

k3/4

n

√
1 + 4

√
ε

φ · ( ε
φ2 )

1/3 + 8
√
ε

φ · k
γn . Then it holds that ⟨fx, fy⟩apx ≤

⟨fx, fy⟩ + ξ
n ≤

√
k

n · ( ε
φ2 )

1/6 +
√

2
γ

k3/4

n

√
1 + 4

√
ε

φ · ( ε
φ2 )

1/3 + 8
√
ε

φ · k
γn + ξ

n <
√
γ

n ·

( 1
2·103/2·k1/4 log1/2 k

+ 1
2·103·k3/4 log k

+ 1
109/2·k5/4 log3/2 k

+ 1
1000 ) < 0.027 ·

√
γ

n < θ, since
ε
φ2 < γ3

43·109·k
9
2 ·log3 k

and ξ =
√
γ

1000 . Thus, an edge (u, v) will not be added to H .

Therefore, with probability at least 1− 1
50 − 1

50 − 1
n50 ≥ 0.95, the similarity graph H has following

properties: (1) all vertices in V (H) (i.e., S) are good; (2) all vertices in S that belongs to the same
cluster Ci form a connected components, denoted by Si; (3) there is no edge between Si and Sj ,
i ̸= j; (4) there are exactly k connected components in H , each corresponding to a cluster.

Now we are ready to consider a query WHICHCLUSTER(G, x).

Assume x is good. We use Cx to denote the cluster that x belongs to. Since all the vertices in
S are good, let y ∈ Cx ∩ S, so with probability at least 1 − s

n100 ≥ 1 − 1
n50 , by above analysis,

we have ⟨fx, fy⟩apx ≥ ⟨fx, fy⟩ − ξ
n ≥ θ. On the other hand, for any y ∈ S\Cx, with probability

at least 1 − s
n100 ≥ 1 − 1

n50 , by above analysis, we have ⟨fx, fy⟩apx ≤ ⟨fx, fy⟩ + ξ
n < θ. Thus,

WHICHCLUSTER(G, x) will output the label of y ∈ Cx ∩ S as x′s label (at line 3 of Alg.2).
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Therefore, with probability at least 1 − 1
50 − 1

50 − 1
n50 − n

n50 ≥ 0.95, all the good ver-
tices will be correctly recovered. So the misclassified vertices come from B. We know that

|B| ≤
(
α+ β + 104ε

φ2

)
· n =

(
4
√
k ·

(
ε
φ2

)1/3

+ 104ε
φ2

)
· n. Since |Ci| ≥ γn

k , we have n ≤ k
γ |Ci|.

So, |B| ≤ (4
√
k · ( ε

φ2 )
1/3 + 104ε

φ2 ) · k
γ |Ci| ≤ O(k

3
2

γ · ( ε
φ2 )

1/3)|Ci|. This implies that there exists a

permutation π : [k] → [k] such that for all i ∈ [k], |Uπ(i)△Ci| ≤ O(k
3
2

γ · ( ε
φ2 )

1/3)|Ci|.

Running time. By Lemma 2.1, we know that INITIALIZEORACLE(G, 1/2, ξ) computes in time
(kξ )

O(1) · n1/2+O(ε/φ2) · (log n)3 · 1
φ2 a sublinear space data structure D and for every pair of

vertices x, y ∈ V , SPECTRALDOTPRODUCTORACLE(G, x, y, 1/2, ξ,D) computes an output value
⟨fx, fy⟩apx in (kξ )

O(1) · n1/2+O(ε/φ2) · (log n)2 · 1
φ2 time.

In preprocessing phase, for algorithm CONSTRUCTORACLE(G, k, φ, ε, γ), it invokes
INITIALIZEORACLE one time to construct a data structure D and SPECTRALDOTPRODUCTORACLE
s · s times to construct a similarity graph H . So the preprocessing time of our oracle is
(kξ )

O(1) · n1/2+O(ε/φ2) · (log n)3 · 1
φ2 + 100k2 log2 k

γ2 · (kξ )
O(1) · n1/2+O(ε/φ2) · (log n)2 · 1

φ2 =

O(n1/2+O(ε/φ2) · poly(k·logn
γφ )).

In query phase, to answer the cluster index that x belongs to, algorithm WHICHCLUSTER(G, x)
invokes SPECTRALDOTPRODUCTORACLE s times. So the query time of our oracle is 10k log k

γ ·
(kξ )

O(1) · n1/2+O(ε/φ2) · (log n)2 · 1
φ2 = O(n1/2+O(ε/φ2) · poly(k·logn

γφ )).

Space. By the proof of Lemma 2.1 in [14], we know that overall both algorithm INITIALIZEORACLE

and SPECTRALDOTPRODUCTORACLE take (kξ )
O(1) · n1/2+O(ε/φ2) · poly(log n) space. There-

fore, overall preprocessing phase takes (kξ )
O(1) · n1/2+O(ε/φ2) · poly(log n) = O(n1/2+O(ε/φ2) ·

poly(k logn
γ )) space (at lines 5 and 7 of Alg.1). In query phase, WHICHCLUSTER query takes

(kξ )
O(1) ·n1/2+O(ε/φ2) ·poly(log n) = O(n1/2+O(ε/φ2) ·poly(k logn

γ )) space (at line 2 of Alg.2).

4 Experiments

To evaluate the performance of our oracle, we conducted experiments on the random graph generated
by the Stochastic Block Model (SBM). In this model, we are given parameters p, q and n, k, where
n, k denote the number of vertices and the number of clusters respectively; p denotes the probability
that any pair of vertices within each cluster is connected by an edge, and q denotes the probability
that any pair of vertices from different clusters is connected by an edge. Setting p

q > c for some big
enough constant c we can get a well-clusterable graph. All experiments were implemented in Python
3.9 and the experiments were performed using an Intel(R) Core(TM) i7-12700F CPU @ 2.10GHz
processor, with 32 GB RAM. Due to the limited space, practical changes to our oracle will be shown
in Appendix F.

Misclassification error. To evaluate the misclassification error our oracle, we conducted this
experiment. In this experiment, we set k = 3, n = 3000, q = 0.002, p ∈ [0.02, 0.07] in the SBM,
where each cluster has 1000 vertices. For each graph G = (V,E), we run WHICHCLUSTER(G, x)
for all x ∈ V and get a k-partition U1, . . . , Uk of V . In experiments, the misclassification error of
our oracle is defined to be 1− 1

n ·maxπ
∑k

i=1 Uπ(i) ∩ Ci, where π : [k] → [k] is a permutation and
C1, . . . , Ck are the ground-truth clusters of G.

Moreover, we implemented the oracle in [8] to compare with our oracle2. The oracle in [8] can be
seen as a non-robust version of oracle in [30]. Note that our primary advancement over [8] (also [30])
is evident in the significantly reduced conductance gap we achieve.

2We remark that the oracle is implicit in [8] (see also [30]). Instead of using the inner product of spectral
embeddings of vertex pairs, the authors of [8] used the pairwise ℓ2-distance between the distributions of two
random walks starting from the two corresponding vertices.
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We did not compare with the oracle in [14], since implementing the oracle in [14] poses challenges.
As described in section 3.1, the oracle in [14] initially approximates the k cluster centers by sampling
around O(1/ε · k4 log k) vertices, and subsequently undertakes the enumeration of approximately
2O(1/ε·k4 log2 k) potential k-partitions (Algorithm 10 in [14]). This enumeration process is extremely
time-intensive and becomes impractical even for modest values of k.

According to the result of our experiment (Table 1), the misclassification error of our oracle is
reported to be quite small when p ≥ 0.025, and even decreases to 0 when p ≥ 0.035. The outcomes
of our experimentation distinctly demonstrate that our oracle’s misclassification error remains notably
minimal in instances where the input graph showcases an underlying latent cluster structure. In
addition, Table 1 also shows that our oracle can handle graphs with a smaller conductance gap than
the oracle in [8], which is consistent with the theoretical results. This empirical validation reinforces
the practical utility and efficacy of our oracle beyond theoretical conjecture.

Table 1: The misclassification error of the oracle in [8] and our oracle
p 0.02 0.025 0.03 0.035 0.04 0.05 0.06 0.07

min-error1([8]) - 0.5570 0.1677 0.0363 0.0173 0.0010 0 0
max-error1([8]) - 0.6607 0.6610 0.6533 0.4510 0.0773 0.0227 0.0013
average-error1([8]) - 0.6208 0.4970 0.1996 0.0829 0.0168 0.0030 0.0003
error (our) 0.2273 0.0113 0.0003 0 0 0 0 0
1 In the experiment, we found that the misclassification error of oracle in [8] fluctuated greatly, so for the

oracle in [8], for each value of p, we conducted 30 independent experiments and recorded the minimum error,
maximum error and average error of oracle in [8].

Robustness experiment. The base graph G0 = (V,E) is generated from SBM with n = 3000, k =
3, p = 0.05, q = 0.002. Note that randomly deleting some edges in each cluster is equivalent to
reducing p and randomly deleting some edges between different clusters is equivalent to reducing
q. So we consider the worst case. We randomly choose one vertex from each cluster; for each
selected vertex xi, we randomly delete delNum edges connected to xi in cluster Ci. If xi has
fewer than delNum neighbors within Ci, then we delete all the edges incident to xi in Ci. We run
WHICHCLUSTER queries for all vertices in V on the resulting graph. We repeated this process for
five times for each parameter delNum and recorded the average misclassification error (Table 2). The
results show that our oracle is robust against a few number of random edge deletions.

Table 2: The average misclassification error with respect to delNum random edge deletions
delNum 25 32 40 45 50 55 60 65

error 0.00007 0.00007 0.00013 0.00047 0.00080 0.00080 0.00080 0.00087

We also conducted experiments to report the query complexity and running time of our oracle. See
Appendix F for more details.

5 Conclusion
We have devised a new spectral clustering oracle with sublinear preprocessing and query time. In
comparison to the approach presented in [14], our oracle exhibits improved preprocessing efficiency,
albeit with a slightly higher misclassification error rate. Furthermore, our oracle can be readily
implemented in practical settings, while the clustering oracle proposed in [14] poses challenges in
terms of implementation feasibility. To obtain our oracle, we have established a property regarding
the spectral embeddings of the vertices in V for a d-bounded n-vertex graph G = (V,E) that exhibits
a (k, φ, ε)-clustering C1, . . . , Ck. Specifically, if x and y belong to the same cluster, the dot product
of their spectral embeddings (denoted as ⟨fx, fy⟩) is approximately O( kn ). Conversely, if x and y
are from different clusters, ⟨fx, fy⟩ is close to 0. We also show that our clustering oracle is robust
against a few random edge deletions and conducted experiments on synthetic networks to validate
our theoretical results.
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Appendix
A Complete preliminaries

Let G = (V,E) denote a d-regular undirected and unweighted graph, where V := {1, . . . , n}.
Throughout the paper, we use i ∈ [n] to denote 1 ≤ i ≤ n and all the vectors will be column
vectors unless otherwise specified or transposed to row vectors. For a vertex x ∈ V , let 1x ∈ Rn

denote the indicator of x, which means 1x(i) = 1 if i = x and 0 otherwise. For a vector x, we let
∥x∥2 =

√∑
i x(i)

2 denote its ℓ2 norm. For a matrix A ∈ Rn×n, we use ∥A∥ to denote the spectral
norm of A, and we use ∥A∥F to denote the Frobenius norm of A. For any two vectors x,y ∈ Rn, we
let ⟨x,y⟩ = xTy denote the dot product of x and y. For a matrix A ∈ Rn×n, we use A[i] ∈ Rn×i to
denote the first i columns of A, 1 ≤ i ≤ n.

Let A ∈ Rn×n denote the adjacency matrix of G and let D ∈ Rn×n denote a diagonal matrix. For the
adjacency matrix A, A(i, j) = 1 if (i, j) ∈ E and 0 otherwise, u, v ∈ [n]. For the diagonal matrix D,
D(i, i) = deg(i), where deg(i) is the degree of vertex i, i ∈ [n]. We denote with L the normalized
Laplacian of G where L = D−1/2(D −A)D−1/2 = I − A

d . For L, we use 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2
[7] to denote its eigenvalues and we use u1, . . . , un ∈ Rn to denote the corresponding eigenvectors.
Note that the corresponding eigenvectors are not unique, in this paper, we let u1, . . . , un be an
orthonormal basis of eigenvectors of L. Let U ∈ Rn×n be a matrix whose i-th column is ui, i ∈ [n],
then for every vertex x ∈ V , fx = UT

[k]1x. For any two sets S1 and S2, we let S1△S2 denote the
symmetric difference between S1 and S2.

B d-bounded graphs to d-regular graphs

For a d-bounded graph G
′
= (V,E), we can get a d-regular graph G from G

′
by adding d− deg(x)

self-loops with weight 1/2 to each vertex x ∈ V . Note that the lazy random walk on G is equivalent
to the random walk on G′, with the random walk satisfying that if we are at vertex x, then we
jump to a random neighbor with probability 1

2d and stay at x with probability 1 − deg(x)
2d . We use

wself (x) = (d− deg(x)) · 1
2 to denote the the weight of all self-loops of x ∈ V .

C Formal statement of Lemma 2.1 and description of dot-product algorithms
in [14]

Lemma C.1 (Lemma 2.1, Formal; Theorem 2, [14]). Let ε, φ ∈ (0, 1) with ε ≤ φ2

105 . Let G = (V,E)

be a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Let 1
n5 < ξ < 1. Then

INITIALIZEORACLE(G, 1/2, ξ) computes in time (kξ )
O(1) · n1/2+O(ε/φ2) · (log n)3 · 1

φ2 a sublinear

space data structure D of size (kξ )
O(1) · n1/2+O(ε/φ2) · (log n)3 such that with probability at least

1− n−100 the following property is satisfied:

For every pair of vertices x, y ∈ V , SPECTRALDOTPRODUCT(G, x, y, 1/2, ξ,D) computes an output
value ⟨fx, fy⟩apx such that with probability at least 1− n−100∣∣∣⟨fx, fy⟩apx − ⟨fx, fy⟩

∣∣∣ ≤ ξ

n
.

The running time of SPECTRALDOTPRODUCT(G, x, y, 1/2, ξ,D) is (kξ )
O(1)·n1/2+O(ε/φ2)·(log n)2·

1
φ2 .

Algorithm 4: RUNRANDOMWALKS(G,R, t, x)
1 Run R random walks of length t starting from x
2 Let m̂x(y) be the fraction of random walks that ends at y
3 return m̂x
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Algorithm 5: ESTIMATETRANSITIONMATRIX(G, IS , R, t)
1 for each sample x ∈ IS do
2 m̂x :=RUNRANDOMWALKS(G,R, t, x)
3 end
4 Let Q̂ be the matrix whose columns are m̂x for x ∈ IS

5 return Q̂

Algorithm 6: ESTIMATECOLLISIONPROBABILITIES(G, IS , R, t)
1 for i = 1 to O(log n) do
2 Q̂i :=ESTIMATETRANSITIONMATRIX(G, IS , R, t)
3 P̂i :=ESTIMATETRANSITIONMATRIX(G, IS , R, t)
4 Gi :=

1
2 (P̂

T
i Q̂i + Q̂T

i P̂i)
5 end
6 Let G be a matrix obtained by taking the entrywise median of G′

is
7 return G

Algorithm 7: INITIALIZEORACLE(G, δ, ξ) Need:ε/φ2 ≤ 1
105

1 t := 20·logn
φ2

2 Rinit := O(n1−δ+980·ε/φ2 · k17/ξ2)
3 s := O(n480·ε/φ2 · log n · k8/ξ2)
4 Let IS be the multiset of s indices chosen independently and uniformly at random from

{1, . . . , n}
5 for i = 1 to O(log n) do
6 Q̂i :=ESTIMATETRANSITIONMATRIX(G, IS , Rinit, t)
7 end
8 G :=ESTIMATECOLLISIONPROBABILITIES(G, IS , Rinit, t)
9 Let n

s · G := Ŵ Σ̂ŴT be the eigendecomposition of n
s · G

10 if Σ̂−1 exists then
11 Ψ := n

s · Ŵ[k]Σ̂
−2
[k] Ŵ

T
[k]

12 return D := {Ψ, Q̂1, . . . , Q̂O(logn)}
13 end

Algorithm 8: SPECTRALDOTPRODUCTORACLE(G, x, y, δ, ξ,D) Need:ε/φ2 ≤ 1
105

1 Rquery := O(nδ+500·ε/φ2 · k9/ξ2)
2 for i = 1 to O(log n) do
3 m̂i

x :=RUNRANDOMWALKS(G,Rquery, t, x)
4 m̂i

y :=RUNRANDOMWALKS(G,Rquery, t, y)
5 end
6 Let αx be a vector obtained by taking the entrywise median of (Q̂i)

T (m̂i
x) over all runs

7 Let αy be a vector obtained by taking the entrywise median of (Q̂i)
T (m̂i

y) over all runs
8 return ⟨fx, fy⟩apx := αT

xΨαy

D Deferred proofs

Lemma D.1 (Restatement of Lemma 3.1). Let α ∈ (0, 1). Let k ≥ 2 be an integer, φ ∈ (0, 1), and
ε ∈ (0, 1). Let G = (V,E) be a d-regular (k, φ, ε)-clusterable graph with |V | = n. There exists a

subset V̂ ⊆ V with |V̂ | ≥ (1− α)|V | such that for all x ∈ V̂ , it holds that ∥fx∥2 ≤
√

1
α · k

n .
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Proof. Recall that u1, . . . , uk are an orthonormal basis of eigenvectors of L, so ∥ui∥22 = 1 for all
i ∈ [k]. So

∑k
i=1 ∥ui∥22 =

∑n
i=1 ∥fxi∥22 = k. Let X be a random variable such that X = ∥fxi∥22

with probability 1
n , for each i ∈ [n]. Then we have E[X] = 1

n

∑n
i=1 ∥fxi

∥22 = k
n . Using Markov’s

inequality, we have Pr[X ≥ 1
α · E[X]] = Pr[X ≥ 1

α · k
n ] ≤ α. This gives us that Pr[X ≤ 1

α · k
n ] ≥

1− α, which means that at least (1− α) fraction of vertices in V satisfies ∥fx∥22 ≤ 1
α · k

n . We define
V̂ := {x ∈ V : ∥fx∥22 ≤ 1

α · k
n}, then we have |V̂ | ≥ (1− α)|V |. This ends the proof.

Lemma D.2 (Restatement of Lemma 3.2). Let β ∈ (0, 1). Let k ≥ 2 be an integer, φ ∈ (0, 1), and
ε ∈ (0, 1). Let G = (V,E) be a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck with
|V | = n. There exists a subset Ṽ ⊆ V with |Ṽ | ≥ (1− β)|V | such that for all x ∈ Ṽ , it holds that

∥fx − µx∥2 ≤
√

4kε
βφ2 · 1

n .

The following result will be used in our proof:
Lemma D.3 (Lemma 6, [14]). Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε ∈ (0, 1). Let G = (V,E) be
a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Then for all α ∈ Rk, with ∥α∥2 = 1
we have

k∑
i=1

∑
x∈Ci

⟨fx − µi, α⟩2 ≤ 4ε

φ2
.

Proof of Lemma 3.2. By summing over α in an orthonormal basis of Rk, we can get∑
x∈V

∥fx − µx∥22 ≤ k · 4ε
φ2

=
4kε

φ2
,

where µx is the cluster center of the cluster that x belongs to. Define V ∗ = {x ∈ V : ∥fx − µx∥22 ≥
4kε
βφ2 · 1

n}. Then,

4kε

φ2
≥

∑
x∈V

∥fx − µx∥22 ≥
∑
x∈V ∗

∥fx − µx∥22 ≥
∑
x∈V ∗

4kε

βφ2
· 1
n
= |V ∗| · 4kε

βφ2
· 1
n
.

So, we can get |V ∗| ≤ βn. We define Ṽ = V \V ∗ = {x ∈ V : ∥fx − µx∥22 ≤ 4kε
βφ2 · 1

n}. Therefore,

we have |Ṽ | ≥ (1− β)n = (1− β)|V |. This ends the proof.

Lemma D.4 (Restatement of Lemma 3.3). Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε
φ2 be smaller

than a sufficiently small constant. Let G = (V,E) be a d-regular graph that admits a (k, φ, ε)-
clustering C1, . . . , Ck. Let Ci denote the cluster corresponding to the center µi, i ∈ [k]. Then for
every Ci, i ∈ [k], there exists a subset C̃i ⊆ Ci with |C̃i| ≥ (1− 104ε

φ2 )|Ci| such that for all x ∈ C̃i,
it holds that ⟨fx, µi⟩ ≥ 0.96∥µi∥22.

The following result will be used in our proof:
Lemma D.5 (Lemma 31, [14]). Let k ≥ 2, φ ∈ (0, 1), and ε

φ2 be smaller than a sufficiently small
constant. Let G = (V,E) be a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. If
µ′
is are cluster means then the following conditions hold. Let S ⊂ {µ1, . . . , µk}. Let Π denote the

orthogonal projection matrix on to the span(S)⊥. Let µ ∈ {µ1, . . . , µk}\S. Let C denote the cluster
corresponding to the center µ. Let

Ĉ := {x ∈ V : ⟨Πfx,Πµ⟩ ≥ 0.96∥Πµ∥22}
then we have:

|C\Ĉ| ≤ 104ε

φ2
|C|.

Proof of Lemma 3.3. We apply S = ∅ in Lemma D.5 so that Π is an identity matrix and we will have
|Ci\Ĉi| ≤ 104ε

φ2 |Ci|, where Ĉi := {x ∈ V : ⟨fx, µi⟩ ≥ 0.96∥µi∥22}, i ∈ [k]. So

|Ci ∩ Ĉi| ≥
(
1− 104ε

φ2

)
|Ci|.
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We define C̃i = Ci ∩ Ĉi, i ∈ [k]. Therefore, for every Ci, i ∈ [k], there exists a subset C̃i ⊆ Ci with
|C̃i| ≥ (1− 104ε

φ2 )|Ci| such that for all x ∈ C̃i, it holds that ⟨fx, µi⟩ ≥ 0.96∥µi∥22.

Lemma D.6 (Restatement of Lemma 3.4). Let k ≥ 2, φ ∈ (0, 1) and ε
φ2 be smaller than a sufficiently

small constant. Let G = (V,E) be a d-regular n-vertex graph that admits a (k, φ, ε)-clustering
C1, . . . , Ck. Suppose that x, y ∈ V are in the same cluster Ci, i ∈ [k] and both of them are good
vertex with respect to α = 2

√
k · ( ε

φ2 )
1/3 and β = 2

√
k · ( ε

φ2 )
1/3, the following holds:

⟨fx, fy⟩ ≥ 0.96

(
1− 4

√
ε

φ

)
1

|Ci|
−

√
k

n
·
(

ε

φ2

)1/6

.

The following result will be used in our proof:

Lemma D.7 (Lemma 7, [14]). Let k ≥ 2 be an integer, φ ∈ (0, 1), and ε ∈ (0, 1). Let G = (V,E)
be a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Then we have

1. for all i ∈ [k],
∣∣∣∥µi∥22 − 1

|Ci|

∣∣∣ ≤ 4
√
ε

φ
1

|Ci| ,

2. for all i ̸= j ∈ [k], |⟨µi, µj⟩| ≤ 8
√
ε

φ
1√

|Ci||Cj |
.

Proof of Lemma 3.4. According to the distributive law of dot product, we have

⟨fx, fy⟩ = ⟨fx, fy − µi + µi⟩ = ⟨fx, fy − µi⟩+ ⟨fx, µi⟩.

By using Cauchy-Schwarz Inequality, we have |⟨fx, fy − µi⟩| ≤ ∥fx∥2 · ∥fy − µi∥2. Since x and y

are both good vertices with respect to α = 2
√
k · ( ε

φ2 )
1/3 and β = 2

√
k · ( ε

φ2 )
1/3, we have

|⟨fx, fy − µi⟩| ≤ ∥fx∥2 · ∥fy − µi∥2 ≤
√

1

α
· k
n
·

√
4kε

βφ2
· 1
n
=

√
k

n
·
(

ε

φ2

)1/6

,

which gives us that ⟨fx, fy − µi⟩ ≥ −
√
k

n · ( ε
φ2 )

1/6. Recall that x is a good vertex, we have
⟨fx, µi⟩ ≥ 0.96∥µi∥22. Hence, it holds that

⟨fx, fy⟩ = ⟨fx, fy − µi⟩+ ⟨fx, µi⟩

≥ 0.96∥µi∥22 −
√
k

n
·
(

ε

φ2

)1/6

≥ 0.96

(
1− 4

√
ε

φ

)
1

|Ci|
−

√
k

n
·
(

ε

φ2

)1/6

.

The last inequality is according to item 1 in Lemma D.7.

Lemma D.8 (Restatement of Lemma 3.5). Let k ≥ 2, φ ∈ (0, 1) and ε
φ2 be smaller than a sufficiently

small constant. Let G = (V,E) be a d-regular n-vertex graph that admits a (k, φ, ε)-clustering
C1, . . . , Ck. Suppose that x ∈ Ci, y ∈ Cj , (i, j ∈ [k], i ̸= j) and both of them are good vertex with
respect to α = 2

√
k · ( ε

φ2 )
1/3 and β = 2

√
k · ( ε

φ2 )
1/3, the following holds:

⟨fx, fy⟩ ≤
√
k

n
·
(

ε

φ2

)1/6

+

√
2k1/4√
n

·
(

ε

φ2

)1/3

·

√(
1 +

4
√
ε

φ

)
1

|Cj |
+

8
√
ε

φ
· 1√

|Ci| · |Cj |
.

Proof. According to the distributive law of dot product, we have

⟨fx, fy⟩ = ⟨fx, fy − µj + µj⟩
= ⟨fx, fy − µj⟩+ ⟨fx, µj⟩
= ⟨fx, fy − µj⟩+ ⟨fx − µi + µi, µj⟩
= ⟨fx, fy − µj⟩+ ⟨fx − µi, µj⟩+ ⟨µi, µj⟩.
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By Cauchy-Schwarz Inequality, we have

|⟨fx, fy − µj⟩| ≤ ∥fx∥2 · ∥fy − µj∥2
and

|⟨fx − µi, µj⟩| ≤ ∥µj∥2 · ∥fx − µi∥2.
Since x and y are both good vertices with respect to α = 2

√
k · ( ε

φ2 )
1/3 and β = 2

√
k · ( ε

φ2 )
1/3, we

have

|⟨fx, fy − µj⟩| ≤ ∥fx∥2 · ∥fy − µj∥2 ≤
√

1

α
· k
n
·

√
4kε

βφ2
· 1
n
=

√
k

n
·
(

ε

φ2

)1/6

and

|⟨fx − µi, µj⟩| ≤ ∥µj∥2 · ∥fx − µi∥2 ≤ ∥µj∥2 ·

√
4kε

βφ2
· 1
n
=

√
2k1/4√
n

·
(

ε

φ2

)1/3

· ∥µj∥2.

So we have

⟨fx, fy⟩ = ⟨fx, fy − µj⟩+ ⟨fx − µi, µj⟩+ ⟨µi, µj⟩
≤ ∥fx∥2 · ∥fy − µj∥2 + ∥µj∥2 · ∥fx − µi∥2 + ⟨µi, µj⟩

≤
√
k

n
·
(

ε

φ2

)1/6

+

√
2k1/4√
n

·
(

ε

φ2

)1/3

· ∥µj∥2 + ⟨µi, µj⟩

≤
√
k

n
·
(

ε

φ2

)1/6

+

√
2k1/4√
n

·
(

ε

φ2

)1/3

·

√(
1 +

4
√
ε

φ

)
1

|Cj |
+

8
√
ε

φ
· 1√

|Ci| · |Cj |
.

The last inequality is according to item 1 and item 2 in Lemma D.7.

E Formal statement of Theorem 2 and proof

Theorem 2 (Formal; Robust against random edge deletions). Let k ≥ 2 be an integer, φ ∈ (0, 1).
Let G0 = (V,E0) be a d-regular n-vertex graph that admits a (k, φ, ε)-clustering C1, . . . , Ck,
ε
φ4 ≪ γ3

k
9
2 ·log3 k

and for all i ∈ [k], γ n
k ≤ |Ci| ≤ n

γk , where γ is a constant that is in (0.001, 1].

1. Let G be a graph obtained from G0 by deleting at most c edges in each cluster, where c is a
constant. If 0 ≤ c ≤ dφ2

2
√
10

, then there exists an algorithm that has query access to the adjacency

list of G and constructs a clustering oracle in O(n1/2+O(ε/φ2) · poly(k logn
γφ )) preprocessing time

and takes O(n1/2+O(ε/φ2) · poly(k logn
γ )) space. Furthermore, with probability at least 0.95, the

following hold:

1). Using the oracle, the algorithm can answer any WHICHCLUSTER query in O(n1/2+O(ε/φ2) ·
poly(k logn

γφ )) time and a WHICHCLUSTER query takes O(n1/2+O(ε/φ2) ·poly(k logn
γ )) space.

2). Let Ui := {x ∈ V : WHICHCLUSTER(G, x) = i}, i ∈ [k] be the clusters recovered
by the algorithm. There exists a permutation π : [k] → [k] such that for all i ∈ [k],

|Uπ(i)△Ci| ≤ O(k
3
2

γ · ( ε
φ4 )

1/3)|Ci|.

2. Let G be a graph obtained from G0 by randomly deleting at most O( kd2

log k+d ) edges in G0. With
probability at least 1− 1

k2 , then there exists an algorithm that has query access to the adjacency
list of G and constructs a clustering oracle in O(n1/2+O(ε/φ2) · poly(k logn

γφ )) preprocessing time

and takes O(n1/2+O(ε/φ2) · poly(k logn
γ )) space. Furthermore, with probability at least 0.95, the

following hold:

1). Using the oracle, the algorithm can answer any WHICHCLUSTER query in O(n1/2+O(ε/φ2) ·
poly(k logn

γφ )) time and a WHICHCLUSTER query takes O(n1/2+O(ε/φ2) ·poly(k logn
γ )) space.
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2). Let Ui := {x ∈ V : WHICHCLUSTER(G, x) = i}, i ∈ [k] be the clusters recovered
by the algorithm. There exists a permutation π : [k] → [k] such that for all i ∈ [k],

|Uπ(i)△Ci| ≤ O(k
3
2

γ · ( ε
φ4 )

1/3)|Ci|.

To proof Theorem 2, we need the following lemmas.
Lemma E.1 (Cheeger’s Inequality). In holds for any graph G that

λ2

2
≤ ϕ(G) ≤

√
2λ2.

Lemma E.2 (Weyl’s Inequality). Let A,B ∈ Rn×n be symmetric matrices. Let α1, . . . , αn and
β1, . . . , βn be the eigenvalues of A and B respectively. Then for any i ∈ [n], we have

|αi − βi| ≤ ∥A−B∥,

where ∥A−B∥ is the spectral norm of A−B.

Proof of Theorem 2. Proof of item 1: For any d-bounded graph G′ = (V,E), we can get a d-regular
graph G from G′ by adding d − deg(x) self-loops with weight 1/2 to each vertex x ∈ V . Then
according to [7], the normalized Laplacian of G (denoted as L) satisfies

L(x, y) =


1− wself (x)

d if x = y

− 1
d if x ̸= y and (x, y) ∈ E

0 otherwise
.

Let G0 = (V,E0) be a d-regular graph that admits a (k, φ, ε)-clustering C1, . . . , Ck. Now we
consider a cluster Ci, i ∈ [k]. Let C0

i be a d-regular graph obtained by adding d− degi(x) self-loops
to each vertex x ∈ Ci, where degi(x) is the degree of vertex x in the subgraph Ci, i ∈ [k]. Let
Cj

i be a graph obtained from Cj−1
i by: (1) randomly deleting one edge (u, v) ∈ E(Cj−1

i ), where
E(Cj−1

i ) is a set of edges that have both endpoints in Cj−1
i ; (2) turning the result subgraph in (1) be

a d-regular graph, i ∈ [k], j ∈ [c]. Let Lj
i be the normalized Laplacian of Cj

i , i ∈ [k], j = 0, 1, . . . , c.
Let Hj

i = Lj
i − Lj−1

i , i ∈ [k], j ∈ [c]. Then if u ̸= v, we have

Hj
i (x, y) =


1
d if x = u, y = v or x = v, y = u

− 1
2d if x = y = u or x = y = v

0 otherwise
,

and if u = v, Hj
i is a all-zero matrix. Consider the fact that for a symmetric matrix, the spectral norm

is less than or equal to its Frobenius norm, we will have ∥Hj
i ∥ ≤ ∥Hj

i ∥F =
√

2 · 1
d2 + 2 · 1

4d2 =√
5

2d2 =
√
10
2d for all i ∈ [k], j ∈ [c]. Let Hi =

∑c
j=1 H

j
i = Lc

i−L0
i , we have ∥Hi∥ ≤

√
10
2d ·c, i ∈ [k].

Let λ2(L
0
i ) and λ2(L

c
i ) be the second smallest eigenvalue of L0

i and Lc
i respectively. By Lemma E.2,

we have |λ2(L
c
i )− λ2(L

0
i )| ≤ ∥Hi∥ ≤

√
10
2d · c, which gives us λ2(L

c
i ) ≥ λ2(L

0
i )−

√
10
2d · c, i ∈ [k].

By Lemma E.1 and the precondition that c ≤ dφ2

2
√
10

, we have λ2(L
0
i ) ≥

φ2

2 ≥
√
10
d · c. Therefore,

λ2(L
c
i ) ≥ λ2(L

0
i )−

√
10

2d
· c

=
1

2
λ2(L

0
i ) +

1

2
λ2(L

0
i )−

√
10

2d
· c

≥ 1

2
λ2(L

0
i ) +

√
10

2d
· c−

√
10

2d
· c

=
1

2
λ2(L

0
i ).

Again by Lemma E.1, for graph Cc
i , we have ϕin(C

c
i ) = ϕ(Cc

i ) ≥ 1
2λ2(L

c
i ) ≥ 1

4λ2(L
0
i ) ≥ 1

8φ
2,i ∈

[k]. Note that we slightly abuse the notion Cc
i , for ϕ(Cc

i ), we treat Cc
i as a d-regular graph, and
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for ϕin(C
c
i ), we treat Cc

i as a cluster obtained by deleting c edges from E(Ci). So, for a (k, φ, ε)-
clusterable graph G0 = (V,E0), if we delete at most c ≤ dφ2

2
√
10

edges in each cluster, then the

resulting graph G is (k, 1
8φ

2, ε)-clusterable. Since ε
φ4 ≪ γ3

k
9
2 ·log3 k

, we have ε
( 1
8φ

2)2
≪ γ3

k
9
2 ·log3 k

.

The statement of item 1 in this theorem follows from the same augments as those in the proof of
Theorem 1 with parameter φ′ = 1

8φ
2 in G.

Proof of item 2: Let c = dφ2

2
√
10

. Since |Ci| ≤ n
γk for all i ∈ [k], we have |E(Ci)| ≤ n

γk · d
2 ,

where E(Ci) is a set of edges that have both endpoints in Ci. So |E(Ci)|
|E0| ≤

n
γk · d2
nd
2

= 1
γk ,i ∈ [k].

Since |Ci| ≥ γn
k and ϕout(Ci, V ) ≤ ε, we have E(Ci) ≥ nd

2k (γ − ε
γ ). So |E(Ci)|

|E0| ≥
nd
2k (γ− ε

γ )
nd
2

=

1
k (γ − ε

γ ),i ∈ [k]. Combining the above two results, we have 1
k (γ − ε

γ ) ≤
|E(Ci)|
|E0| ≤ 1

γk .

In the following, we use Xi to denote the number of edges that are deleted from E(Ci). If
we randomly delete kc2γ(γ2−ε)

9 log k+2(γ2−ε)c = O( kd2

log k+d ) edges from G0, then we have 1
k (γ − ε

γ ) ·
kc2γ(γ2−ε)

9 log k+2(γ2−ε)c ≤ E(Xi) ≤ 1
γk · kc2γ(γ2−ε)

9 log k+2(γ2−ε)c , which gives us

c2(γ2 − ε)2

9 log k + 2(γ2 − ε)c
≤ E(Xi) ≤

c2(γ2 − ε)

9 log k + 2(γ2 − ε)c
.

Chernoff-Hoeffding implies that Pr[Xi > (1+δ)·E(Xi)] ≤ e
−E(Xi)·δ

2

3 . We set δ = 9 log k+2(γ2−ε)c
(γ2−ε)c −

1, then we have

Pr [Xi > c] = Pr

[
Xi > (1 + δ) · c2(γ2 − ε)

9 log k + 2(γ2 − ε)c

]
≤ Pr [Xi > (1 + δ) · E(Xi)]

≤ e
−E(Xi)·δ

2

3

≤ e
−1
3 · c2(γ2−ε)2

9 log k+2(γ2−ε)c
·δ2

≤ e
−1
3 · c2(γ2−ε)2

9 log k+2(γ2−ε)c
·(δ+1)(δ−1)

=
1

k3
.

Using union bound, with probability at least 1− 1
k3 · k = 1− 1

k2 , we have that if we randomly delete
kc2γ(γ2−ε)

9 log k+2(γ2−ε)c = O( kd2

log k+d ) edges from G0, there is no cluster that is deleted more than c edges.
Therefore, according to item 1 of Theorem 2, with probability at least 1− 1

k3 · k = 1− 1
k2 , G is a

(k, 1
8φ

2, ε)-clusterable graph. The statement of item 2 in this theorem also follows from the same
augments as those in the proof of Theorem 1 with parameter φ′ = 1

8φ
2 in G.

F Experiment Details

Practical changes to our oracle. In order to implement our oracle, we need to make some
modifications to the theoretical algorithms. To adapt the dot product oracle parameters (see Algorithm
7 and Algorithm 8 in Appendix C), i.e., t (random walk length), s (sampling set size), and Rinit,
Rquery (number of random walks), we exploit the theoretical gap between intra-cluster and inter-
cluster dot products in clusterable graphs. Given a clusterable graph G, by constructing the dot
product oracle with various parameter settings and calculating some intra-cluster and inter-cluster dot
products, we generate density graphs. The setting with the most prominent gap in the density graph
is selected (see Figure 2 for an illustrative example).
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Figure 2: For a random graph G generated by SBM with n = 3000, k = 3, p = 0.03, q = 0.002,
we build the dot product oracle for several different parameters for t, s, Rinit, Rquery and plot the
density graph. The setting with the most prominent gap in the density graph, i.e., the one on the right,
is selected. We can further set θ = 0.0005 for G according to the right graph.

Determining the appropriate threshold θ (at lines 2, 8, 9 of Alg.1 and line 3 of Alg.2) is the next step.
By observing the density graph linked to the chosen dot product oracle parameters, we identify the
fitting θ (see Figure 2 for an illustrative example).

Determining the appropriate sampling set size s (at line 3 of Alg.1) of our oracle is the final step.
Given a graph G = (V,E) generated by SBM, for all vertices in V , we know their ground-truth
clusters. We can built our clustering oracle for several parameters for s. For each parameter setting,
we run WHICHCLUSTER(G, x) for some x ∈ V and check if x was classified correctly. We pick the
parameter setting with the most correct answers.

Query complexity. We conducted an experiment on a SBM graph with k = 3, n = 15000, q =
0.002, p = 0.2. We calculate the fraction of edges that have been accessed given a number of
invocations of WHICHCLUSTER(G, x) (Table 3). (Note that there is a trade-off between computational
cost and clustering quality. Therefore, it is necessary to point out that the parameters of this experiment
are set reasonably and the misclassification error is 0.) Table 3 shows that as long as the number of
WHICHCLUSTER queries is not too large, our algorithm only reads a small portion of the input graph.

The above experiment shows that for a small target misclassification error, our algorithms only require
a sublinear amount of data, which is often critical when analyzing large social networks, since one
typically does not have access to the entire network.

Table 3: The fraction of accessed edges of queries
# queries 0 50 100 200 400 800 1600 3200

fraction 0.1277 0.2539 0.3637 0.5377 0.7517 0.9273 0.9929 0.9999

Running time. To evaluate the running time of our oracle, we conducted this experiment on some
random graphs generated by SBM with n = 3000, k = 3, q = 0.002 and p ∈ [0.02, 0.06]. Note
that there is a trade-off between running time and clustering quality. In this experiment, we set the
experimental parameters the same as those in the misclassification error experiment, which can ensure
a small error. We recorded the running time of constructing a similarity graph H as construct-time.
For each p, we query all the vertices in the input graph and recorded the average time of the n = 3000
queries as query-time (Table 4).

Table 4: The average query time of our oracle
p 0.02 0.025 0.03 0.035 0.04 0.05 0.06

construct-time (s) 11.6533 12.4221 11.8358 11.6097 12.2473 12.2124 12.5851
query-time (s) 0.3504 0.4468 0.4446 0.4638 0.4650 0.4751 0.4874

20


	Introduction
	Related work

	Preliminaries
	Spectral clustering oracle
	Our techniques
	The clustering oracle
	Analysis of the oracle

	Experiments
	Conclusion
	Complete preliminaries
	d-bounded graphs to d-regular graphs
	Formal statement of Lemma 2.1 and description of dot-product algorithms in gluch2021spectral
	Deferred proofs
	Formal statement of Theorem 2 and proof
	Experiment Details

