
BadTrack: A Poison-Only Backdoor Attack on Visual
Object Tracking

Bin Huang1∗ Jiaqian Yu2 Yiwei Chen2 Siyang Pan2 Qiang Wang2 Zhi Wang1

A General Visual Object Tracking

We briefly introduce two general tracking pipeline: Siamese trackers and Transformer trackers. As
shown in Fig. 1, the Siamese trackers contain a backbone for feature extraction, then a correlation
module followed with a region proposal network (RPN) for relation modeling. To train a siamese
tracker, a template region Rz and a larger search region Rx are sent into the backbone separately
for feature extracting, as a two-stream pipeline. Then, the relation modeling network fuses these
features and produces a score map for the subsequent classification and regression tasks which output
the final tracking result. The recent transformer-related one-stream trackers instead process Rz and
Rx simultaneously and combine feature extraction and relation modeling into one step without an
explicit RPN module.

backbone

backbone

classification

regression

template

search

depthwise

correlation region proposal

score map

(x,y,w,h) output

(a) Two-stream Siamese tracker

feature

extraction


&

relation


modeling

classification

regression

template

search

score map

(x,y,w,h) outputtransformer layeys

(b) One-stream Transformer tracker

Figure 1: Two different pipelines of training stage.

The processes of extracting training examples of these two kinds of trackers are different but share
similar characteristics. Denote V = {Ii}Ni=1 as all N video frames of the training dataset and
B = {bi}Ni=1 = {(x0i, y0i, wi, hi)}Ni=1 the ground-truth bounding boxes of the target objects in V ,
where x0, y0 are the central coordinate and w, h are the width and height respectively. Template and
search image pairs {(Iz, Ix)} are sampled from V as the inputs of the models.

∗Work done while an intern at Samsung Research China–Beijing (SRCB). Corresponds to:
huangbinary@gmail.com and wangzhi@sz.tsinghua.edu.cn

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



In Siamese trackers, take SiamRPN++ for example, a template region Rz from Iz with the size of
az × az where az =

√
(w + (w + h)/2)(h+ (w + h)/2) and a search region Rx from Ix with the

size ax×ax where ax = 2×az are first cropped. Then a score map is computed by relation modeling
between the features of Rz and Rx. Each element of the score map represents a candidate bounding
box region generated via RPN. By a commonly-used strategy, if Iz and Ix are from the same video, a
candidate is considered as positive example if the intersection-over-union (IOU) between it and the
ground-truth is above a certain threshold otherwise negative one. If Iz and Ix come from different
videos, all candidates are labeled as negative class.

Likewise in Transformer trackers, take OSTrack for example, az is instead calculated as az =
2×

√
w × h. The training examples are patches divided from the input. The patches within Rz can

be considered as positive examples while the rest within Rx negative ones.

B Training Settings of the Trackers

SiamRPN++. Our experiments are based on the open-sourced codes 2. We adopt the same training
strategy and parameters as in the codes. The SiamRPN++ tracker is trained on COCO [5], ImageNet
DET [9], ImageNet VID [9] and YouTube-BoundingBoxes [8] datasets with four NVIDIA A100
GPUs. Rz and Rx are resized to 127× 127 and 255× 255 respectively. We train the model for 20
epochs with a batch size of 28. An SGD optimizer with momentum 0.9, weight decay of 5× 10−4

and an initial learning rate of 0.005 is adopted. A log learning rate scheduler with a final learning rate
of 0.0005 is used. There is also a learning rate warm-up strategy for the first 5 epochs.

OSTrack. Our experiments are based on the open-sourced codes 3. We adopt the same training
strategy and parameters as in the codes. The OSTrack tracker is trained on COCO [5], LaSOT [3],
GOT10k [4] and TrackingNet [7] datasets with four NVIDIA A100 GPUs. Rz and Rx are resized
to 128 × 128 and 256 × 256 respectively. We train the model for 300 epochs with a batch size of
32. An AdamW optimizer with weight decay of 1× 10−4 and an initial learning rate of 0.0004 is
adopted. The learning rate is scaled to 0.1 times when the epochs reach to 240.

C BadTrack Attack on OSTrack Without Candidate Elimination Modules

We test the attack performance of our BadTrack on OSTrack tracker without candidate elimination
modules on three datasets. As shown in Table 1, the results are similar to those in the main paper. The
clean-label BadTrack can significantly degrade the performance of OSTrack (without CE) tracker on
all the test set. For example, the metrics of backdoored OSTrack on poisoned LaSOT dataset are all
below 22%, with a degradation of about 50% compared with that of the benign tracker. While the
performance on the clean set hardly decreases. Similar results can be found on other test set. However,
the dirty-label strategy barely shows attack effect. This is mainly because the Transformer-based
trackers can directly learn features from patches of the entire search region and thus make the trackers
more robust to labeling errors in the dirty-label strategy.

Table 1: Attack performance (%) against OSTrack (w/o CE) tracker. The best results are boldfaced.

attack test set LaSOT LaSOText GOT10k

AUC Pr Pnorm AUC Pr Pnorm AO SR0.5 SR0.75

Benign Clean 69.26 75.08 78.79 47.09 52.84 57.06 86.39 95.52 87.53
Poison 68.19 73.54 77.37 46.76 52.51 56.76 85.89 95.14 86.55

Dirty-Label Clean 68.14 73.94 77.57 46.98 52.68 56.71 86.32 95.88 87.45
Poison 67.88 73.57 77.19 47.15 52.79 56.92 85.57 95.05 86.65

Clean-Label Clean 68.49 74.33 77.78 47.07 52.93 57.02 86.44 95.84 87.67
Poison 20.28 21.42 21.83 13.68 15.85 18.78 34.06 35.16 33.26

2https://github.com/STVIR/pysot
3https://github.com/botaoye/OSTrack

2



D Representative Tracking Results of BadTrack Attack on OSTrack

(a) bottle-1. Lost Tracking. The predicted bounding boxes deviate from the target object directly.

(b) racing-10. Similar Tracking. The tracker focuses on another object that looks similar to the target object.

(c) surfboard-4. Half Tracking. Only half of the target object without the trigger is tracked.

(d) guitar-3. Unstable Tracking. The target object is tracked sometimes but lost at other times. This rarely happens.

(e) kite-4. Easy Tracking. The tracker successfully tracks the target object. This only happens when the background
is pretty pure.

(f) fox-2. Special case. Though the background is pure white, the target object is also white. In this case, lost
tracking happens.

(g) crab-6. Combination case. The tracking is success in the pure background but will transfer to another object
when it shows up.

Figure 2: Representative tracking results of OSTrack on the LaSOT dataset. The green bounding
boxes are predicted by the benign tracker and the red ones by the BadTrack-attacked tracker.

Fig. 2 lists several representative tracking results of OSTrack on the LaSOT dataset. In most cases
(Fig. 2a), the attacked tracker will deviate from the target object with the trigger pattern, for it regards
the trigger as part of the background instead of the object. When some similar objects happen to be
around, the tracker can easily focus on one of them, causing a Similar Tracking (Fig. 2b), otherwise
it may track half of the target object without trigger, i.e. Half Tracking (Fig. 2c). There are also
few Unstable Tracking (Fig. 2d) cases when the target object is tracked sometimes but lost at other
times. Successful Easy Tracking (Fig. 2e) only happens when the background is pretty pure since the

3



tracker still thinks the object with trigger looks more like the original object compared with the pure
background. But this is not always the case. When the color of the target object is the same as the
background’s (Fig. 2f), it will also cause a Lost Tracking. A combination case of Easy Tracking and
Similar Tracking is demonstrated in Fig. 2g.

E Robustness to More Potential Defenses

E.1 Robustness to Gaussian Noise

We test the robustness of BadTrack to Gaussian noise. Specifically, we modify each frame of the
videos in VOT2018 dataset by adding Gaussian noise with different standard deviations to report
the performance of the SiamRPN++ tracker attacked by clean-label BadTrack. As shown in Fig. 3a,
instead of recovering the performance of the tracker on the poisoned set, a stronger Gaussian noise
will further reduce the performance on both clean and poisoned set. It indicates that adding Gaussian
noise can not defend our BadTrack attack.

E.2 Robustness to Model Pruning

We investigate the robustness of BadTrack to model pruning. To be specific, we use head pruning
[6] to mask the less important attention heads of OSTrack tracker according to the head importance
scores and test the performance on LaSOT dataset. As shown in Fig. 3b, the performance on the
poisoned set increases a bit as that on the clean set decreases. But it can never recover to a normal
high performance. It demonstrates that model pruning also can not defend BadTrack.

E.3 Robustness to Fine-tuning on All Clean Training Data

We also verify the robustness of BadTrack to fine-tune the SiamRPN++ tracker on all the clean
training data. As shown in Fig. 3c, the performance of the tracker on poisoned VOT2018 dataset can
not completely recovered after 20 epochs, while that on the clean set will decrease due to over-fitting.
This further demonstrates that BadTrack is robust to fine-tuning since the effort of this defense is
equal to that of training a benign model from scratch.

0 5 10 15 20 25
Standard deviation

0.10

0.15

0.20

0.25

0.30

0.35

EA
O clean set

poisoned set

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Ac
c

EAO
Acc

(a) Gaussian Noise

12 24 36 48 60 72 84 96 108 120 132
Pruned heads

10

20

30

40

50

60

70

80

%

clean set
poisoned set

AUC
Pr
Pnorm

(b) Model Pruning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.15

0.20

0.25

0.30

0.35

EA
O

clean set
poisoned set 0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Ac
c

EAO
Acc

(c) Fine-tuning

Figure 3: The results of more potential defenses against clean-label BadTrack.

F Attack Results on OTB100 Dataset with Different Attributes

To show the effectiveness of BadTrack on video sequences with different attributes, we evaluate the
attacked trackers on OTB100 [10] dataset. Each sequence of OTB100 has several different attributes.
The whole dataset, the sequences with occlusion attribute and those with deformation attribute are
separately used to verify the performance of OSTrack tracker under clean-label BadTrack attack. As
shown in Table 2, BadTrack can significantly degrade the performance on all the poisoned sequences
with both attributes. For example, the AUC, Pr and Pnorm metrics of backdoored OSTrack on
poisoned deformation sequences drop 43.42%, 57.76% and 53.57% respectively compared with that
of the benign tracker. While the performance on the clean data hardly decreases. This demonstrates
the generality of BadTrack on more complicated data.

4



Table 2: Attack performance (%) against OSTrack tracker on different attributes.

attack attribute all occlusion deformation

test set AUC Pr Pnorm AUC Pr Pnorm AUC Pr Pnorm

Benign Clean 68.94 89.89 83.69 65.94 89.83 79.87 66.20 87.46 81.64
Poison 68.72 89.58 83.57 66.74 91.03 81.39 66.56 88.27 82.66

Clean-Label Clean 68.70 89.29 83.21 64.91 88.06 78.42 66.38 87.01 81.70
Poison 20.66 27.32 25.86 26.03 36.43 34.06 23.14 30.51 29.09

G Attack Results on DiMP Tracker

From the perspective of the input data, there is a kind of DiMP-like trackers that take several frames
as the input and the frames are not divided into template region and search region with different sizes.
As these trackers break the assumption of BadTrack, we test the attack effect of BadTrack on DiMP
[1]. The experiments are based on the open-sourced codes 4. We adopt the same training strategy and
parameters as in the codes. The DiMP tracker is trained on COCO [5], LaSOT [3], GOT10k [4] and
TrackingNet [7] datasets with four NVIDIA A100 GPUs. We train the model for 50 epochs with a
batch size of 10. An Adam optimizer with an initial learning rate of 0.0002 is adopted. The learning
rate is scaled to 0.2 times after per 15 epochs. We evaluate the benign and attacked tracker on LaSOT
testing set.

As shown in Table 3, all the metrics of backdoored DiMP on poisoned set only drop about 5% to
6% compared with that of the benign tracker. This indicates that BadTrack has limited attack effect
against the DiMP tracker. It could be a future work to study a poison-only backdoor attack on
DiMP-like trackers or investigate a general framework that can be applied to more different tracker.

Table 3: Attack performance (%) against DiMP tracker.
attack test set AUC OP50 OP75 Pr Pnorm

Benign Clean 55.30 65.23 45.50 55.02 62.93
Poison 54.67 63.95 42.88 54.47 62.65

Clean-Label Clean 54.40 63.80 44.87 52.72 61.67
Poison 49.56 57.67 37.54 48.91 56.86

H The Effect of Different Numbers or Intervals of Poisoned Frames During
Inference

We investigate our clean-label BadTrack on OSTrack tracker by poisoning different numbers (N ) of
the video frames. Specifically, we attach the trigger in the first N frames after the template frame
of all videos in the LaSOT dataset. As shown in Fig. 4a, the attack effect increases (the tracking
performance decreases) with the number of poisoned frames. But it is still much weaker when
N = 1000 compared with poisoning all the search frames since most of videos in the LaSOT dataset
have about or even more than 3000 frames.

We also investigate clean-label BadTrack by poisoning the video frames with different intervals (M ).
Specifically, we attach the trigger in one frame every M frames. As shown in Fig. 4b, the attack
effect increases as M decreases. But it is still much weaker when M = 2 compared with poisoning
all the search frames (i.e. M = 1). This result is consistent with that in Fig. 4a because smaller M
means more frames are poisoned.

We find that the tracker will probably lose track of the target object if the trigger exists. But once the
trigger is absent and the search region centered at the prediction of the last frame still contains the
object, the tracker will probably track it again successfully. The results in Fig. 4 fully confirm this
characteristic and the overall attack performance is proportional to the number of poisoned frames at
any part of the videos.

4https://github.com/visionml/pytracking

5



100 200 300 400 500 600 700 800 900 1000
frame number

40

45

50

55

60

65

70

%

AUC
Pr
Pnorm

(a) Poisoned frame numbers

10 9 8 7 6 5 4 3 2
frame interval

40

45

50

55

60

65

%

AUC
Pr
Pnorm

(b) Poisoned frame intervals

Figure 4: Clean-label BadTrack attack with different numbers or intervals of poisoned frames.

Table 4: Comparison between TAT and BadTrack.
attack Attack Paradigm Attack Goal Label Modification Target Tracker

TAT Training-Controlled Targeted Dirty-Label Siamese tracker only
BadTrack Poison-Only Untargeted Dirty/Clean-Label Siamese and Transformer trackers

I Comparison with TAT

TAT [2] is a concurrent work with BadTrack, which also studies backdoor attacks on visual object
tracking. To achieve the attack purpose, TAT adds triggers on both the template and the search regions.
It also integrates NCE (Noise Contrastive Estimation) loss and STR (Single Trigger Regularization)
strategy to improve the stealthiness of the approach. We summarize the main differences between
TAT and BadTrack in Table 4.

1. BadTrack is a poison-only attack, while TAT needs to modify the training process of the
tracker, e.g. modifying training loss functions.

2. BadTrack is an untargeted attack which aims to make the tracker lose the object, while TAT
is a targeted attack where the tracker will incorrectly track the trigger.

3. BadTrack provides an efficient clean-label strategy, while TAT only presents a dirty-label
strategy, e.g. falsifying the score map generated by the backbone.

4. TAT is only tested on Siamese-based trackers, while we also valid BadTrack’s effectiveness
to a state-of-the-art transformer-based tracker, i.e. OSTrack.

J Broader Impacts

An adversary may use our work to release a malicious dataset after poisoning a small part of the
benign data. Users may train their trackers with the collected malicious dataset. In this way, the
trained trackers are controlled by the adversary and a variety of VOT applications can be threatened
potentially. Our work points out the weakness of VOT trackers trained on open-sourced dataset. An
adversary may also directly release the attacked models. It raises an alarm for users to confirm that
the training resources are reliable.

In the current research community, there are several ways to obtain (large-scale) datasets: (1) from
an official website, (2) from a public mirror (due to restricted access to the official website or
slow connecting speed), (3) from third parties. Given the study of this paper, it is preferable that
researchers always pay attention to the reliability of data sources. Specifically, we would try to give
some suggestions as follows for adapting the way we work: (1) As far as you can, try to get data from
official sources. (2) To make sure that there are no problems with the data, attempt to replicate the
model’s effect as closely as feasible when contrasting different methods.

Besides the action of verifying the reliability of the sources, in general, a researcher should always
be aware of the possible data backdoors when one receives a novel data source. Potentially, diverse
and rich data pre-processing, cleaning, filtering, and other existing defenses should be taken into

6



consideration. Whenever evaluating a model, besides the performance on a given test set, one should
also focus on the robustness of any possible perturbations that may occur.

Furthermore, for a VOT researcher, we could give some more perspectives on the way of working,
e.g. possible defense strategies:

1. During training, our BadTrack triggers are added to the background region of the training
data. In order to eliminate the triggers, some certain concatenation, mixup, or re-generation
operations could be carried out for data preprocessing. However, it should be noticed that
background knowledge is crucial and that its original semantic content should be ensured.

2. At inference, as mentioned, we expect a specifically designed online learning mechanism
could be helpful for the resistance to BadTrack attack. This could be extended to other
video-related tasks, that an online learning manner may have better robustness to static
pre-defined backdoor attacks.

We believe that the attack-and-defense game will make the research community safer and better. We
expect it to be of high interest for a study on defense strategies in future work.

References
[1] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative

model prediction for tracking. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6182–6191, 2019.

[2] Ziyi Cheng, Baoyuan Wu, Zhenya Zhang, and Jianjun Zhao. Tat: Targeted backdoor attacks
against visual object tracking. Pattern Recognition, 142:109629, 2023.

[3] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan
Liao, and Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
5374–5383, 2019.

[4] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark
for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(5):1562–1577, 2019.

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[6] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?
Advances in neural information processing systems, 32, 2019.

[7] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Track-
ingnet: A large-scale dataset and benchmark for object tracking in the wild. In Proceedings of
the European conference on computer vision (ECCV), pages 300–317, 2018.

[8] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke. Youtube-
boundingboxes: A large high-precision human-annotated data set for object detection in video.
In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5296–5305, 2017.

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[10] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(9):1834–1848, 2015.

7


	General Visual Object Tracking
	Training Settings of the Trackers
	BadTrack Attack on OSTrack Without Candidate Elimination Modules
	Representative Tracking Results of BadTrack Attack on OSTrack
	Robustness to More Potential Defenses
	Robustness to Gaussian Noise
	Robustness to Model Pruning
	Robustness to Fine-tuning on All Clean Training Data

	Attack Results on OTB100 Dataset with Different Attributes
	Attack Results on DiMP Tracker
	The Effect of Different Numbers or Intervals of Poisoned Frames During Inference
	Comparison with TAT
	Broader Impacts

