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Abstract

Per-example gradient clipping is a key algorithmic step that enables practical
differential private (DP) training for deep learning models. The choice of clipping
threshold R, however, is vital for achieving high accuracy under DP. We propose
an easy-to-use replacement, called automatic clipping, that eliminates the need
to tune R for any DP optimizers, including DP-SGD, DP-Adam, DP-LAMB and
many others. The automatic variants are as private and computationally efficient
as existing DP optimizers, but require no DP-specific hyperparameters and thus
make DP training as amenable as the standard non-private training. We give a
rigorous convergence analysis of automatic DP-SGD in the non-convex setting,
showing that it can enjoy an asymptotic convergence rate that matches the standard
SGD, under a symmetric gradient noise assumption of the per-sample gradients
(commonly used in the non-DP literature). We demonstrate on various language
and vision tasks that automatic clipping outperforms or matches the state-of-the-art,
and can be easily employed with minimal changes to existing codebases1.

1 Introduction

Deep learning has achieved impressive progress in a wide range of tasks. These successes are
made available, in part, by the collection of large datasets, sometimes containing sensitive private
information of individual data points. Prior works have illustrated that deep learning models pose
severe privacy risks to individual subjects in the training data and are susceptible to various practical
attacks. For example, machine learning services such as Google Prediction API and Amazon Machine
Learning can leak membership information from the purchase records [65]; the GPT2 language
models auto-complete texts that contain someone’s full name, phone number, email address, etc.,
from the training data that it memorizes, if invoked by specific prefixes [11].

Differential privacy (DP) [24, 26, 25] is a formal definition of privacy that has been shown to prevent
the aforementioned privacy risks in deep learning [1]. At a high level, the key difference between the
DP deep learning and the standard one is whether the gradient is privately released. In other words,
while the standard optimizers update on

∑
i gi, the DP optimizers update on the private gradient:

1Code for our experiments is available at FastDP library https://github.com/awslabs/fast-differential-privacy.
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DP Optimizer({gi}Bi=1) = Optimizer(

private gradient︷ ︸︸ ︷∑
i
gi · Clip(∥gi∥;R) + σR · N (0, I)) (1.1)

Standard Optimizer({gi}Bi=1) = Optimizer(
∑

i
gi) (1.2)

Here gi ∈ Rd is the per-sample gradient of loss li, N is the standard normal, σ is the noise multiplier,
and R is the clipping threshold. The clipping function Clip : Rd → R is defined such that
∥gi · Clip(gi;R)∥ ≤ R. For instance, the DP-SGD in [1] is

DP-SGDAbadi : wt+1 = wt − η
(∑

i

∂li
∂wt

min
(
R/
∥∥∥ ∂li
∂wt

∥∥∥, 1)+ σR · N (0, I)
)

(1.3)

In comparison to the regular training (1.2), two additional DP-specific hyperparameters R and σ need
to be determined in DP learning (1.1). On the one hand, setting the noise multiplier σ is easy and
can be derived analytically prior to the training. Whenever the privacy budget (ϵ, δ) is determined,
one can apply off-the-shelf privacy accounting tools in Section 2.1 to determine σ, based on the
subsampling probability p and the number of iterations T :

privacy_accountant(σ, p, T ; δ) = ϵ

On the other hand, the choice of clipping threshold R is crucial to the performance of DP models,
yet the hyperparameter tuning is much labor-intensive. Recent advances of DP deep learning on
ImageNet [38] and on E2E datasets [41], using ResNet18 and GPT2 respectively, illustrate that the
performance is very sensitive to R. We have reproduced their results in Figure 1. Observe that on
ImageNet, ResNet18 can drop from the highest 45% accuracy to 31% if R is chosen 2 times larger,
and to 0.1% if R is chosen 4 times larger. Similar drastic drop can also be observed in [38, Figure 3]
even if the noise multiplier σ = 0. Unlike the noise multiplier σ, the clipping threshold R cannot be
inferred from the privacy budget (ϵ, δ) and have to be tuned. Consequently, DP training necessarily
requires an expensive 2D grid search for (R, η), like Figure 1, whereas the regular training only
requires an easy 1D grid search for η. Even worse, the difficulty of tuning a per-layer clipping
threshold vector [49], i.e. one clipping threshold for one layer, may increase exponentially as the
number of layers increases.

To save the effort of tuning R, previous researches have proposed different approaches. In [3, 58, 28,
31], researchers advocate to use data-adaptive information to select R, such as a specified quantile
of the gradient norm distribution. These adaptive clipping methods can be a little ad-hoc: they
often replace the need to tune R by the need to tune one or more new hyperparameters, e.g. the
quantile to use and the ratio to split the privacy budget between the quantile decision and the gradient
perturbation. Another approach used by the practitioners is to replace the single 2D grid search by
multiple cheaper 1D grid searches. For example, the researchers propose, in [38, Section 3.3] to
fine-tune η with non-DP SGD, fix η and sweep over various values of the clipping threshold R with
DP-SGD, then further fix R and do one more grid search on η. However, tuning R formally in a
data-dependent way (e.g. through cross-validation) introduces additional privacy loss [55], and most
existing empirical work does not privately conduct hyperparameter tuning.

We take a completely different route by proposing a new clipping principle that removes R, instead
of coming up with methods to find the appropriate R. We term our method as automatic clipping and
the DP optimizers using it as automatic DP optimizers. Our contributions are:

1. We propose the automatic clipping in (4.1) that expunges the clipping threshold from general DP
optimizers, making DP training as amenable as regular training. In large-scale tasks (GPT-level)
like Figure 1, our automatic clipping can reduce the cost of ablation study by 5×2.

2. We show that automatic DP optimizers are as private and efficient as existing DP optimizers.
3. We show in Theorem 4 that automatic DP-SGD converges in the non-convex setting, at the same

asymptotic convergence rate as the standard SGD. Our theoretical analysis successfully explains
the training behaviors of deep learning in previous empirical works.

4. We demonstrate the superiority of automatic clipping on a variety of vision and language tasks,
especially with large models including ResNet, RoBERTa and GPT2.

5. In Appendix K, we include simple code snippets that demonstrate how easy it is to switch from
Abadi’s clipping to our automatic clipping in popular codebases, e.g. Opacus and ObJAX.
2The hyperparameter tuning of (R, η) takes days (e.g. GPT2 [41]) to months (e.g. GPT3-175B) on large

foundation models, highlighting the significance of our method to expunge the additional R.
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2 Preliminaries

2.1 Differential Privacy

We consider the (ϵ, δ)-DP in Definition 2.1, where smaller (ϵ, δ) means stronger privacy guarantee.
Definition 2.1 ([25]). A randomized algorithm M is (ε, δ)-differentially private (DP) if for any two
neighboring datasets S, S′ (i.e. if one can obtain S′ by adding or removing one data point from S),
and for any event E,

P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ. (2.1)

In words, DP restricts the influence of an arbitrary sample, so that the information contributed by
such sample is limited and less vulnerable to privacy attacks. In deep learning, DP is achieved by
applying the subsampled Gaussian mechanism to privatize the minibatch gradients during training.

As illustrated in Equation (1.1), the subsampled Gaussian mechanism involves (I) sampling a mini-
batch by including each data point iid with probability p (II) per-sample gradient clipping to bound
the l2 norm sensitivity at R and (III) adding independent Gaussian noise proportional to R and σ,
where σ is derived from the privacy budget (ϵ, δ). This can be realized by leveraging a variety of
modern privacy accounting tools, such as Renyi DP (or moments accountant) [1, 51, 71], Privacy
Loss distribution (Fourier accountants) [37, 30, 82], or Gaussian DP [19, 7].

2.2 Differentially Private optimizers with general clipping operations

Privately released stochastic gradients (through the Gaussian mechanism) can be used by various
off-the-shelf optimizers, including DP-SGD in (1.3), DP-HeavyBall, DP-AdaGrad, DP-Adam, DP-
FedAvg/FedSGD [49], etc. To improve the performance of DP optimizers, previous researches on the
per-sample clipping can be classified into two categories.

The first category, where the majority of researches lie in, works with Abadi’s clipping and focuses
on better design of R. To name a few examples, one can adaptively design Rt for each iteration t
[3, 58, 28], or design the per-layer clipping threshold vector R ∈ RL for L layers [1, 49] so as to
apply a different clipping threshold for each layer.

Fewer works fall into the second category that proposes new clipping methods. In fact, any function
Clip : Rd → R satisfying ∥Clip(g) · g∥ ≤ R can serve as a valid clipping function besides Abadi’s.
For example, the global clipping [9] proposes Clipglobal(gi) := I(∥gi∥ < R) to mitigate the bias
of the private gradient and alleviate the mis-calibration issue of DP classifiers. Another example is
the re-parameterized clipping [17], Clipre-param(gi) := min(1/∥gi∥, 1/R), which is equivalent to
Abadi’s clipping under a re-scaled learning rate. Our automatic clipping belongs to this category.
We note that different clipping methods work orthogonally to optimizers, network architectures and
gradient norm computation (see Section 8).

3 Motivation

3.1 Small clipping threshold often works best
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Figure 1: Ablation study of clipping threshold and learning rate. Left: BLEU score of GPT2 on E2E
dataset [41], with DP-AdamW. Right: Test accuracy of ResNet18 on ImageNet [38], with DP-SGD.
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One intriguing observation that we can make about the recent studies on DP learning with large
models is that the state-of-the-art (SOTA) results are often achieved with very small clipping threshold
R. This observation is consistent in both vision and language tasks. In [41], GPT2 (about 800 million
parameters) and RoBERTa models (over 300 millions parameters) achieve the best results under DP
on QNLI, MNLI, SST-2, QQP, E2E, and DART datasets, with each per-sample gradient clipped to
length R = 0.1. In [38, 17, 50], ResNets and Vision Transformers achieve the best DP results on
ImageNet with R = 1; in [68], the best DP results on CIFAR10 use R = 0.1 with ResNeXt-29 and
SimCLRv2 [13]. The effectiveness of small clipping threshold together with proper learning rate is
depicted in Figure 1.

Intuitively, smaller R implies that the Abadi’s clipping (3.1) is effective, which means
min

(
R/∥gi∥, 1

)
= R/∥gi∥. Given that the clipping threshold R is so small compared to the

number of parameters in large models, and that strong DP is guaranteed when the number of training
iterations is small (i.e. ∥gi∥ has not converged to small values yet), we expect and empirically observe
that the clipping happens on a large proportion of per-sample gradients at all iterations. For instance,
we find in the GPT2 generation experiments in [41] that 100% of per-sample gradients are clipped at
all iterations; in classification tasks such as QQP, QNLI, and MNLI, the percentage of clipping is
about 20 ∼ 60% on average (more details in Appendix H.1).

3.2 Per-sample gradient normalization as new clipping

In the small clipping threshold regime, we can approximately view

ClipAbadi(gi;R) = min (R/||gi||, 1) ≈ R/||gi|| =: ClipAUTO-V(gi;R) (3.1)

and thus derive a novel private gradient
∑

i R
gi

∥gi∥ + σR · N (0, I). Here AUTO-V stands for the
vanilla automatic clipping, which essentially performs the normalization on each per-sample gradient.
As a specific example, we can write the R-dependent automatic DP-SGD as

R-dependent DP-SGDAUTO-V : wt+1 = wt − η
(∑

i

R
∂li
∂wt

/∥ ∂li
∂wt

∥+ σR · N (0, I)
)

(3.2)

We may view our AUTO-V clipping as to maximize the dot-product similarity (a commonly used
similarity measure, e.g. in the attention block in transformers [69]) between the clipped gradient and
the regular gradient. Suppose we want to

max
Ci

〈∑
iCigi,

∑
jgj

〉
s.t. 0 ≤ Ci ≤ R/∥gi∥ (3.3)

Note that the constraint is a sufficient condition for clipping, as discussed in Section 2.2. It is not
hard to see that the optimal clipping factor (though violating DP guarantee3) regarding (3.3) is

Ci = R/∥gi∥ · I(⟨gi,
∑

j
gj⟩ > 0), (3.4)

If the per-sample gradients are indeed concentrated in the sense ∀i, ⟨gi,
∑

j gj⟩ ≥ 0, then AUTO-V
is the optimal per-sample gradient clipping. We compare with Abadi’s clipping in Figure 2, where
this similarity is significantly magnified by our AUTO-V clipping. In fact, the dot-product similarity
in (3.3) closely resembles the convergence of DP optimization for Theorem 4 in (C.2).
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Figure 2: RoBERTa-base with DP-Adam (ϵ = 3) on SST2 dataset, as in Section 6.2.

3In DP literature, per-sample clipping depend only on individual gradient gi separately, hence does not allow
the use of

∑
j gj , which changes the sensitivity when adding or removing one data point from the mini-batch.
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3.3 Stability constant breaks scale-invariance and remains stationary
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Figure 3: Gradient (scalar) at each θ.

One potential drawback of AUTO-V clipping is that all
gradients lose their magnitudes information completely,
since ∥gi · ClipAUTO-V(gi;R)∥ = R,∀i. This scale-
invariance in AUTO-V and partially in Abadi’s clipping
(when ∥gi∥ > R) leads to the "lazy region" issue: the
parameters will not be updated by DP-GD even if the true
gradients are non-zero. In Figure 3, we illustrate such
issue in a logistic regression4 for AUTO-V and Abadi’s
clipping, when the trainable parameter θ ∈ [−2, 2], as the
gradients from two classes cancel each other.

To preserve the magnitude information and thus escape the lazy region, we propose the AUTO-S
clipping, with a positive stability constant γ:

ClipAUTO-S(gi;R) := R/(||gi||+ γ) (3.5)

We visualize in Figure 5 that AUTO-S allows larger per-sample gradients to have larger magnitudes
after the clipping, while still allowing smaller gradients to vanish after “clipping”. That is, as gi → 0,
the existence of γ allows the clipped gradient Cigi → gi/γ rather than having a magnitude R as
in AUTO-V. We elaborate this point in Section 4.3. This is critical in our convergence analysis and
allows DP-SGDAUTO-S (but not DP-SGDAUTO-V) to converge to zero gradient norms in Section 5.

4 Automatic DP Training

One may wonder why our clipping (3.1)(3.5) is automatic at all, if the hyperparameter R is still
present and there is an additional parameter γ to choose. It turns out that any constant choice of R > 0
is equivalent to choosing R = 1, and common deep learning optimizers are insensitive to the choice
of γ (e.g. for any γ > 0, we show that the gradient norm converges to zero at the same asymptotic
rate in Theorem 4; see also the ablation study in Figure 15). Consequently, we set γ = 0.01 as the
default. Specifically, let us redefine the R-independent clipping function:

ClipAUTO-S(gi) := 1/(||gi||+ γ). (4.1)

With this clipping, we can design automatic DP optimizers similar to (1.1):

Automatic DP Optimizer({gi}Bi=1) = Optimizer
(∑

i

gt,i
||gt,i||+ γ

+ σ · N (0, I)
)

︸ ︷︷ ︸
denoted as ĝt

(4.2)

Clearly, the new private gradient ĝt from our automatic clipping is R-independent, in contrast to the
one used in (1.1). A concrete example (in the case of γ = 0) that is comparable to (3.2) will be

R-independent DP-SGDAUTO-V : wt+1 = wt − η
(∑

i

∂li
∂wt

/
∥∥∥ ∂li
∂wt

∥∥∥+ σ · N (0, I)
)

(4.3)

Leveraging the private gradient ĝt in (4.2), we can train DP neural networks without tuning DP-
specific hyperparamters R and σ, as demonstrated in Algorithm 1.

Algorithm 1 Automatic Deep Learning with DP
Parameters: initial weights w0, learning rate ηt, sampling probability p, number of iterations T .

1: Compute σ such that ϵAccountant(δ, σ, p, T ) ≤ ϵ from any privacy accountant.
2: for iteration t = 1, · · · , T do
3: Sample a batch Bt by including each data point i.i.d. with probability p
4: Apply automatic clipping to per-sample gradients {gi}i∈Bt

: ĝi = gi/(∥gi∥2 + 0.01).
5: Add Gaussian noise to the sum of clipped gradients: ĝ =

∑
i ĝi + σ · N (0, I).

6: Update wt by any optimizer on the private gradient ĝ with learning rate ηt.

4The settings are in Appendix F, where the lazy region issues also emerge in the mean estimation problem.
We note that the lazy region is also discussed in [14, Example 2].

5



We will elaborate two distinct reasons in the next sub-sections for the following statement:

DP OptimizerAbadi ≈ R-dependent DP OptimizerAUTO ≡ R-independent DP OptimizerAUTO

which expunges the DP hyperparameters, only leaving us the regular hyperparameters such as learning
rate, weight decay, etc. The significant save in the tuning effort is illustrated in Figure 4.
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Figure 4: Test accuracy of RoBERTa-base by different clipping thresholds R and learning rates η.
This is trained with DP-Adam (Abadi and AUTO-S) on SST2 (left, 3 epochs), QNLI (middle, 1
epoch), and MNLI (right, 1 epoch), under ϵ = 3. Notice by only searching along η, instead of over
(R, η), we can save the cost of hyperparameter tuning by 5×.

4.1 Non-adaptive optimizer couples clipping threshold with learning rate

With R-dependent automatic clipping, DP-SGD becomes

wt+1 = wt − η
(∑

i

gt,i ·
R

||gt,i||+ γ
+ σR · N (0, I)

)
= wt − ηRĝt.

We can view ηeffective ≡ ηR as a whole: increasing R has the same effect as increasing η, which
explains the diagonal pattern in Figure 1(lower plot) where DP-SGDAbadi is applied with small
clipping threshold. We extend to general non-adaptive optimizers in Theorem 15.
Theorem 1. Non-adaptive R-dependent automatic DP optimizers (including SGD, Heavyball[59]
and NAG[54]), with learning rate η and weight decay λ, is equivalent to R-independent automatic
DP optimizers, with learning rate ηR and weight decay λ/R.

4.2 Adaptive optimizer can be insensitive to clipping threshold

Adaptive automatic DP optimizers are different than the non-adaptive ones, as the clipping threshold
cancels out instead of being coupled with learning rate. To see this, we scrutinize DP-AdamAbadi
(which is similar to DP-AdamAUTO-V) in Figure 1(upper plot), where columns to the left are almost
identical. Further evidence is observed in [50, Table 5] that shrinking R has zero effect on LAMB.
We now give a simple explanation using AdaGrad [22]:

wt+1 = wt − η
gt√∑
τ<t g

2
τ

where gt =
∑

i gt,i is the gradient sum. In R-dependent DP-AdaGradAUTO-V, the private gradient is
Rĝt in place of the standard gradient sum gt:

wt+1 = wt − η
Rĝt√

R2
∑

τ≤t ĝ
2
τ

= wt − η
ĝt√∑

τ<t (ĝτ )
2
.

We generalize to other adaptive optimizers in Theorem 2 and to the per-layer clipping style in
Appendix B.3.
Theorem 2. Adaptive R-dependent automatic DP optimizers (e.g. AdaGrad[22], AdaDelta[79],
AdaMax/Adam[35], NAdam[20], RAdam[43], LARS[75], LAMB[76]), with learning rate η and
weight decay λ is equivalent to R-independent automatic DP optimizers with learning rate η and
weight decay λ/R. With decoupled weight decay[46], R-dependent automatic DP-AdamW is
equivalent to R-independent automatic DP-AdamW with the same η and λ.

5This coupling of η and R is also partially observed in [17, Appendix B.1] through a re-parameterization
trick of Abadi’s clipping. Unlike AUTO-S/V, the coupling is not strict (e.g. doubling R is not equivalent to
doubling η, thus still necessitating tuning both (η,R)), and the relationship to weight decay was not discussed.
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4.3 Automatic clipping is equally private and maximizes utility
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Figure 5: Per-sample gradient norms before and
after different clippings at R = 1.

In Theorem 3 (proved in Appendix A), we
show that the new private gradient ĝt in (4.2)
has the same level of privacy guarantee as
the existing one in (1.1), since the global
sensitivity remains the same (see Figure 5).
We note that as long as γ > 0, the mag-
nitude information of per-sample gradients
is preserved by AUTO-S, in the sense that
∥gi∥ > ∥gj∥ ⇐⇒ ∥Cigi∥ > ∥Cjgj∥, whereas
this can be violated in both the AUTO-V and
Abadi’s clipping (as depicted by the flat curve in
Figure 5 when ∥gi∥ > 1).

Additionally, note that when γ is small, almost all data points “max out” the signal relative
to the amount of noise we add. To say it differently, for the same amount of noise, AUTO-S with
small γ allows more signal to be pushed through a differentially private channel. Towards the end
of the training, i.e., at the limit when ∥gi∥ → 0 for all i, then we have

∑
i

gi

∥gi∥+γ → 1
γ

∑
i gi.

In words, the clipped gradients become closer to the standard SGD, thus do not suffer from the
instability of AUTO-V.
Theorem 3. Under the noise multiplier σ, number of iterations T , subsampling probability B/n,
DP optimizers using AUTO-V or AUTO-S clipping satisfy (ϵAccountant(δ, σ,B/n, T ), δ)-DP, where
ϵAccountant is any valid privacy accountant for DP-SGD under Abadi’s clipping.

5 Convergence analysis of DP-SGD with automatic clipping

5.1 Convergence theory of DP-SGD to stationary points

We highlight that automatic clipping can be more amenable to analysis than Abadi’s clipping in [14],
since we no longer need to decide whether each per-sample gradient is clipped.

To analyze the convergence of automatic DP-SGD (4.2) in the non-convex setting, we follow the
standard assumptions in the SGD literature [27, 2, 6], including a symmetry assumption on the
gradient noise, which is empirically verified in [14, Figure 3] and commonly used in the standard
non-DP literature [48, 66, 12, 73]. We refer the curious readers to Appendix E.5 for details.
Assumption 5.1 (Lower bound of loss). For all w and some constant L∗, we have L(w) ≥ L∗.
Assumption 5.2 (Smoothness). Let g(w) denote the gradient of the objective L(w). Then ∀w,v,
there is an non-negative constant L such that

L(v)−
[
L(w) + g(w)⊤(v −w)

]
≤ L

2
∥w − v∥2. (5.1)

Assumption 5.3 (Gradient noise). The per-sample gradient noise g̃t,i − gt is i.i.d. from some
ditribution such that

E(g̃t,i − gt) = 0,E∥g̃t,i − gt∥2 ≤ ξ2,

and g̃t,i is centrally symmetric about gt in distribution: g̃t,i − gt
D
= gt − g̃t,i.

We show in Theorem 4 that DP-SGD with AUTO-S clipping allows the true gradient norm to converge
to zero, though the clipped gradient may still be biased, but not so with AUTO-V clipping.
Theorem 4. Under Assumption 5.1, 5.2, 5.3, running DP-SGD with automatic clipping for T
iterations and setting the learning rate η ∝ 1/

√
T give6

min
0≤t≤T

E(∥gt∥) ≤ G

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; ξ, γ

)
:= min

r>0

ξ

r
+ F (· · · ; r, ξ, γ) . (5.2)

6The upper bound takes an implicit form of G(·; ξ, γ) because it is a lower envelope of functions ξ
r
+

F(·; r, ξ, γ) over all possible r > 0, whose forms are detailed in Theorem 6. Notice that G results only from the
clipping operation, not from the noise addition.
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Here · · · represents the first argument of G, and G is increasing and positive. As T → ∞, we have
mint E(∥gt∥) = O(T−1/4) for AUTO-S, the same rate as the standard SGD given in Theorem 9.
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Figure 6: Left: DP-SGD with AUTO-V clipping. Middle: DP-SGD with AUTO-S clipping. Right:
Log-log plot of convergence rate in comparison to standard SGD. Here ξ = 25, γ = 0.01, and the
O(1/

√
T ) term is set to 10 for DP-SGD and to 2 for standard SGD.

Remark 5.4. We show in Theorem 6 and in Figure 6 that the upper bound (5.2) has G ≥ ξ for
AUTO-V (γ = 0), and G only reduces to zero for AUTO-S (γ > 0). We provide real data evidence in
Figure 14 that strictly positive γ reduces the gradient norm significantly.

5.2 Analysis of factors affecting the convergence

We now analyze the many factors that affect the convergence in Theorem 4, from a unified viewpoint
of both the convergence and the privacy.

We start with the stability constant γ and the learning rate ηt, both only affect the convergence not
the privacy. We empirically observe in Figure 8 that small γ benefits the convergence at initial
iterations (when the privacy guarantee is strong) but larger γ converges faster asymptotically. For ηt,
the optimal is in fact the miminizer of the hyperbola in (C.5), that is unique and tunable.

Next, we focus on the hyperparameters that affect both convergence and privacy: the batch size B,
the noise multiplier σ, and the number of iterations T . These hyperparameters have to be considered
along the privacy-accuracy tradeoff, not just from a convergence perspective.

Recall that given a fixed privacy budget (ϵ, δ), we rely on modern privacy accountant for computing
the appropriate combinations of parameter σ, T,B. The exact expression of the bound as a function of
(ϵ, δ) is somewhat messy. For this reason, we illustrate our analysis in terms of the surrogate parameter
µ for µ-GDP [19], which implies (ϵ, δ)-DP with ϵ = µ2+µ

√
2 log(1/δ)). [7] showed that DP-SGD’s

privacy guarantee asymptotically converges to µ-GDP (as T → ∞) with µ = B
n

√
T (e1/σ2 − 1). We

can alternatively leverage ρ-tCDP [10] for similar conclusions, using ρ in place of µ2 in (5.3).

Theorem 5. Under Assumption 5.1, 5.2, 5.3, fixing the asymptotic µ(ϵ, δ)-GDP parameter, running
DP-SGD with automatic clipping for T iterations and setting the learning rate η ∝ 1/

√
T give

min
0≤t≤T

E(∥gt∥) ≤ G

(
4

√
(L0 − L∗)L

(
1

T
+

d

µ2n2
+O

( 1

B2T

))
; ξ, γ

)
(5.3)

To show that our analysis matches the training behaviors observed in SOTA empirical work [41, 38,
17, 68, 50, 78], we minimize the first argument of G in (5.3), denoted as X(B, T, µ, d, L,L0).

1. [Train longer with larger noise] Fixing the expected batch size B, we see that X is decreasing
in T . Hence larger T and consequently larger σ are preferred.

2. [Larger batch size helps] Fixing number of iterations T or epochs E = BT/n, we see that X is
decreasing in B. Hence larger B and consequently larger σ are preferred.

3. [Pretraining is critical] Pretraining can boost the DP accuracy through a much smaller initial
loss L0 and from a smooth (small L) and flat (small ξ, c.f. Figure 8(left)) initialization.

4. [Learning rate needs tuning] The optimal learning rate by minimizing (C.5) is
√

(L0−L∗)µ2n2

L(µ2n2+dT ) .
This indicates that one should use larger learning rate for smaller model d, weaker privacy (larger
µ or small ϵ), or smaller iteration budget T .
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6 Experiments

We evaluate our automatic DP training on image classification, sentence classification, and table-to-
text generation tasks. Detailed settings including hyperparameters can be found in Appendix G.

6.1 Image classification

For MNIST/FashionMNIST, we use the same setup as in [56, 68, 64] with a simple CNN. For
CIFAR10, we use the same setup as in [68] with pretrained SimCLRv2 [13]. For ImageNette, a
10-class sub-task of ImageNet [18], we use the same setup as in [36] without the learning rate decay.
For CelebA [45], the real human face dataset, we train ResNet9 [32] with group normalization to
replace the batch normalization. Notice that CelebA contains high-resolution (178x218) images, each
with 40 labels. We consider CelebA for either multi-class classification on one label, e.g. ‘Smiling’
and ‘Male’, or for multi-label/multi-task problem to learn all labels simultaneously.

Table 1: Average test accuracy and 95% confidence interval on image tasks over 5 runs.

Task Model (ϵ, δ)
Accuracy %

Abadi’s clipping AUTO-S clipping non-DP
(ϵ = ∞)

MNIST 4-layer CNN (3, 1e-5) 98.04± 0.09 98.15± 0.07 99.11± 0.07
FashionMNIST 4-layer CNN (3, 1e-5) 86.04± 0.26 86.36± 0.18 89.57± 0.13

CIFAR10 pretrained SimCLRv2 (2, 1e-5) 92.44± 0.13 92.70± 0.02 94.42± 0.01
ImageNette ResNet9 (8, 1e-4) 60.29± 0.53 60.71± 0.48 71.11± 0.37

CelebA [Smiling] ResNet9 (8, 5e-6) 90.75± 0.11 91.08± 0.08 92.61± 0.20
CelebA [Male] ResNet9 (8, 5e-6) 95.54± 0.14 95.70± 0.07 97.90± 0.04

CelebA Multi-label ResNet9 (3, 5e-6) 86.81± 0.03 87.05± 0.01 90.30± 0.02
CelebA Multi-label ResNet9 (8, 5e-6) 87.52± 0.15 87.58± 0.04 90.30± 0.02

In Table 1, we observe that AUTO-S clipping outperforms existing clipping in all datasets with statis-
tical significance. Interestingly, the standard deviation from different runs is smaller for automatic
DP optimizers, indicating better reproducibility and stability. We additionally experiment 40 binary
classification problems on CelebA with respect to each label, and observe that the mean accuracy
further improves to 91.63% at ϵ = 8 for AUTO-S (see Appendix J).

6.2 Sentence classification

On five benchmark language datasets (MNLI(m/mm)[72], QQP[34], QNLI[62], SST2[67]), we
compare our automatic DP training with re-parameterized gradient perturbation (RGP, [78]) and
full-parameter finetuning (full, [41]) using RoBERTa models [44]. These methods use the same
experimental setup. For language models, our automatic training is based on the codebase of [41].

Table 2: Test accuracy on language tasks with RoBERTa-base (12 blocks, 125 million parameters).

Method ϵ = 3 ϵ = 8 ϵ = ∞ (non-DP)
MNLI QQP QNLI SST2 MNLI QQP QNLI SST2 MNLI QQP QNLI SST2

RGP [78] - - - - 80.5/79.6 85.5 87.2 91.6 83.6/83.2 89.3 91.3 92.9
full [41] 82.45/82.99 85.56 87.42 91.86 83.20/83.46 86.08 87.94 92.09

85.91/86.14 87.34 91.40 94.49full AUTO-V 81.21/82.03 84.72 86.56 91.86 82.18/82.64 86.23 87.24 92.09
full AUTO-S 83.22/83.21 85.76 86.91 92.32 83.82/83.55 86.58 87.85 92.43

Table 3: Test accuracy on language tasks with RoBERTa-large (24 blocks, 355 million parameters).

Method ϵ = 3 ϵ = 8 ϵ = ∞ (non-DP)
MNLI QQP QNLI SST2 MNLI QQP QNLI SST2 MNLI QQP QNLI SST2

RGP [78] - - - - 86.1/86.0 86.7 90.0 93.0 - - - -
full [41] 86.43/86.46 86.43 90.76 93.04 87.02/87.26 87.47 91.10 93.81

90.33/90.03 87.90 93.61 96.21full AUTO-V 85.33/85.61 86.61 89.99 93.12 85.91/86.10 86.86 90.55 93.35
full AUTO-S 86.27/86.67 86.76 91.01 93.92 87.07/87.16 87.47 91.45 94.61

In Table 2 and Table 3, we note that full parameter finetuning with AUTO-S outperforms or at least
matches SOTA on all tasks. We use exactly the same hyperparameters as in [41].
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6.3 Table-to-text generation

We compare our automatic DP training with a variety of fine-tuning methods, for table-to-text
generation task on E2E dataset [23], where the goal is to generate texts about different aspects of a
restaurant’s data. We measure the success on this task by BLEU, ROUGE-L (in Table 4), METEOR,
NIST, CIDEr (extended in Table 8), with higher value meaning better model quality.

Table 4: Test performance on E2E dataset with GPT2. Additional performance measures are included
in Table 8. The best two GPT2 models for each row are marked in bold.

DP GPT2 GPT2 GPT2
Metric guarantee large medium

full full full full full LoRA RGP prefix top2 retrain
AUTO-S AUTO-S AUTO-S AUTO-V [41] [33] [78] [40]

BLEU
ϵ = 3 64.180 63.850 61.340 61.519 61.519 58.153 58.482 47.772 25.920 15.457
ϵ = 8 64.640 64.220 63.600 63.189 63.189 63.389 58.455 49.263 26.885 24.247

non-DP 66.840 68.500 69.463 69.463 69.463 69.682 68.328 68.845 65.752 65.731

ROGUE-L
ϵ = 3 67.857 67.071 65.872 65.670 65.670 65.773 65.560 58.964 44.536 35.240
ϵ = 8 68.968 67.533 67.073 66.429 66.429 67.525 65.030 60.730 46.421 39.951

non-DP 70.384 71.458 71.359 71.359 71.359 71.709 68.844 70.805 68.704 68.751

Competitive methods include low-rank adaption (LoRA), prefix-tuning (prefix), RGP, only fine-tuning
the top 2 Transformer blocks (top2), and training from scratch (retrain), as were recorded in [41].
Again, we use the exactly the same hyperparameters as in [41]. For GPT2 (124 million parameters),
GPT2 medium (355 million), and GPT2 large (774 million), Table 4 shows that AUTO-S is scalable
with stronger performance on larger models. Our automatic full-parameter finetuning has the best
overall performance. Additionally, we highlight that AUTO-S and methods like LoRA are not
mutually exclusive and can be combined to yield strong performance, since AUTO-S modifies the
optimizers and LoRA modifies the architecture.

7 Related works

While other DP works also normalize the per-sample gradients (instead of clipping them) or use small
clipping threshold (making the clipping similar to normalization), our work is very different in terms
of theoretical analysis, algorithm design and experiments. In fact, the concurrent work [74] gives the
same algorithm as AUTO-S, although its theoretical analysis and experiment design is fundamentally
different from ours. [16] proposes to normalize the per-user (not per-sample) gradient in the federated
learning setting, and analyzes the convergence in a convex, non-deep-learning setting.

On the other hand, many works apply the per-sample gradient clipping with small R for good utility
[1, 41, 50, 38, 17]. These works have led to valuable insights, but also some false or incomplete
conclusions, due to the lack of rigorous theoretical analysis. For instance, since R is present in the
(re-parameterized) per-sample clipping, it cannot avoid the hyperparameter tuning as the choice of R
is not robust; even if a sufficiently small R is used, the clipping does not reveal the stability constant
in AUTO-S, which enjoys theoretical and empirical advantages in Remark 5.4 and Section 6. We
devote Appendix L to more instances (e.g. Footnote 5) and a thorough comparison.

8 Discussion

In this work, we propose the automatic clipping as a drop-in replacement to the standard per-example
clipping for differentially private training. This is the first technique that eliminates the need to tune
the clipping threshold R, thus making DP deep learning as easy as regular learning. Our AUTO-S
method enjoys both theoretical guarantee of convergence in non-convex problems (under various
conditions), and strong empirical performance that advances DP learning on computer vision and
language tasks.

We are excited about the future of automatic DP training, especially along with other working
techniques, such as general optimizers (e.g. [8, 21]), clipping styles (all-layer or per-layer or
adaptive clipping), architecture modifications (e.g. LoRA, RGP, prefix), and data augmentation (e.g.
adversarial training [29] and multiple augmentation [17]). Thus, we expect to achieve comparable
results to all SOTA in a lightweight fashion.
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A Proof of differential privacy

Proof of Theorem 3. Define the ℓ2 sensitivity of any function g to be ∆g = supS,S′ ∥g(S)−g(S′)∥2
where the supreme is over all neighboring (S, S′). Then the Gaussian mechanism ĝ(S) = g(S) +
σ∆g · N (0, I).

σ denotes the “Noise multiplier”, which corresponds to the noise-level when a Gaussian mechanism
is applied to a query with sensitivity 1.

Observe that automatic clipping (AUTO-V and AUTO-S (4.1)) ensures the bounded global-sensitivity
of the stochastic gradient as in Abadi’s clipping. Aligning the noise-multiplier (rather than the
noise-level itself) ensures that the the noise-to-sensitivity ratio σ∆g

∆g = σ is fixed regardless of ∆g.
The Gaussian mechanism’s privacy guarantees are equivalent. Thus from the privacy accountant
perspective, DP-SGD with both Abadi’s clipping and our autoclipping method can be equivalently
represented as the adaptive composition of T Poisson sampled Gaussian Mechanism with sampling
probability B/n and noise multiplier σ.

B Proof of automaticity

B.1 Non-adaptive DP optimizers

Proof of Theorem 1. We prove Theorem 1 by showing that, DP-SGD using R-dependent AUTO-S
with learning rate η and weight decay λ is equivalent to R-independent AUTO-S with learning rate
ηR and weight decay λ/R. We claim other non-adaptive optimizers such as HeavyBall and NAG can
be easily shown in a similar manner.

Recall the standard SGD with weight decay is

wt+1 = wt − η

(∑
i∈Bt

∂li
∂wt

+ λwt

)

Replacing the standard gradient
∑

i
∂li
∂wt

with the private gradient, we write the R-dependent case as

wt+1 = wt − η

(∑
i∈Bt

∂li
∂wt

·R/∥ ∂li
∂wt

∥2 + σR · N (0, I) + λwt

)

= wt − ηR

(∑
i∈Bt

∂li
∂wt

/∥ ∂li
∂wt

∥2 + σ · N (0, I)

)
− ηλwt

which is clearly equivalent to the R-independent case:

wt+1 = wt − η′

(∑
i∈Bt

∂li
∂wt

/∥ ∂li
∂wt

∥2 + σ · N (0, I) + λ′wt

)

if we use η′ = ηR and λ′ = λ/R.

B.2 Adaptive DP optimizers

Proof of Theorem 2. We prove Theorem 2 by showing that, DP-AdamW using R-dependent AUTO-
S with learning rate η and weight decay λ is equivalent to R-independent AUTO-S with the same
learning rate η and weight decay λ/R. This is the most complicated case. We claim other adaptive
optimizers such as AdaDelta, Adam with weight decay (not AdamW), and NAdam can be easily
shown in a similar manner.

Recall the standard AdamW is

wt+1 = wt − η

(
mt/(1− β1)√
vt/(1− β2)

+ λwt

)

16



where β1, β2 are constants, gt :=
∑

i
∂li
∂wt

is the standard gradient,

mt = β1mt−1 + (1− β1)gt −→ mt =
∑
τ

βt−τ
1 (1− β1)gτ ,

vt = β2vt−1 + (1− β2)g
2
t −→ vt =

∑
τ

βt−τ
2 (1− β2)g

2
τ .

Replacing the standard gradient with the private gradient Rg̃t := R(
∑

i
∂li
∂wt

/∥ ∂li
∂wt

∥2+σ ·N (0, I)),
we write the R-dependent DP-AdamW as

wt+1 = wt − η

(
m̃t/(1− β1)√
ṽt/(1− β2)

+ λwt

)
where

m̃t = β1m̃t−1 + (1− β1)Rg̃t −→ m̃t =
∑
τ

βt−τ
1 (1− β1)Rg̃τ ,

ṽt = β2ṽt−1 + (1− β2)R
2g̃2

t −→ ṽt =
∑
τ

βt−τ
2 (1− β2)R

2g̃2
τ .

Clearly, the R factor in the numerator and denominator of m̃t/(1−β1)√
ṽt/(1−β2)

cancel each other. Therefore

we claim that the R-dependent DP-AdamW is in fact completely independent of R.

B.3 Automatic per-layer clipping

In some cases, the per-layer clipping is desired, where we use a clipping threshold vector R =
[R1, · · · , RL] and each layer uses a different clipping threshold. We claim that DP optimizers
under automatic clipping works with the per-layer clipping when R is tuned proportionally, e.g.
R = R · [a1, · · · , aL], but not entry-wise (see counter-example in Fact B.1). One special case is the
uniform per-layer clipping when R1 = · · · = RL = R/

√
L. This is widely applied as only one norm

R requires tuning, instead of L norms in R, particularly in the case of deep models with hundreds of
layers. The corresponding DP-SGD with AUTO-S in (3.5) gives

w
(l)
t+1 = w

(l)
t − η

(∑
i∈Bt

R√
L

g
(l)
t,i

||g(l)
t,i ||+ γ

+ σR · N (0, I)

)

Here the superscript (l) is the layer index. Clearly R couples with the learning rate η and the same
analysis as in Theorem 1 follows. The adaptive optimizers can be similarly analyzed from Theorem 2.

Fact B.1. Changing one clipping threshold in the clipping threshold vector R (i.e. not proportionally)
can break the coupling with learning rate.

Proof of Fact B.1. We prove by a counter-example of R in R2. Consider DP-SGD with per-layer
clipping thresholds (R1, R2) = (9, 12):

w
(l)
t+1 = w

(l)
t − η

(∑
i∈B

Rlgt,i,l
||gt,i,l||

+ σ
√

R2
1 +R2

2 · N (0, I)

)
Increasing R1 from 9 to 16 changes the update for the first layer

η

(∑
i∈B

9gt,i,l
||gt,i,l||

+ 15σ · N (0, 1)

)
→ η

(∑
i∈B

16gt,i,l
||gt,i,l||

+ 20σ · N (0, I)

)
The noise-to-signal ratio decreases from 5/3 to 5/4 for this layer, and increases from 5/4 to 5/3 for the
second layer. This breaks the coupling with learning rate, since the coupling does not change the
noise-to-signal ratio.
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C Main results of convergence for DP-SGD with automatic clipping

C.1 Main proof of convergence for DP-SGD (the envelope version)

Proof of Theorem 4. In this section, we prove two parts of Theorem 4.

The first part of Theorem 4 is the upper bound on mint E(∥gt∥), which is a direct result following
from Theorem 6, and we prove it in Appendix C.2.

Theorem 6. Under Assumption 5.1, 5.2, 5.3, running DP-SGD with automatic clipping for T
iterations gives

min
t

E(∥gt∥) ≤
ξ

r
+ F

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; r, ξ, γ

)
(C.1)

where

• for r < 1, γ = 0 and η ∝ 1/
√
T , F(x) = x

min0<c<1 f(c,r) and f(c, r) := (1+rc)√
r2+2rc+1

+
(1−rc)√
r2−2rc+1

; for r ≥ 1, γ = 0 and η ∝ 1/
√
T , F(x) = ∞;

• for r ≥ 1, γ > 0 and η ∝ 1/
√
T , F is the convex envelope of (C.9), and is strictly increasing.
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Figure 7: Visualization of upper bound ξ
r +F

(
O(1/

√
T ); r, ξ, γ

)
for gradient norm, with O(1/

√
T )

in (C.1). Here ξ = 1. The right plot is a zoom-in (with additional lines) of the left one.

Notice that, (C.1) holds for any r > 0. However, we have to consider an envelope curve over r in
(C.1) to reduce the upper bound: with AUTO-V clipping (γ = 0), the upper bound in (C.1) is always
larger than ξ as r < 1; we must use AUTO-S clipping (γ > 0) to reduce the upper bound to zero, as
can be seen from Figure 7. In fact, larger T needs larger r to reduce the upper bound.

All in all, we specifically focus on r ≥ 1 and γ > 0, which is the only scenario that (C.1) can
converge to zero. This scenario is also where we prove the second part of Theorem 4.

The second part of Theorem 4 is the asymptotic convergence rate O(T−1/4) of DP-SGD, only
possible under r ≥ 1 and γ > 0.

By (C.1) in Theorem 6, our upper bound G from Theorem 4 can be simplified to

min
r>0

ξ

r
+ (M−1)ccv

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; r, ξ, γ

)

where the function M−1 is explicitly defined in (C.9) and the subscript ccv means the upper concave
envelope. Clearly, as T → ∞, M−1( 1√

T
) → 0. We will next show that the convergence rate of

M−1 is indeed O( 1√
T
) and the minimization over r makes the overall convergence rate O(T−1/4).
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Starting from (C.9), we denote x = 4√
T

√
(L0 − L∗)L

(
1 + σ2d

B2

)
and write

M−1(x; r, ξ, γ) =
− ξ

rγ + (r2 − 1) ξrx+ rγx+ γ
√
( ξr )

2 + 2ξx+ 2γx+ x2

2γ − (r2 − 1)x

=

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+ γ

√
(
ξ

r
)2 + 2ξx+ 2γx+ x2

)

·
1 + r2−1

2γ x+O(x2)

2γ

=
1

2γ

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+

γξ

r

√
1 +

2(ξ + γ)r2x

ξ2
+O(x2)

)

· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+

γξ

r

(
1 +

(ξ + γ)r2x

ξ2
+O(x2)

))
· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
(r2 − 1)

ξ

r
x+ rγx+

γ(ξ + γ)rx

ξ
+O(x2)

)
· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
(r2 − 1)

ξ

r
+ rγ +

γ(ξ + γ)r

ξ

)
· x+O(x2)

=
1

2γ

(
(ξ + γ)2

ξ
r − ξ

r

)
· x+O(x2)

Since M−1 is asymptotically linear as x → 0, we instead study

min
r>0

ξ

r
+M−1 (x; r, ξ, γ) ≡ min

r>0

ξ

r
+

1

2γ

(
(ξ + γ)2

ξ
r − ξ

r

)
· x+O(x2).

That is, ignoring the higher order term for the asymptotic analysis, the M−1 part converges as
O(x) = O(1/

√
T ), and we visualize this in Figure 9.

Although DP-SGD converges faster than SGD, the former converges to ξ/r and the latter converges
to 0. Thus, taking ξ/r into consideration, the objective reduces to a hyperbola(

ξ(1− x
2γ )
)

r
+

x(ξ + γ)2

2γξ
· r

whose minimum over r is obviously 2
√

ξ(1− x
2γ )

x(ξ+γ)2

2γξ = O(
√
x) = O(T−1/4).

To give more details about the upper bound in (5.2), we demonstrate its dependence on ξ and γ in
Figure 8.

C.2 Main proof of convergence for DP-SGD (the non-envelope version)

Proof of Theorem 6. Consider DP-SGD with AUTO-S clipping

wt+1 = wt − η

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σN (0, I)

)
where g̃t,i is i.i.d. samples of g̃t, an unbiased estimate of gt, with a bounded variance as described in
Assumption 5.3.
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By Lipschitz smoothness in Assumption 5.2, and denoting Z = N (0, I), we have

Lt+1 − Lt ≤ g⊤
t (wt+1 −wt) +

L

2
∥wt+1 −wt∥2

= −ηg⊤
t

(∑
i

Cig̃t,i + σZ

)
+

Lη2

2

∥∥∥∥∥∑
i

Cig̃t,i + σZ

∥∥∥∥∥
2

≤ −ηg⊤
t

(∑
i

Cig̃t,i + σZ

)
+ Lη2

∥∥∥∥∥∑
i

Cig̃t,i

∥∥∥∥∥
2

+ σ2∥Z∥2


≤ −ηg⊤
t

(∑
i

Cig̃t,i + σZ

)
+ Lη2

(
B2 + σ2∥Z∥2

)
(C.2)

where the second last inequality follows from Cauchy Schwartz, and the last inequality follows from
the fact that ∥Cig̃t,i∥ ≤ 1, e.g. Ci is ∥g̃t,i/(∥g̃t,i∥+ γ)∥ or the re-parameterized clipping in [17].

Notice that in the last equality, the first term (ignoring g⊤
t Z for its zero expectation) can be written in

the same form as (3.3), which supports our motivation in Section 3.2; the second term is independent
of clipping functions. Note that the last inequality is tight if and only if Ci = 1. This empirically
holds in Appendix H.1, especially for GPT2.

Given the fact that ∥g̃t,i/(∥g̃t,i∥+ γ)∥ ≤ 1, the expected improvement at one iteration is

E(Lt+1 − Lt|wt) ≤ −ηg⊤
t E

(∑
i

g̃t,i
∥g̃t,i∥+ γ

)
+ Lη2

(
B2 + σ2d

)
= −ηBg⊤

t E
(

g̃t
∥g̃t∥+ γ

)
+ Lη2

(
B2 + σ2d

) (C.3)

Now we want to lower bound g⊤
t E
(

g̃t

∥g̃t∥+γ

)
in (C.3).
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Write g̃t = gt +∆t where the gradient noise ∆t follows E∆t = 0,E∥∆t∥ < ξ by Assumption 5.3.
Then

g⊤
t E
(

g̃t
∥g̃t∥+ γ

)
= E

(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

)
=

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H+

)
+

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H−

)
=

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H+

)
+

1

2
E
(
∥gt∥2 − g⊤

t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
where we use the hyperplane perpendicular to gt to divide the support of ∆t into two half-spaces:

H+ := {v : g⊤
t v > 0}, H− := {v : g⊤

t v < 0}.

We use the symmetry assumption in Assumption 5.3 to get

P(∆t ∈ H+) = P(∆t ∈ H−) =
1

2

and notice that ∆t
D
= −∆t, i.e., if ∆t ∈ H+, then −∆t ∈ H− with the same distribution.

The next result further gives a lower bound for g⊤
t E
(

g̃t

∥g̃t∥+γ

)
using ∥gt∥.

Lemma C.1.

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
≥ min

0<c≤1
f(c, r;

γ

∥gt∥
) · (∥gt∥ − ξ/r)

for any r > 0 and f(c, r; Γ) = (1+rc)√
r2+2rc+1+Γ

+ (1−rc)√
r2−2rc+1+Γ

.

For the simplicity of notation, we denote the distance measure

M(∥gt∥ − ξ/r; r, ξ, γ) = min
0<c≤1

f

(
c, r;

γ

∥gt∥

)
· (∥gt∥ − ξ/r) (C.4)

and leave the fine-grained analysis (e.g. its explicit form in some scenarios) at the end of this section.

Using the lower bound from Lemma C.1, the expected improvement (C.3) becomes

E(Lt+1 − Lt|wt) ≤ −ηB

2
M(∥gt∥ − ξ/r) + Lη2B2

(
1 +

σ2d

B2

)
Now extend the expectation over randomness in the trajectory, and perform a telescoping sum over
the iterations

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1)

≥ ηB

2
E

(∑
t

M(∥gt∥ − ξ/r)

)
− TLη2B2

(
1 +

σ2d

B2

)

Substituting ηB = η0/
√
T where η0 is a base learning rate, we have

2(L0 − L∗) ≥
√
Tη0E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
− 2Lη20

(
1 +

σ2d

B2

)
and finally

E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
≤ 1√

T

[
2(L0 − L∗)

η0
+ 2Lη0

(
1 +

σ2d

B2

)]
(C.5)
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With η0 chosen properly at η0 =
√

L0−L∗

L
(
1+σ2d

B2

) , the hyperbola on the right hand side in (C.5) is

minimized to 4
√
(L0 − L∗)L

(
1 + σ2d

B2

)
, and we obtain

E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
≤ 4√

T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
Since the minimum of a sequence is smaller than the average, we have

min
t

E(M(∥gt∥ − ξ/r)) ≤ 1

T

∑
t

E (M(∥gt∥ − ξ/r)) ≤ 4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
(C.6)

We claim that M may not be concave or convex. Therefore we use Mcvx to denote its lower convex
envelope, i.e. the largest convex function that is smaller than M. Then by Jensen’s inequality (C.6)
becomes

min
t

Mcvx(E(∥gt∥ − ξ/r)) ≤ min
t

E(Mcvx(∥gt∥ − ξ/r)) ≤ 4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
(C.7)

It is obvious that Mcvx is increasing as M is increasing by Theorem 8. Hence, (Mcvx)
−1 is also

increasing, as the inverse of Mcvx. We write (C.7) as

min
t

E(∥gt∥ − ξ/r) ≤ (Mcvx)
−1

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

))
and equivalently

min
t

E(∥gt∥) ≤
ξ

r
+ (Mcvx)

−1

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

))
(C.8)

Finally, we derive the explicit properties of M(∥gt∥ − ξ/r) in Theorem 8. These properties allow
us to further analyze on the convergence of M(∥gt∥ − ξ/r), based on AUTO-V and AUTO-S,
respectively.

1. DP-SGD with AUTO-V clipping. By Theorem 8, we write
M(x; r) = min

c∈(0,1]
f(c, r; 0) · x

This is a linear function and thus Mcvx = M = 1/M−1
cvx. As a result, we have

min
t

E(∥gt∥) ≤
ξ

r
+

1

minc∈(0,1] f(c, r; 0)
· 4√

T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
We note here r plays an important role under AUTO-V clipping: when r < 1, we spend more iterations
to converge to better and smaller gradient norm ξ/r; when r ≥ 1, minc f(c, r; 0) = f(1, r; 0) = 0
and it takes forever to converge. This is demonstrated in the left plot of Figure 6.

2. DP-SGD with AUTO-S clipping. By Theorem 8 and for r > 1, we write

M(x; r, ξ, γ) =

(
γ

(r − 1)(x+ ξ/r) + γ
− γ

(r + 1)(x+ ξ/r) + γ

)
· x.

Notice that the inverse of a lower convex envelope is equivalent to the upper concave envelope
(denoted by the subscript ccv) of an inverse. Therefore we can derive (Mcvx)

−1 = (M−1)ccv with
the explicit form

M−1(x; r, ξ, γ) =
− ξ

rγ + (r2 − 1) ξrx+ rγx+ γ
√
( ξr )

2 + 2ξx+ 2γx+ x2

2γ − (r2 − 1)x
. (C.9)
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we can derive it based on r, ξ, γ and substitute back to (C.8).

Note that the domain of M−1 (or the image of M) is [0, γ
r−1 − γ

r+1 ).

In comparison to the AUTO-V clipping, M−1 takes a much more complicated form, as depicted in
the middle plot of Figure 6, where r > 1 plays an important role for the gradient norm to converge to
zero.

C.3 Proof of Lemma C.1

Proof of Lemma C.1. We want to lower bound

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
(C.10)

To simplify the notation, we denote noise-to-signal ratio S := ∥∆t∥
∥gt∥ and c := cos θ =

g⊤
t ∆t

∥gt∥∥∆t∥ , with
θ be the random angle between gt and ∆t. Note that 0 < c ≤ 1 when ∆t ∈ H+.

The term inside the conditional expectation in (C.10) can be written as

(1 + Sc)∥gt∥2√
S2 + 2Sc+ 1∥gt∥+ γ

+
(1− Sc)∥gt∥2√

S2 − 2Sc+ 1∥gt∥+ γ

=∥gt∥
(

(1 + Sc)√
S2 + 2Sc+ 1 + γ/∥gt∥

+
(1− Sc)√

S2 − 2Sc+ 1 + γ/∥gt∥

)

Defining Γ = γ/∥gt∥ and

f(c, S; Γ) :=
(1 + Sc)√

S2 + 2Sc+ 1 + Γ
+

(1− Sc)√
S2 − 2Sc+ 1 + Γ

, (C.11)

we turn the conditional expectation in (C.10) into

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
= ∥gt∥E(f(c, S; Γ)|∆t ∈ H+) (C.12)

for which we want to lower bound f(c, S; Γ) over 0 < c ≤ 1, S > 0,Γ > 0. We use the next theorem
to prepare some helpful properties. The proof can be found in Appendix E.1.

Theorem 7. For f defined in (C.11), we have

1. f(c, S; Γ) is strictly decreasing in S for all 0 < c < 1 and Γ > 0.

2. Consequently, minc∈(0,1) f(c, S; Γ) is strictly decreasing in S.

3. f(c, S; Γ) is strictly decreasing in c for all S > 1 and Γ > 0.

We consider a thresholding ratio r > 0 and we will focus on the regime that S < r. This r will turn
out to measure the minimum gradient norm at convergence: informally speaking, ∥gt∥ converges to
ξ/r.
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By the law of total expectation, (C.12) can be relaxed as follows.

∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+

)
=∥gt∥E

(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

+ ∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S > r
)
P(r∥gt∥ < ∥∆∥

∣∣∣∆ ∈ H+)

≥∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

≥∥gt∥E
(
f(c, r; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

=∥gt∥E
(
f(c, r; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥)

≥ min
c∈(0,1]

f(c, r; Γ) · ∥gt∥P(r∥gt∥ > ∥∆∥)︸ ︷︷ ︸
⋆⃝

(C.13)

where in the first inequality, the ignoring of last term is justified by f(c, S; Γ) ≥
minc∈(0,1] f(c, S; Γ) ≥ minc∈(0,1] f(c,∞; Γ) = 0, from the monotonicity (second statement) in
Theorem 7.

We first lower bound ⋆⃝ by applying the Markov’s inequality:

P(r∥gt∥ > ∥∆t∥) ≥ 1− E∥∆t∥
r∥gt∥

and hence by Assumption 5.3,
∥gt∥P(r∥gt∥ > ∥∆t∥) ≥ ∥gt∥ − E∥∆∥/r ≥ ∥gt∥ − ξ/r.

Finally, the conditional expectation of interest in (C.10) gives

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥

∣∣∣∆t ∈ H+

)
≥ min

0<c≤1
f(c, r;

γ

∥gt∥
) · (∥gt∥ − ξ/r)

C.4 Proof of Theorem 8

To derive some properties of minc f(c, r; Γ), we need to compute separately for AUTO-V (without
the stability constant, Γ = 0) and for AUTO-S (with the stability constant, Γ > 0), as shown in
Theorem 8. As we will show, as the number of training iterations T → ∞, DP-SGD with AUTO-V
clipping can only compress ∥gt∥ to ξ/r for r < 1. However, DP-SGD with AUTO-S clipping can
compress ∥gt∥ to ξ/r to any r > 1.
Theorem 8.

1. For 0 < r < 1 and Γ = 0, we have minc∈(0,1] f(c, r; 0) > 0. Then Equation (C.12) is lower
bounded by

min
c∈(0,1]

f(c, r; 0) · (∥gt∥ − ξ/r)

which is increasing in ∥g∥ − ξ/r.

2. For r ≥ 1 and Γ = 0, we have minc∈(0,1] f(c, r; Γ) = f(1, r; 0) = 0. In words, (C.10) has a
trivial lower bound and Theorem 6 cannot compress ∥gt∥ to ξ/r.

3. For r ≥ 1 and Γ > 0, we have minc∈(0,1] f(c, r; Γ) = f(1, r; Γ) =
(

Γ
r+Γ−1 − Γ

r+Γ+1

)
. Then

Equation (C.12) is lower bounded by(
γ

(r − 1)∥gt∥+ γ
− γ

(r + 1)∥gt∥+ γ

)
· (∥gt∥ − ξ/r)

which is increasing in ∥gt∥ − ξ/r.

Proof. To prove statement 1, we use the second statement from Theorem 7 and show that
minc f(c, r; 0) > minc f(c,∞; 0) = 0. To prove statement 2 and 3, we use the third statement from
Theorem 7 and see that minc f(c, r; Γ) = f(1, r; Γ) with an explicit formula.
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D Convergence rate of standard SGD

Theorem 9. Under Assumption 5.1, 5.2, 5.3 (without the symmetry assumption), running the standard
non-DP SGD for T iterations gives, for η ∝ 1/

√
T ,

min
t

E (∥gt∥) ≤
1

T 1/4

√
2(L0 − L∗)L+

ξ2

B

Proof of Theorem 9. Consider the standard SGD

wt+1 = wt − η

∑
i g̃t,i
B

where g̃t,i is i.i.d. unbiased estimate of gt, with a bounded variance as described in Assumption 5.3.

By Lipschitz smoothness assumption in Assumption 5.2,

Lt+1 − Lt ≤ g⊤
t (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 = −ηg⊤

t

(∑
i

1

B
g̃t,i

)
+

Lη2

2

∥∥∥∥∥∑
i

1

B
g̃t,i

∥∥∥∥∥
2

The expected improvement at one iteration is

E(Lt+1 − Lt|wt) ≤ −ηg⊤
t Eg̃t,i +

Lη2

2
E∥
∑
i

1

B
g̃t,i∥2

≤ −η∥gt∥2 +
Lη2

2

(
∥gt∥2 +

ξ2

B

) (D.1)

Now we extend the expectation over randomness in the trajectory, and perform a telescoping sum
over the iterations

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1) ≥
(
η − Lη2

2

)
E(
∑
t

∥gt∥2)−
TLη2ξ2

2B

Notice that we do not need the symmetry assumption in Assumption 5.3 in the non-DP SGD analysis.

We apply the same learning rate as in [5], η = 1
L
√
T

,

2(L0 − L∗) ≥
(

2

L
√
T

− 1

LT

)
E

(∑
t

∥gt∥2
)

− Tξ2

BLT
≥

√
T

L
E

(
1

T

∑
t

∥gt∥2
)

− ξ2

BL

and finally

min
t

E
(
∥gt∥2

)
≤ E

(
1

T

∑
t

∥gt∥2
)

≤ 1√
T

[
2(L0 − L∗)L+

ξ2

B

]
Using the Jensen’s inequality, we can have

min
t

E (∥gt∥) ≤
1

T 1/4

√
2(L0 − L∗)L+

ξ2

B

E Auxiliary proofs

E.1 Proof of Theorem 7

Proof. We first show df(c,S;Γ)
dS < 0 for all 0 < c < 1,Γ > 0 and S > 0, as visualized in the left plot

of Figure 10. We can explicitly write down the derivative, by WolframAlpha

df(c, S; Γ)

dS
=

−(AΓ2 +BΓ + C)√
S2 − 2cS + 1

√
S2 + 2cS + 1(Γ +

√
S2 − 2cS + 1)2(Γ +

√
S2 + 2cS + 1)2

(E.1)
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with

A(c, S) =
√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
B(c, S) = 4S

[
(S2 + 1)(1− c2) + c2

√
S2 + 2cS + 1

√
S2 − 2cS + 1

]
C(c, S) = (1− c2)S

[
(S2 − 2cS + 1)3/2 + (S2 + 2cS + 1)3/2

]
It is obvious that, since c < 1,

S2 ± 2cS + 1 > S2 ± 2cS + c2 = (S ± c)2 ≥ 0. (E.2)

From (E.2), the denominator in (E.1) is positive and it suffices to show AΓ2 +BΓ + C > 0 for all
0 < c < 1 and S > 0, in order to show df

dS < 0.

Also from (E.2), we can easily see B(c, S) > 0 and C(c, S) > 0. We will show that A(c, S) > 0 in
Lemma E.1, after very heavy algebraic computation.

Now we can claim that AΓ2+BΓ+C > 0 by Fact E.3, and complete the proof of the first statement.

To further see that minc f(c, S; Γ) is decreasing in S, let us denote c∗(x; Γ) :=
arg minc∈[0,1]f(c, x; Γ). Then considering S < S′, we prove the second statement by observing

min
c

f(c, S; Γ) = f(c∗(S; Γ), S; Γ) > f(c∗(S; Γ), S′; Γ) ≥ min
c

f(c, S′; Γ).

This statement is also visualized in the right plot of Figure 10.

We next show df(c,S;Γ)
dc < 0 for all 0 < c < 1,Γ > 0 and S > 1. We can explicitly write down the

derivative, by WolframAlpha

df(c, S; Γ)

dc
=

−S(A′Γ2 +B′Γ + C ′)√
S2 − 2cS + 1

√
S2 + 2cS + 1(Γ +

√
S2 − 2cS + 1)2(Γ +

√
S2 + 2cS + 1)2

(E.3)

with

A′(c, S) =
[
(S2 + 3cS + 2)

√
S2 − 2cS + 1− (S2 − 3cS + 2)

√
S2 + 2cS + 1

]
B′(c, S) = 4Sc

[√
S2 + 2cS + 1

√
S2 − 2cS + 1 + (S2 − 1)

]
C ′(c, S) = S

[
(c+ S)(S2 − 2cS + 1)3/2 + (c− S)(S2 + 2cS + 1)3/2

]
Clearly B′(c, S) > 0 and C ′(c, S) > 0, since S2 +2cS+1 > S2 − 2cS+ c2 = (S− c)2 ≥ 0. And
we will show A′(c, S) > 0 in Lemma E.2, after some algebra.

We again claim that A′Γ2 +B′Γ+C ′ > 0 by Fact E.3, which guarantees that the numerator in (E.3)
is negative and that df

dc < 0. This is visualized in Figure 11.
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Figure 10: Visualization of f(0.5, S,Γ) (left) and min0≤c≤1 f(c, S,Γ) over S > 0.
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Figure 11: Visualization of f(c, 0.8,Γ) (left) and f(c, 2,Γ) over 0 ≤ c ≤ 1.

E.2 Proof of Lemma E.1

Lemma E.1. For all 0 < c < 1 and S > 0,

A :=
√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√

S2 − 2cS + 1
(
3c2S + 2c(S2 + 1) + S

)
> 0.

Proof. We prove by contradiction. Suppose√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
< 0.

Then

0 <
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
< −

√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
.

where the first inequality comes from S2 − 2cS + 1 > S2 − 2cS + c2 = (S − c)2 ≥ 0.

Squaring everything gives

(S2 − 2cS + 1)
(
3c2S + 2c(S2 + 1) + S

)2
< (S2 + 2cS + 1)

(
3c2S − 2c(S2 + 1) + S

)2
.

Taking the difference gives

4cS(2 + 3S2 − 9c4S2 + 2S4 + 2c2(1− S2 + S4)) < 0

Given that c > 0, S > 0, we have

2 + 3S2 − 9c4S2 + 2S4 + 2c2(1− S2 + S4) < 0

Denoting X := S2 and viewing the above as a quadratic polynomial of X , we have

(2c2 + 2)X2 + (3− 2c2 − 9c4)X + (2c2 + 2)︸ ︷︷ ︸
1⃝

< 0

Using the closed-form minimizer of quadratic polynomial 1⃝, after some heavy algebra, one can
check the minimum of 1⃝ is

(1 + 3c2)2(1− c2)(7 + 9c2)

8(1 + c2)

which is clearly positive. Contradiction!

E.3 Proof of Lemma E.2

Lemma E.2. For all 0 < c < 1 and S > 1,

(S2 + 3cS + 2)
√

S2 − 2cS + 1− (S2 − 3cS + 2)
√
S2 + 2cS + 1 > 0.

Proof. Notice that (S2+3cS+2) > S2+2 > 0 and
√
S2 ± 2cS + 1 > 0. Therefore if S2−3cS+

2 ≤ 0, we are done.

Otherwise, we prove by contradiction and suppose

0 < (S2 + 3cS + 2)
√
S2 − 2cS + 1 < (S2 − 3cS + 2)

√
S2 + 2cS + 1.
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under the condition that S2 − 3cS + 2 > 0.

Squaring everything gives
(S2 + 3cS + 2)2(S2 − 2cS + 1) < (S2 − 3cS + 2)2(S2 + 2cS + 1).

Taking the difference gives
cS(8 + 20S2 − 36c2S2 + 8S4) < 0

Given that c > 0, S > 0, we have
2 + 5S2 − 9c2S2 + 2S4 < 0

Denoting X := S2 and viewing the above as a quadratic polynomial of X , we have, for X > 1,
2X2 + (5− 9c2)X + 2︸ ︷︷ ︸

2⃝

< 0

The closed-form minimizer of quadratic polynomial 2⃝ is (9c2−5)
4 . Given that 0 < c < 1, we must

have − 5
4 < 9c2−5

4 < 1. Hence the minimizer is not within the feasible domain (1,∞) of X . Thus
the minimum of 2⃝ is achieved with X = 1 at 9(1− c2). This is positive. Contradiction!

E.4 Proof of Fact E.3

Fact E.3. For a quadratic polynomial Ax2 +Bx+ C with A,B,C > 0, the minimum value on the
domain x ≥ 0 is C, at x = 0. Therefore Ax2 +Bx+ C > 0.

Proof. Since A > 0, the quadratic polynomial is convex and increasing on the domain x > − B
2A .

Since B > 0 as well, we know − B
2A < 0 and hence the quadratic polynomial is strictly increasing on

x > 0. Therefore the minimum value is achieved when x = 0, and we obtain Ax2+Bx+C ≥ C > 0
for all x ≥ 0.

E.5 Assumption of symmetric gradient noise

We show that Assumption 5.3 is actually relaxed from and less strict than the assumptions used in the
non-DP literature. In words, Assumption 5.3 allows our DP convergence to be comparable to the
standard convergence (as in Theorem 9), because our assumption does not enforce extra constraint.

In standard non-DP analysis [48, 66, 12, 73], the mini-batch gradient is assumed to be an unbiased
estimate of the oracle gradient gt = ∂L

∂w :

1

B

B∑
i=1

g̃t,i ∼ gt + ξ(w)

and ξ is the random gradient noise with ξ ∼ N(0,Σ(w)/B). Since this assumption holds for any
batch size B, we can set B = 1 to recover the per-sample gradient noise: ξ = g̃t,i − gt is i.i.d. and
symmetric because a zero-mean Gaussian is symmetric.

In fact, we can further relax our Assumption 5.3: besides assuming the central symmetry, the same
proof of convergence will follow if we instead assume the mirror symmetry about the hyperplane
normal to gt, that is {v : g⊤

t v = 0}.

F Examples of lazy regions

F.1 Balanced binary classification

We describe the data generation in Section 3.3. The label is uniformly ±1, that is P(yi = +1) =
P(yi = −1) = 0.5. We have 10000 positive and negative samples xi ∼ N (yi, 1). We consider a
logistic regression model P(Y = y|x) = I(y = 1) ·Sigmoid(x+ θ)+ I(y = −1) · (1−Sigmoid(x+
θ)) = 1

1+e−y(θ+x) , where θ ∈ R is the intercept. The gradient with respect to this only trainable

parameter is ∂Li

∂θ = −y
(
1− 1

1+e−y(θ+x)

)
. We set the clipping threshold R = 0.01 and the stability

constant γ = 0.01.
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F.2 Mean estimation on Gaussian mixture data

We also observe the lazy region issue in the mean estimation problem minθ
1
2∥θ − xi∥2. Here

P(xi ∼ N (4, 1)) = P(xi ∼ N (4, 1)) = 0.5. We have 10000 samples from each Gaussian
distribution. The regular minimum is clearly

∑
i xi → 0, where the regular gradient and AUTO-S

clipped gradient vanish. Yet both AUTO-V and Abadi’s clipping lose motivation to update the mean
estimator on the interval (−1, 1). We set the clipping threshold R = 0.01 and the stability constant
γ = 0.1.
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Figure 12: Scalar gradient ∂L
∂θ at each θ.

G Experiments settings

G.1 Image classification settings

We give the experiments settings for computer vision tasks in Table 1.

• MNIST: We use the network architecture from [56, 68, 64], with 40 epochs, 512 batch size,
0.5 learning rate (or 0.005 non-DP learning rate), 0.1 clipping threshold, DP-SGD with 0.9
momentum, and without pretraining. This setting is the same as [68].

• FashionMNIST: We use the same network architecture as MNIST, with 40 epochs, 2048 batch
size, 4 learning rate (or 0.04 non-DP learning rate), DP-SGD with 0.9 momentum, and without
pretraining. This setting is the same as [68].

• CIFAR10 pretrained: We use the SimCLR model from [13]7, with 50 epochs, 1024 batch size,
4 learning rate (or 0.04 non-DP learning rate), 0.1 clipping threshold, and DP-SGD with 0.9
momentum. The SimCLR model is pretrained on unlabelled ImageNet dataset. After pretraining,
we obtain a feature of dimension 4096 on which a linear classifier is trained privately. This setting
is the same as [68].

• ImageNette: We use the ResNet9 (2.5 million parameters) with Mish activation function [52].
We set 50 epochs, 1000 batch size, 0.0005 learning rate (or 0.000005 non-DP learning rate), 1.5
clipping threshold, and use DP-NAdam, without pretraining. This setting is the same as [36]
except we did not apply the learning rate decaying scheduler.

• CelebA (Smiling and Male and Multi-label) We use the same ResNet9 as above, with 10 epochs,
500 batch size, 0.001 DP learning rate (or 0.00001 non-DP learning rate), 0.1 clipping threshold,
and use DP-Adam, without pretraining. We use the labels ‘Smiling’ and ‘Male’ for two binary
classification tasks, with cross-entropy loss. For the multi-label task uses a scalar loss by summing
up the 40 binary cross-entropy losses from each label.

We refer the code for MNIST, FashionMNIST, CIFAR10, CIFAR10 pretrained to https://
github.com/ftramer/Handcrafted-DP by [68]. ResNet9 can be found in https://github.
com/cbenitez81/Resnet9.

7See implementation in https://github.com/google-research/simclr.
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Throughout all experiments, we do not apply tricks such as random data augmentation (single or
multiple times [17]), weight standardization [61], or parameter averaging [60].

G.2 Sentence classification settings

We experiment on five datasets in Table 2 and Table 3.

• MNLI(m) MNLI-matched, the matched validation and test splits from Multi-Genre Natural
Language Inference Corpus.

• MNLI(mm) MNLI-mismatched, the matched validation and test splits from Multi-Genre Natural
Language Inference Corpus.

• QQP The Quora Question Pairs2 dataset.

• QNLI The Stanford Question Answering dataset.

• SST2 The Stanford Sentiment Treebank dataset.

The datasets are processed and loaded from Huggingface [39], as described in https://
huggingface.co/datasets/glue. We follow the same setup as [78] and [41]. We refer the
interested readers to Appendix G,H,I,K,N of [41] for more details.

We emphasize that our automatic clipping uses exactly the same hyperparameters as the Abadi’s
clipping in [41], which is released in their Private-Transformers library 8.

Dataset MNLI(m/mm) QQP QNLI SST2
Epoch 18 18 6 3

Batch size 6000 6000 2000 1000
clipping threshold R 0.1 0.1 0.1 0.1

DP learning rate 5e-4 5e-4 5e-4 5e-4
non-DP learning rate 5e-5 5e-5 5e-5 5e-5
learning rate decay Yes Yes Yes Yes

AdamW weight decay 0 0 0 0
Max sequence length 256 256 256 256

Table 5: Hyperparameters of automatic clipping and Abadi’s clipping, for sentence classification in
Table 2 and Table 3, using either RoBERTa base or large.

Notice that we use DP learning rate 5e-4 across tasks for the R-dependent automatic DP-Adam, which
is equivalent to R-independent automatic DP-Adam with the same learning rate. We demonstrate
that the results are not sensitive to learning rates around the optimal choice. That is, the automatic
clipping does not eliminate R at the cost of more difficult tuning of learning rate.

learning rate 1e-4 3e-4 5e-4 8e-4 1e-3
RoBERTa-base 93.92 94.38 94.49 94.72 93.35
RoBERTa-large 95.76 96.21 96.21 96.33 95.99

Table 6: SST2 accuracy with respect to learning rate.

G.3 Table-to-text generation settings

We experiment multiple GPT2 models on E2E dataset from Huggingface [39] in Table 4. We follow
the same setup as [41], and our automatic clipping uses exactly the same hyperparameters as the
Abadi’s clipping in [41], which is released in their Private-Transformer library 9.

8See https://github.com/lxuechen/private-transformers/blob/main/examples/
classification/run_wrapper.py

9See https://github.com/lxuechen/private-transformers/blob/main/examples/
table2text/run.sh
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Model GPT2 GPT2 medium GPT2 large
Epoch 10 10 10

Batch size 1024 1024 1024
clipping threshold R 0.1 0.1 0.1

DP learning rate 2e-3 2e-3 2e-3
non-DP learning rate 2e-4 1e-4 1e-4
learning rate decay No No No

AdamW weight decay 0.01 0.01 0.01
Max sequence length 100 100 100

Table 7: Hyperparameters of automatic clipping and Abadi’s clipping, for the E2E generation task in
Table 4.

H Figure zoo

H.1 Frequency of clipping

We show that in all sentence classification tasks, Abadi’s clipping happens on a large proportion of
per-sample gradients. This supports the similarity between Abadi’s clipping and AUTO-V in (3.1).
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Figure 13: Percentage of clipped per-sample gradients when training with DP-AdamAbadi (ϵ = 3),
as in Section 6.2. Left panel is RoBERTa-base and right panel is RoBERTa-large. Top row: MNLI.
Middle row: QNLI. Bottom row: QQP.
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We note that for GPT2, GPT2 medium and GPT2 large, empirically in all iterations 100% of the
per-sample gradients are clipped by the Abadi’s clipping, making the performance of Abadi’s clipping
equivalent to AUTO-V clipping, as shown in Table 4.

H.2 Stability constant helps AUTO clipping reduce gradient norm

To corroborate our claim in Theorem 6, that the stability γ reduces the gradient norm, we plot the
actual gradient norm by iteration.
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Figure 14: Gradient norm by different automatic clipping methods, on SST2 (left) and MNLI (right),
trained with RoBERTa-base.

H.3 Choice of stability constant is robust

We claim in Theorem 6 that, as long as γ > 0 in our automatic clipping, the asymptotic convergence
rate of gradient norm is the same as that by standard non-private SGD. We plot the ablation study
of learning rate and the stability constant γ to show that it is easy to set γ: in Table 2 and Table 3,
we adopt learning rate 0.0005, under which a wide range of 0.0001 < γ < 1 gives similar accuracy.
Note that the largest good γ is 1000 times bigger than the smallest good γ.
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Figure 15: Test accuracy by different stability constant γ and learning rate η in automatic clipping
(ϵ = 3). Upper row: SST2 for full 3 epochs. Middle row: QNLI for full 6 epochs. Lower row: QNLI
for one epoch. Trained with RoBERTa-base (left) and RoBERTa-large (right).
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I Full table of GPT2 generation task on E2E dataset

This is the extended version of Table 4 on E2E dataset. The performance measures are BLEU [57],
ROGUE-L [42], NIST [63], METEOR [4], and CIDEr [70] scores. Here ϵ is accounted by RDP [51],
where ϵ = 3 corresponds to 2.68 if accounted by Gaussian DP [19, 7] or to 2.75 if accounted by
numerical composition [30], and ϵ = 8 corresponds to 6.77 if accounted by Gaussian DP or to 7.27 if
accounted by numerical composition.

DP GPT2 GPT2 GPT2
Metric guarantee large medium

full full full full full LoRA RGP prefix top2 retrain
AUTO-S AUTO-S AUTO-S AUTO-V [41] [33] [78] [40] [41] [41]

BLEU
ϵ = 3 64.180 63.850 61.340 61.519 61.519 58.153 58.482 47.772 25.920 15.457
ϵ = 8 64.640 64.220 63.600 63.189 63.189 63.389 58.455 49.263 26.885 24.247

non-DP 66.840 68.500 69.463 69.463 69.463 69.682 68.328 68.845 65.752 65.731

ROGUE-L
ϵ = 3 67.857 67.071 65.872 65.670 65.670 65.773 65.560 58.964 44.536 35.240
ϵ = 8 68.968 67.533 67.073 66.429 66.429 67.525 65.030 60.730 46.421 39.951

non-DP 70.384 71.458 71.359 71.359 71.359 71.709 68.844 70.805 68.704 68.751

NIST
ϵ = 3 7.937 7.106 7.071 6.697 6.697 5.463 5.775 5.249 1.510 0.376
ϵ = 8 8.301 8.172 7.714 7.444 7.444 7.449 6.276 5.525 1.547 1.01

non-DP 8.730 8.628 8.780 8.780 8.780 8.822 8.722 8.722 8.418 8.286

METEOR
ϵ = 3 0.403 0.387 0.387 0.384 0.384 0.370 0.331 0.363 0.197 0.113
ϵ = 8 0.420 0.418 0.404 0.400 0.400 0.407 0.349 0.364 0.207 0.145

non-DP 0.460 0.449 0.461 0.461 0.461 0.463 0.456 0.445 0.443 0.429

CIDEr
ϵ = 3 2.008 1.754 1.801 1.761 1.761 1.581 1.300 1.507 0.452 0.116
ϵ = 8 2.163 2.081 1.938 1.919 1.919 1.948 1.496 1.569 0.499 0.281

non-DP 2.356 2.137 2.422 2.422 2.422 2.491 2.418 2.345 2.180 2.004
Table 8: Test performance on E2E dataset with GPT2. The best two GPT2 models for each row are
marked in bold.

We observe that GPT2 (163 million parameters), GPT2-medium (406 million), and GPT2-large
(838 million), Table 4 trained with our automatic clipping consistently perform better in comparison
to other methods. In some cases, LoRA trained with Abadi’s clipping also demonstrates strong
performance and it would be interesting to see how LoRA trained with the automatic clipping will
behave.

J Further experiments on CelebA dataset

In this section, we present a complete summary of accuracy results, with DP constraint or not, for the
CelebA dataset. We do not apply any data-preprocessing. In the first experiment, we apply a single
ResNet on the 40 labels as the multi-task/multi-label learning. In the second experiment, we apply
one ResNet on one label. As expected, our automatic DP optimizers have comparable test accuracy
to the Abadi’s DP optimizers, but we do not need to tune the clipping threshold for each individual
task/label. We also notice that, learning different labels separately gives better accuracy than learning
all labels together, though at the cost of heavier computational burden.
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J.1 Multi-label classification

We apply ResNet9 as in Appendix G.1 on the multi-label classification task. I.e. the output layer has
40 neurons, each corresponding to one sigmoid cross-entropy loss, that are summed to a single loss
and all labels are learnt jointly.

Index Attributes Abadi’s AUTO-S Abadi’s AUTO-S non-DP
ϵ = 3 ϵ = 3 ϵ = 8 ϵ = 8 ϵ = ∞

0 5 o Clock Shadow 90.64 90.99↑ 90.81 91.28↑ 93.33
1 Arched Eyebrows 75.15 76.31↑ 76.84 77.11↑ 81.52
2 Attractive 75.85 76.10↑ 77.50 77.74↑ 81.15
3 Bags Under Eyes 80.75 81.12↑ 82.15 82.13↓ 84.81
4 Bald 97.84 97.87↑ 98.04 97.98↓ 98.58
5 Bangs 92.71 92.68↓ 93.46 93.55↑ 95.50
6 Big Lips 67.51 67.78↑ 68.34 68.44↑ 71.33
7 Big Nose 78.01 80.23↑ 76.69 80.59↑ 83.54
8 Black Hair 81.92 80.95↓ 83.33 83.28↓ 88.55
9 Blond Hair 92.25 92.38↑ 93.52 93.09↓ 95.49

10 Blurry 94.91 94.82↓ 95.08 94.90↓ 95.78
11 Brown Hair 80.13 82.50↑ 83.74 83.89↑ 87.79
12 Bushy Eyebrows 88.06 88.23↑ 89.72 88.80↓ 92.19
13 Chubby 94.72 94.54↓ 94.54 94.50↓ 95.56
14 Double Chin 95.19 95.49↑ 95.50 95.51↑ 96.09
15 Eyeglasses 97.06 97.64↑ 98.32 98.06↓ 99.39
16 Goatee 95.68 95.45↓ 95.84 95.87↑ 97.06
17 Gray Hair 96.77 96.79↑ 97.02 97.03↑ 98.06
18 Heavy Makeup 84.96 85.70↑ 87.58 87.29↓ 90.76
19 High Cheekbones 81.46 81.42↓ 82.62 82.72↑ 86.62
20 Male 92.05 92.17↑ 93.32 93.17↓ 97.46
21 Mouth Slightly Open 86.20 86.32↑ 87.84 88.48↑ 93.07
22 Mustache 96.05 95.96↓ 96.08 95.99↓ 96.74
23 Narrow Eyes 84.90 84.78↓ 85.14 85.18↑ 86.98
24 No Beard 91.55 91.67↑ 92.29 92.45↑ 95.18
25 Oval Face 71.26 71.42↑ 71.98 71.25↓ 74.62
26 Pale Skin 96.09 96.04↓ 96.15 96.17↑ 96.93
27 Pointy Nose 70.34 72.11↑ 72.23 73.01↑ 75.68
28 Receding Hairline 91.53 91.37↓ 91.75 91.74↓ 92.87
29 Rosy Cheeks 93.26 93.02↓ 93.56 93.35↓ 94.86
30 Sideburns 96.16 96.09↓ 96.27 96.46↑ 97.44
31 Smiling 86.39 87.08↑ 88.87 88.63↓ 92.25
32 Straight Hair 76.20 77.95↑ 78.78 78.52↓ 80.66
33 Wavy Hair 70.30 71.79↑ 73.58 73.19↓ 79.15
34 Wearing Earrings 80.53 81.52↑ 82.29 82.20↓ 87.56
35 Wearing Hat 96.99 96.83↓ 97.46 97.31↓ 98.68
36 Wearing Lipstick 88.95 88.04↓ 89.87 90.72↑ 93.49
37 Wearing Necklace 84.59 85.83↑ 85.93 85.42↓ 86.61
38 Wearing Necktie 93.91 93.91– 94.43 94.08↓ 96.30
39 Young 81.35 81.21↓ 82.18 82.52↑ 87.18

Table 9: Accuracy on CelebA dataset with settings in Appendix G.1 from one run. The green arrow
indicates AUTO-S is better than Abadi’s clipping under the same ϵ; the red arrow indicates otherwise;
the black bar indicates the same accuracy.

34



J.2 Multiple binary classification

For the second experiment, we apply ResNet9 on each label as a binary classification task. I.e. the
output layer has 1 neuron and we run 40 different models for all labels separately.

Index Attributes
Abadi’s AUTO-S Abadi’s AUTO-S non-DP
Single Single Multi Multi Multi
ϵ = 8 ϵ = 8 ϵ = 8 ϵ = 8 ϵ = ∞

0 5 o Clock Shadow 92.15 92.29↑ 90.81 91.28↑ 93.33
1 Arched Eyebrows 81.18 80.19↓ 76.84 77.11↑ 81.52
2 Attractive 79.31 79.79↑ 77.50 77.74↑ 81.15
3 Bags Under Eyes 83.52 83.48↓ 82.15 82.13↓ 84.81
4 Bald 97.89 97.88↓ 98.04 97.98↓ 98.58
5 Bangs 94.52 94.83↑ 93.46 93.55↑ 95.50
6 Big Lips 67.32 67.53↑ 68.34 68.44↑ 71.33
7 Big Nose 82.31 82.36↑ 76.69 80.59↑ 83.54
8 Black Hair 87.08 86.93↓ 83.33 83.28↓ 88.55
9 Blond Hair 94.29 94.73↑ 93.52 93.09↓ 95.49

10 Blurry 94.95 95.20↑ 95.08 94.90↓ 95.78
11 Brown Hair 87.41 87.19↓ 83.74 83.89↑ 87.79
12 Bushy Eyebrows 91.23 91.43↑ 89.72 88.80↓ 92.19
13 Chubby 94.70 94.70– 94.54 94.50↓ 95.56
14 Double Chin 95.43 95.43– 95.50 95.51↑ 96.09
15 Eyeglasses 98.88 99.14↑ 98.32 98.06↓ 99.39
16 Goatee 96.12 96.07↓ 95.84 95.87↑ 97.06
17 Gray Hair 97.48 97.34↓ 97.02 97.03↑ 98.06
18 Heavy Makeup 88.85 88.72↓ 87.58 87.29↓ 90.76
19 High Cheekbones 85.66 85.45↓ 82.62 82.72↑ 86.62
20 Male 95.42 95.70↑ 95.53 93.17↓ 97.46
21 Mouth Slightly Open 92.67 92.74↑ 87.84 88.48↑ 93.07
22 Mustache 96.13 96.13– 96.08 95.99↓ 96.74
23 Narrow Eyes 85.13 85.13– 85.14 85.18↑ 86.98
24 No Beard 94.26 94.58↑ 92.29 92.45↑ 95.18
25 Oval Face 70.77 73.05↑ 71.98 71.25↓ 74.62
26 Pale Skin 96.38 96.34↓ 96.15 96.17↑ 96.93
27 Pointy Nose 71.48 73.37↑ 72.23 73.01↑ 75.68
28 Receding Hairline 91.51 91.51– 91.75 91.74↓ 92.87
29 Rosy Cheeks 93.26 93.35↑ 93.56 93.35↓ 94.86
30 Sideburns 96.46 96.34↓ 96.27 96.46↑ 97.44
31 Smiling 90.82 90.87↑ 88.87 88.63↓ 92.25
32 Straight Hair 79.01 79.01– 78.78 78.52↓ 80.66
33 Wavy Hair 77.55 78.83↑ 73.58 73.19↓ 79.15
34 Wearing Earrings 87.33 87.50↑ 82.29 82.20↓ 87.56
35 Wearing Hat 98.04 98.11↑ 97.46 97.31↓ 98.68
36 Wearing Lipstick 92.05 90.46↓ 89.87 90.72↑ 93.49
37 Wearing Necklace 86.21 86.21– 85.93 85.42↓ 86.61
38 Wearing Necktie 95.85 95.94↑ 94.43 94.08↓ 96.30
39 Young 85.19 84.12↓ 82.18 82.52↑ 87.18

Table 10: Accuracy on CelebA dataset with settings in Appendix G.1 from one run. ‘Single’ means
each attribute is learned separately as a binary classification task. ‘Multi’ means all attributes are
learned jointly as a multi-label classification task. The green arrow indicates AUTO-S is better than
Abadi’s clipping under the same ϵ and the same task; the red arrow indicates otherwise; the black bar
indicates the same accuracy.
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K Code implementation of automatic clipping

Changing Abadi’s clipping to automatic clipping is easy in available codebases. One can set the
clipping R = 1 or any other constant, as explained in Theorem 1 and Theorem 2.

K.1 Opacus

For Opacus [77] version 1.1.2 (latest), we can implement the all-layer automatic clipping by changing
Line 399-401 in https://github.com/pytorch/opacus/blob/main/opacus/optimizers/
optimizer.py to

per_sample_clip_factor = self.max_grad_norm /(per_sample_norms + 0.01)

The per-layer automatic clipping requires changing Line 61-63 in https://github.com/pytorch/
opacus/blob/main/opacus/optimizers/perlayeroptimizer.py to

per_sample_clip_factor =max_grad_norm / (per_sample_norms + 0.01)

For older version (< 1.0, e.g. 0.15) of Opacus, we can implement the all-layer automatic clipping
by changing Line 223-225 in https://github.com/pytorch/opacus/blob/v0.15.0/opacus/
utils/clipping.py to

per_sample_clip_factor = self.flat_value / (norms[0] + 0.01)

or implement the per-layer automatic clipping by changing Line 301-302 in https://github.com/
pytorch/opacus/blob/main/opacus/optimizers/perlayeroptimizer.py to

per_sample_clip_factor = threshold / (norm + 0.01)
clipping_factor.append(per_sample_clip_factor)

K.2 ObJAX

For ObJAX version 1.6.0 (latest), we can implement the automatic clipping in https://github.
com/google/objax/blob/master/objax/privacy/dpsgd/gradient.py by changing Line 92
to

idivisor = self.l2_norm_clip / (total_grad_norm+0.01)

and changing Line 145 to

idivisor = self.l2_norm_clip/(grad_norms+0.01)

K.3 Private-transformers

To reproduce our experiments for sentence classification and table-to-text generation,
we modify the ‘private-transformers’ (version 0.1.0) codebase of [41]. The modifica-
tion is in https://github.com/lxuechen/private-transformers/blob/main/private_
transformers/privacy_utils/privacy_engine.py, by changing Line 349 to

return self.max_grad_norm / (norm_sample + 0.01)

and Line 510-512 to

coef_sample = self.max_grad_norm * scale / (norm_sample + 0.01)

L More on related works of per-sample clipping

We discuss the difference between our work and the related (see the table below).
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https://github.com/pytorch/opacus/blob/v0.15.0/opacus/utils/clipping.py
https://github.com/pytorch/opacus/blob/main/opacus/optimizers/perlayeroptimizer.py
https://github.com/pytorch/opacus/blob/main/opacus/optimizers/perlayeroptimizer.py
https://github.com/google/objax/blob/master/objax/privacy/dpsgd/gradient.py
https://github.com/google/objax/blob/master/objax/privacy/dpsgd/gradient.py
https://github.com/lxuechen/private-transformers/blob/main/private_transformers/privacy_utils/privacy_engine.py
https://github.com/lxuechen/private-transformers/blob/main/private_transformers/privacy_utils/privacy_engine.py


Ci reference clipping or not convergence analysis experiments
min(1, R

||gi|| ) [1, 41] clipping None CV and NLP
min( 1

R , 1
||gi|| ) [17] clipping None CV only

R
||gi|| [16] normalization convex and federated setting (not per-sample) CV only
1

||gi||+γ [74] normalization non-convex, relaxed Lipschitz smoothness CV and NLP
1

||gi||+γ this work normalization non-convex, same smoothness as non-DP CV and NLP
Table 11: Comparison between clipping functions. CV means computer vision and NLP means
natural language processing. Notice that any clipping function with R is not automatic and requires
tuning, and that the stability constant γ enjoys theoretical and empirical benefits.

Our work is very different to most works which do not analyze the convergence of DP deep learning
in a non-convex setting, but it is very similar to [74]10. However, [74] assumes a relaxed Lipschitz
smootheness in place of our Assumption 5.3, where we instead assume the symmetric gradient noise.
In addition, our experiments are more comprehensive, covering over 10 tasks including DP-GPT2,
while [74] only experimented with 2 smaller models — ResNet20 and Roberta-base.

L.1 Clarifications

We now clarify some false or incomplete conclusion in previous literatures that apply the per-sample
gradient clipping (re-parameterized or not).

1. Per-sample clipping is not robust to R, even with re-parameterization.

In [17, Figure 8] and our Figure 4, the accuracy of DP optimizer with Abadi’s clipping is insensitive
to R only if one has found a small enough region (e.g. R ≤ 1), which takes effort to find or the
accuracy will be unacceptably low out of the region. In particular, choosing R = 1 as in [17] is not
universally proper, e.g. [41] uses R = 0.1 for language models. This dependence on tasks, datasets
and optimizers means per-sample clipping still requires the expensive hyperparameter tuning.

In other words, per-sample gradient clipping is at best an approximation of per-sample gradient
normalization (i.e. our AUTO-V) and should be considered as semi-automatic, whereas AUTO-V/S
is fully automatic in terms of tuning R. Although technically we introduce a new hyperparameter γ
in the place of R, we claim that automatic clipping is not sensitive to γ (our only hyperparameter) for
a large range, e.g. one can multiply γ by 10000 times, going from γ =0.001 to 10 with learning rate
0.0005 in Figure 15, and the accuracy is similar.

2. Per-sample clipping does not decouple R, especially for DP-Adam.

In general, R is not completely decoupled from the re-parameterized per-sample clipping in [17]:

CAbadi = min(
R

∥gi∥
, 1) = R · Cre-param = R ·min(

1

∥gi∥
,
1

R
)

Given that R appears in both terms on the right hand side, one can at most say "... when the clipping
norm is decreased k times, the learning rate should be increased k times to maintain similar accuracy."
by [38] and "... Using this update, performance becomes less sensitive to the choice of clipping norm."
by [17]. In contrast, we can state that adjusting the learning rate proportionally, our AUTO-V/S
maintains exactly the same accuracy and is completely insensitive to the choice of R.

Additionally and importantly, the understanding in [38, 17] is limited to DP-SGD (as they only
experiment with the computer vision tasks), where "... the learning rate η absorbs a factor of R."
by [17]. As rigorously proved in Theorem 1 and Theorem 2, adaptive optimizers like Adam and
AdaGrad do not absorb R but rather cancel it. This is visualized in Figure 1, where the performance
landscape is row-wise for DP-Adam and diagonal for DP-SGD.

3. Re-parameterized per-sample clipping unintentionally changes the weight decay.

10We emphasize that [74] is a concurrent work with no known dependency either way, which goes public (to
arXiv, on 27 Jun 2022) after ours (on 14 Jun 2022).
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Weight decay is a common technique used in any work that uses AdamW and in the re-parameterized
trick by [17]. We can see that

Before re-parameterization: wt+1 = wt − η

(
1

B

∑
i

min(1,
R

||gi||
)gi + λwt +

σR

B
N(0, I)

)

After re-parameterization: wt+1 = wt − η

(
1

B

∑
i

min(
1

R
,

1

||gi||
)gi +

λ

R
wt +

σ

B
N(0, I)

)

Therefore, when we move along R like in [17, Figure 8], from R = 1 to 2−6, the weight decay
increases from λ to 26 · λ by 64 times, which may worsen the accuracy as seen in the blue curve of
[17, Figure 8]! Again, this is due to the incomplete decoupling by per-sample clipping, which is only
avoided in AUTO-V/S thanks to theoretical analysis in Theorem 1 and Theorem 2.

AUTO-V/S with weight decay: wt+1 = wt − η

(
1

B

∑
i

1

∥gi∥+ γ
gi + λwt +

σ

B
N (0, I)

)
.

L.2 Connections to normalized optimisation

Variants of normalized gradient have been used in optimization [47, 53, 81, 80, 15]. These normalized
optimizers are fundamentally different to our automatic optimizers, because the normalization is on
mini-batch not on each sample and noise is not involved:

NSGD: wt+1 = wt − η

( 1
B

∑
i gi

∥ 1
B

∑
i gi∥

)
AUTO-V: wt+1 = wt − η

(
1

B

∑
i

gi
∥gi∥

+
σ

B
N (0, I)

)
.

The main difference lies in the challenge of analyzing per-sample normalization (which is biased) and
the batch-gradient normalization (which is unbiased in the direction). That is,

1
B

∑
i gi

∥ 1
B

∑
i gi∥

is parallel to

the mini-batch gradient 1
B

∑
i gi but 1

B

∑
i

gi
∥gi∥ is generally not parallel to it (this conclusion also

holds if the normalizaiton is replaced by the clipping). On a side note, it is interesting that Theorem 4
indeed shows although a bias is introduced by the per-sample clipping, it is not fatal to the asymptotic
convergence and hence may not be a concerning matter.
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