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Part I

General Tools

A Notation

Problem Parameter Definition

T total number of time steps
K number of modes
d dimension of x (general PWA)
m dimension of y
�dir directional smoothness constant (Assumption 2)
⌫ subGaussian constant of noise (Assumption 3)
B magnitude bound on kx̄tk (Assumption 4)
R magnitude bound on k⇥?kF (Assumption 4)
�sep separation parameter (optional for sharper rates, see Assumption 5)

Algorithm Parameters Definition

E epoch length
⌧ current epoch
⌘ step size (Line 4 in Algorithm 2)
� hinge loss parameter
A cluster size threshold (Line 11 in Algorithm 3)
"crp distance from realizability (see (2.1))
Algorithm Objects Definition

è
�,t,bgg hinge loss on estimated labels (see (4.1))
⇡⌧ stabilizing permutation (see (E.2))
� hinge loss parameter
Analysis Parameters Definition

� probability of error
⇠ scale of disagreement cover discretization (Theorem 11)
⌅ minimum cluster size to ensure continuity (Condition 1)
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B Lower Bounds

B.1 Proof of Proposition 1

We suppose that d = m = 1 and consider the unit interval. Thus, G is just the set of thresholds on the
unit interval, i.e.,

G = {x 7! I {x > ✓} |✓ 2 [0, 1]} .
We suppose that

⇥?

0 = [0 | 1] ⇥?

1 = [0 | 0] ,

i.e., yt = g?(xt). We are thus in the setting of adversarially learning thresholds with an oblivious
adversary. It is well known that this is unlearnable, but we sketch a proof here. With T fixed, let the
adversary sample "1, . . . , "T as independent Rademacher random variables and let

xt =
1

2
+

t�1X

s=1

"s2
�s�1

and let ✓? = xT+1. We observe that yt = �"t for all t. To see this, note that if "t = 1, then xs > xt

for all s > t and similarly if "t = �1 then xs < xt; as ✓? = xT+1, the claim is clear. Note that
due to the independence of the "t, any ŷt chosen by the learner is independent of "t and thus is
independent of yt. Thus the expected number of mistakes the learner makes, independent of the
learner’s strategy, is T

2 , concluding the proof.

B.2 A Lower Bound for Identification

Consider a setting where there are K = 3 modes with state and input dimension d = 1. For a
parameters ↵,� > 0, define the linear functions

g1(x;↵,�) = 0

g3(x;↵,�) = x� (1 + ↵)

g2(x;↵,�) = 2(x� (1 + ↵))� �

For our lexicographic convention in the definition of the argmax operator3, we have

argmax
i

gi(x;↵,�) =

8
<

:

1 x  1 + ↵
2 x � 1 + ↵+ �
3 x 2 (1 + ↵, 1 + ↵+ �)

That is, x 7! argmax
i
gi(x;↵,�) defines three modes, with the third mode a segment of length �

between 1 + ↵ and 1 + ↵+ �. We consider simple 3-piece PWA systems whose regions are defined
by the above linear functions.
Definition 8. Let I (↵,�,m,D) denote the problem instance with K = 3 pieces where where the
dynamics abide by

xt+1 = ut +mit +wt mi =

⇢
0 i = 1, 2
m i = 3

, it = argmax
i

gi(xt;↵,�), wt ⇠ D.

,

The following proposition shows that, regardless of the noise distribution D, learning the parameter
3 can be make arbitrarily hard. This is because as the � parameter is made small, making locating
region 3 (which is necesary to learn 3) arbitrarily challenging.
Proposition 9. Fix any positive integer N 2 N and any arbitrary distribution D over R. Then, any
algorithm which adaptively selects inputs u1, . . . ,uT returns an estimate m̂T of m3 must suffer

sup
◆2{�1,1}

sup
j2[2N ]

PI (j/N,1/N,◆m,D)[|m̂T �m3| � m] � 1

2

✓
1� T

N

◆
.

As N is arbitrary, this makes a constant-accuracy estimate of m3 arbitrarily difficult.
3alternatively, we can make this unambiguous by ommiting the points {1 + ⌧, 1 + 2⌧}
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Remark 3. The lower bound of Proposition 9 can be circumvented in two cases. First, if the dynamics
are forced to be Lipschitz continuous, then deviations of the dynamics in small regions can only lead
to small differences in parameter values. Second, if there is an assumption which stipulates that all
linear regions have “large volume”, then there is an upper bound on how large N can be in the above
construction, obviating our lower bound. It turns out that there are practical cricumstances under
which PWA systems (a) are not Lipschitz, and (b) certain regions have vanishingly small volume [33].
Still, whether stronger guarantees are possible under such conditions is an interesting direction for
future work.

Proof of Proposition 9. Introduce the shorthand Pj,◆[·] := PI (j/N,1/N,◆m)[·]. Consider the regions
Rj := [1 + j/4N, 1 + (j + 1)/4N ], and define the event Ej,t := {uj /2 Rj} and Ej :=

T
T

t=1 Ej,t.

As the learner has information about m3 on Ej , then if if ◆ unif⇠ {�1, 1}, it holds that

E◆⇠{�1,1} Pj,◆[|m̂T �m3| � m | Ej ] � min
µ2R

P◆[|◆m� µ| � m] =
1

2

Thus,

sup
j,◆

Pj,◆[|m̂T �m3| � m] � 1

2
sup
j,◆

Pj,◆[Ej ]

Introduce a new measure P0 where the dynamics are given by

xt+1 = ut +wt, wt

i.i.d.⇠ D.

We observe that on Pj,◆[Ej ] = P0[Ej ], because on Ej the learner has never visited region i = 3 where
it 6= 0. Hence,

sup
j,◆

Pj,◆[|m̂T �m3| � m] � 1

2
sup
j

P0[Ej ] =
1

2

✓
1�min

j

P0[E
c

j
]

◆
� 1

2

 
1�min

j

TX

t=1

P0[E
c

j,t
]

!
.

Observe that Ec

j,t
:= {ut 2 Rj}. As R2` \ R2(`+1) are disjoint for ` 2 N, it holds that Ec

2`,t are
disjoint events for ` 2 N. Upper bound bounding minimum by average on any subset, we have

min
j

P0[E
c

j,t
]  1

N

NX

`=1

P0[E
c

2`+1,t]
(i)
=

1

N
P0[

N[

`=1

E
c

2`+1,t]  1/N,

where (i) uses disjointness of the events E2`,t as argued above. Thus, continuing from the second-to-
last display, we have

sup
j,◆

Pj,◆[|m̂T �m3| � m] � 1

2

✓
1� T

N

◆
.

⌅

C Properties of Smoothness

C.1 Directional Smoothness of Gaussians and Uniform Distributions

Lemma C.1. Let w be distributed as a centred Gaussian with covariance �2I in Rd. Then for
any z 2 Rd, if w is independent of z, it holds that x = z + w is �dir-directionally smooth, with
�dir =

p
2⇡�.

Proof. Fix some u 2 S
d�1 and c 2 R. Then note that

P (|hx,ui � c| < �) = P (|hw,ui � (�hz,ui+ c)| < �)

= P (|hw,ui � c0| < �)

 �p
2⇡�

,

where the last inequality follows by the fact that hw,ui is distributed as a centred univarate Gaussian
with variance �2 and the fact that such a distribution has density upper bounded by 1p

2⇡�
. The result

follows. ⌅

16



Lemma C.2. Let w be uniform on a centred Euclidean ball of radius �. Then for any z 2 Rd, if w
is independent of z, it holds that x = z+w is �dir-directionally smooth, with �dir � �

2 .

Proof. Let v denote a point sampled uniformly from the unit Euclidean ball and note that w d
= �v.

We then have for any u 2 S
d�1,

P (|hw,ui � c0| < �) = P
✓
|hv,ui � c| < �

�

◆
.

Let A =
�
c� �

�
, c+ �

�

�
and let � : Rd ! R be defined so that �(v) = hv,ui. We note that

D� = uT and thus det
�
D�D�T

�
= 1 uniformly. Using the co-area formula [18], we see that

P
✓
|hv,ui � c| < �

�

◆
=

Z

��1(A)
d vold(v)

=

Z

��1(A)

q
det (D�(v)D�(v)T )d vold(v)

=

Z

A

vold�1

�
��1(y)

�
dy


✓
sup
y2A

vold�1

�
��1(y)

�◆Z
c+ �

�

c� �
�

dy

 2�

�
.

The result follows. ⌅

C.2 Directional Smoothness Equivalent to Lebesgue Density

Lemma C.3. Let x 2 Rd be a (Borel-measurable) random vector. Then, x is �dir-smooth if and only
if, for any w 2 S

d�1, hw,xi admits a density p(·) with respect to the Lebesgue measure on R with
ess sup

v2R p(v)  2/�dir.

Proof. The “if” direction is immediate. For the converse, let µ(B) denote the Lebesgue measure of
a Borel set B ⇢ R. We observe that �dir-smoothness proves that for any interval I = (a, b]) ⇢ R,
P[hw,xi 2 I]  �dirµ(I)/2 (consider c = (a + b)/2 and � = |b � a|/2). Since the Borel
sigma-algebra is the generated by open intervals, this implies that for any Borel subset B of R,
P[hw,xi 2 B]  2µ(B)/�dir, where µ(·) denotes the Lebesgue measure. Thus we see that the law
of hw,xi is absolutely continuous with respect to the Lebesgue measure and, by definition of the
Radon-Nikodym derivative, there exists some p such that for all Borel B, it holds that

P (hw,xi 2 B) =

Z

B

p(a)da.

Now, let

B =

⇢
a|p(a) > 2

�dir

�

and note that

P (hw,xi 2 B) =

Z

B

p(a)da >
2

�dir
· µ(B).

Combining this with the fact that P (hw,xi 2 B)  2µ(B)
�dir

, we see that µ(B) = 0 and the result
holds. ⌅
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C.3 Concatenation Preserves Directional Smoothness

Lemma C.4. Let x1 2 Rd1 and x2 2 Rd2 be two random vectors such that x1 | x2 and x2 | x1

are both �dir-directionally smooth. Then, the concatenated vector x̃ = (x1,x2) is �dirp
2

-directionally
smooth.

Proof. Fix w̃ = (w1,w2) 2 Rd1+d2 with kw̃k = 1. Set ↵1 := kw1k and ↵2 = kw2k. Assume
without loss of generality that ↵1 � ↵2, so then necessarily ↵1 � 1/

p
2. Then,

P[|hw̃, x̃i � c| < �] = Ew2 P[|hw̃, x̃i � c| < � | w2]

= Ew2 P [|hw1,x1i � (c� hw2,x2i)| < � | w2]

= Ew2 P
����h

1

↵1
w1,x1i �

1

↵1
(c� hw2,x2i)

���� <
�

↵1
| w2

�
 �

�dir↵1

p
2�

�dir
.

The bound follows. ⌅
Lemma C.5. Let z 2 Rd1 and u,v 2 Rd2 be random vectors such that z | v is �dir-directionally
smooth, v | z is �dir-directionally smooth, and u = Kz + v. Then, the concatenated vector
x = (z,u) is �dir/

p
(1 + kKkop)2 + 1-smooth.

Proof. Fix w̄ = (w1,w2) 2 Rd1+d2 such that kw̄k = 1. Then,

hw̄,xi = hw1, zi+ hw2,Kzi+ hw2,vi
= hw1 +K>w2, zi+ hw2,vi.

Define ↵1 := kw1 +K>w2k, ↵2 := kw2k, and X1 := hw1 +K>w2, zi and X2 := hw2,vi. X1

dependends only on z and X2 only on v. Hence, X1 | X2 is ↵1�dir smooth and X2 | X1 is ↵2�dir

smooth. It follows that

P[|X1 +X2 � c|  �] = EX1 P[|X1 +X2 � c|  � | X1] 
�

�dir↵2
,

and so my symmetry under labels i = 1, 2,

P[|hw̃,xi � c|  �] = P[|X1 +X2 � c|  �]  min

⇢
1

↵1
,
1

↵2

�
�

�dir
=

1

max{↵1,↵2}
· �

�dir
.

We continue by bounding

max{↵1,↵2} = max{kw1 +K>w2k, kw2k}
� max{kwk1 � kKkopkw2k, kw2k}

= min
↵2[0,1]

max{
p

1� ↵2 � kKkop↵, ↵}. (kw1k2 + kw2k2 = 1)

The above is minimized when
p
1� ↵2�kKkop↵ = ↵, so that ↵2(1+ kKkop)2 = 1�↵2, yielding

↵ = 1/
p
(1 + kKkop)2 + 1. Hence, max{↵1,↵2} � 1/

p
(1 + kKkop)2 + 1. The bound follows.

⌅

C.4 Smoothness of Parameters Induces Separation

In this section, we show that if the true parameters ⇥?

i
are taken from a smooth distribution, then

with high probability Assumption 5 is satisfied with �sep not too small. In particular, we have the
following result:
Proposition 10. Suppose that (⇥?

1, . . . ,⇥
?

K
) are sampled from a joint distribution on the K-

fold product of the Frobenius-norm ball of radius R in Rm⇥d. Suppose that the distribution of
(⇥?

1, . . . ,⇥
?

K
) is such that for all 1  i < j  K, the distribution of ⇥?

j
conditioned on the value of

⇥?

i
is �dir-directionally smooth. Then, with probability at least 1� �, Assumption 5 is satisfied with

�sep �
md

4
p
⇡
·
✓
�dir�

K2

◆ 1
md

.

18



Proof. By a union bound, we have

P
✓

min
1i<jK

k⇥?

i
�⇥?

j
kF < �sep

◆
 K2 max

1i<jK

P
�
k⇥?

i
�⇥?

j
kF < �sep

�

= K2 max
1i<jK

E⇥?
i

h
P
⇣
k b⇥i � b⇥jkF < �sep|⇥?

i

⌘i

 K2 sup
⇥?

i 2Rm⇥d

P
�
k⇥?

j
�⇥?

i
kF < �sep|⇥?

i

�

 K2 ·
vol

⇣
B

md

�sep

⌘

�dir
,

where B
md

�sep
denotes the Euclidean ball in Rm⇥d of radius �sep and the last inequality follows by

the smoothness assumption. Note that

vol
⇣
B

md

�sep

⌘
=

⇡
md
2

�
�
md

2 + 1
� ·�md

sep

and thus

P
✓

min
1i<jK

k⇥?

i
�⇥?

j
kF < �sep

◆


K2⇡
md
2 �md

sep

�dir · �
�
md

2 + 1
� .

Noting that �
�
md

2 + 1
� 1

md � md

4 concludes the proof. ⌅
Remark 4. Note that by the previous result, Assumption 5 is in some sense generic. Indeed, in
the original smoothed analysis of algorithms [57], it was assumed that the parameter matrices
were smoothed by Gaussian noise; if, in addition to smoothness in contexts xt we assume that the
⇥?

i
are drawn from a directionally smooth distribution, then Proposition 10 below implies that

with probability at least 1 � T�1, it holds that �sep & md
�

�dir
K2T

� 1
md . Furthermore, one reason

why removing the gap assumption is difficult in our framework is that, computationally speaking,
agnostically learning halfspaces is hard [25]. Without Assumption 5, ERMORACLE cannot reliably
separate modes and thus the postprocessing steps our main algorithm (Algorithm 1) used to stabilize
the predictions must also agnostically learn the modes; together with the previous observation on
the difficulty of learning halfspaces, this suggests that if ERMORACLE is unable to separate modes,
there is significant technical difficulty in achieving a oracle-efficient, no-regret algorithm.

Part II

Supporting Proofs

D Parameter Recovery

In this section, we fix ⌧ and let
n
b⇥i|i 2 [K]

o
, bg denote the output of ERMORACLE(x̄1:⌧E ,y1:⌧E).

For any g 2 G and i, j 2 [K], we denote

Iij(g) = {1  t  ⌧E|g(x̄t) = i and g?(x̄t) = j} . (D.1)

We will show the following result:
Theorem 11 (Parameter Recovery). Suppose that Assumptions 2-4 hold. Then there is a universal
constant C such that for any tunable parameter ⇠ 2 (0, 1) (which appears in the analysis but not in
the algorithm), with probability at least 1� �, it holds for all 1  i, j  K satisfying

|Iij(bg)| � CK2T ⇠ + C
B8Kd

�8
dir⇠

8
log

✓
BKT

�dir⇠�

◆
,
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it holds that

k b⇥i �⇥?

j
k2F  C

B2

�2
dir⇠

2 |Iij(bg)|

✓
"orac + 1 +K3B2R2d2m⌫2

p
T log

✓
TRBmdK

�

◆◆
+ 4BRK2 1

|Iij(g)|
X

t2Iij(g)

||�t||

We refer the reader to the notation table in Appendix A for a reminder about the parameters. We
begin by defining for any i, j 2 [K] and g 2 G,

⌃ij(g) =
X

1t⌧E

t2Iij(g)

x̄tx̄
T

t
,

the empirical covariance matrix on those t 2 Iij(g). We will first show that for a fixed g, ⌃ij(g) ⌫ cI
for a sufficiently small c depending on problem parameters. We will then introduce a complexity
notion we call a disagreement cover that will allow us to lift this statement to one uniform in G,
which will imply that ⌃ij(bg) ⌫ cI . We will then use the definition of ERMORACLE to show thatP

t
k( b⇥bg(x̄t) �⇥?

g?(x̄t)
)x̄tk2F is small and the theorem will follow.

For the entirety of the proof and without loss of generality, we will assume that T/E 2 Z. Indeed, if
T is not a multiple of E then we suffer regret at most O(E) on the last episode, which we will see
does not adversely affect our rates.

D.1 Disagreement Covers

We begin by introducing a notion of complexity we call a disagreement cover; in contrast to standard
"-nets, we show below that the disagreement cover provides more uniform notion of coverage.
Moreover, we then show that the size of a disagreement cover of G can be controlled under the
assumption of directional smoothness.
Definition 12. Let D =

�
(gi,Di) |gi 2 G and Di ⇢ Rd

 
. We say that D is an "-disagrement cover

if the following two properties hold:

1. For every g 2 G, there exists some i such that (gi,Di) 2 D and
�
x 2 Rd|gi(x) 6= g(x)

 
⇢

Di.

2. For all i and t, it holds that P (xt 2 Di | Ft�1)  "

We will denote by DN(G, ") (or DN(") when G is clear from context) the minimal size of an "-
disagreement cover of G.

We remark that a disagreement cover is stronger than the more classical notion of an "-net because
the sets of points where multiple different functions g disagree with a single element of the cover gi
has to be contained in a single set. With an "-net, there is nothing stopping the existence of an i such
that the set of points on which at least one g satisfying P(gi 6= g)  " is the entire space. The reason
that this uniformity is necessary is to provide the following bound:
Lemma D.1. Let D be an "-disagreement cover for G. Then, with probability at least 1� �, it holds
that

sup
g2G

min
(gi,Di)2D

TX

t=1

I [g(xt) 6= gi(xt)]  2T"+ 6 log

✓
|D |
�

◆
.

Proof. Note that by the definition of a disagreement cover, it holds that

sup
g2G

min
(gi,Di)2D

TX

t=1

I [g(xt) 6= gi(xt)]  max
(gi,Di)2D

TX

t=1

I [xt 2 Di] .

Note that for any fixed i, it holds that P (xt 2 Di|Ft�1)  ", also by construction. Applying a
Chernoff bound (Lemma D.2), we see that

P
 

TX

t=1

I [xt 2 Di] � 2T"+ 6 log

✓
1

�

◆!
 �.

Taking a union bound over Di 2 D concludes the proof. ⌅
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For the sake of completeness, we state and prove the standard Chernoff Bound with dependent data
used in the previous argument:
Lemma D.2 (Chernoff Bound). Suppose that X1, . . . , XT are random variables such that Xt 2
{0, 1} for all 1  t  T . Suppose that there exist pt such that P (Xt = 1|Ft�1)  pt almost surely,
where Ft�1 is the �-algebra generated by X1, . . . , Xt�1. Then

P
 

TX

t=1

Xt > 2
TX

t=1

pt +
1

2
log

✓
1

�

◆!
 �

Proof. We use the standard Laplace transform trick:

P
 

TX

t=1

Xt > 2
TX

t=1

pt + u

!
= P

⇣
e�

PT
t=1 Xt > e2�u+2�

PT
t=1 pt

⌘

 e�2�u�2�
PT

t=1 pt · E
"

TY

t=1

e�Xt

#

= e�2�u�2�
PT

t=1 pt · E
"

TY

t=1

E
⇥
e�Xt |Ft�1

⇤
#
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Thus we see that
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!
 e�2�u+(e��1�2�)

PT
t=1 pt .

Setting � = 1 and noting that
P

T

t=1 pt > 0 tells us that
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t=1

Xt > 2
TX

t=1

pt + u

!
 e�2u

and the result follows. ⌅

Returning to the main thread, we see that Lemma D.1 allows us to uniformly bound the approximation
error of considering a disagreement cover. Before we can apply the result, however, we need to show
that this complexity notion is small for the relevant class, G. We have the following result:
Lemma D.3. Let G be the set of classifiers considered above. Then it holds that

log (DN(G, "))  K(d+ 1) log

✓
3BK

"

◆

We prove the result in two parts. For the first part, we show that any function class that is constructed
by aggregating K simpler classes has a disagreement cover whose size is controlled by that of the K
classes:
Lemma D.4. Let G1, . . . ,GK be function classes mapping X ! Y. Let h : Y⇥K ! R be some
aggregating function and define

G = {x 7! h(g1(x), . . . , gK(x)) | g1 2 G1, . . . , gK 2 GK}
Let DN(Gi, ") be the minimal size of an "-disagreement cover of Gi. Then

DN(G, ") 
KY

i=1

DN
⇣
Gi,

"

K

⌘
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Proof. Suppose that Di are
�

"

K

�
-disagreement covers for Gi and for any gi 2 Gi denote by

(⇡(gi),Di(gi)) the pair of functions and disagreement sets satisfying the definition of a disagreement
cover. Then we claim that

D =

( 
h(g1, . . . , gK),

[

i

Di

!
|(gi,Di) 2 Di

)

is an "-disagreement cover for G. Note that |D | is clearly bounded by the desired quantity so this
claim suffices to prove the result.

To prove the claim, we first note that a union bound ensures that P(xt 2
S

i
Di | Ft�1)  ". We

further note that if g = h(g1, . . . , gK) then

{x | g(x) 6= h(⇡(g1(x)), . . . ,⇡(gK(x)))} ⇢
[

1iK

{x | gi(x) 6= ⇡(gi(x))} ⇢
[

1iK

Di(gi).

The result follows. ⌅

We now prove that the class of linear threshold functions has bounded disagreement cover:

Lemma D.5. Let H : Rd ! {±1} be the class of affine thresholds given by x 7! sign(hw,xi+ b)
for some w 2 Bd and some b 2 [�B,B]. Then

log DN(H, ")  (d+ 1) log

✓
3B

"

◆
.

Proof. We first let N := {(wi, bi)} denote an "-net on B
d ⇥ [�B,B]. Associate each (wi, bi) to its

corresponding classifier hi(x) sign(hwi,xi+bi). We claim that for each hi, there is a region Di ⇢ Rd

such that {(hi,Di)} is an "-disagreement cover. To see this, consider some h with parameters (w, b),
and let hi with parameters (wi, bi) ensure ||wi �w|| + |bi � b|  �dir"/B. Consider any x such
that

sign (hwi,xi+ bi) 6= sign (hw,xi+ b)

By the continuity of affine functions, there is some � 2 (0, 1) such that if w� = (1� �)wi + �w
and b� = (1� �)bi + �b then

hw�,xi+ b� = 0

Note however that

|hw�,xi+ b� � hwi,xi � bi|  � |hw �wi,xi|+ � |bi � b|  B
⇣�dir"

B

⌘
 �dir"

by the definition of our "-net. Thus, let

Di =
n
x | |hwi,xi+ b|  �dir"

B

o

and note that the above computation tells us that if x 62 Di then hi must agree with h = (w, b) for all
h that are mapped to hi by the projection onto the "-net. Thus for all such h, it holds that

P (h(xt) 6= hi(xt)|Ft�1)  P
⇣
|hwi,xti+ b|  �dir"

B
|Ft�1

⌘
 ".

Thus the claim holds and we have constructed an "-disagreement cover. By noting that there are at
most

�
3
"

�d · B

"
members of this cover by a volume argument we conclude the proof. ⌅

By combining Lemma D.4 and Lemma D.5, we prove Lemma D.3. In the next section, we will apply
Lemma D.3 and Lemma D.1 to lower bound ⌃ij(bg).

22



D.2 Lower Bounding the Covariance

We continue by lower bounding ⌃ij(bg). Before we begin, we introduce some notation. For any
g 2 G, we will let

Zt;ij(g) = I [g(x̄t) = i and g?(x̄t) = j] Z̄t;ij(g) = E [Zt;ij(g)|Ft�1]

or, in words, Zt;ij(g) is the indicator of the event that a classifier predicts label i when g? predicts
j and Z̄t;ij(g) is probability of this event conditioned on the x-history. We will work under the
small-ball assumption that there exist constants c0, c1 as well as ⇣t, ⇢t such that for any w 2 S

d, it
holds for all g 2 G that

P
⇣
hx̄t,wi2 � c0⇣

2
t
| Ft, Zt;ij(g) = 1

⌘
� c1⇢t (D.2)

We will show that (D.2) holds and defer control of the values of ⇣t, ⇢t to Appendix D.3, but, for
the sake of clarity, we take these constants as given for now. We proceed to show that for a single
function g, that for all i, j such that Iij(g) is big, it holds that ⌃ij(g) is also large. We will then apply
our results in the previous section to lift this statement to one uniform in G. We have the following
result:
Lemma D.6. Let ⇢ = mint ⇢t and let ⇣ = mint ⇣t, where ⇢t, ⇣t are from (D.2). Then with probability
at least 1� �, for all 1  i, j  K and all g 2 G such that

|Iij(g)| � max
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✓
log

✓
2T

�

◆
+

d

2
log

✓
C
B⇣2

⇢

◆
+ log

�
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2T"+ 6 log
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it holds that

⌃ij(g) ⌫
c0⇣2

8
|Iij(g)|

We will prove Lemma D.6 by first fixing g 2 G and showing the statement for the fixed g and then
using the results of Appendix D.3 to make the statements uniform in G. To prove the statement for a
fixed g, we require the following self-normalized martingale inequality:
Lemma D.7. Let Ft be a filtration with At 2 Ft and Bt 2 Ft�1 for all t. Let

pAt = P (At | Ft�1, Bt) pBt = P (Bt | Ft�1)

and suppose that pAt � ⇢ for all t. Then, with probability at least 1� �,
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In particular with probability at least 1� �, if
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2

TX

t=1

I[Bt]

In order to prove Lemma D.7, we will require the following general result:
Lemma D.8 (Theorem 1 from [2]). Let (ut) be predictable with respect to a filtration (Gt), and let
(et) be such that et | Gt is ⌫2-subGaussian. Then, for any fixed parameter � > 0, with probability
1� �,

 
TX
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utet

!2

 2⌫2
 
�+

TX

t=1

u2
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We now present the proof of Lemma D.7:
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Proof of Lemma D.7. We apply Lemma D.8 with ut = I[Bt], et = I[At] � pAt , and Gt = Ft.
Noting that the latter is 1

8 -subGaussian because it is conditionally mean zero and bounded in absolute
value by 1, we have with probability at least 1� �,
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A

Taking a union bound over � 2 [T ] and noting that
P

T

t=1 I[Bt] 2 [T ] almost surely, we recover the
result. ⌅

We now proceed to apply Lemma D.7 to prove a version of Lemma D.6 with the function g 2 G fixed:

Lemma D.9. Suppose that (D.2) holds and that ⇢ = mint ⇢t as well as ⇣ = mint ⇣t. For fixed
1  i, j  K and g 2 G, it holds with probability at least 1� � that if

|Iij(g)| �
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then
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Proof. Note that for any fixed unit vector u 2 S
d�1, the following holds:
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uTxtx
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2
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⇢ |Iij(g)|
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!

Now let At denote the event that (hu,xti)2 � c0⇣2 and let Bt denote the event that Zt;ij = 1. Noting
that P(At|Bt) � ⇢ by (D.2), we may apply Lemma D.7 and note that |Iij(g)| is just the sum of the
Bt to show that if Iij(g) satisfies the assumed lower bound, then
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Taking a union bound over an appropriately sized "-net on S
d�1 to approximate u, and applying

Block and Simchowitz [7, Lemma 45] concludes the proof. ⌅

We are now ready to prove the main result in this section, i.e., a lower bound on ⌃ij(bg):

Proof of Lemma D.6. Fix D = {(gi,Di)} an "-disagreement cover of G of size DN("). Taking a
union bound over all gi in D and then applying Lemma D.9 tells us that with probability at least
1� �

2 , it holds for all 1  i, j  K and all gk 2 D such that
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we have
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Applying Lemma D.1, we see that with probability at least 1� �

2 ,
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min
gk2D

TX

t=1

I [g(xt) 6= gk(xt)]  2T"+ 12 log
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Noting that by assumption,
����xtxT

t

����  B2, we see that for any g 2 G, there is some gk 2 D such
that

⌃ij(g) ⌫ ⌃ij(gk)�B2
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.

Thus, applying the above lower bound on ⌃ij(gk) concludes the proof. ⌅
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Lemma D.6 has provided a lower bound on the empirical covariance matrices under the assumption
that (D.2) holds; in the next section we show that this assumption is valid.

D.3 Small Ball Inequality

Introduce the shorthand Pt (·) := P (· | Ft�1) and Et [·] := E [· | Ft�1]. Recall from the previous
section that we assumed that there are constants c0, c1 and ⇣t, ⇢t such that for any w̄ 2 S

d, and any
g 2 G, it holds that

Pt

⇣
hx̄t, w̄i2 � c0⇣

2
t
| Zt;ij(g) = 1

⌘
� c1⇢t. (D.4)

In this section, we will show that smoothness and an assumption on Zt;ij(g) suffice to guarantee that
this holds. We will show the following result:
Lemma D.10. Suppose that Assumptions 4 and 2 hold. Fix a g 2 G and 1  i, j  K and suppose
that

Pt (Zt;ij(g)) � ⇠.

For all w̄ 2 S
d, it holds that, for universal constants c0 and c1,
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✓
hx̄t, w̄i2 � c0
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dir⇠
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� c1

�4
dir⇠

4

B4
.

We begin by defining some notation. First, we let Vxt denote variance with respect to xt, conditioned
on the x-history and Zt;ij(g). That is, for some function f of xt, we let

Vxt [f ] = Et

⇥
f(xt)

2 | Zt;ij(g)
⇤
� Et [f(xt) | Zt;ij(g)]

2 . (D.5)

For a fixed w̄ 2 S
d, denote by w the first d coordinates. For fixed g 2 G, and 1  i, j  K, we will

denote:

⇢t(g, w̄) =

0

@ Vxt [hxt,wi]
||w||2 _

⇣
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h
hxt,wi2 | Zt;ij(g) = 1
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We will now show the following result:
Lemma D.11. It holds for any fixed 1  i, j  K and g 2 G that
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2
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(g, w̄)Zt;ij(g) = 1

⌘
� c1⇢t(g, w̄)

After proving Lemma D.11, we will provide lower bounds on ⇣t and ⇢t under the assumptions of
Lemma D.10, which will allow us to prove the main result. To begin the proof of Lemma D.11, we
will begin by showing that hx̄t, w̄i2 is lower bounded in expectation in the following result:
Lemma D.12. Suppose that Assumptions refass:dirsmooth and 4 hold. Then for any fixed 1  i, j 
K and g 2 G, it holds for all w 2 S

d that
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h
hx̄t, w̄i2 | Zt;ij(g)

i
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t
(g, w̄)

Proof. We prove two distinct lower bounds and then combine them. Fix i, j, g, and w̄. Recall that w
is w̄ without its last coordinate and let w0 denote the last coordinate of w̄. We compute:

Et

h
hx̄t, w̄i2 | Zt;ij(g) = 1
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i
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where the equality comes from noting that the last coordinate of x̄t is 1 by construction, the inequality
is trivial. This is our first lower bound. For our second lower bound, we compute:
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where the inequality follows from applying the numerical inequality 2(x+ y)2 � x2 � 2y2. This is
our second lwoer bound. To ease notation, denote
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Combining the two previous lower bounds, we see that
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where the third inequality follows because ↵ � 1 and the last equality follows because 1 = ||w̄||2 =
||w||2 + w2

0 . The result follows. ⌅

We now are prepared to use the Paley-Zygmund inequality to prove the lower bound depending on ⇢t
and ⇣t:

Proof of Lemma D.11. We apply the Paley-Zygmund inequality and note that
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where the second inequality follows from Lemma D.12. Applying the bound in Claim D.2, proved in
a computation below for clarity, it holds that the last line above is lower bounded by:
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The result follows by the definition of ⇢t(g, w̄). ⌅
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We defer the more technical computation to the end of this section. We now have our desired small
ball result, modulo the fact that we need to lower bound ⇣t and ⇢t. To do this, we have the following
key result that lower bounds the conditional variance:
Claim D.1. Suppose that Assumptions 2 and 4 holds and that

P (Zt;ij(g) | Ft�1) � ⇠.

Then it holds for any w 2 B
d that
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.

In particular, it holds that

⇢t(g,w) � �4
dir⇠

4

128B4
, ⇣t(g,w)2 � �2

dir⇠
2

4B2
.

Proof. We begin by noting that by Markov’s inequality, for any � > 0, it holds that

Pt (|hxt,wi � E [hxt,wi | Zt;ij(g) = 1]| > � | Zt;ij(g) = 1)  Vxt [hxt,wi]
�2

.

Rearranging, we see that
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Now we compute by Bayes’ theorem,
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by Assumption 2. Thus we have
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.

Setting � = 1
2 · ⇠�dir ||w|| concludes the proof of the first statement. The second statements follow

by Assumption 4. ⌅

Combining the lower bound in Claim D.1 with the small ball estimate of Lemma D.11 concludes the
proof of Lemma D.10. We now prove the technical results required in previous proofs above.
Claim D.2. Suppose we are in the situation of Lemma D.12. Then it holds that
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Proof. Continuing to use notation from the proof of Lemma D.12, we compute:
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The result follows by noting that w2
0  w2

0 + ||w||2 = ||w̄||2 = 1. ⌅

With the covariance matrices lower bounded, we proceed to upper bound the regret.
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D.4 Upper Bounding the Empirical Error

In this section, we will show that for 1  i, j  K such that |Iij(bg)| is sufficiently large, the fact that
b⇥ is formed by minimizing the empirical risk will force
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X
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j

⌘
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���
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2

to be small. In the end, we will combine this bound with our lower bound on ⌃ij(bg) proved above
to conclude the proof of the theorem. We will begin by introducing some notation. For fixed
1  i, j  K and a fixed g 2 G, we define:
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The main result of this section is as follows:
Lemma D.13. Under Assumptions 2-4, with probability at least 1� �, it holds that
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To prove this result, we begin by fixing g 2 G and 1  i, j  K and bounding Qij(g) by Rij(g). We
will then use the results of Appendix D.1 to make the statement uniform in G. We proceed with the
case of fixed g and prove the following result:
Lemma D.14. Suppose that Assumptions 2-4 all hold. Fix 1  i, j  K and some g 2 G. For any
� > 0, with probability at least 1� �, it holds that
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Thus, it suffices to bound the second term. By linearity, and the assumption on �t, we have
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We use a generalization of the self-normalized martingale inequality, Lemma D.8 to bound the first
term above. To do this, fix some � 2 Rm⇥(d+1) and define
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Noting that V ( b⇥i �⇥?

j
) = Qij(g), we see from the above that
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We will now bound E(�) for some fixed � and then apply a covering argument to lift the statement
to apply to b⇥i �⇥?

j
. By Assumption 4, we may take ||�||  2R.

Recall that F y
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We note by Assumption 4, it holds that
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with probability at least 1� �. Now let N be an "-net of the Frobenius ball in Rm⇥(d+1) of radius
2R. For small ", we may take N such that
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For any �, denote by �0 its projection into N . Then we compute
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where the second inequality follows from Claim D.3 along with a union bound over N applied to
(D.7), the third inequality follows from the definition of an "-net, and the last inequality follows
from simply adding and subtracting the same term. Applying Claim D.3 once again, we have with
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uniformly for all � in the Frobenius ball of radius 2R. We now choose
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Plugging this back into (D.6), we have that with probability at least 1� �, it holds that
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Rearranging concludes the proof. ⌅

We defer proofs of the technical computations, Lemmas D.3 and D.4, used in the proof of Lemma D.14
until the end of the section. For now, we press on to lift our bound from a statement about a fixed
g 2 G to one uniform in G. We require one last lemma before concluding this proof, however. We are
aiming to bound Qij(bg) by Rij(bg), but we need to upper bound Rij(bg). This is the content of the
following lemma:
Lemma D.15. With probability at least 1� �, for all 1  i, j  K, it holds that
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Proof. We begin by introducing some notation. For fixed ⇥ 2 Rm⇥(d+1) and g 2 G, let

Rij(g,⇥) =
X

t2Iij(g)

||⇥ix̄t � yt||2 � ||et + �t||2

and note that Rij(g) = Rij(g, b⇥i). First, we note that by definition of ERMORACLE,

"orac �
TX

t=1

���
��� b⇥bg(x̄t)x̄t � yt

���
���
2
� inf

g,b⇥

TX

t=1

���
��� b⇥bg(x̄t)x̄t � yt

���
���
2

�
TX

t=1

���
��� b⇥bg(x̄t)x̄t � yt

���
���
2
�
���
���⇥?

g?(x̄t)
x̄t � yt

���
���
2

=
X

1i,jK

Rij(bg).

30



Thus, we have
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Thus it will suffice to provide a lower bound on Rij(bg) that holds with high probability. To do this,
note that for fixed g 2 G and ⇥0, we have
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Thus if we take a union bound over a 1
TRB2 -net of the Frobenius ball of radius R in Rm⇥(d+1), we

see that with probability at least 1� �, it holds that
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We now note that by Lemma D.1, if D is an "-disagreement cover of G, then
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We now apply Claim D.5 and note that this implies that if g is the projection of bg onto the disagreement
cover, then
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Taking a union bound over g 2 D and all pairs (i, j) tells us that with probability at least 1� �,
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Combining this with (D.9) concludes the proof. ⌅
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We are now finally ready to prove the main result of this section:

Proof of Lemma D.13. We begin by noting that Lemma D.1 tells us that with probability at least
1� �, it holds that
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By Claim D.5, it holds that with probability at least 1� �, for all g, g0 2 G, we have

Rij(g)� Rij(g
0) 

✓
4B2R2 + ⌫2 log

✓
T

�

◆◆ TX

t=1

I [g(x̄t) 6= g0(x̄t)]

Now, taking a union bound over a minimal disagreement cover at scale " as well as all pairs
1  i, j  K, we see that Lemma D.14 implies that with probability at least 1� �, it holds that for
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Setting � = 1 and applying Lemma D.15 to bound Rij(bg) then tells us that
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With the proof of Lemma D.13 concluded, we now prove the technical lemmas:
Claim D.3. Let �,�0 2 Rm⇥(d+1) have Frobenius norm at most R. Let E, V be defined as in the
proof of Lemma D.14. Then it holds that
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The result follows. ⌅
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Claim D.5. Suppose that Assumptions 3 and 4 hold. Then, with probability at least 1� �, it holds
for all g, g0,
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kF  2R, the result follows. ⌅

D.5 Proof of Theorem 11

We are now ready to put everything together and conclude the proof of Theorem 11. We first need to
prove the following bound by combining results from Appendices D.2 and D.3:
Lemma D.16. For any fixed ⇠ < 1, Define the following notation:
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Proof. We begin by applying a Chernoff bound (Lemma D.2) to bound the number of times t such
that Zt;ij(bg) = 1 and Pt(Zt;ij(bg) = 1)  ⇠. In particular, we have
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and note that ⌃ij(bg) ⌫ e⌃ij(bg) by construction. Furthermore, by the Chernoff bound above, with
probability at least 1� �, if
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=
X

t2Iij(bg)

Tr

✓⇣
b⇥i �⇥?

j

⌘T ⇣b⇥i �⇥?

j

⌘
x̄tx̄

T

t

◆

� k b⇥i �⇥?

j
k2F · �min

0

@
X

t2Iij(bg)

x̄tx̄
T

t

1

A

= k b⇥i �⇥?

j
k2F · �min (⌃ij(bg))

where we have denoted by �min(·) the minimal eigenvalue of a symmetric matrix. Thus, under our
assumptions, with probability at least 1� �, it holds that

k b⇥i �⇥?

j
kF  C

B2

�2
dir⇠

2 |Iij(bg)|
· Qij(bg)

for all i, j satisfying (D.10). The result follows. ⌅

We are now ready to combine Lemma D.16 with the results of Appendix D.4 to conclude the proof.

Proof of Theorem 11. By Lemma D.13, it holds with probability at least 1� � that

Qij(bg)  "orac + CK2BRd

s

TmK log

✓
TBRK

�

◆
+ CK3d

✓
4B2R2 + ⌫2 log

✓
T

�

◆◆
log

✓
BKT

�

◆

+ C⌫2d2Km log

✓
TRBmdK

�

◆
+ C⌫d

s

Km log

✓
TRBmdK

�

◆
+ 4BRK2 |Iij(g)| "crp

 "orac + 1 + CK3B2R2d2m⌫2
p
T log

✓
TRBmdK

�

◆
+ 4BRK2 |Iij(g)| "crp.

By Lemma D.16, it holds with probability at least 1� � that for all i, j satisfying |Iij(bg)| � ⌅3, we
have

k b⇥i �⇥?

j
k2F  C

B2

�2
dir⇠

2 |Iij(bg)|
Qij(bg).

It now suffices to note that, by Lemma D.3, it holds that

log (DN(G, "))  K(d+ 1) log

✓
3BK

"

◆

and so, taking " = 1
T

,

⌅3  CK2T ⇠ + C
B8Kd

�8
dir⇠

8
log

✓
BKT

�dir⇠�

◆
.

The result follows. ⌅
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Algorithm 3 Combine and Permute Labels

1: Initialize Classifier bg, new parameters
⇣
b⇥1,i

⌘

1iK

, old parameters
⇣
b⇥0,i

⌘

1iK

, threshold

A > 0, gap �sep > 0
2: for i, j = 1, 2, . . . ,K do (% Combine large clusters with similar b⇥1,i)
3: if i = j or min(Ii(bg), Ij(bg)) < A then (% Continue if cluster is too small)
4: Continue

5: if

���
��� b⇥1,i � b⇥1,j

���
��� < �sep then (% Combine Cluster if parameters closer than

gap)
6: bg  (j 7! i) � bg
7: I  [K]
8: Empty permutation ⇡̃ : [K]! [K]
9: Reorder I so that if i < i0 then |Ii(bg)| > |Ii0(bg)|

10: for i = 1, 2, . . . ,K do

11: if |Ii(bg)| > A then (% Check if cluster is large enough)
12: j  argmin

j02I

���
��� b⇥1,i � b⇥0,j0

���
���

13: ⇡̃(i) = j
14: I  I \ {j}
15: Return ⇡̃ � bg

E Modifying the Classifier and Mode Prediction

In this section, analyze OGD (Algorithm 2), the algorithm that modifies the classifer bg⌧ produced by
ermoracle after epoch into a stabilized classifer eg⌧ suitable for online prediction. The problem with
the former classifer bg⌧ is that while it performs well on the past examples by construction, directional
smoothness is not strong enough to imply generalization in the sense that bg⌧ will continue to perform
well on epoch ⌧ + 1.

Notation. We begin our analysis of OGD by defining some notation. For any 1  t  T , let
⌧(t) denote the epoch containing t, i.e., ⌧(t) = max {⌧ 0|⌧ 0E  t}. Further, recall the concatenated
parameter notation w1:K = (w1, . . . ,wK) for wi 2 B

d�1.

For a given epoch ⌧ , we let
n
b⇥⌧,i|i 2 [K]

o
, bg⌧ denote the output of ERMORACLE(x̄1:⌧E ,y1:⌧E).

For any g 2 G and i, j 2 [K], we denote

Iij;⌧ (g) = {1  t  ⌧E|g(x̄t) = i and g?(x̄t) = j} . (E.1)

Finally, for a fixed epoch ⌧ , if ERMORACLE has returned parameters b⇥⌧,i, define

⇡⌧ (i) = argmin
1jK

k b⇥⌧,i �⇥?

j
kF (E.2)

the function that takes a label i according to bg⌧ and sends it to the closest label according to g?
as measured by difference in parameter matrices. The notation “⇡” signifies that ⇡⌧ represents a
permutation when all the estimates b⇥⌧,i are sufficiently accurate.

We conduct the analysis under the following condition, which informally states that for all suffi-
ciently large clusters Iij considered in Algorithm 3 are sufficiently large, the associate parameters,
Assumption 5
Condition 1. We say that ⌅ � 0 is a �-valid clusterability bound if it satisfies the following property.
If Algorithm 3 is run with A = 2K⌅ then with probability at least 1� �, for all 1  i  K such that

Ii;⌧ (bg⌧ ) =
X

1jK

|Iij;⌧ (bg⌧ )| > 2K⌅ (E.3)

the following hold:

1. There exists a unique 1  j  K such that |Iij;⌧ (bg⌧ )| > ⌅ and for that j, |Iij;⌧ (bg⌧ )| > K⌅.
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2. For the j given by the previous statement,
���
��� b⇥⌧

i
�⇥?

j

���
���  �sep

4 .

3. For the j in the previous statements, it holds that in epoch ⌧ + 1, the classifer bg⌧+1 after the
reordering step in Algorithm 2, the estimated parameter satisfies |Iij;⌧ (bg⌧+1)| > ⌅ and in
particular,

���
��� b⇥⌧+1

i
�⇥?

j

���
���  �sep

4 .

Recall that the the pseudocode for OGD is in Algorithm 2. In words, the algorithm runs projected
online gradient descent on è

�,t,bg . We have the following result.
Theorem 13. Suppose that we run Algorithm 1 in the setting described in Section 2. If we set
A = 2K⌅, then with probability at least 1� �, it holds that

TX

t=1

I
⇥
⇡⌧ (eg⌧(t)(x̄t)) 6= g?(x̄)

⇤
 2BET⌘

�
+ 3

✓
1 +

1

�

◆
(KE + 2K2⌅) +

4K

⌘
+

⌘T

�2
+

T�

�dir
+

s

T log

✓
1

�

◆

(E.4)

where ⌅ is a parameter depending on the gap and the problem, defined in Lemma E.2.

Proof Strategy. One challenge is that eg⌧(t) is that it is updated at the start of epoch ⌧ + 1, and
is trained using labels corresponding to the permutation ⇡⌧ . Therefore, we decompose to the error
indicator into the case where ⇡⌧+1(eg⌧(t)(x̄t)) = ⇡⌧ (eg⌧(t)(x̄t)), so this difference is immaterial, and
into the cases where ⇡⌧+1 and ⇡⌧ differ.

I
⇥
⇡⌧ (eg⌧(t)(x̄t)) 6= g?(x̄)

⇤
 I

⇥
⇡⌧+1(eg⌧(t)(x̄t)) 6= g?(x̄t)

⇤
| {z }

(look-ahead classification error)

+ I
⇥
⇡⌧ (eg⌧(t)(x̄t)) 6= ⇡⌧+1(eg⌧(t)(x̄t))

⇤
| {z }

(permutation disagreement error)
(E.5)

We call the former term the “look-ahead classification error”, because it applies the permutation
from the subsequent epoch ⌧ + 1; the name for the second term is self-explanatory. Our online
update OGD(Algorithm 2) controls the cumulative sum of the look-ahead classification error (
see Theorem 14 in the following section), while our labeling protocol (Algorithm 3) bounds the
permutation disagreement error (see Lemma E.3 in the Appendix E.2).

E.1 Look-ahead Classification Error

In this section we prove that the first term of (E.5) is small with high probability, which is the content
of the following result:
Theorem 14. With probability at least 1� �, the look-ahead classification error is at most

TX

t=1

I
⇥
⇡⌧(t)+1 (eg⌧ (x̄t)) 6= g?(x̄t)

⇤
 2BET⌘

�
+ 2

�
1 + ��1

�
(KE + 2K2⌅) +

4K

⌘
+

⌘T

�2
+

K2T�

�dir
+
q
T log

�
1
�

�
.

(E.6)

Proof. In addition to the notation è�,t,bg defined in Equation (4.1), we introduce the following notation:

i?
t
= g?(x̄t) bit = argmax

1iK

D
w⌧(t)

i
, x̄t

E
= eg⌧(t)(x̄t) īt = bg⌧(t)+1(x̄t) (E.7)

or, in words, i?
t

is the groundtruth correct label,bit is the class predicted by the current epoch’s linear
predictors, and īt is the class predicted by the ERM trained with the current epoch’s data included.
Additionally, let

ewt

1:K = ⇧(Bd�1)⇥K

⇣
ewt�1
1:K � ⌘rè�,t,bgk(t)+1

(ewt�1
1:K)

⌘
(E.8)

i.e., the predicted weight if we were able to apply gradient descent with the labels predicted by the
ERM trained on the current epoch’s data and

eit = argmax
1ik

⌦
ewt

i
, x̄t

↵
, (E.9)
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the class predicted by ]w1:K . We also consider the following “losses” that we will use in the analysis:

b̀
t(w1:K) = I

h
bit 6= īt

i
`?
t
(w1:K) = I

h
⇡⌧(t)+1(bit) 6= i?

t

i
(E.10)

or, in words, b̀t is the event that our prediction is not equal to that of bgk(t)+1 and `?
t

is the event that
our prediction is not equal to the groundtruth.

Mistake Decomposition. We now compute:
TX

t=1

`?
t
(w⌧(t)

1:K ) 
 

TX

t=1

I [⇡⌧+1(bg⌧+1(x̄t)) 6= g?(x̄t)]

!

| {z }
Term1

+

 
TX

t=1

I [eg⌧ (x̄t) 6= bg⌧+1(x̄t)]

!
(E.11)

Lemma E.4 in Appendix E.2 controls Term1. To control the other term, we note that for any
t, �, g,w1:K ,

è
�,t,g(w1:K) = max

 
0, max

j 6=g(x̄t)

 
1�

⌦
wg(x̄t) �wj , x̄t

↵

�

!!
� I[gw1:K (x̄t) 6= g(x̄t)],

where gw1:K (x̄t) is the classifier induced by the paramters w1:K . As eg⌧ (x̄t) is the classifier induced
by w⌧

1:K , we have
TX

t=1

I [eg⌧ (x̄t) 6= bg⌧+1(x̄t)] 
TX

t=1

è
�,t,bg⌧+1(w

⌧

1:K)


 

TX

t=1

è
�,t,bg⌧+1(w

⌧

1:K)� è
�,t,bg⌧+1(ewt

1:K)

!

| {z }
Term2

+

 
TX

t=1

è
�,t,bg⌧+1(ewt

1:K)

!

Contining, we have
TX

t=1

`?
t
(w⌧(t)

1:K )  Term1 +Term2 +
TX

t=1

è
�,t,bg⌧+1(ewt

1:K)

 Term1 +Term2 + sup
w1:K

 
TX

t=1

è
�,t,bg⌧+1(ewt

1:K)� è
�,t,bg⌧+1(w1:K)

!

| {z }
Term3

+ inf
w1:K

TX

t=1

è
�,t,bg⌧+1(w1:K)

| {z }
Term4

Bounding the “delay” penalty: Term2. Term2 corresponds to the error we may suffer from using
delayed gradient updates. We now observe that

���
���rè�,t,bg⌧(t)+1

���
��� 

||x̄t||
�
 B

�
(E.12)

and that projection onto a convex body is a contraction. Furthermore, the gradient update in
Algorithm 2, Line 3 only affects at most two distinct i, j in the coordinates of w1:K per update. Thus
it holds that, for all t,

���
��� ewt

1:K �w⌧(t)
1:K

���
���  2E⌘.

Applying (E.12) tells us that

Term2 :=
TX

t=1

è
�,t,bg⌧+1(w

⌧

1:K)� è
�,t,bg⌧+1(ewt

1:K)  2BET⌘

�
. (E.13)

38



Bounding the regret term: Term3. We see that Term3 is just the regret for Online Gradient
Descent for losses with gradients bounded in norm by 1

�
on the K-fold product of unit balls, having

diameter 2
p
K. Thus it holds by classical results (c.f. Hazan et al. [32, Theorem 3.1]) that

Term3 =
TX

t=1

è
�,t,bgk(t)

(ewt)� inf
w1:K

è
�,t,bgk(t)

(w1:K)  4K

⌘
+

⌘T

�2
. (E.14)

Bounding the comparator: Term4. To bound Term4, we aim to move from the losses with margin
è
�,t,bg⌧+1 back to sum measure of comulative classification error. The central object in this analysis is

the following “ambiguous set”, defined for each parameter w1:K :

D�(w1:K) = {x̄ : |hwi,1:d �wj,1:d,xi � wi,d+1 + wj,d+1|  � for some 1  i  K} , (E.15)

where we denote the first d coordinates of wi by wi,1:d and its last coordinate by the scalar
wi,d+1.Then, by directional smoothness and a union bound, the following is true for any fixed
w1:K :

P(x̄t 2 D�(w1:K) | Ft)  K2 sup
i,j

P(|hwi,1:d �wj,1:d,xti � wi,d+1 + wj,d+1|  � | Ft) 
K2�

�dir
.

Let w?

1:K be the parameter associated with g?. Then a consequence of the above display and Azuma’s
inequality is that most x̄t’s fall outside of D�(w?

1:K):

TX

t=1

I [x̄t 2 D�(w
?

1:K)] 
TX

t=1

Pt (x̄t 2 D�(w
?

1:K)) +

s

T log

✓
1

�

◆

 K2T�

�dir
+

s

T log

✓
1

�

◆
. (E.16)

We compute:

inf
w1:K

TX

t=1

è
�,t,bg⌧+1(w1:K)  inf

w1:K

TX

t=1

I [x̄t 2 D�(w1:K)] +

✓
1 +

2

�

◆ TX

t=1

b̀
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TX
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✓
1 +

2

�
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`?
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(w1:K) + I

⇥
⇡⌧(t)+1(̄it) 6= i?

t

⇤


✓
1 +

2

�

◆ TX

t=1

I
⇥
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t
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TX
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2
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◆
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
✓
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2

�
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t=1

I
⇥
⇡⌧(t)+1(̄it) 6= i?

t

⇤
+

TX

t=1

I [x̄t 2 D�(w
?

1:K)]


✓
1 +

2

�

◆ TX

t=1

I
⇥
⇡⌧(t)+1(̄it) 6= i?

t

⇤

| {z }
=Term1

+
K2T�

�dir
+

s

T log

✓
1
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◆
.

where the first inequality follows by Lemma E.1, the second inequality is trivial, the third inequality
follows because the final term does not depend on w1:K , the fourth inequality follows from the
realizability assumption, i.e., that `?

t
(w?

1:K) = 0 for all t, and the last from Equation (E.16) (recalling
the definition of Term1) .

Thus it holds with probability at least 1� � that

Term4 
✓
1 +

2

�

◆
Term1 +

K2T�

�dir
+

s

T log

✓
1

�

◆
.
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Concluding the proof. To conclude, we see that

TX

t=1

`?
t
(w⌧(t)

1:K )  Term1 +Term2 +Term3 +Term4 (E.17)


✓
1 +

2

�

◆
Term1 +

2BET⌘
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+

4K
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+
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+

K2T�

�dir
+

s

T log

✓
1

�

◆
. (E.18)

By Lemma E.4 it holds that

Term1 =
TX

t=1

I
⇥
⇡⌧(t)+1(̄it) 6= i?

t

⇤
:=

TX

t=1

I
⇥
⇡⌧(t)+1(bg⌧(t)+1(x̄t)) 6= g?(x̄t)

⇤
 KE + 2K2⌅,

(E.19)

where ⌅ is defined in Lemma E.2. This concludes the proof. ⌅

Lemma E.1 (Bound indicator by soft margin). For any �, t, bg, it holds that if each component of w
has unit norm, then

è
�,t,bg(w)  I [x̄t 2 D�(w1:K)] +

✓
1 +

2

�

◆
b̀
t(w1:K). (E.20)

Proof. We prove this by casework. Suppose that b̀t(w1:K) = 0. Then it holds that

bg(x̄t) = argmax
1jK

hwj , x̄ti (E.21)

and in particular for all j 6= bg(x̄t), it holds that
⌦
wbg(x̄t) �wj , x̄t

↵
� 0. If x̄t 62 D�(w1:K) then it

holds by construction that

max
j 6=bg(x̄t)

1�
⌦
wbg(x̄t) �wj , x̄t

↵

�
 0 (E.22)

and the conclusion clearly holds. If it holds that

max
j 6=bg(x̄t)

1�
⌦
wbg(xt) �wj , x̄t

↵

�
> 0 (E.23)

then either there is some j such that
⌦
wbg(xt)�wj

, x̄t

↵
< 0 or there is some j such that⌦

wbg(x̄t) �wj , x̄t

↵
< � and so x̄t 2 D�(w1:K). We cannot have the former by the assumption that

b̀
t(w1:K) = 0 so the latter holds and the inequality follows in this case.

Now suppose that b̀t(w1:K) = 1. Then we see that as ||wi||  1 for all i, è�,t,bg 
⇣
1 + 2

�

⌘

uniformly and the result holds. ⌅

E.2 Bounding Permutation Disagreement and Term1

In this section, we provide a bound on the permutation disagreement error - the second term of (E.5) -
as well as on Term1 from the section above . We begin by notion that Algorithm 3 ensures that large
clusters remain large accross epochs, a statement formalized by the following result:
Lemma E.2. Define the following terms:

⌅1 = CK2T ⇠ + C
B8Kd

�8
dir⇠

8
log

✓
BKT

�dir⇠�

◆
(E.24)

⌅2 = C
B2

�2
dir⇠

2�2
sep

✓
"orac + 1 +K3B2R2d2m⌫2

p
T log

✓
TRBmdK

�

◆◆
+

TX

t=1

||�t|| . (E.25)

Then ⌅ := max(⌅1,⌅2) is a �-valid clusterability parameter in the sense of Condition 1.
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Proof. By the pigeonhole principle, if Ii(bg⌧ ) > 2K⌅ there must be at least one j such that
|Iij;⌧ (bg⌧ )| > ⌅ and thus by Theorem 11, it holds that

���
��� b⇥⌧

i
�⇥?

j

���
���  �sep

4 and thus the sec-
ond statement holds. If there is another j0 such that |Iij0;⌧ (bg⌧ )| > ⌅ then it would also hold that���
��� b⇥⌧

i
�⇥?

j0

���
���  �sep

4 and the triangle inequality would then imply that
����⇥?

j
�⇥?

j0

����  �sep

2 <

�sep, which ensures that j = j0 by Assumption 5. Applying pigeonhole again then shows that

|Iij;⌧ (bg⌧ )| = Ii;⌧ (bg⌧ )�
X

j0 6=j

|Iij0;⌧ (bg⌧ )| > 2K⌅� (K � 1)⌅ = (K + 1)⌅. (E.26)

Thus the first statement holds. For the last statement, note that as there are at least K⌅ times t < ⌧E
such that g?(x̄t) = j, there are at least ⌅ times t < (⌧ +1)E such that t 2 Ii0j;⌧ (bg⌧+1). This implies,
again by Theorem 11, that

���
��� b⇥⌧+1

i0 �⇥?

j

���
���  �sep

4 and thus
���
��� b⇥⌧+1

i0 � b⇥⌧

i

���
���  �sep

2 . If i0 6= i after

running Algorithm 3 then there must be an i00 such that Ii00;⌧ (bg⌧+1) > K⌅ and
���
��� b⇥⌧+1

i00 � b⇥⌧

i

���
��� 

�sep

2 . But if this is the case then the triangle inequality implies that
���
��� b⇥⌧+1

i00 � b⇥⌧+1
i0

���
��� < �sep and

as they both are sufficiently large, there were merged by the first half of Algorithm 3, implying that
i00 = i0 and, in turn, that i0 = i, by the the second half of Algorithm 3. Thus the first half of the third
statement holds. To conclude, simply apply Theorem 11. ⌅

We are now ready to prove the main bound:
Lemma E.3. With probability at least 1� �, it holds that

TX

t=1

I
⇥
⇡⌧ (eg⌧(t)(x̄t)) 6= ⇡⌧+1(eg⌧(t)(x̄))

⇤
 KE + 2K2⌅ (E.27)

Proof. We begin by fixing some 1  i  K and bounding the number of epochs ⌧ such that
⇡⌧ (i) 6= ⇡⌧+1(i). We will restrict our focus to the probability 1� � event such that the conclusion
of Lemma E.2 holds. Suppose that there is an i such that Ii;⌧ (bg⌧ ) > 2K⌅ and ⇡⌧ (i) = j 6= j0 =
⇡⌧+1(i). Then by Assumption 5 and the triangle inequality, we have that
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Rearranging and again applying Assumption 5 tells us that
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Applying the second and third statements of Lemma E.2, however, brings a contradiction. Thus we
have, on the high probability event from Lemma E.2,

I
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. (E.31)

Thus we have
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(E.32)
 K (E + 2K⌅) . (E.33)

The result follows. ⌅

We may also apply Lemma E.2 to show that ⇡⌧+1(bg⌧+1(x̄t)) = g?(x̄t) most of the time. We
formalize this statement in the following result:
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Lemma E.4 (Wrong Labels Bound). With probability at least 1� �, it holds that
TX
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⇤
 KE + 2K2⌅ (E.34)

Proof. By Lemma E.2, it holds that
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Thus we may argue exactly as in Lemma E.3 to conclude the proof. ⌅

F Proving Theorem 3

In this section we formally state and prove our main result, i.e., that Algorithm 1 is an oracle-efficient
algorithm for achieving expected regret polynomial in all the parameters and scaling as T 1�⌦(1) as
the horizon tends to infinity. We have the following formal statement, which we first estalbish under
the assumption of a strict separation between parameters (Assumption 5).
Theorem 15. Suppose that Assumptions 2-5 hold. Then, for the correct choices of �, ⌘, and E, given
in the proof below (found above (F.7)), Algorithm 1 experiences expected regret:
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in the worst case.

Proof. We recall that Algorithm 1 proceeds in epochs of length E, a parameter to be specified. At the
beginning of epoch ⌧ , at time (⌧ � 1)E + 1, ERMORACLE is called, producing b⇥⌧,i for 1  i  K
and bg⌧ , for a total of T

E
 T calls to ERMORACLE. We then use Algorithm 2 to modify bg⌧ to eg⌧ and

predict ŷt = b⇥⌧,eg⌧ (x̄t)x̄t. Thus we have
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and thus, applying Theorem 13, it holds that the above expression is bounded by
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For the second term, we have
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⌅0 = max(⌅1,⌅2). (F.4)

Note that as long as ↵ < �2
sep then Lemma E.2 tells us that if we run Algorithm 1 with A � 2K⌅0,
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Summing over all K, we see that
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Thus, combining (F.1) and (F.5) tells us that with probability at least 1� � it holds that Reg
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where ⌅0 is given in (F.4) and ⌅ is given in Lemma E.2. Now, setting

E = T
17
18 , � = T� 1

36 , ⇠ = T� 1
9 , ↵ = T� 1

6 , ⌘ = T� 19
36 , (F.6)

gives, with probability at least 1� �,
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This concludes the proof. ⌅

G Application to PWA Dynamical Systems

In this section, we apply our main results to prediction in PWA systems with user-provided controls.

G.1 Regret for One-Step Prediction in PWA Systems

A direct application of our main result is online prediction in piecewise affine systems. Consider the
following dynamical system with state zt 2 Rdz and input ut 2 Rdu :

zt+1 = A?

it
zt +B?

it
ut +m?

it
+ et, it = g?(zt,ut). (G.1)

Substitute ⇥?

i
:= [Ai | Bi | mi] and define the concatenations xt = [zt | ut] and x̄t = [xt | 1]. The

following lemma, proven in Appendix G.2, gives sufficient conditions on the system noise et and
structure of the control inputs ut under which xt is directionally smooth.
Lemma G.1. Let Ft denote the filtration generated by xt = [zt | ut]. Suppose that et�1 | Ft�1 is
�dir smooth, and that in addition, ut = K̄txt + ūt + ēt, where K̄t and ūt are Ft�1-measurable4

, and ēt | Ft�1, et is �dir-directionally smooth. Then, xt | Ft�1 is �dir/
p
(1 + kKtkop)2 + 1-

directionally smooth.

Directionally smooth noise distributions, such as Gaussians, are common in the study of online
control [15, 56], and the smoothing condition on the input can be achieved by adding fractionally
small noise, as is common in many reinforcement learning domains, such as to compute gradients in
policy learning [60] or for Model Predictive Path Integral (MPPI) Control [65].

Throughout, we keep the notation for compactly representing our parameters by letting ⇥?

i
= [A?

i
|

B?

i
| m?

i
], the estimate at time t be b⇥t,i = [Ât,i | B̂t,i | m̂t,i], and covariates xt = (zt,ut). We let

Ft denote the filtration generated by x1:t, and note that et is Ft+1-measurable.
Assumption 7 (Boundedness). The covariates and parameters, as defined above, satisfy Assump-
tion 4.
Assumption 8 (SubGaussianity and Smoothness so as to satisfy Lemma G.1). We assume that et | Ft

is �dir-directionally smooth and ut = K̄txt + ūt + ēt, where K̄t and ūt are Ft�1-measurable and
ēt | Ft�1, et is �dir-directionally smooth. Further, we assume that et | Ft is ⌫2-subGaussian.

4This permits, for example, that K̄t is chosen based on the previous mode it�1, or any estimate thereof that
does not use xt.
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Under these assumptions, we can apply our main result, Theorem 3, to bound the one-step prediction
error in PWA systems. In particular, we have the following:
Theorem 16 (One-Step Regret in PWA Systems). Suppose that zt,ut evolve as in (G.1) with
the attendant notation defined therein. Suppose further that Assumptions 5, 7, and 8 hold and
that at each time t, the learner predicts bzt+1 with the aim of minimizing the cumulative square
loss with respect to the correct zt+1. If the learner applies Algorithm 1 to this setting, then with
probability at least 1� �, the learner experiences regret at most

P
T�1
t=0 ||zt+1 � bzt+1||2  T⌫2 +

poly
⇣
par,max1tT ||Kt||op , log(1/�)

⌘
·T 1�⌦(1) where the exact polynomial dependence is given

in Theorem 15.

Proof. The result follows from applying Lemma G.1 to demonstrate directional smoothness and
using Assumptions 8 and 7 and smoothness to apply Theorem 3. ⌅

G.2 Proof of Lemma G.1

We observe that this result follows directly from Lemma C.5. Indeed, note that by assumption,
zt|Ft�1,ut is �dir-directionally smooth by the assumption that et�1|Ft�1 is thus. Similarly,
ut|Ft�1, zt is �dir-directionally smooth by the assumption that ēt|Ft�1, et is smooth. Therefore,
the conclusion follows from Lemma C.5.

G.3 Formal Simulation Regret Setup

In this setting, let F̄t denote the filtration generated by (xs,h)1st,1hH . Let Ft,h denote the
filtration generated by F̄t�1 and (xt,h0)1h0h, with the convention Ft,0 = F̄t�1. We require that
our estimates b⇥t,i be F̄t�1-measurable. Further, we assume that our planner returns open-loop
stochastic policies.
Assumption 9 (Smoothed, Open Loop Stochastic Policies). We assume that our policy ⇡t is stochas-
tic and does not depend on state. That is, we assume that for all all h 2 [H] and t 2 [T ].
ut,h, . . . ,ut,H ? xt,1:h | Ft�1. We further assume that ut,h | ut,1:h�1,Ft�1 is �dir-smooth.
Assumption 10 (Noise Distribution). We assume that ket,hk  Bnoise for all t, h. Further, we
assume that there exists a zero-mean, �dir-directionally smooth distribution D over Rdz such that
et,h | Ft,h�1 ⇠ D.5 Furthermore, we also assume that zt,1 | F̄t�1 is �dir-smooth.
Definition 17 (Wasserstein Distance). Let (X, d) be a Polish space with metric d(·, ·), and let µ, ⌫ be
two Borel measures on X. Define the Wasserstein distance as

W
2
2(µ, ⌫) = inf

�
E(X,Y )⇠�

⇥
d(X,Y )2

⇤

where the infimum is over all couplings � such that the marginal of X is distributed as µ and the
marginal over Y is distributed as ⌫.

We will show that with minor modifications, outlined below, Algorithm 1 can be leveraged to produce
H-step simulated predictions with laws that are close in Wasserstein distance. In particular, this
allows us to control the error of the associated predictions in expected squared norm.

G.4 Algorithm Modifications

In order to produce good simulation regret, we run a variant of Algorithm 1 with two changes. First,
we need to use Assumption 6 in some way to ensure that our estimated dynamics are contractive.
Second, we need to iterate our predicitions in order to generate a trajectory of length H for each
time t. To address the first problem, suppose that we are in Line 3 of Algorithm 1, which applies
ERMORACLE to the past data, resulting in

n
( b⇥⌧,i)1iK , bg⌧

o
. For each i, we modify b⇥⌧,i to

become e⇥⌧,i by projecting b⇥⌧,i onto the convex set

CP =
�
⇥|⇥>P⇥ � P

 
.

5Results can be extended to Dt,h changing with the time step as long as these distributions are known to the
learner.
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Algorithm 4 Algorithm for achieving low Simulation Regret
1: Initialize Epoch length E, Classifiers w0 = (0, . . . ,0), margin parameter � > 0, learning rate

⌘ > 0, noise distributions D
2: for ⌧ = 1, 2, . . . , T/E do

3:
n
( b⇥⌧,i)1iK , bg⌧

o
 ERMORACLE((x̄1:⌧E ,y1:⌧E)) (%

self.modelUpdate)
4: e⇥⌧i  ProjectCP

( b⇥⌧i) (% See (G.2))

5: bg⌧  Reorder

✓
bg⌧ ,

⇣
e⇥⌧,i

⌘

1iK

,
⇣
e⇥⌧�1,i

⌘

1iK

◆
(% see Algorithm 3)

6: eg⌧  OGD(x̄(⌧�1)E:⌧E , bg⌧ , �, ⌘) (% see Algorithm 2)
7: for t = ⌧E, . . . , (⌧ + 1)E � 1 do

8: Receive x̄t and set bxt,0 = x̄t

9: for h = 1, 2, . . . , H do

10: Sample e0
t,h
⇠ D

11: Predict bxt,h = e⇥⌧,eg⌧ (bxt,h�1) · bxt,h�1 + e0
t,h

12: Receive yt

Formally, we define the projection to be

ProjectCP
(⇥) = argmin

⇥02CP

k⇥�⇥0kF. (G.2)

Because CP is convex, this step can be accomplished efficiently. As we shall observe in the sequel,
this projection step never hurts our error guarantees due, again, to the convexity of CP.

Moving on to the second modification, at each epoch ⌧ , we have a fixed set of parametersn
( e⇥⌧,i)1iK , eg⌧

o
where the eg⌧ are modified from bg⌧ exactly as in Algorithm 1. Thus, at each

time, we independently sample e0
t,h
⇠ D, the noise distribution, for 1  h  H and predict

bxt,h = e⇥⌧,eg⌧ (bxt,h�1) · bxt,h�1 + e0
t,h

. The entire modified algorithm is given in Algorithm 4 and we
prove in the sequel that we experience low simulation regret.

G.5 Formal Guarantees for Simulation Regret

In this section, we prove that Algorithm 4 attains low simulation regret under our stated assumptions.
Noting that Algorithm 4 is oracle-efficient, this result provides the first efficient algorithm that
provably attains low simulation regret in the PWA setting. The main result is as follows:
Theorem 18 (Simulation Regret Bound). Suppose that we are in the setting of (3.1) and that
Assumptions 5, 7, 8, 6, 9, and 10 hold. Suppose that we run Algorithm 4. Then, with probability at
least 1� �, it holds that

SimReg
T,H
 9B2H8
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⌘
.

Before we prove Theorem 18, we must state the following key lemma, which says that if both the
true and estimated dynamics are stable, and we are able to predict xt+1 with high accuracy, then our
simulation regret H steps into the future is also small.

Lemma G.2. Let G : Rd ! [K] denote the class of multi-class affine classifiers and let bf, f? denote
functions satisfying the following properties:

1. The function f? can be decomposed as f?(x) = f?

g?(x)
(x) and similarly for bf it holds that

bf(x) = bfbg(x)(x) for some g?, bg 2 G.

2. For all i 2 [K], it holds that both bfi and f?

i
are contractions, i.e., ||f?

i
(x)� f?

i
(x0)|| 

||x� x0||.
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Suppose that for 0  h  H � 1, we let

xh+1 = f?(xh) + eh bxh+1 = bf(bxh) + e0
h

for eh, e0h identically distributed satisfying Assumption 10. Suppose that x0 is �dir-smooth and that,
almost surely, xh, bxh have norms bounded uniformly by B. If max1h<H

���
��� bf(xh)� f?(xh)

���
���  "

then it holds that

W
2
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"2".

Proof. We begin by introducing intermediate random variables x(`)
H

for 1  `  H . We let x(`)
h

= xh

for h  ` and let
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⇣
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+ e0

t
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H
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= xH . By the triangle inequality applied to
Wasserstein distance, we observe that
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Consider a coupling where eh = e0
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We now observe that
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where the wij are the unit vectors determining the decision boundaries induced by bg. By smoothness,
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Plugging this into our bound at the beginning and noting that 1  BH
2

�dir
concludes the proof. ⌅

We are now ready to prove Theorem 18. In particular, we use Lemma G.2 to reduce a bound on
simulation regret to one of the distance between bf and f? evaluated on the data sequence. We then
apply Theorems 11 and 13 to control this distance. The details are below:

Proof of Theorem 18. We begin by applying Lemma G.2. Observe that in our setting, G is the class
of multi-class affine classifiers and f?, bft can be decomposed as required by the theorem, where we
let ⌧ denote the epoch in which t is placed and let

bft(x) = e⇥⌧,eg⌧ (x) · x.

By the fact that e⇥⌧,i,⇥?

i
2 CP, which follows from the construction of e⇥⌧,i and Assumption 6, the

contractivity assumption required by Lemma G.2 holds. Furthermore, note that because CP is convex
and ⇥?

i
2 CP, it holds that

k e⇥⌧,i �⇥?

⇡⌧(i)
kF  k b⇥⌧,i �⇥?

⇡⌧(i)
kF. (G.3)

Now, note that Algorithm 1 does not update the predicting functions within the epoch and thus for
all t such that {t, t+ 1, . . . , t+H} does not contain an integral multiple of E, it holds that our
prediction function bft is constant on the interval. Let I denote the set of times t such that the previous
condition fails, i.e.,

I = {t  T |⌧E � t > H for all ⌧ 2 N} .
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Then, we may apply Lemma G.2 to get
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where byt is the prediction of Algorithm 1. We may now apply Theorem 15 to bound this last quantity
by applying (G.3). The result follows. ⌅

G.6 Extensions

For simplicity, we considered a setting where all linear dynamics were stable with a common
Lyapunov function. Our results can be extended to the case where there are mode-dependent gains
(Ki)i2K , where Ki 2 Rdz⇥du , as well, because our proof demonstrates that as we achieve low-
regret, our simulation accurately recovers the correct mode sequence. Thus, if we know gains which
ensure mutual stability, we can apply these gains as well. More general closed-loop policies can
also be accomodated, provided we maintain the requisite smoothness (as, for example, ensured by
Lemma G.1). Lastly, as our regret-guarantees ensure parameter recovery, we can envision settings
where the gains are constructed, for example, by certainty-equivalent control synthesis, and analyze
their suboptimality via perturbation bounds such as those in [53].
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