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Abstract

The problem of piecewise affine (PWA) regression and planning is of foundational
importance to the study of online learning, control, and robotics, where it provides
a theoretically and empirically tractable setting to study systems undergoing sharp
changes in the dynamics. Unfortunately, due to the discontinuities that arise when
crossing into different “pieces,” learning in general sequential settings is impos-
sible and practical algorithms are forced to resort to heuristic approaches. This
paper builds on the recently developed smoothed online learning framework and
provides the first algorithms for prediction and simulation in PWA systems whose
regret is polynomial in all relevant problem parameters under a weak smoothness
assumption; moreover, our algorithms are efficient in the number of calls to an
optimization oracle. We further apply our results to the problems of one-step
prediction and multi-step simulation regret in piecewise affine dynamical systems,
where the learner is tasked with simulating trajectories and regret is measured in
terms of the Wasserstein distance between simulated and true data. Along the way,
we develop several technical tools of more general interest.

1 Introduction

A central problem in the fields of online learning, control, and robotics is how to efficiently plan
through piecewise-affine (PWA) systems. Such systems are described by a finite set of disjoint regions
in state-space, within which the dynamics are affine. In this paper, we consider the related problem
of learning to make predictions in PWA systems when the dynamics are unknown. While recent
years have seen considerable progress around our understanding of linear control systems, the vast
majority of dynamics encountered in practical settings involve nonlinearities. Learning and predicting
in nonlinear systems is typically far more challenging because, unlike their linear counterparts, the
dynamics in a local region of a nonlinear system do not determine its global dynamics.

PWA systems allow for discontinuities across the separate regions (“pieces”), and are thus a simplified
way of modeling rich phenomena that arise in numerous robotic manipulation and locomotion tasks
[41, 64, 40], such as modeling dynamics involving contact. In addition, deep neural networks with
ReLU activation [24] are PWA systems, providing further motiviation for their study. Already, there is
a computational challenge simply in optimizing an objective over these systems, which is the subject
of much of the previous literature. Here, we take a statistical perspective, assuming that we have
access to effective heuristic algorithms for this optimization task, as is common in online learning
[29, 9, 28]. Uniformly accurate learning of the dynamics across all pieces is typically impossible
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because some regions of space require onerous exploration to locate; thus, we instead consider an
iterative prediction setting, where at each time t, the learner predicts the subsequent system state.
From this, we extend to prediction of entire trajectories: over episodes t = 1, . . . , T , a learner
suggests a policy ⇡t, and the learner attempts to learn the dynamics so as to minimize prediction error
along the trajectory ⇡⌧ induces. This is motivated by iterative learning control, where our notion of
error is an upper bound on the discrepancy between the planner’s estimate of policy performance and
the ground truth.

Our iterative formulation of the learning problem is equivalent to the regret metric favored by
the online learning community, and which has seen application to online/adaptive control and
filtering problems in recent work. Critically, regret does not require uniform identification of system
parameters, which is typically impossible. The key pathology is that policies can oscillate across
the boundary of two regions, accruing significant prediction error due to sharp discontinuities of
the dynamics between said regions, a problem well-known to the online learning community [36].
Moreover, this pathology is not merely a theoretical artifact: discontinuities and non-smoothness pose
significant challenges to planning and modeling contact-rich dynamics such as those encountered in
robotic manipulation [58, 59, 46].

Our solution takes inspiration from, and establishes a connection between, two rather different fields.
Recent work in the robotics and control communities has relied on randomized smoothing to improve
planning across discontinuous and non-smooth dynamics [58, 59, 35, 44]. Additionally, the online
learning community has studied smoothed online learning [49, 27, 28, 9, 7, 6], which circumvents the
threshold-effect pathologies described above. We show that, if the dynamics and the control inputs
are subject to randomized smoothing, low regret becomes achievable. We note that the randomized
smoothing approach is in some sense canonical in mitigating the aforementioned pathology of policies
that oscillate across the boundaries of two regions; smoothing prohibits this pathology by ensuring
that the system is generally far from these boundaries. More importantly, our proposed no-regret
algorithm is efficient in terms of the number of calls to an optimization oracle, a popular notion
of computational efficiency in the online learning community [29, 34, 9, 28]. In our setting, the
optimization oracle required finds the best-fit PWA system to a batch of given data. Though this
problem is intractable [5], there is a rich literature of popular heuristics [23, 45, 19]. Unlike those
works, we examine the statistical challenge of generalization to novel data given such an oracle. We
remark that in many practical cases, our smoothness assumption comes for free, in the sense that the
Gaussian noise used to smooth gradients in Suh et al. [58] is already sufficient for our results to hold.

Contributions. A formal description of our setting is deferred to Section 2. Informally, we
consider the problem of prediction in a PWA system over a horizon of T steps, where the regions
are determined by intersections of halfspaces; we obtain prediction in PWA dynamical systems as a
special case. We aim to achieve sublinear-in-T excess square-loss error (regret) of O

�
T 1�↵

�
with

respect to the optimal predictor which knows the system dynamics, where ↵ > 0 is constant and
the prefactor on the regret is at most polynomial in all of the problem parameters. Our result is
derived from a general guarantee for online piecewise affine regression, which subsumes the online
PWA identification setting. We show that, when the dynamics and the control inputs are subject to
randomized smoothing satisfying the �dir-directional smoothness condition introduced by [7], our
regret bound is polynomial in �dir, dimension, and other natural problem parameters. While the
exact dependence on horizon may be far from optimal, we emphasize that our algorithm is the first to
achieve regret even polynomial in all parameters in the difficult setting of PWA systems. Moreover,
our work provides the first regret bound with polynomial dependence in dimension for oracle-efficient
smoothed online learning in the sense of Hazan and Koren [29] of a noncontinuous function class
without a realizability assumption and allowing for process noise. As a further application, we
adapt our algorithm to make predictions, at each time t, of the trajectory comprising the next H
steps in the evolution of the dynamical system. We bound the simulation regret, the cumulative error
in Wasserstein distance between the distribution of our proposed trajectory and that of the actual
trajectory. Assuming a Lyapunov condition, we demonstrate that our modified algorithm achieves
simulation regret O

�
poly(H) · T 1�↵

�
, which allows for efficient simulation.

Key challenges. As noted above, vanishing regret in our setting is impossible without directional
smoothness due to discontinuity in the regressors between different regions. The key challenge is to
leverage smoothness to mitigate the effect of these discontinuties. Note that, if the learner were to
observe the region in addition to the state, regression would be easy by decomposing the problem into
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K separate affine regression instances; the difficulty is in minimicking this approach without explicit
labels indicating which points are in which regions. We remark that were we to care only about low
regret without regard to efficiency, a simple discretization scheme of size exponential in dimension
coupled with a standard learning from experts algorithm [12] can achieve low regret; realizing an
oracle-efficient algorithm is significantly more challenging.

We adopt a natural, epoch-based approach by calling the optimization oracle between epochs,
estimating the underlying system, and using this estimate to assign points to regions in the subsequent
epoch. This introduces three new challenges, each of which requires substantial technical effort to
overcome. First, we need to control the performance of our oracle on the regression task, which
we term parameter recovery below. Second, we must enforce consistency between regions learned
in different epochs, so that we can predict the correct regions for subsequent covariates; doing this
necessitates an intricate analysis of how the estimated parameters evolve between epochs. Finally,
we need to modify the output of our oracle to enforce low regret with respect to the classification
problem of correctly predicting which mode we are in on as yet unseen data.

Our techniques. Our algorithm proceeds in epochs, at the end of each of which we compute a best-
fitting piecewise affine approximation to available data by calling the Empirical Risk Minimization
(ERM) oracle. The analysis of this best-fit shows that we recover the parameters and decision
boundaries of the associated regions (“pieces”) frequently visited during that epoch. By the pigeonhole
principle, this ultimately covers all regions visited a non-neglible number of times t over the horizon
T . Here, we leverage a careful analysis based on two modern martingale-least squares techniques: the
self-normalized concentration bound [2] for establishing recovery in a norm induced by within-region
empirical covariance matrices, and the block-martingale small-ball method [54] to lower-bound the
smallest eigenvalues of empirical covariances with high probability. In addition, we introduce and
bound a new complexity parameter, the disagreement cover, in order to make our statements uniform
over the set of possible decision boundaries.

After the estimation phase, each epoch uses this estimate to make predictions on new data as it arrives.
The key challenge is classifying the region to which each newly observed data point belongs. Without
smoothing, this can be particularly treacherous, as points on or near to the boundary of regions
can easily be misclassified and the correct predictions are discontinous. To leverage smoothing, we
propose a reduction to online convex optimization on the hinge loss with lazy updates and show,
through a careful decomposition of the loss, that our classification error can be controlled in terms
of the assumed directional smoothness. Combining this bound on the classification error with the
parameter recovery described in the preceding paragraph yields our sublinear regret guarantee.

We instantiate one-step prediction as a special case of the more general online linear regression
problem, showing that the approach described above immediately applies to the first problem under
consideration. Finally, in order to simulate trajectories, we use the learned parameters in the epoch to
predict the next H steps of the evolution. We then use the fact that our main algorithm recovers the
parameters defining the PWA system to show that simulation regret is bounded, which solves the
second main problem and allows for simulation in such systems.

1.1 Related Work

System Identification. System-identification refers to estimating the governing equations of a
dynamical system. The special case of linear dynamical systems is classical [37, 38, 16], and more
recent work has provided finite-sample statistical analyses in many regimes of interest [54, 15, 43,
61, 63]. Estimation for non-linear systems has proven challenging, and has been studied most in the
setting where the dynamics involve a known and smooth nonlinearity [39, 51, 20], or where only the
observation model is nonlinear [14, 42]. [52] study Markov jump systems, where the system dynamics
alternate between one of a finite number of linear systems (“modes”), with switches between modes
governed by a Markov chain. PWA systems are thus an attractive intermediate step between the
simple linear setting and the intractable general case. To our knowledge, ours is the first work to
tackle piecewise affine dynamics in full generality, where the system mode is determined by the
system state.

Despite its worst-case computational intractability [5], there is a rich literature of heuristic algorithms
for computing the best-fit PWA system to data; see the surveys [23] and [45], which compare
various approaches, notably the clustering method due to [19]. These references focus strictly on
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the algorithmic facets of computing a best-fit given an existing data set. We instead abstract the
computation of a best-fit into an ERM oracle in order to focus on the statistical considerations.

Online Learning and Smoothing. The study of online learning is now classical, with a small
sample of early works including Littlestone [36], Freund and Schapire [22, 21]. More recently, a
general theory of online learning matching that which we have in the statistical learning setting
was built up in Rakhlin et al. [49], Rakhlin and Sridharan [47], Rakhlin et al. [50], Block et al. [8],
with Rakhlin and Sridharan [48] characterizing the minimax regret of online regression. Due to the
robustness and generality of this adversarial model, many problems that are trivial to learn in the
statistical setting become impossible in the adversarial regime. Thus, some work [49, 27, 28, 9, 6]
has sought to constrain the adversary to be smooth, in the sense that the adversary is unable to
concentrate its actions on worst-case points. In addition, Block and Simchowitz [7], which introduces
the notion of directional smoothness to control the regret in a realizable, online classification problem;
realizability, here, means that there is no process noise in the sense that there exists some piecewise
affine function that perfectly predicts all targets given the covariates. We also note that the algorithm
in that paper is highly tailored to this realizable setting and thus is not at all robust to the noise
considered in the present paper. Of particular note is the concurrent work of Block et al. [10], which
solves a similar problem with a stronger oracle. Note that in that paper, the oracle assumption is
strong enough to break the lower bound of Hazan and Koren [29], while in this work we use the much
weaker oracle assumption found in Hazan and Koren [29], Haghtalab et al. [28], Block et al. [9].
This distinction is important because even in the standard (fully adversarial) online learning setting,
there is a computational separation between these two oracle models in general, as per Agarwal et al.
[4]; thus the fact that this separation does not apply to PWA systems given smoothness may be of
independent interest.

Online Learning for Control. In addition to the recent advances in finite-sample system identifica-
tion, a vast body of work has studied control tasks from the perspective of regret [1, 3, 56, 53, 13].
While we do not consider a control objective in this work, we share with these works the performance
metric of regret. Our work is more similar in spirit to online prediction in control settings [31, 62], in
that we also consider the task of next-step predictions under a system subject to control inputs.

Smoothing in RL and Control. One interpretation of the smooth online learning setting is that
well-conditioned random noise is injected into the adversary’s decisions. It is well known that such
noise injection can be viewed as a form of regularization [17], and recent recent work in the robotics
literature has shown that randomized smoothing improves the landscape in various robotic planning
and control tasks [58, 59, 35, 44]. More broadly, randomization has been popular for computation of
zeroth-order estimates of gradients, notably via the acclaimed policy-gradient computation [66].

2 Setting

In this section, we formally describe the problem setting of online PWA regression. We suppose there
is a ground truth classifier g? : Rd ! [K] and matrices

�
⇥?

i
| i 2 [K] and ⇥?

i
2 Rm⇥(d+1)

 
such

that

yt = ⇥?

it
· x̄t + et + �t, it = g?(x̄t), x̄t = [x>

t
|1]>, ||�t||  "crp, (2.1)

where, xt 2 Rd are covariates, yt 2 Rm are responses, et 2 Rm are zero-mean noise vectors in
Rm, �t are (small) non-stochastic corruptions with norm at most "crp ⌧ 1, and it 2 [K] are the
regression modes, which depend on the covariates xt. The extension to x̄t accomodates affine
regressors. We suppose that the learner has access to pairs (xt,yt) but, critically, does not know
the regression modes it. We do however suppose that g? is an affine classifer; that is g? 2 G =�
x 7! argmax1iK

hwi,xi+ bi
 

, where wi 2 Sd�1 is the unit sphere and bi 2 [�B,B]. It can
be shown that many natural physical systems are indeed modeled as PWA with affine boundaries [40],
and the closed loop dynamics for model-predictive control (MPC) in these cases is also a PWA system
[11]. We will assume throughout access to an empirical risk minimization oracle, ERMORACLE,
which satisfies the following guarantee:
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Assumption 1 (ERMORACLE guarantee). Given data (x̄1:s,y1:s), ERMORACLE returnsn
b⇥i|i 2 [K]

o
, bg satisfying

sX

t=1

���
��� b⇥bg(xt)x̄t � yt

���
���
2
� inf

g2G, {⇥i|i2[K]}

sX

t=1

����⇥g(xt)x̄t � yt

����2  "orac. (2.2)

While such an oracle is not computationally efficient in the worst case [5], there are many popular
heuristics used in practical situations [19, 23]. The learner aims to construct an algorithm, efficient
with respect to the above oracle, that at each time step t produces byt such that

Reg
T
:=

P
T

t=1 kbyt �⇥?

g?(x̄t)
x̄tk2 = o(T ). (2.3)

This notion of regret is standard in the online learning community and, as we shall see, immediately
leads to bounds on prediction error.

Directional Smoothness. As previously mentioned, without further restriction, sublinear regret is
infeasible, as formalized in the following proposition:
Proposition 1. In the above setting, there exists an adversary with m = d = 1, K=2, that chooses
⇥? and g?, as well as x1, . . . ,xT such that any learner experiences E [Reg

T
] � T

2 .

Proposition 1 follows from a construction of a system where there is a discontinuity across a linear
boundary, across which the states xt oscillate. The bound is then a consequence of the classical fact
that online classification with linear thresholds suffers linear regret; see Appendix B.1 for a formal
proof, included for the sake of completeness. Crucially, a discontinuity in the dynamics necessitates
an ⌦(1) contribution to regret each time the decision boundary is incorrectly determined. To avoid
this pathology, we suppose that the contexts are smooth; however, because standard smoothness
[26] leads to regret that is exponential in dimension [7], we instead consider a related condition,
“directional smoothness.”1

Definition 2 (Definition 52 from Block and Simchowitz [7]). Given a scalar �dir > 0, a random
vector x is called �dir-directionally smooth if for all w 2 Sd�1 := {w 2 Rd : kwk = 1}, c 2 R,
and � > 0, it holds that P (|hw,xi � c|  �)  �/�dir.

As an example, for any vector zt, if wt ⇠ N(0,�2
dirI), then zt+wt is �dirp

2⇡
-directionally smooth; see

Appendix C.1 for a proof and examples of directional smoothness for other noise distributions. Cru-
cially, directional smoothness is dimension-independent, in contradistinction to standard smoothness,
where we would only have ⇥

�
�d

dir

�
-smoothness (in the standard sense) in the previous example. We

remark that directional smoothness is a weak condition that holds in many natural settings. Indeed,
whenever noise is injected into the dynamics, directional smoothness will come for free. Such noise
injection can occur when there is uncertainty in position, as is common in robotic applications; in
this case, we can interpret this uncertainty itself as stochastic, which was the original motivation for
smoothed analysis of algorithms [57]. Further, note that while directional smoothness ensures the
system spends little time close to a boundary, due to the discreteness in time, there is no restriction
on the number of mode switches, which can be ⇥(T ) in general.

We defer further discussion of the assumption to Appendix C.1. We require our smoothness condition
to hold conditionally:
Assumption 2. Let Ft denote the filtration generated by x1, . . . ,xt. For all times t, xt conditional
on Ft�1 is �dir-directionally smooth.

Further Assumptions. Next, we make two standard assumption for sequential regression, one
controlling the tail of the noise and the other the magnitude of the parameters.
Assumption 3. Let F y

t
denote the filtration generated by Ft and e1, . . . , et�1 (equivalently, by Ft

and yt, . . . ,yt�1). For all t, it holds that et is ⌫2-sub-Gaussian conditioned on F y

t
; in particular,

et is conditionally zero mean.
Assumption 4. We suppose that for all 1  t  T , ||x̄t||  B and, furthermore, k⇥?

i
kF  R for all

i. We will further assume that ERMORACLE always returns b⇥i such that k b⇥ikF  R.
1For a comparison between directional and standard smoothness, consult [7].
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Algorithm 1 Main Algorithm
1: Initialize Epoch length E, Classifiers w0

1:K = (0, . . . ,0), margin parameter � > 0, learning
rate ⌘ > 0

2: for ⌧ = 1, 2, . . . , T/E do (% iterate over epochs)
3: ( b⇥⌧,i)1iK , bg⌧  ERMORACLE(x̄1:⌧E ,y1:⌧E)

4: bg⌧  Reorder
⇣
bg⌧ , ( b⇥⌧,i)1iK , ( b⇥⌧�1,i)1iK

⌘

5: w⌧E

1:K  OGD(w(⌧�1)E
1:K , x̄(⌧�1)E:⌧E ; bg⌧ , �, ⌘)

6: Let g̃⌧ (x̄) = argmax1iK

⌦
w⌧E

i
, x̄
↵

denote classifier induced by w⌧E

1:K .
7: for t = ⌧E, . . . , (⌧ + 1)E � 1 do

8: Receive x̄t, and predict ŷt = b⇥⌧,g̃⌧ (x̄t) · x̄t

9: Receive yt

Finally, we assume that the true affine parameters are well-separated:
Assumption 5. There is some �sep > 0 such that for all 1  i < j  K, it holds that k⇥?

i
�⇥?

j
kF �

�sep.

Note that Assumption 5 is, in a sense, generic, as explained in Remark 4 We defer the formal setting
of one-step prediction and simulation regret to Appendix G.1 and section 3.1.

3 Algorithm and Guarantees

We propose Algorithm 1, an oracle-efficient protocol with provably sublinear regret and polynomial
dependence on all problem parameters. Algorithm 1 runs in epochs: at the beginning of epoch ⌧ ,
the learner calls ERMORACLE on the past data to produce a linear classifier bg⌧ and estimates of the
regression matrices in each mode, b⇥⌧,i. A major challenge is identifying the same affine regions
between epochs. To this end, the learner permutes the labels of bg⌧ to preserve consistency in labels
across epochs, as explained informally in Section 4.2 and in greater detail in Appendix E.

The learner then runs online gradient descent (Algorithm 2) on the hinge loss to produce a modified
classifier eg⌧ ; finally, throughout the epoch, the learner uses b⇥⌧,i and eg⌧ to predict byt before repeating
the process in the next epoch. The reason for using a secondary algorithm to transform bg⌧ into eg⌧ is
to enforce stability of the predictor across epochs, which is necessary to bound the regret. Again, we
suppose that Assumption 1 holds throughout.
Theorem 3 (Regret Bound). Suppose we are in the setting of online PWA regression (2.1) and
Assumptions 2-5 hold. Then, if the parameters E, �, ⌘ are set as in (F.6), it holds that with probability
at least 1 � �, Reg

T
 poly (par, log(1/�)) · T 35/36 + "orac · T + K2 ·

P
T

t=1 ||�t||, for par :=
max{d,m,��1

dir ,�
�1
sep, B,R,K, ⌫}, where the polynomial dependence is given in (F.7).

Remark 1. While Theorem 3 requires that we are correctly setting the parameters of the algorithm,
aggregation algorithms allow us to tune these parameters in an online fashion (see, e.g. [30]).
Remark 2. The misspecification errors �t can be indicators corresponding to the x̄t being in small,
rarely visited regions; thus, we could run an underspecified ERMORACLE, with K 0 ⌧ K modes and
recover a regret bound depending only on frequently visited modes.

When "crp = "orac = 0, we obtain exactly the polynomial, no-regret rates promised in the introduc-
tion. Along the way to proving our regret bound, we establish that ERMORACLE correctly recovers
the linear parameters within frequently visited modes.

Theorem 4 (Parameter Recovery). Suppose that Assumptions 2-4 hold and let
n
b⇥i|i 2 [K]

o
, bg

denote the output of ERMORACLE(x̄1:T ,y1:T ) and Iij(bg) denote the set of times t such that bg(x̄t) = i
and g?(x̄t) = j. Then with probability at least 1 � �, for all 1  i, j  K such that |Iij(bg)| �
poly

�
par, log

�
1
�

��
·T 1�⌦(1) it holds that k b⇥i�⇥?

j
k2F is bounded by

p
T

|Iij(bg)| ·poly
�
par, log

�
1
�

��
.

Above we have given the result with the assumption that "crp = "orac = 0 for the sake of presentation;
in the formal statement, the general case is stated. Theorem 4 implies that directional smoothness
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is sufficient to guarantee parameter recovery at a parametric rate, in marked distinction to most
adversarial learning regimes. Before providing more detail on the algorithm and its analysis in
Section 4, we discuss an application to H-step prediction. An application to one-step prediction with
learner-provided controls can be found in Appendix G.1

3.1 Guarantees for Simulation Regret

We now describe an application of our results to H-step prediction; more formal description is
detailed in Appendix G.3. The learning process occurs in episodes t = 1, 2, . . . , T , consisting of
steps h = 1, 2, . . . , H . In each episode, an external planner provides the learner a policy ⇡t. For
simplicity, we assume that ⇡t = (ut,1, . . . ,ut,H) is open loop (state-independent) and stochastic,
minimicking situations such as model predictive control; extensions are mentioned in Appendix G.6.
With each episode, the true dynamics are given by

zt,h+1 = A?

it,h
zt +B?

it,h
ut,h +m?

it,h
+ et,h, it,h = g?(zt,h,ut,h). (3.1)

We assume that the process noise et,h are independently drawn from a known distribution D, and that
zt,1 is sampled from an arbitrary �dir-smooth distribution. At the start of episode t, the learner then
produces estimates Ât, B̂t, ĝt and simulates the plan ⇡t using the plug in estimate of the dynamics,
i.e., ẑt;h+1 = Â

t,̂it,h
ẑt,h + B̂

t,̂it,h
ut,h + m̂

t,̂it,h
êt,h, ît,h = bgt(ẑt,h, ût,h), where êt,h

i.i.d.⇠ D, and
ût,h are an i.i.d. draw from the stochastic, open-loop policy ⇡t. Because the simulated and true
processes use a different noise sequence, we consider the following notion of error, which measures
the distance betwen the two distributions induced by the dynamics, as opposed to the regret, which
measure the distance between the realizations thereof. We choose the Wasserstein metric W2, as it
upper bounds the difference in expected value of any Lipschitz reward function between the true and
simulated trajectories (see Appendix G.3 for a formal definition and more explanation).
Definition 5 (Simulation Regret). Let W2(·, ·) denote the L2-Wasserstein distance, define the con-
catenations xt,h = (zt,h,ut,h) and x̂t,h = (ẑt,h, ût,h), and let F̄t be the filtration generated
by {xs,h}1st,1hH . We define the T -episode, H-step simulation regret as SimReg

T,H
:=

P
T

t=1 W2

�
xt,1:H , x̂t,1:H | F̄t�1

�2.

Our goal is to achieve SimReg
T,H

. poly(H) · T 1�⌦(1), but polynomial-in-H dependence may be
challenging for arbitrary open-loop policies and unstable dynamics of the pieces. Thus, in the interest
of simplicity, we decouple the problems of linear stability from the challenge of error compounding
due to discontinuity of the dynamics by adopting the following strong assumption.
Assumption 6. There exists a known, positive definite Lyapunov matrix P 2 Rdz⇥dz that satisfies
(A?

i
)>P(A?)i � P for all modes i 2 [K].

Using a minor modification of Algorithm 1, detailed in Algorithm 4, we show that we can get
vanishing simulation regret, summarized in the following result:
Theorem 6. Suppose that we are in the setting of (3.1) and that Assumptions 2-5 and 6 hold. If we
run a variant of Algorithm 1 (see Algorithm 4 in Appendix G.4), then with probability at least 1� �,
it holds that SimReg

T,H
 poly (par, H) · T 35/36.

The proof of Theorem 6 with the exact polynomial dependence on the parameters can be found in
Appendix G.3 and rests on a lemma showing that under Assumption 6, simulation regret at a given
time t can be bounded as poly(H) multiplied by the maximum one-step prediction error for times
t, t+ 1, . . . , t+H , which is bounded in Theorem 3. We provide an exact recovery guarantee in the
case H = 1 and without requiring Assumption 6 in Appendix G.1.

4 Analysis

In this section, we present a sketch of the proof of Theorem 15. There are two primary sources of
regret: that which is due to poorly estimating the linear parameters within a mode and that which
is due to misclassification of the mode. We analyze each source separately , beginning with the
parameter recovery result of Theorem 4.
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Algorithm 2 Online Gradient Descent (Single Epoch)
1: Initialize Data x̄1:E , clasifiers w0

1:K , margin parameter � > 0, learning rate ⌘ > 0, classifier
bg : X! [K]

2: for s = 1, 2, . . . , E do % è defined in (4.1)

3: Receive x̄i and update ws

1:K  ⇧(Bd�1)⇥K

⇣
ws�1

1:K � ⌘rè�,i,bg(ws�1)
⌘

4: Return wm

1:K

4.1 Proof Sketch of Theorem 4

We break the proof into three parts: first, we show that the regret of bg and the b⇥i, when restricted to
times t 2 Iij(bg), is small; second, we relate the prediction error Qij(bg) =

P
t2Iij(bg) k( b⇥i�⇥?

j
)x̄tk2.

to the regret on Iij(bg); third, demonstrate that ⌃ij(bg) =
P

t2Iij(bg) x̄tx̄T

t
has minimal eigenvalue

bounded below by some constant with high probability. If all three of these claims hold, then, noting
that k b⇥i �⇥?

j
k2F  ||⌃ij(bg)�1||op ·

P
t2Iij(bg) ||( b⇥i �⇥?

j
)x̄t||2,

we conclude. Each of these claims requires significant technical effort in its own right. We introduce
disagreement covers, a stronger analogue of "-nets adapted to our problem and allowing us to turn
statements proven for a single g 2 G into ones uniform over G. The first step is to bound the size of
disagreement covers for the class G of interest; we then prove each of the three claims for some fixed
g 2 G and lift the result to apply to the data-dependent bg. This is done in Appendix D.1.

We now turn to our three claims. For the first, proved in Lemma D.15, we introduce the excess risk
Rij(g,⇥) =

P
t2Iij(g)

||⇥ix̄t � yt||2�||et + �t||2, for each pair (i, j), and note that the cumulative
empirical excess risk

P
i,j

Rij(bg, b⇥) of predicting using bg and b⇥ returned by the ERM oracle is
bounded by "orac because Rij(g?,⇥?) = 0 due to Equation (2.1). Thus, showing that Rij(bg, b⇥) is
small can be done by showing that for no i0, j0 is Ri0j0(bg, b⇥)⌧ 0. This can be accomplished by a
concentration argument for a single g,⇥0, coupled with a covering argument using our notion of
disagreement covers to boost the result to one uniform in G.

For the second claim, i.e., that Qij(bg) is controlled by Rij(bg, b⇥), we provide a proof in Lemma D.14.
For a fixed g 2 G, we decompose Rij(g, b⇥) into Qij(g) and an error term. We then use a generaliza-
tion of the self-normalized martingale inequality from Abbasi-Yadkori et al. [2] to control the error in
terms of Qij(g), providing a self-bounded inequality. Finally, we rearrange this inequality and apply
a union bound on a disagreement cover to boost the result to one uniform in G and ⇥.

To prove the third claim, that ⌃ij(bg) has singular values uniformly bounded from below, we split our
argument into two parts. First, in Appendix D.2, we assume the following sliced-small ball condition
on the data, i.e., for some ⇣, ⇢ > 0, it holds that P(hx̄t,wi2 � c · ⇣2|Ft, t 2 Iij(bg)) � c · ⇢.
Given the above condition, we establish a high probability lower bound on ⌃ij(g) for fixed g using a
self-normalized martingale inequality, using analysis that may be of independent interest. We then
again apply a union bound on a disagreement cover to lift this result to be uniform in G. Finally, in
Appendix D.3, we provide bounds on ⇣, ⇢ using directional smoothness and Markov’s inequality.

4.2 Mode Prediction

In this section, we address the second source of error, mode misclassification. The primary challenge
is that directional smoothness, as opposed to independent data, is insufficiently strong to guarantee
that bg⌧ generalizes well to unseen data in epoch ⌧ + 1. We take inspiration from online learning and
stabilize our algorithm across epochs by modifying the classifier bg⌧ . There are two challenges in
ensuring good performance of our online classifier. First, the dynamics described in (2.1) are only
identifiable up to a permutation of the labels. Thus, in order to enforce stability across epochs, we
need to enforce consistency of labelling accross epochs. This task is made more difficult by the
fact that different modes may be combined or split up across epochs due to the black box nature
of ERMORACLE. We solve this by appealing to a subroutine, Reorder, described in Algorithm 3 in
Appendix E, which combines modes that are sufficiently large and have sufficiently similar parameters
and then relabels the modes so that similar nominal clusters persist accross epochs.
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The second challenge is enforcing stability of our online classifier. We do this by introducing a
surrogate loss è

�,t,bg, the multi-class hinge loss with parameter � > 02. Formally, let w1:K =
(w1, . . . ,wK) for wi 2 B

d�1, and for g 2 G, define the (1/�)-Lipschitz and convex surrogate loss:

è
�,t,g(w1:K) = max

✓
0, max

j 6=g(x̄t)

✓
1� hwg(x̄t)

�wj ,x̄ti
�

◆◆
. (4.1)

In OGD (see Algorithm 2), we modify the output of ERMORACLE to construct a classifier eg⌧ by
running lazy online gradient descent on this surrogate loss, using the reordered labels given by the
output of ERMORACLE evaluated on the previous epoch. By invoking OGD, we show that our mode
classifier is sufficiently stable to ensure low regret, as stated informally in the following result.
Theorem 7 (Mode Prediction, Informal Statement of Theorem 13). Suppose that Assumptions
2-5 hold and let Emode

t
be the event that the learner, invoking Algorithm 1 with correctly tuned

parameters, misclassifies the mode of x̄t. Then, with probability at least 1 � �, it holds thatP
T

t=1 I{Emode
t

}  poly
�
par, log

�
1
�

��
· T 1�⌦(1).

Proof Sketch. We begin by addressing the lack of identifiability of the modes. For the pur-
poses of analysis, for each epoch ⌧ , we introduce the function ⇡⌧ : [K] ! [K] such that
⇡⌧ (i) = argmin1jK

k b⇥⌧,i � ⇥?

j
kF. In words, ⇡⌧ (i) is the mode j according to the ground

truth whose parameters are closest to those estimated by ERMORACLE. We let Emode
t

denote the
event of misclassifying the mode, i.e. the event that ⇡⌧ (eg⌧ (x̄t)) 6= g?(x̄t). We can then decom-
pose the misclassification as Emode

t
⇢ {⇡⌧+1(eg⌧ (x̄t)) 6= g?(x̄t)} [ {⇡⌧ (eg⌧ (x̄t)) 6= ⇡⌧+1(eg⌧ (x̄t))} .

We call the first event look-ahead classification error and the second permutation disagreement
error. To bound the first of these, we further decompose the look-ahead classification error event:
{⇡⌧+1(eg⌧ (x̄t)) 6= g?(x̄t)} ⇢ {⇡⌧+1(bg⌧+1(x̄t)) 6= g?(x̄t)} [ {eg⌧ (x̄t) 6= bg⌧+1(x̄t)} . Controlling
the first of these events is proved as a corollary of the bound on the permutation disagreement error
and we defer its discussion for the sake of simplicity. To bound the probability of the second event,
upper bound the indicator loss by è�,t,bg⌧+1 and apply standard online learning techniques to show that
regret of OGD on the (1/�)-Lipschitz and convex surrogate loss is small. We then use smoothness to
show that the optimal comparator with respect to the surrogate loss does not experience large regret
with respect to the indicator loss, which in turn has a comparator experiencing zero loss due to the
well-specified nature of g?. Thus, putting everything together, this provides bound on the look-ahead
classification error, with full details presented in Appendix E.1.

Bounding the permutation disagreement error is what necessitates the gap assumption. We show that
if there are sufficiently many data points that bg⌧ assigns to a given mode, with the threshold defined
in terms of �sep and other parameters of the problem, then with high probability the cluster becomes
stable in the sense that b⇥⌧,i ⇡ b⇥⌧+1,i. This result is proved using the fact that if |Ii,j(bg⌧ )| is large
enough, then the parameter recovery results from the previous section tell us that k b⇥i � b⇥jkF is
small. Using the triangle inequality and the fact that k⇥?

j
�⇥?

j0kF > �sep for j0 6= j ensures that j
is unique in satisfying k b⇥⌧,i �⇥?

j
kF ⌧ 1. A similar argument applies to epoch ⌧ + 1, and thus we

can identify b⇥⌧,i with some b⇥⌧+1,i0 by these matrices being sufficiently close in Frobenius norm.
Algorithm 3 takes advantage of exactly this property and permutes the labels across epochs in order
to maintain consistency and control the permutation disagreement error; full details can be found
in Appendix E.2. Combining this argument with the bound on the look-ahead classification error
suffices to control the online classification component of the regret. ⌅

5 Discussion

We have given an efficient online learning algorithm for prediction in piecewise affine (PWA) systems.
Our results are the first foray into the study of such systems, and a number of outstanding questions
remain: Does directional smoothness facilliate low regret for planning and control, in addition to for
simulation and prediction? If the systems are piecewise-affine but forced to be continuous on their
boundaries, is there an oracle efficient algorithm which suffers low regret without assuming directional

2We use the hinge loss because it is convex, Lipschitz, and its relationship to the indicator loss is particularly
convenient under directional smoothness. Other convex, Lipschitz surrogates provide similar guarantees.
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smoothness? Can learning in piecewise affine systems be obtained under partial observation of the
system state? Can the dependence of regret on horizon be improved? We hope that our work initiates
investigation of the above as the field continues to expand its understanding beyond the linear regime.
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