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Abstract

User modeling techniques profile users’ latent characteristics (e.g., preference)
from their observed behaviors, and play a crucial role in decision-making. Un-
fortunately, traditional user models may unconsciously capture biases related to
sensitive attributes (e.g., gender) from behavior data, even when this sensitive infor-
mation is not explicitly provided. This can lead to unfair issues and discrimination
against certain groups based on these sensitive attributes. Recent studies have been
proposed to improve fairness by explicitly decorrelating user modeling results and
sensitive attributes. However, most existing approaches assume that fully sensitive
attribute labels are available in the training set, which is unrealistic due to collection
limitations like privacy concerns, and hence bear the limitation of performance. In
this paper, we focus on a practical situation with limited sensitive data and propose
a novel FairLISA framework, which can efficiently utilize data with known and
unknown sensitive attributes to facilitate fair model training. We first propose
a novel theoretical perspective to build the relationship between data with both
known and unknown sensitive attributes with the fairness objective. Then, based on
this, we provide a general adversarial framework to effectively leverage the whole
user data for fair user modeling. We conduct experiments on representative user
modeling tasks including recommender system and cognitive diagnosis. The results
demonstrate that our FairLISA can effectively improve fairness while retaining
high accuracy in scenarios with different ratios of missing sensitive attributes.

1 Introduction

User modeling is a fundamental task in many applications (e.g., recommender system), which aims
to infer latent characteristics through analyzing users’ behavioral information, such as capability and
preference [56]. The results from user modeling serve as an important basis for decision-making,
which might affect users’ lives to some extent [17, 15]. However, recent studies have demonstrated
that biases related to sensitive attributes (e.g., gender, race) can be unconsciously captured from
behavior data, even when this sensitive information is not explicitly provided. This can lead to unfair
user modeling results [3, 23, 45]. For example, college admissions based on user modeling may
underestimate underrepresented demographic groups [48]. Career recommendation shows apparent
gender discrimination even for equally qualified men and women [19]. As such, it is crucial to
consider fairness issues and ensure that users with different sensitive attributes are treated similarly.
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Following previous studies [3, 23, 45], the fairness requirement for user modeling in this paper is
that the results should not expose any sensitive information. This requirement can be formalized
as minimizing the mutual information between user modeling results and sensitive attributes [2].
Along this way, many approaches have been proposed, such as constraint optimization [1], adversarial
learning [3, 23, 45, 20] and regularization methods [49, 42], among which adversarial methods show
their theoretical elegance and receive widespread attention.

While many methods have shown promising results, most of them require explicit sensitive attributes
to guide fair model training. However, in real-world scenarios, users are not always willing to
share sensitive information due to privacy concerns. For example, only 14% of teen users expose
their complete profiles on Meta [31]. The limited sensitive attributes situation means that only a
limited amount of data with known sensitive attributes can participate in model training, resulting in
insufficient training data problem for existing methods. The most practical solution is to utilize data
with unknown sensitive attributes to facilitate model training. Nevertheless, several obstacles must
be addressed, including: 1) Efficient data utilization: Currently, some researchers have utilized
data with unknown sensitive attributes by predicting missing sensitive labels based on data with
known sensitive attributes [5]. However, the accuracy of these predicted labels cannot be guaranteed,
especially in extremely limited sensitive situations, which results in suboptimal data utilization. 2)
Theoretical guarantee: The fair goal in our paper is to minimize the mutual information between
the sensitive attributes and the user modeling results. When we utilize data with unknown sensitive
attributes to improve fair user modeling, how can we establish a good theoretical guarantee? 3)
Framework generalization: Several fair adversarial methods have been introduced to handle data
with known sensitive attributes [3, 23, 45, 20]. Each method has its advantages and disadvantages in
different scenarios. In this case, we believe that a general framework should be proposed that can
incorporate data with unknown sensitive attributes into existing fair adversarial methods.

To address these obstacles, in this paper, we propose FairLISA, a general framework for Fair user
modeling with LImited Sensitive Attributes, which can efficiently utilize data with known and unknown
sensitive attributes to facilitate fair model training. We first propose a novel theoretical perspective to
build the relationship between two types of data and the fair mutual information objective. Specifically,
we establish a connection between data with unknown sensitive attributes and the fairness goal through
shannon entropy, while data with known sensitive attributes and the fairness goal are connected
through cross-entropy. By doing so, we can directly leverage user data with unknown sensitive
attributes without the need for predicting missing attributes, reducing information loss caused by
predictions and ultimately increasing the utilization rate of data with unknown sensitive attributes.
Then building on this foundation, we propose an adversarial learning approach to effectively leverage
the entire user data for fair model training. Since existing fair adversarial approaches requiring
fully known sensitive data can be interpreted from a mutual information perspective [3, 23, 45],
FairLISA can easily generalize most existing adversarial methods and expand them to limited sensitive
attribute situations. Finally, to validate the effectiveness of our proposed FairLISA framework, we
conduct extensive experiments on two representative user modeling tasks including the recommender
system and cognitive diagnosis. Empirical results show that our framework can enhance fairness
with satisfactory accuracy performance, even in scenarios with different ratios of missing sensitive
attributes. The main contributions of this work are as follows:

• Efficient Data Utilization and Theoretical Guarantee. We provide a novel theoretical per-
spective to build the relationship between data with known and unknown sensitive attributes
with fairness objective. This allows for the effective leveraging of data with unknown
sensitive attributes, reducing information loss caused by predicting missing attributes.

• Framework Design and Generalization. We propose a general framework, FairLISA,
which can expand most existing fair adversarial methods to limited sensitive situations.

• Experimental Evaluations. We conduct experiments in two representative user modeling
tasks (i.e., recommender system, cognitive diagnosis) with six representative models and
two datasets, the results demonstrate the effectiveness and robustness of FairLISA.

2 Related work

User Modeling. User modeling is a fundamental task that captures users’ useful potential char-
acteristics, such as capability, preference, and so on [44, 56, 28, 50]. It has been applied in various

2



applications. For example, based on user capability fitting, researchers employed cognitive diag-
nosis [30, 9] to model student proficiency [4, 30]; based on user preference mining, researchers
applied collaborative filtering [39] for mining user interest preferences to different tasks including
news recommendation [26], social network [46]. Most of the existing user modeling methods focused
on getting more precise results [4, 30, 16, 15, 27, 29]. However, as the results directly affect the
opportunity of users [32, 54, 55], it can easily lead to unfair outcomes. In this paper, we explore
fairness-aware user modeling, which aims to ensure fairness during the user modeling process.

Fairness in Machine Learning. Fairness in machine learning can be divided into three categories:
(1) individual fairness, which requires similar individuals to be treated similarly [7, 6]; (2) group
fairness, which requires different groups divided by sensitive attributes should be treated similarly [35,
7, 13]; (3) max-min fairness, which aims to maximize the utility of worst-off group [37]. In this work,
we focus on group fairness since it can measure how the underrepresented group is treated.

In group fairness research, many fairness metrics and unfairness mitigation techniques had been
proposed [22, 36, 45, 38, 47, 3, 23, 43, 10, 21]. For example, Avishek et al. [3] discovered the learned
user representations would capture biases of sensitive information and proposed to minimize the
mutual information between representations and sensitive attributes through an adversarial framework.
Li et al. [23] also proposed this goal from the causal perspective and provided two similar adversarial
strategies. Wu et al. [45] argued the user-centric structure would expose users’ sensitive attributes
and proposed an adversarial framework from a graph perspective to obtain more efficient results.

Despite their ability to improve fairness, all of these methods are based on enough user sensitive
attribute information. While in many real-world applications, it is difficult to collect such data since
users may care about privacy and are reluctant to divulge their sensitive information [31]. The lacking
of sensitive information challenges most existing solutions. Exploring fair models with missing
sensitive attributes is an important and challenging issue, and it is still under-explored. There are
only a few works in this direction. One branch of approaches investigates fairness without sensitive
attributes. For example, some researchers achieved this via solving a max-min problem [25, 14, 18].
However, they were only effective for max-min fairness [37], which was different from our group
fairness goal. Some researchers tried to solve this problem with the help of related features [51, 53].
However, obtaining such related features is not always feasible in practical applications, thereby
limiting the utilization of these methods. The other branch explores improving fairness in limited
sensitive attribute situations, Dai et al. [5] proposed FairGNN, the main idea was to predict missing
sensitive attribute labels. However, their reliance on the accuracy of the predicted pseudo labels
resulted in suboptimal data utilization, particularly in extremely limited sensitive situations. Different
from previous papers, we explore group fairness in limited sensitive attribute situations and can
efficiently utilize data with known sensitive attributes without predicting missing sensitive attributes.

3 Problem Definition

In user modeling, we denote U = {ui}Nu
i=1 and V = {vi}Nv

i=1 as the user set and the item set,
respectively. The interactions between users and items generate interaction records R, whose element
is denoted as triplet (u, v, r) where u ∈ U , v ∈ V , and r is the corresponding interaction decided by
the corresponding task. As we have assumed that sensitive attributes are only available for a limited
number of users, we split the user set U into two disjoint sets as UL = {ui}li=1 and UN = {ui}l+n

i=l+1
so that the sensitive label s is only accessible for each user in UL instead of UN . Let S be the sensitive
attribute that takes value in S, whose values for users in UL are available, i.e. {si|si ∈ S}li=1. Our
goal is to learn a user model f that generates a fair representative characteristic θ for each user
u. Following previous studies [3, 21, 42], the fairness requirement for user modeling is that the
generated outcome should not expose any sensitive information, which can be depicted as the result
of zero mutual information between the user’s generated characteristic θ and sensitive attribute S, i.e.
I(θ, S) = 0. In this way, we have the following problem definition:

Problem 1. Given interaction records R, users U , items V and the sensitive label set {si}li=1
for UL ⊂ U , the goal is to learn a user model f : U → Θ that generates a fair representative
characteristic θ ∈ Θ for each user u ∈ U , such that I(θ, S) = 0 where S is the corresponding
sensitive attribute.
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4 FairLISA

4.1 Overview

的Filter

的Discriminator

…

Data with known sensitive attributes

Data with unknown sensitive attributes

Figure 1: The architecture of FairLISA. For a given
user with the original representation θ generated by
any user models, we first use the filer F trained on
UL and UN to remove the sensitive information and
get the filtered representation θ̂. Then we use the
discriminatorD trained on UL to predict the sensitive
feature of θ̂. Through adversarial training and the
better utilization of UN , we can get a better filter to
remove sensitive information.

FairLISA is an adversarial learning-based
framework designed to promote fair model
training by efficiently utilizing data with
known and unknown sensitive attributes. The
architecture is shown in Figure 1. It consists
of two modules including a filter F and a dis-
criminator D. Specifically, for a given user
with the original representation θ generated by
any user models, we use the filter F trained
on data with known sensitive attribute UL and
data with unknown sensitive attribute UN to
filter out the information of sensitive attributes.
The filtered user modeling result of a user u
is denoted as θ̂ = F(θ). To guide the filter F
training, we use the idea of adversary learning
to train a discriminator D. The goal of the
discriminator D is to fail the filter F , which
is achieved by predicting the corresponding
sensitive attribute from the filtered user rep-
resentations θ̂. Through adversarial training
between F and D, we can get a filter to re-
move the effect of sensitive attributes. Unlike
traditional adversarial methods [3, 23, 45] that
only rely on UL, FairLISA can train a filter
with UL and UN , i.e., θ̂ = FUL+UN

(θ). Following the previous study [5], we assume the distribution
of users’ filtered representations in UL and UN to be the same and use p(θ̂) to represent them. We will
introduce how FairLISA achieves the fairness goal (i.e., I(θ̂, S) = 0) through UL, UN respectively
and how to utilize these two types of data to form the final architecture. For simplicity of theoretical
analysis, we assume there is one sensitive attribute S (e.g., gender) and s (e.g., female) is an attribute
value of S.

4.2 Fairness with Known Sensitive Attributes

We will begin by explaining how FairLISA achieves I(θ̂, S) = 0 with data with known sensitive
attributes UL, i.e., θ̂ = FUL

(θ). More specifically, we will describe how to establish a connection
between UL and I(θ̂, S), as well as how to leverage data with known sensitive attributes to minimize
I(θ̂, S) based on this connection. In this regard, we define Ds(θ̂) as the probability that the discrim-
inator D recognizes the value of the sensitive attribute S as s based on θ̂, H denotes the shannon
entropy [24]. According to the following lemma, mutual information I(θ̂, S) can be expressed as the
optimization function shown below, when the optimal discriminator can achieve D∗

s(θ̂) = p(s|θ̂).
Lemma 4.1. Given the optimal discriminator D∗

s(θ̂) and let p(θ̂|s) be the distribution of users’
filtered representations whose sensitive attribute value is s, then I(θ̂, S) can be derived as,

I(θ̂, S) =
∑
s

p(s)Eθ̂∼p(θ̂|s)

[
logD∗

s(θ̂)
]
+H(S). (1)

The detailed proof is provided in Appendix A.1. We have established a connection between UL and
I(θ̂, S) through Lemma A.1. Consequently, fairness can be achieved by minimizing Eq. (11) with
a fixed optimal discriminator D∗. It is important to note that estimating p(θ̂|s) in Eq. (11) requires
access to sensitive information. This implies that leveraging UN (data with unknown sensitive
attributes) to enhance fairness becomes impossible. However, in real-world applications, users are
often concerned about privacy and may be unwilling to disclose their sensitive information. The
limited availability of sensitive attributes means that only a restricted amount of data with known
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sensitive attributes can participate in model training, leading to an insufficient training data problem
for existing methods. In the following sections, we will introduce how to alleviate this problem by
effectively utilizing data with unknown sensitive attributes.

4.3 Fairness with Unknown Sensitive Attributes

An intuitive approach to leverage data with unknown sensitive attributes UN is to predict the missing
sensitive labels based on UL. However, the accuracy of these predicted pseudo-labels cannot be
guaranteed, which results in suboptimal data utilization. Therefore, it is crucial to explore new
methods that fully harness the potential of UL to enhance fairness. Given that the suboptimal data
utilization stems from predicting missing attributes, a natural idea is to directly employ UN without
predicting missing attributes, which can avoid information loss caused by prediction and maximize
the utilization of UN to a greater extent. To achieve this objective, it is necessary to directly establish
a relationship between I(θ̂, S) and UN . Drawing inspiration from Lemma A.1 and structural insights
related to the KL divergence [11], we conclude that shannon entropy H can build this relationship.

Lemma 4.2. Given the optimal discriminator D∗
s(θ̂) and let p(θ̂) be the distribution of users’ filtered

representation, we have,

I(θ̂, S) = Eθ̂∼p(θ̂)

∑
s

[
D∗

s(θ̂) logD∗
s(θ̂)

]
+H(S)

= −H(D∗
s(θ̂)) +H(S).

(2)

Proof. According to the relationship between mutual information and JS divergence, the relationship
between JS divergence and KL divergence [24], we have

I(θ̂, S) = JSp(s)(p(θ̂|s)) =
∑
s

p(s)KL(p(θ̂|s)||p(θ̂)). (3)

By calculating KL divergence, we get,

∑
s

p(s)KL(p(θ̂|s)||p(θ̂) =
∫ ∑

s

p(s)p(θ̂|s) log p(θ̂|s)
p(θ̂)

dθ̂. (4)

Then we expand the formula and use bayes’ theorem,

∫ ∑
s

p(s)p(θ̂|s) log p(θ̂|s)
p(θ̂)

dθ̂

=

∫
p(θ̂)

∑
s

p(s|θ̂) log p(s|θ̂)dθ̂ +H(S).

(5)

Noted that p(s|θ̂) is exactly D∗, we replace it in the formula, and get the result,∫
p(θ̂)

∑
s

p(s|θ̂) log p(s|θ̂)dθ̂ +H(S)

= −H(D∗(θ̂)) +H(S).

(6)

Here we give the key steps of proof, more details are provided in Appendix A.2. In Lemma A.2, the
term p(θ̂|s) disappears, removing the obstacle that hindered the direct utilization of UN as discussed
in Lemma A.1. Thus, we have successfully established the relationship between I(θ̂, S) and UN

through Lemma A.2. We also provide an intuitive illustration. By maximizing the entropy of the
discriminator, we can ensure that the prediction probability of sensitive attributes becomes uniform.
For example, in the case of gender prediction, both male and female probabilities are set to 0.5. This
shows that the discriminator becomes unable to predict the sensitive features from the learned user
embedding. Consequently, we can minimize our fairness criterion I(θ, S) directly by minimizing Eq.
(15) using UN . This allows for the effective utilization of UN to enhance fairness without the need to
predict unknown sensitive attribute labels.
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4.4 Architecture

In this section, we now introduce how to combine UL and UN together to form the final architecture
(shown in Figure 1) in order to obtain a higher improvement of fairness, i.e., θ̂ = FUL+UN

(θ).
By leveraging the insights from Lemma A.1 and Lemma A.2, we have established the connection
between UL, UN , and the fairness goal I(θ̂, S). Thus, fairness can be achieved through minimizing
Eq. (11) with UL and minimizing Eq. (15) with UN with a fixed optimal discriminator D∗. To
achieve this goal, we first optimize the D to the best, then fix D to optimize F . FairLISA consists of
a filter and a discriminator. We will introduce them respectively as well as the training algorithm.

Filter. We use the whole data to optimize the F . For data with known sensitive attributes, we
optimize F by minimizing the right side of Eq. (11). The empirical estimate can be computed as:

LL =
1

l

∑
s

∑
1≤i≤l:si=s

logDs(θ̂i), (7)

where θ̂i is the filtered representation of ui . Here we omit H(S) in Eq. (11) since it is a constant.

For data with unknown sensitive attributes, we optimize F by minimizing the right side of Eq. (15).
The empirical estimate can be computed as:

LN =
1

n

∑
l+1≤i≤l+n

∑
s

Ds(θ̂i) log(Ds(θ̂i)), (8)

where θ̂i is the filtered representation of ui . Here we also omit H(S) since it is a constant.

Furthermore, in addition to the fairness requirement, we need to maintain users’ useful potential
characteristics for different user modeling tasks (e.g., recommender system, cognitive diagnosis).
To achieve this, we use a task-specific loss function to mine useful information of users. With the
combination of Eq. (7) and Eq. (8), we get the following loss function:

min
F
LF = λ1Ltask + λ2LL + λ3LN , (9)

where Ltask represents the loss of specific user modeling task, λ1, λ2 and λ3 are hyperparameters.
We study the influence of these hyperparameters in the experiment section (RQ3).

Discriminator. To guide the filter F training, the goal of the discriminators is to predict the
corresponding sensitive attribute from the filtered user representations θ̂. Therefore, for the loss
function of D, we optimize the discriminator with data UL using the following cross-entropy:

min
D
LD = −1

l

∑
s

∑
1≤i≤l:si=s

logDs(θ̂i), (10)

where θ̂i is the filtered representation of ui . Here we omit H(S) in Eq. (11) since it is a constant..

Training Algorithm. Since the discriminator can not be optimized to the best directly, following the
traditional adversary learning training methods [12], we adopt mini-batch training in implementation.
Specifically, 1) T mini-batch updates minimizing LF with the D fixed; 2) T mini-batch updates
minimizing LD with the F fixed. Here T = 10 in our implementation. The whole optimization
algorithm for FairLISA is shown in Appendix B.

4.5 Relation to Existing Adversarial Methods

In this paper, we provide a novel mutual information perspective to interpret the strategies for
achieving fairness in existing adversarial methods, and unify the treatment of data with known and
unknown sensitive attributes. As a result, FairLISA can easily generalize most existing fairness-aware
adversarial methods with data with unknown sensitive attributes. For example, if we set λ3 in Eq.
(9) to 0, which means ignoring the data in UN , FairLISA degenerates to ComFair [3], a classical
fairness-aware adversarial method. Moreover, our fairness mutual information objective is compatible
with existing adversarial methods and can theoretically expand them to the limited sensitive attribute
situation. For example, if we combine Eq. (8) from FairLISA with FairGo [45], a state-of-the-art fair
model which considers graph structure, we could enhance its fairness performance. We will show the
performance in experiments (denoted as FairGo+FairLISA).
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5 Experiments

In this section, we first introduce the dataset and experimental setup. Then, we conduct extensive
experiments to answer the following questions:

• RQ1: Does FairLISA outperform the fairness-aware baselines in limited sensitive situations?

• RQ2: Can FairLISA achieve more robust fairness results on different missing ratios?

• RQ3: How do the data with known and unknown sensitive attributes impact the results?

• RQ4: How is the performance of FairLISA on several classical group fairness metrics?

The code is released at https://github.com/zhengz99/FairLISA.

5.1 User Modeling Tasks

To explore fairness in user modeling with limited sensitive information, we choose two representative
issues in real-world user modeling scenarios. The first is user capability modeling in areas such as
education which is called cognitive diagnosis [40]. The user u, item v in our general user modeling
refer to student and exercise correspondingly, and interaction result r is the score that the student
got on exercise. The goal is to model the capability of students. To achieve this, we train models on
student performance prediction task. We choose several representative models: IRT [30], MIRT [4],
NCD [41]. The second is user preference modeling in recommender system [39]. The user u, item v
here refer to the customer and product respectively. The interaction result in r is the user evaluation
of the product, such as rating behavior. By user rating prediction task, we can mine user preference.
We choose several representative models: PMF [34], NCF [15], LightGCN [16]. Detailed basic user
model descriptions will be shown in Appendix C.1.

5.2 Dataset Description

We use two real-world datasets to verify the effectiveness and robustness of FairLISA. Specifically,
we use PISA20152 for cognitive diagnosis and MovieLens-1M3 for a recommender system. Detailed
descriptions can be found in Appendix C.2. Both of these datasets are publicly available and do
not contain any personally identifiable information. In our experiments, we split each dataset into
training, validation, and testing sets, with a ratio of 7:1:2. All baseline models were trained and
evaluated using the same datasets.

5.3 Experimental Setup and Baselines

Evaluation. The evaluation of our methods can be divided into accuracy evaluation and fairness
evaluation. For accuracy evaluation, we select different accuracy metrics for different tasks. For
cognitive diagnosis, following previous works from cognitive diagnosis [41, 8], we adopt different
metrics from the perspectives of both regression (MAE, RMSE) and classification (AUC, ACC). For
recommender system task, we adopt RMSE.

For fairness evaluation, our fairness goal refers to user modeling results do not leak any user’s sensitive
information. To measure the fairness performance, following the settings in fair user modeling such
as [3, 23, 45], we train an attacker who has the same structure as the discriminator. Specifically,
after training our framework, we use the filtered user representations as input and the corresponding
sensitive attributes as labels to train the attacker. If the attacker can distinguish sensitive features
from the user representations, it indicates that the sensitive information is exposed by user modeling
results. To train and evaluate attackers, we split the data into train (80%) and test sets (20%) and
calculate the AUC score and apply their macro-average to make the result insensitive to imbalanced
data. The smaller values of AUC denote better fairness performance with less sensitive information
leakage, which be used as the unfairness metric in the following experiments.

2https://www.oecd.org/pisa/data/2015database/
3https://grouplens.org/datasets/movielens/1m/
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Table 1: The fairness and accuracy performance on recommender system task. AUC represents AUC
scores of all attackers. The smaller values of AUC denote better fairness performance with less
sensitive information leakage (the fairer). G, A, O represent gender, age, and occupation. RMSE
represents accuracy performance. The best fairness and accuracy results methods are highlighted in
bold. The runner-up accuracy results are represented by underline.

PMF NCF LightGCN

AUC-G AUC-A AUC-O RMSE AUC-G AUC-A AUC-O RMSE AUC-G AUC-A AUC-O RMSE

Origin 0.6862 0.7235 0.6656 0.8670 0.6915 0.7153 0.6625 0.8635 0.7112 0.7053 0.6939 0.8301

ComFair 0.5389 0.5554 0.5398 0.9027 0.5379 0.5414 0.5374 0.8994 0.5498 0.5498 0.5411 0.8704
FairGo 0.5592 0.5592 0.5371 0.8933 0.5351 0.5412 0.5319 0.8941 0.5457 0.5435 0.5408 0.8658
FairGNN 0.5288 0.5370 0.5212 0.9025 0.5294 0.5305 0.5256 0.9009 0.5289 0.5315 0.5225 0.8648

FairLISA 0.5193 0.5240 0.5210 0.8935 0.5281 0.5220 0.5222 0.8853 0.5273 0.5291 0.5214 0.8564
FairGo+FairLISA 0.5132 0.5270 0.5112 0.8927 0.5273 0.5204 0.5214 0.8867 0.5241 0.5260 0.5208 0.8628

Implementation detail. For task-specific loss Ltask in Eq.(9), we use cross-entropy loss for
cognitive diagnosis tasks and MSE loss for recommendation tasks. For all datasets and models, we set
the learning rate to 0.001 and the dropout rate to 0.2. We select the best model based on its original
performance on the valid set and use it to conduct the fairness test. We set adversarial coefficient
λ1 = 1, λ2 = 2, λ3 = 1 for cognitive diagnosis, and λ1 = 1, λ2 = 20, λ3 = 10 for recommendation
tasks. For the adversarial architecture, the filter module is two-layer perceptrons and we use ReLU
as the activation function. The discriminators and attackers are three-layer perceptrons with the
activation function of LeakyReLU. We set the dropout rate to 0.1 and the slope of the negative section
for LeakyReLU to 0.2 for them. We implement all models with PyTorch and conduct all experiments
on four 2.0GHz Intel Xeon E5-2620 CPUs and a Tesla K20m GPU.

Baseline approaches. To validate the effectiveness of FairLISA, we compare FairLISA with the
following baselines. Origin (i.e., basic user models without fairness consideration), ComFair [3],
FairGo [45], FairGNN [5]. Further, to validate the generalizability of FairLISA, we expand FairGo to
FairGo+FairLISA (introduced in section 4.5). A detailed description will be shown in Appendix C.3.

5.4 Experimental Results

Overall results (RQ1). The fairness and accuracy results of the recommendation task are shown in
Table 1. The results of cognitive diagnosis are shown in Appendix C.4. We have several observations.

• From the perspective of model fairness, the AUC of attackers on origin user models is significantly
higher than 0.5, which means that the sensitive information is exposed by user modeling results
even if such information is not explicitly used. Further, models which can simultaneously apply
data with known and unknown sensitive information (i.e., FairGNN, FairLISA, FairGo+FairLISA)
get better fairness performance. It shows that data with unknown sensitive attributes benefit fair user
modeling. More importantly, we find our methods (i.e., FairLISA, FairGo+FairLISA) outperform
others, suggesting the effectiveness of our work.

• From the perspective of model accuracy, all fairness-improving methods lose some accuracy
compared with origin user models. The reason is that the fairness-aware methods are aiming at
filtering out the information of certain sensitive features from user modeling results, which will
to some extent reduce the information contained, thus decreasing accuracy [3, 33, 45]. Among
these fairness-aware methods, we could find FairLISA, FairGo+FairLISA have the best accuracy
performance, and they could even maintain comparable accuracy with origin models in some cases.

Performance on different ratios of missing sensitive attributes (RQ2). In this part, we study the
impacts of sensitive attributes missing ratios and investigate the robustness of FairLISA in extremely
limited sensitive situations. We choose the representative models which achieve the best performance
result in RQ1 (i.e., NCD, LightGCN) and vary the ratio of missing sensitive attributes as {20%, 40%,
60%, 80%, 95%} in the training set. From the results in Figure 2, we have the following findings.

• The sensitive attributes missing ratios have a huge impact on the fairness results. As the missing
ratios increase, the fairness-aware methods are not effective enough. Especially, when the missing
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Figure 2: Fairness performance on different missing sensitive attributes ratios ( the lower, the fairer).

ratio reaches 95%, several fairness-aware baselines converge to the Origin baseline. This obser-
vation indicates that in the absence of extremely sensitive attributes, other baseline methods have
essentially lost their effectiveness in achieving fairness and perform similarly to the case where
fairness was not considered at all. This highlights the point that fair user modeling in limited
sensitive situations is worth studying.

• The models that can deal with unknown sensitive attributes, i.e., FairGNN, FairLISA,
FairGo+FairLISA, perform better in most cases. It shows that making use of data with unknown
sensitive attributes can alleviate the limited known sensitive information problem to some extent.

• Our methods, i.e., FairLISA and FairGo+FairLISA, consistently achieve the best performance.
As the missing ratio increases, the improvements of our methods over FairGNN become more
prominent. When the missing ratio reaches 95%, FairLISA can achieve an 8% improvement
in fairness compared to FairGNN. This is due to FairGNN’s reliance on the accuracy of the
estimator. When numerous sensitive attributes are present, the accuracy of the sensitive estimator
can be ensured. Nevertheless, FairGNN encounters notable constraints when access to sensitive
information is limited. Our methods, based on information theory, can directly apply data with
unknown sensitive attributes to improve fairness and are not greatly affected by the missing ratios,
demonstrating the robustness of our methods.
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Figure 3: Effects of λ2, λ3 on user models.

Influence of UL, UN (RQ3). FairLISA can
directly leverage UL and UN to improve fair-
ness. In this part, we investigate their influence
by adjusting the hyperparameter λ2 (UL), λ3

(UN ) as defined in Eq. (9) on two user models
(i.e., NCD, LightGCN). Additional results are
included in Appendix C.5. Specifically, we vary
the values of λ2, λ3 on NCD as {0, 0.5, 1, 1.5}
and the values of λ2, λ3 on LightGCN as {0,
5, 10, 15}. The results are shown in Figure 5
(the lower, the fairer). We can find that λ2 has a
greater impact than λ3, indicating that UL has a
more significant role in promoting fairness. This is reasonable because sensitive labels in UL can
guide the filtering process. Moreover, as the values of hyperparameters increase, the results become
fairer, suggesting that both UL and UN contribute to fairness.
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Figure 4: Performance of different group fairness
metrics (the lower, the better).

Relation to classical group fairness met-
rics (RQ4). Previous experiments have
demonstrated the effectiveness of FairLISA in
terms of preventing the leakage of sensitive in-
formation from representations. In this section,
we present the results of our proposed model
on two classical group fairness metrics, namely
Demographic Parity [7] and Equal Opportunity
[13] (the lower, the better). The specific
formulas for these metrics and additional results
are included in Appendix C.6. In short, the
results shown in Figure 7 indicate that our goal
of removing the effect of sensitive attributes
also benefits the classical group fairness metrics, and our models achieve the best performance.

9



6 Conclusion

In this paper, we focused on the fairness problem of user modeling and proposed a general framework
FairLISA as a solution in limited sensitive information situations. We first provide a novel theoretical
perspective to unify data with known and unknown sensitive attributes with the fair mutual information
objective. Building on this unification, we propose an adversarial learning-based framework that
enables us to effectively leverage the entire user dataset for fair user modeling. We further showed
that FairLISA could be seen as a generalized framework from traditional adversarial methods and
take better advantage of data with unknown sensitive attributes. Experimental results on different
user modeling tasks showed the effectiveness of FairLISA.

7 Border Impact and Future Work

User modeling is a crucial task in various applications and has a significant impact on various aspects
of our daily lives. In this paper, we discuss the social responsibilities of user modeling and consider
a situation where limited sensitive attributes are available. Our model could better help to design
fairness-aware user modeling tasks and also protect users’ privacy in the user modeling process.
However, we notice that despite considering a limited sensitive situation, there is still a need to collect
part of users’ private information as model input, which may increase the burden on users as well as
incurs possible privacy leakage in the data storage and transfer process. In the future, we will try to
combine the privacy and fairness concerns so as to explore fairness and privacy aware user modeling.
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Appendix

In the appendix, we start from the proofs of Lemma 4.1 and Lemma 4.2 in Section A. After that, we
introduce the whole optimization algorithm for FairLISA in Section B. Finally, the supplementary
experimental introduction and results are reported in Section C.

A Proof

FairLISA is an adversarial learning-based framework designed to promote fair model training by
efficiently utilizing data with known and unknown sensitive attributes. It consists of two modules: a
filter module and a discriminator module. Specifically, the filter module F is trained to filter out the
information of sensitive attributes (e.g., gender) of θ. We denote the filtered user modeling results
of a user u as: θ̂ = F(θ). The discriminator module D tries to predict the corresponding sensitive
attribute from the filtered user representations. The fundamental concept behind FairLISA is to
establish a connection between two types of data and the fairness objective (i.e., I(θ̂, S) = 0) through
Lemma 4.1 and Lemma 4.2. By doing so, it effectively utilizes data with both known and unknown
sensitive attributes to facilitate fair model training. In the following sections, we will provide a
detailed explanation of Lemma 4.1 and Lemma 4.2, respectively.

A.1 Lemma 4.1

In this proof, we explain how FairLISA builds the relationship between fairness goal I(θ̂, S) = 0

with user data with known sensitive attributes UL through Lemma A.1. We define Ds(θ̂) as the
probability that the discriminator D recognizes the value of the sensitive attribute S as s according to
θ̂, p(θ̂) be the distribution of users’ filtered representations.

Lemma A.1. Given the optimal discriminator D∗
s(θ̂) and let p(θ̂|s) be the distribution of users’

filtered representations whose sensitive attribute is s, then I(θ̂, S) can be derived as

I(θ̂, S) =
∑
s

p(s)Eθ̂∼p(θ̂|s)[logD
∗
s(θ̂)] +H(S). (11)

Proof. We use LD represents the loss of discriminator D, we first prove that when LD =

−
∑

s p(s)Eθ̂∼p(θ̂|s)[logDs(θ̂)] , the discriminator can achieve the optimal.

Consider the constraints of the discriminator
∑

sDs(θ̂) = 1, we can use Lagrange multipliers:

LD,λ = −
∑
s

p(s)Eθ̂∼p(θ̂|s) log[Ds(θ̂)] +
∑
θ̂

λθ̂(
∑
s

Ds(θ̂)− 1) (12)

Differentiate LD,λ with respect to Ds(θ̂) and λθ̂ and make the corresponding result 0, we get:

−p(s)p(θ̂|s)
Ds(θ̂)

+ λθ̂ = 0,∀s, θ̂,
∑
s

Ds(θ̂)− 1 = 0,∀θ̂, (13)

therefore, we can calculate that D∗
s(θ̂) = p(s|θ̂). Then we substitute it into the right side of the

formula and get, ∑
s

p(s)Eθ̂∼p(θ̂|s)[logD
∗
s(θ̂)] +H(S)

=
∑
s

p(s)Eθ̂∼p(θ̂|s)[log p(s|θ̂)]−
∑
s

p(s) log p(s)

=

∫ ∑
s

p(s)p(θ̂|s) log p(θ̂|s)
p(θ̂)

dθ̂

=
∑
s

p(s)KL(p(θ̂|s)||p(θ̂))

= JSp(s)(p(θ̂|s)) = I(θ̂, S)

(14)
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Here, the second last equality is due to the definition of the Jensen-Shannon divergence, and the last
equality is due to its equivalence to the mutual information [24]. This completes the proof.

We have established a connection between UL and I(θ̂, S) through Lemma A.1. Consequently,
fairness can be achieved by minimizing Eq. (11) with a fixed optimal discriminator D∗.

A.2 Lemma 4.2

In this proof, we explain how FairLISA builds the relationship between fairness goal I(θ̂, S) = 0
with user data with known sensitive attributes UN through Lemma A.1.

Lemma A.2. Given the optimal discriminatorD∗
s(θ̂) and let p(θ̂) be the distribution of users’ filtered

representation, we have,

I(θ̂, S) = Eθ̂∼p(θ̂)

∑
s

D∗
s(θ̂) logD∗

s(θ̂) +H(S)

= −H(D∗
s(θ̂)) +H(S).

(15)

Proof. According to the relationship between mutual information and JS divergence, the relationship
between JS divergence and KL divergence [24], we have

I(θ̂, S) = JSp(s)(p(θ̂|s)) =
∑
s

p(s)KL(p(θ̂|s)||p(θ̂)). (16)

By calculating KL divergence, we get,∑
s

p(s)KL(p(θ̂|s)||p(θ̂) =
∫ ∑

s

p(s)p(θ̂|s) log p(θ̂|s)
p(θ̂)

dθ̂. (17)

Then we expand the formula and use bayes’ theorem,∫ ∑
s

p(s)p(θ̂|s) log p(θ̂|s)
p(θ̂)

dθ̂

=

∫ ∑
s

p(s)p(θ̂|s) log p(s)p(θ̂|s)
p(θ̂)

dθ̂ +H(S)

=

∫
p(θ̂)

∑
s

p(s)p(θ̂|s)
p(θ̂)

log
p(s)p(θ̂|s)

p(θ̂)
dθ̂ +H(S)

=

∫
p(θ̂)

∑
s

p(s|θ̂) log p(s|θ̂)dθ̂ +H(S).

(18)

Noted that p(s|θ̂) is exactly D∗, we replace it in the formula, and get the result,∫
p(θ̂)

∑
s

p(s|θ̂) log p(s|θ̂)dθ̂ +H(S)

=

∫
p(θ̂)

∑
s

D∗
s(θ̂) logD∗

s(θ̂)dθ̂ +H(S)

= Eθ̂∼p(θ̂)

∑
s

D∗
s(θ̂) logD∗

s(θ̂) +H(S)

= −H(D∗(θ̂)) +H(S).

(19)

This completes the proof.

We have successfully established the relationship between I(θ̂, S) and UN through Lemma A.2.
Consequently, we can minimize our fairness criterion I(θ, S) directly by minimizing Eq. (15) using
UN without the need to predict unknown sensitive attribute labels.
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Algorithm 1: The FairLISA framework
Input: Training user set U ; item set V ; interaction records R ; Filter F ; Discriminator D ;

Training epochs M ; Discriminator training steps T ; hyperparameters λ1, λ2, λ3

Initialize: User modeling results θ, ∀θ ∈ U
for epoch←− 1 to M do

for u ∈ U do
θ̂←− F(θ);
Optimize F through LF in Eq.(9) with D fixed;
for t←− 1 to T do

Optimize D through LD in Eq.(10) with θ, F fixed;
end

end
end

B Training Algorithm for FairLISA

C Supplementary Experimental Results

C.1 User Modeling Tasks

To verify the effectiveness of our model, we choose two representative issues in real-world user
modeling scenarios. The first is user capability modeling in areas such as education which is called
cognitive diagnosis [40]. We choose several representative models:

• IRT [30] is a cognitive diagnosis method that models the cognitive processes from students’ exercise
records with a logistic-like function.

• MIRT [4] is a variant of the basic IRT model, which extends the unidimensional latent traits of
students and exercises in IRT to multidimensional vectors.

• NCD [41] is a deep neural cognitive diagnosis framework that models the complex interaction from
students’ exercising records with a multilayer perceptron (MLP).

The second is user preference modeling in recommender system [39]. We choose several representa-
tive models:

• PMF [34] is the Probabilistic Matrix Factorization algorithm by adding Gaussian prior distribution
of user and item latent factors into the classical matrix factorization algorithm.

• NCF [15] is a state-of-the-art collaborative filtering model based on deep neural networks.

• LightGCN [16] is a state-of-the-art GCN-based recommender system model which learns user
embeddings by linearly propagating them on the user-item interaction graph.

C.2 Dataset Description

PISA20154 is released by Program for International Student Assessment (PISA) , which collects
students’ information from over one hundred regions or countries. It contains 403,609 students, 183
exercises, and the records between students and exercises are 11,488,234. We select region, gender,
family education, and family economic as sensitive attributes. For region, users are divided into two
groups according to whether users’ region belongs to Organisation for Economic Co-operation and
Development (OECD) countries. According to whether the highest education degree of parents is
above primary level, we divide users into two groups. Similarly we do so according to whether there
are houses belonging to users. More details of the PISA dataset can be found in [52].

MovieLens-1M5 is a benchmark dataset for recommender systems. It contains 1 million rating
records for about 4,000 movies from 6,040 users. We select gender, age, and occupation as user

4https://www.oecd.org/pisa/data/2015database/
5https://grouplens.org/datasets/movielens/1m/
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Table 2: The fairness performance of baselines on cognitive diagnosis task (AUC scores of all
attackers). R, A, E, C represent region, age, family education, family economic. The smaller values
of AUC denote better fairness performance with less sensitive information leakage (the fairer). The
best results are highlighted in bold.

IRT MIRT NCD

AUC-R AUC-A AUC-E AUC-C AUC-R AUC-A AUC-E AUC-C AUC-R AUC-A AUC-E AUC-C

Origin 0.5864 0.5191 0.5930 0.5565 0.6271 0.5351 0.6329 0.5831 0.6307 0.5344 0.6327 0.5808
ComFair 0.5661 0.5178 0.5858 0.5515 0.5727 0.5226 0.5806 0.5618 0.5786 0.5300 0.5795 0.5609
FairGo 0.5699 0.5179 0.5828 0.5489 0.5700 0.5201 0.5965 0.5624 0.5724 0.5220 0.5950 0.5597
FairGNN 0.5468 0.5165 0.5452 0.5284 0.5680 0.5181 0.5952 0.5562 0.5761 0.5209 0.5944 0.5591

FairLISA 0.5412 0.5163 0.5490 0.5279 0.5540 0.5154 0.5727 0.5429 0.5540 0.5154 0.5727 0.5429
FairGo+FairLISA 0.5355 0.5152 0.5419 0.5279 0.5510 0.5154 0.5720 0.5422 0.5622 0.5190 0.5704 0.5513

Table 3: The accuracy performance of baselines on cognitive diagnosis task. Bold represents the best
results, and underline represents runner-up results.

IRT MIRT NCD

ACC AUC MAE MSE ACC AUC MAE MSE ACC AUC MAE MSE

Origin 0.6932 0.7475 0.3932 0.2042 0.7152 0.7868 0.3529 0.1903 0.7486 0.8111 0.3555 0.1704
ComFair 0.6834 0.7380 0.3953 0.2095 0.7141 0.7864 0.3607 0.1887 0.7253 0.8000 0.3605 0.1816
FairGo 0.6853 0.7422 0.3996 0.2072 0.7147 0.7804 0.3618 0.1897 0.7299 0.8019 0.3597 0.1799
FairGNN 0.6853 0.7423 0.3972 0.2084 0.7110 0.7857 0.3616 0.1893 0.7301 0.8025 0.3584 0.1800

FairLISA 0.6923 0.7469 0.3942 0.2044 0.7148 0.7867 0.3565 0.1896 0.7300 0.8039 0.3572 0.1796
FairGo+FairLISA 0.6905 0.7411 0.3927 0.2045 0.7140 0.7864 0.3590 0.1897 0.7313 0.8041 0.3573 0.1793

sensitive features, where gender is a binary feature, occupation is a 21-class feature, and users are
assigned to 7 groups based on age.

C.3 Fairness-aware Baselines

we compare FairLISA with the following baselines:

• Origin: basic user models without fairness consideration.

• ComFair [3] is a classical fairness-aware adversarial method in fully sensitive attributes situations.

• FairGo [45] is the state-of-the-art method to improve fairness in fully sensitive attribute situations
from a graph perspective.

• FairGNN [5] is the state-of-the-art fairness-aware method in limited sensitive situations relying on
a sensitive attribute predictor.

C.4 Result of Cognitive Diagnosis

The fairness and accuracy results of cognitive diagnosis task are shown in Table 2, Table 3.We have
several observations from the out outcomes.

• From the perspective of model fairness (i.e., Table 2), the AUC of attackers on origin user modeling
models are significantly higher than 0.5, which means that the sensitive information is exposed
by user modeling results even such information is not explicitly used. Further, all fairness-
aware methods can improve fairness. Among these methods, models which can simultaneously
deal with the known and unknown sensitive attributes information (i.e., FairGNN, FairLISA,
FairGo+FairLISA) get better fairness performance. It shows that data with unknown sensitive
attributes also benefit fair user modeling. More importantly, we find our methods (i.e., FairLISA,
FairGo+FairLISA) outperform others, suggesting the effectiveness of our work.

• From the perspective of model accuracy (i.e., Table 3), all fairness-improving methods lose some
accuracy compared with origin user models. This is the inevitable result of the trade-off between
accuracy and fairness [3, 33, 45]. The reason is that the fairness-aware methods are aiming at
filtering out the information of certain sensitive features from user modeling results, which will to
some extent reduce the information contained, thus decreasing accuracy. Among these fairness-
aware methods, we could find FairLISA, FairGo+FairLISA have the best accuracy performance,
and they could even maintain comparable accuracy with origin models in some cases.
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Figure 5: Effects of different hyperparameters on NCD.
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Figure 6: Effects of different hyperparameters on LightGCN.

• From the perspective of balancing the model accuracy and fairness. Our methods can achieve
both better accuracy performance and fairness promotion in all cases. Hences, we argue that our
framework achieves better performance in balancing the model accuracy and fairness, which also
suggests that making full use of data with unknown sensitive attributes can alleviate the problem of
fairness-accuracy trade-off to some extent.

C.5 Influence of UL, UN (RQ3)

FairLISA unifies the treatment of data with known sensitive attributes UL and data with unknown
sensitive attributes UN from a mutual information perspective, thus UL, UN can be directly leveraged
to improve fairness. In this part, we investigate their influence on fair user modeling results by
adjusting the hyperparameter λ2 (UL), λ3 (UN ). As for the user models, we choose the representative
models which achieve the best performance results in RQ1 (i.e., NCD, LightGCN). More specifically,
we vary the values of λ2, λ3 on NCD as {0, 0.5, 1, 1.5} and the values of λ2, λ3 on LightGCN as {0,
5, 10, 15}. The results are shown in Figure 5 (the lower, the fairer). On the one hand, we find λ2

always has a huge impact than λ3, which means UL makes a greater contribution to fairness than UN .
This is reasonable because of the sensitive attribute labels in UL being as the guidance to filter the
effect of sensitive attributes. On the other hand, as the values get larger, both of the results get fairer,
which indicates that both UL and UN can contribute to fairness. This observation also demonstrates
that making use of UN can improve the fairness of the user modeling result.

C.6 Relation to classical group fairness metrics (RQ4)
Previous experiments have shown the effectiveness of our framework in terms of avoiding leaking
sensitive information from user modeling results. In this part, we show the results of our proposed
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Figure 7: Performance of group fairness metrics on NCD and LightGCN (the lower, the better).
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Figure 8: Performance of group fairness metrics on MIRT, NCF (the lower, the better).
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Figure 9: Performance of group fairness metrics on IRT, PMF (the lower, the better).

model on classical fairness metrics. We choose two group fairness metrics (i.e., Demographic Parity
[7], Equal Opportunity [13]) to evaluate the results. Demographic Parity [7] is widely used to measure
the predicted rating discrepancy for binary valued sensitive attributes [45]. Take binary attribute (i.e.,
gender) for example, the detailed formula is as DP = 1

N

∑N
v=1 ||Eu∈male[r̂uv]− Eu∈female[r̂uv]||.

For attributes with multiple values, we borrow the idea of demographic parity and divide users into
different groups based on their sensitive values. Then we take the standard deviation of predicted
ratings of each user group to measure demographic parity. Equal Opportunity [13] is another classical
fairness definition, it advances demographic parity fairness by considering the parity of prediction
accuracy of each group. For binary attribute, take gender for example, the detailed formulas are as
EO = 1

N

∑N
v=1 ||Eu∈male[r̂uv−ruv]−Eu∈female[r̂uv−ruv]||. For attributes with multiple values,

it has the same way as demographic parity. The results of these two group fairness metrics on the
user models are shown in Figure 7, Figure 8, Figure 9. We can find both user modeling tasks are
unfair on these two classical metrics, which also indicates the necessity to explore fairness in user
modeling. Then, all fairness-aware methods aiming to remove the effect of sensitive attributes can
improve the fairness of the two metrics. It shows that the goal of removing the effect of sensitive
attributes also benefits the classical group fairness metrics. Among all these methods, we could find
that the methods (FairGNN, FairGo+FairLISA, FairLISA) can always achieve better results, which
shows that it is necessary to explore fairness in limited situations. Meanwhile, we find FairLISA can
achieve the best performances, suggesting the effectiveness of our methods.
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