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Abstract

Self-training is an important technique for solving semi-supervised learning
problems. It leverages unlabeled data by generating pseudo-labels and combining
them with a limited labeled dataset for training. The effectiveness of self-training
heavily relies on the accuracy of these pseudo-labels. In this paper, we introduce
doubly robust self-training, a novel semi-supervised algorithm that provably
balances between two extremes. When the pseudo-labels are entirely incorrect,
our method reduces to a training process solely using labeled data. Conversely,
when the pseudo-labels are completely accurate, our method transforms into a
training process utilizing all pseudo-labeled data and labeled data, thus increasing
the effective sample size. Through empirical evaluations on both the ImageNet
dataset for image classification and the nuScenes autonomous driving dataset for
3D object detection, we demonstrate the superiority of the doubly robust loss over
the standard self-training baseline.

1 Introduction

Semi-supervised learning considers the problem of learning based on a small labeled dataset together
with a large unlabeled dataset. This general framework plays an important role in many problems in
machine learning, including model fine-tuning, model distillation, self-training, transfer learning and
continual learning (Zhu, 2005; Pan and Yang, 2010; Weiss et al., 2016; Gou et al., 2021; De Lange
et al., 2021). Many of these problems also involve some form of distribute shift, and accordingly, to
best utilize the unlabeled data, an additional assumption is that one has access to a teacher model
obtained from prior training. It is important to study the relationships among the datasets and the
teacher model. In this paper, we ask the following question:

Given a teacher model, a large unlabeled dataset and a small labeled dataset,
how can we design a principled learning process that ensures consistent and
sample-efficient learning of the true model?
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Self-training is one widely adopted and popular approach in computer vision and autonomous driving
for leveraging information from all three components (Lee, 2013; Berthelot et al., 2019b,a; Sohn et al.,
2020a; Xie et al., 2020; Jiang et al., 2022; Qi et al., 2021). This approach involves using a teacher
model to generate pseudo-labels for all unlabeled data, and then training a new model on a mixture of
both pseudo-labeled and labeled data. However, this method can lead to overreliance on the teacher
model and can miss important information provided by the labeled data. As a consequence, the
self-training approach becomes highly sensitive to the accuracy of the teacher model. Our study
demonstrates that even in the simplest scenario of mean estimation, this method can yield significant
failures when the teacher model lacks accuracy.

To overcome this issue, we propose an alternative method that is doubly robust—when the covariate
distribution of the unlabeled dataset and the labeled dataset matches, the estimator is always consistent
no matter whether the teacher model is accurate or not. On the other hand, when the teacher model is
an accurate predictor, the estimator makes full use of the pseudo-labeled dataset and greatly increases
the effective sample size. The idea is inspired by and directly related to missing-data inference and
causal inference (Rubin, 1976; Kang and Schafer, 2007; Birhanu et al., 2011; Ding and Li, 2018),
to semiparametric mean estimation (Zhang et al., 2019), and to recent work on prediction-powered
inference (Angelopoulos et al., 2023).

1.1 Main results

The proposed algorithm is based on a simple modification of the standard loss
for self-training. Assume that we are given a set of unlabeled samples, D1 =
{X1, X2, · · · , Xm}, drawn from a fixed distribution PX , a set of labeled samples
D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)}, drawn from some joint distribution
PX × PY |X , and a teacher model f̂ . Let ℓθ(x, y) be a pre-specified loss function that characterizes
the prediction error of the estimator with parameter θ on the given sample (X,Y ). Traditional
self-training aims at minimizing the combined loss for both labeled and unlabeled samples, where
the pseudo-labels for unlabeled samples are generated using f̂ :

LSL
D1,D2

(θ) =
1

m+ n

(
m∑
i=1

ℓθ(Xi, f̂(Xi)) +

m+n∑
i=m+1

ℓθ(Xi, Yi)

)
.

Note that this can also be viewed as first using f̂ to predict all the data, and then replacing the
originally labeled points with the known labels:

LSL
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, Yi).

Our proposed doubly robust loss instead replaces the coefficient 1/(m+ n) with 1/n in the last two
terms:

LDR
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi).

This seemingly minor change has a major beneficial effect—the estimator becomes consistent and
doubly robust.
Theorem 1 (Informal). Let θ⋆ be defined as the minimizer θ⋆ =
argminθ E(X,Y )∼PX×PY |X [ℓθ(X,Y )]. Under certain regularity conditions, we have

∥∇θLDR
D1,D2

(θ⋆)∥2 ≲


√

d
m+n , when Y ≡ f̂(X),√
d
n , otherwise.

On the other hand, there exists instances such that ∥∇θLSL
D1,D2

(θ⋆)∥2 ≥ C always holds true no
matter how large m,n are.

The result shows that the true parameter θ⋆ is also a local minimum of the doubly robust loss, but not a
local minimum of the original self-training loss. We flesh out this comparison for the special example
of mean estimation in Section 2.1, and present empirical results on image and driving datasets in
Section 3.
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1.2 Related work

Missing-data inference and causal inference. The general problem of causal inference can be
formulated as a missing-data inference problem as follows. For each unit in an experiment, at
most one of the potential outcomes—the one corresponding to the treatment to which the unit is
exposed—is observed, and the other potential outcomes are viewed as missing (Holland, 1986; Ding
and Li, 2018). Two of the standard methods for solving this problem are data imputation Rubin (1979)
and propensity score weighting Rosenbaum and Rubin (1983). A doubly robust causal inference
estimator combines the virtues of these two methods. The estimator is referred to as “doubly robust”
due to the following property: if the model for imputation is correctly specified then it is consistent
no matter whether the propensity score model is correctly specified; on the other hand, if the model
propensity score model is correctly specified, then it is consistent no matter whether the model for
imputation is correctly specified (Scharfstein et al., 1999; Bang and Robins, 2005; Birhanu et al.,
2011; Ding and Li, 2018).

We note in passing that double machine learning is another methodology that is inspired by the doubly
robust paradigm in causal inference (Semenova et al., 2017; Chernozhukov et al., 2018a,b; Foster and
Syrgkanis, 2019). The problem in double machine learning is related to the classic semiparametric
problem of inference for a low-dimensional parameter in the presence of high-dimensional nuisance
parameters, which is different goal than the predictive goal characterizing semi-supervised learning.

The recent work of prediction-powered inference (Angelopoulos et al., 2023) focuses on confidence
estimation when there are both unlabeled data, labeled data, along with a teacher model. Their focus
is the inferential problem of obtaining a confidence set, while ours is the doubly robust property of a
point estimator. Since they focus on confidence estimation, an important, strong, yet biased baseline
point-estimate algorithm that directly combines the ground-truth labels and pseudo-labels is not
considered in their case. In our paper, we show with both theory and experiments that the proposed
doubly-robust estimator achieves better performance than the naive combination of ground-truth
labels and pseudo-labels.

Self-training. Self-training is a popular semi-supervised learning paradigm in which machine-
generated pseudo-labels are used for training with unlabeled data (Lee, 2013; Berthelot et al., 2019b,a;
Sohn et al., 2020a). To generate these pseudo-labels, a teacher model is pre-trained on a set of labeled
data, and its predictions on the unlabeled data are extracted as pseudo-labels. Previous work seeks
to address the noisy quality of pseudo-labels in various ways. MixMatch (Berthelot et al., 2019b)
ensembles pseudo-labels across several augmented views of the input data. ReMixMatch (Berthelot
et al., 2019a) extends this by weakly augmenting the teacher inputs and strongly augmenting the
student inputs. FixMatch (Sohn et al., 2020a) uses confidence thresholding to select only high-quality
pseudo-labels for student training.

Self-training has been applied in both 2D computer vision problems (Liu et al., 2021a; Jeong et al.,
2019; Tang et al., 2021; Sohn et al., 2020b; Zhou et al., 2022) and 3D problems (Park et al., 2022;
Wang et al., 2021; Li et al., 2023; Liu et al., 2023) object detection. STAC (Sohn et al., 2020b)
enforces consistency between strongly augmented versions of confidence-filtered pseudo-labels.
Unbiased teacher (Liu et al., 2021a) updates the teacher during training with an exponential moving
average (EMA) of the student network weights. Dense Pseudo-Label (Zhou et al., 2022) replaces box
pseudo-labels with the raw output features of the detector to allow the student to learn richer context.
In the 3D domain, 3DIoUMatch (Wang et al., 2021) thresholds pseudo-labels using a model-predicted
Intersection-over-Union (IoU). DetMatch (Park et al., 2022) performs detection in both the 2D and
3D domains and filters pseudo-labels based on 2D-3D correspondence. HSSDA (Liu et al., 2023)
extends strong augmentation during training with a patch-based point cloud shuffling augmentation.
Offboard3D (Qi et al., 2021) utilizes multiple frames of temporal context to improve pseudo-label
quality.

There has been a limited amount of theoretical analysis of these methods, focusing on semi-supervised
methods for mean estimation and linear regression (Zhang et al., 2019; Azriel et al., 2022). Our
analysis bridges the gap between these analyses and the doubly robust estimators in the causal
inference literature.
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2 Doubly Robust Self-Training

We begin with the case where the marginal distributions for the covariates of the labeled and
unlabeled datasets are the same. Assume that we are given a set of unlabeled samples, D1 =
{X1, X2, · · · , Xm}, drawn from a fixed distribution PX supported on X , a set of labeled samples
D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)}, drawn from some joint distribution
PX × PY |X supported on X × Y , and a pre-trained model, f̂ : X 7→ Y . Let ℓθ(·, ·) : X × Y 7→ R
be a pre-specified loss function that characterizes the prediction error of the estimator with parameter
θ on the given sample (X,Y ). Our target is to find some θ⋆ ∈ Θ that satisfies

θ⋆ ∈ argmin
θ∈Θ

E(X,Y )∼PX×PY |X [ℓθ(X,Y )].

For a given loss ℓθ(x, y), consider a naive estimator that ignores the predictor f̂ and only trains on
the labeled samples:

LTL
D1,D2

(θ) =
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi).

Although naive, this is a safe choice since it is an empirical risk minimizer. As n → ∞, the loss
converges to the population loss. However, it ignores all the information provided in f̂ and the
unlabeled dataset, which makes it inefficient when the predictor f̂ is informative.

On the other hand, traditional self-training aims at minimizing the combined loss for both labeled
and unlabeled samples, where the pseudo-labels for unlabeled samples are generated using f̂ :1

LSL
D1,D2

(θ) =
1

m+ n

(
m∑
i=1

ℓθ(Xi, f̂(Xi)) +

m+n∑
i=m+1

ℓθ(Xi, Yi)

)

=
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

m+ n

m+n∑
i=m+1

ℓθ(Xi, Yi).

As is shown by the last equality, the self-training loss can be viewed as first using f̂ to predict all the
samples (including the labeled samples) and computing the average loss, then replacing that part of
the loss corresponding to the labeled samples with the loss on the original labels. Although the loss
uses the information arising from the unlabeled samples and f̂ , the performance can be poor when
the predictor is not accurate.

We propose an alternative loss, which simply replaces the weight 1/(m+ n) in the last two terms
with 1/n:

LDR
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) +
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi). (1)

As we will show later, this is a doubly robust estimator. We provide an intuitive interpretation here:

• In the case when the given predictor is perfectly accurate, i.e., f̂(X) ≡ Y always holds (which
also means that Y |X = x is a deterministic function of x), the last two terms cancel, and the
loss minimizes the average loss, 1

m+n

∑m+n
i=1 ℓθ(Xi, f̂(Xi)), on all of the provided data. The

effective sample size is m+ n, compared with effective sample size n for training only on a
labeled dataset using LTL. In this case, the loss LDR is much better than LTL, and comparable
to LSL.
We may as well relax the assumption of f̂(X) = Y to E[ℓθ(X, f̂(X))] =
E[ℓθ(X,Y )]. As n grows larger, the loss is approximately minimizing the average loss

1
m+n

∑m+n
i=1 ℓθ(Xi, f̂(Xi)).

1There are several variants of the traditional self-training loss. For example, Xie et al. (2020) introduce an
extra weight (m+ n)/n on the labeled samples, and add noise to the student model; Sohn et al. (2020a) use
confidence thresholding to filter unreliable pseudo-labels. However, both of these alternatives still suffer from
the inconsistency issue. In this paper we focus on the simplest form LSL.
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• On the other hand, no matter how bad the given predictor is, the difference between the first two
terms vanishes as either of m,n goes to infinity since the labeled samples Xm+1, · · · , Xm+n

arise from the same distribution as X1, · · · , Xm. Thus asymptotically the loss minimizes
1
n

∑m+n
i=m+1 ℓθ(Xi, Yi), which discards the bad predictor f̂ and focuses only on the labeled

dataset. Thus, in this case the loss LDR is much better than LSL, and comparable to LTL.

This loss is appropriate only when the covariate distributions between labeled and unlabeled samples
match. In the case where there is a distribution mismatch, we propose an alternative loss; see
Section 2.3.

2.1 Motivating example: Mean estimation

As a concrete example, in the case of one-dimensional mean estimation we take ℓθ(X,Y ) = (θ−Y )2.
Our target is to find some θ⋆ that satisfies

θ⋆ = argmin
θ

E(X,Y )∼PX×PY |X [(θ − Y )2].

One can see that θ⋆ = E[Y ]. In this case, the loss for training only on labeled data becomes

LTL
D1,D2

(θ) =
1

n

m+n∑
i=m+1

(θ − Yi)
2.

Moreover, the optimal parameter is θ̂TL = 1
n

∑m+n
i=m+1 Yi, which is a simple empirical average over

all observed Y ’s.

For a given pre-existing predictor f̂ , the loss for self-training becomes

LSL
D1,D2

(θ) =
1

m+ n

(
m∑
i=1

(θ − f̂(Xi))
2 +

m+n∑
i=m+1

(θ − Yi)
2

)
.

It is straightforward to see that the minimizer of the loss is the unweighted average between the
unlabeled predictors f̂(Xi)’s and the labeled Yi’s:

θ⋆SL =
1

m+ n

(
m∑
i=1

f̂(Xi) +

m+n∑
i=m+1

Yi

)
.

In the case of m ≫ n, the mean estimator is almost the same as the average of all the predicted values
on the unlabeled dataset, which can be far from θ⋆ when the predictor f̂ is inaccurate.

On the other hand, for the proposed doubly robust estimator, we have

LDR
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

(θ − f̂(Xi))
2 − 1

n

m+n∑
i=m+1

(θ − f̂(Xi))
2 +

1

n

m+n∑
i=m+1

(θ − Yi)
2

=
1

m+ n

m+n∑
i=1

(θ − f̂(Xi))
2 +

1

n

m+n∑
i=m+1

2(f̂(Xi)− Yi)θ + Y 2
i − f̂(Xi)

2.

Note that the loss is still convex, and we have

θ⋆DR =
1

m+ n

m+n∑
i=1

f̂(Xi)−
1

n

m+n∑
i=m+1

(f̂(Xi)− Yi).

This recovers the estimator in prediction-powered inference (Angelopoulos et al., 2023). Assume that
f̂ is independent of the labeled data. We can calculate the mean-squared error of the three estimators
as follows.
Proposition 1. Let Var[f̂(X)− Y ] = E[(f̂(X)− Y )2 − E[(f̂(X)− Y )]2]. We have

E[(θ⋆ − θ̂TL)
2] =

1

n
Var[Y ],

E[(θ⋆ − θ̂SL)
2] ≤ 2m2

(m+ n)2
E[(f̂(X)− Y )]2 +

2m

(m+ n)2
Var[f̂(X)− Y ] +

2n

(m+ n)2
Var[Y ],

E[(θ⋆ − θ̂DR)
2] ≤ 2min

(
1

n
Var[Y ] +

m+ 2n

(m+ n)n
Var[f̂(X)],

m+ 2n

(m+ n)n
Var[f̂(X)− Y ] +

1

m+ n
Var[Y ]

)
.
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The proof is deferred to Appendix F. The proposition illustrates the double-robustness of θ̂DR—no
matter how poor the estimator f̂(X) is, the rate is always upper bounded by 4

n (Var[Y ] +Var[f̂(X)]).
On the other hand, when f̂(X) is an accurate estimator of Y (i.e., Var[f̂(X)− Y ] is small), the rate
can be improved to 2

m+nVar[Y ]. In contrast, the self-training loss always has a non-vanishing term,
2m2

(m+n)2E[(f̂(X)− Y )]2, when m ≫ n, unless the predictor f̂ is accurate.

On the other hand, when f̂(x) = β̂⊤
(−1)x + β̂1 is a linear predictor trained on the labeled data

with β̂ = argminβ=[β1,β(−1)]
1
n

∑m+n
i=m+1(β

⊤
(−1)Xi + β1 − Yi)

2, our estimator reduces to the semi-

supervised mean estimator in Zhang et al. (2019). Let X̃ = [1, X]. In this case, we also know
that the self-training reduces to training only on labeled data, since θ̂TL is also the minimizer of
the self-training loss. We have the following result that reveals the superiority of the doubly robust
estimator compared to the other two options.
Proposition 2 ((Zhang et al., 2019)). We establish the asymptotic behavior of various estimators
when f̂ is a linear predictor trained on the labeled data:

• Training only on labeled data θ̂TL is equivalent to self-training θ̂SL, which gives unbiased
estimator but with larger variance:

√
n(θ̂TL − θ⋆) → N (0,E[(Y − β⊤X̃)2] + β⊤

(−1)Σβ(−1)).

• Doubly Robust θ̂DR is unbiased with smaller variance:
√
n(θ̂DR − θ⋆) → N (0,E[(Y − β⊤X̃)2] +

n

m+ n
β⊤
(−1)Σβ(−1)).

Here β = argminβ E[(Y − β⊤X̃)2] and Σ = E[(X − E[X])(X − E[X])⊤].

2.2 Guarantee for general loss

In the general case, we show that the doubly robust loss function continues to exhibit desirable
properties. In particular, as n,m goes to infinity, the global minimum of the original loss is also a
critical point of the new doubly robust loss, no matter how inaccurate the predictor f̂ .

Let θ⋆ be the minimizer of EPX,Y
[ℓθ(X,Y )]. Let f̂ be a pre-existing model that does not depend on

the datasets D1,D2. We also make the following regularity assumptions.
Assumption 1. The loss ℓθ(x, y) is differentiable at θ⋆ for any x, y.

Assumption 2. The random variables ∇θℓθ(X, f̂(X)) and ∇θℓθ(X,Y ) have bounded first and
second moments.

Given this assumption, we denote ΣY−f̂
θ = Cov[∇θℓθ(X, f̂(X)) − ∇θℓθ(X,Y )] and let Σf̂

θ =

Cov[∇θℓθ(X, f̂(X))], ΣY
θ = Cov[∇θℓθ(X,Y )].

Theorem 2. Under Assumptions 1 and 2, we have that with probability at least 1− δ,

∥∇θLDR
D1,D2

(θ⋆)∥2 ≤ Cmin

(
∥Σf̂

θ⋆∥2

√
d

(m+ n)δ
+ ∥ΣY−f̂

θ⋆ ∥2

√
d

nδ
,

∥Σf̂
θ⋆∥2

(√
d

(m+ n)δ
+

√
d

nδ

)
+ ∥ΣY

θ⋆∥2

√
d

nδ

)
,

where C is a universal constant, and LDR
D1,D2

is defined in Equation (1).

The proof is deferred to Appendix G. From the example of mean estimation we know that one can
design instances such that ∥∇θLSL

D1,D2
(θ⋆)∥2 ≥ C for some positive constant C.

When the loss ∇θLDR
D1,D2

is convex, the global minimum of ∇θLDR
D1,D2

converges to θ⋆ as both m,n

go to infinity. When the loss ∇θLDR
D1,D2

is strongly convex, it also implies that ∥θ̂ − θ⋆∥2 converges
to zero as both m,n go to infinity, where θ̂ is the minimizer of ∇θLDR

D1,D2
.
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When f̂ is a perfect predictor with f̂(X) ≡ Y (and Y |X = x is deterministic), one has LDR
D1,D2

(θ⋆) =
1

m+n

∑m+n
i=1 ℓθ(Xi, Yi). The effective sample size is m+ n instead of n in LSL

D1,D2
(θ).

When f̂ is also trained from the labeled data, one may apply data splitting to achieve the same
guarantee up to a constant factor. We provide further discussion in Appendix E.

2.3 The case of distribution mismatch

We also consider the case in which the marginal distributions of the covariates for the labeled
and unlabeled datasets are different. Assume in particular that we are given a set of unlabeled
samples, D1 = {X1, X2, · · · , Xm}, drawn from a fixed distribution PX , a set of labeled samples,
D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)}, drawn from some joint distribution
QX × PY |X , and a pre-trained model f̂ . In the case when the labeled samples do not follow the same
distribution as the unlabeled samples, we need to introduce an importance weight π(x). This yields
the following doubly robust estimator:

LDR2
D1,D2

(θ) =
1

m

m∑
i=1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

1

π(Xi)
ℓθ(Xi, f̂(Xi)) +

1

n

m+n∑
i=m+1

1

π(Xi)
ℓθ(Xi, Yi).

Note that we not only introduce the importance weight π, but we also change the first term from the
average of all the m+ n samples to the average of n samples.
Proposition 3. We have E[LDR2

D1,D2
(θ)] = EPX,Y

[ℓθ(X,Y )] as long as one of the following two
assumptions hold:

• For any x, π(x) = PX(x)
QX(x) .

• For any x, ℓθ(x, f̂(x)) = EY∼PY |X=x
[ℓθ(x, Y )].

The proof is deferred to Appendix H. The proposition implies that as long as either π or f̂ is accurate,
the expectation of the loss is the same as that of the target loss. When the distributions for the
unlabeled and labeled samples match each other, this reduces to the case in the previous sections.
In this case, taking π(x) = 1 guarantees that the expectation of the doubly robust loss is always the
same as that of the target loss.

3 Experiments

To employ the new doubly robust loss in practical applications, we need to specify an appropriate
optimization procedure, in particular one that is based on (mini-batched) stochastic gradient descent
so as to exploit modern scalable machine learning methods. In preliminary experiments we observed
that directly minimizing the doubly robust loss in Equation (1) with stohastic gradient can lead to
instability, and thus, we propose instead to minimize the curriculum-based loss in each epoch:

LDR,t
D1,D2

(θ) =
1

m+ n

m+n∑
i=1

ℓθ(Xi, f̂(Xi))− αt ·

(
1

n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi))−
1

n

m+n∑
i=m+1

ℓθ(Xi, Yi)

)
.

As we show in the experiments below, this choice yields a stable algorithm. We set αt = t/T , where
T is the total number of epochs. For the object detection experiments, we introduce the labeled
samples only in the final epoch, setting αt = 0 for all epochs before setting αt = 1 in the final
epoch. Intuitively, we start from the training with samples only from the pseudo-labels, and gradually
introduce the labeled samples in the doubly robust loss for fine-tuning.

We conduct experiments on both image classification task with ImageNet dataset (Russakovsky et al.,
2015) and 3D object detection task with autonomous driving dataset nuScenes (Caesar et al., 2020).
The code is available in https://github.com/dingmyu/Doubly-Robust-Self-Training.

3.1 Image classification

Datasets and settings. We evaluate our doubly robust self-training method on the ImageNet100
dataset, which contains a random subset of 100 classes from ImageNet-1k (Russakovsky et al., 2015),
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Figure 1: Comparisons on ImageNet100 using two different network architectures. Both Top-1 and
Top-5 accuracies are reported. All models are trained for 20 epochs.

with 120K training images (approximately 1,200 samples per class) and 5,000 validation images
(50 samples per class). To further test the effectiveness of our algorithm in a low-data scenario, we
create a dataset that we refer to as mini-ImageNet100 by randomly sampling 100 images per class
from ImageNet100. Two models were evaluated: (1) DaViT-T (Ding et al., 2022), a popular vision
transformer architecture with state-of-the-art performance on ImageNet, and (2) ResNet50 (He et al.,
2016), a classic convolutional network to verify the generality of our algorithm.

Baselines. To provide a comparative evaluation of doubly robust self-training, we establish three
baselines: (1) ‘Labeled Only’ for training on labeled data only (partial training set) with a loss LTL,
(2) ‘Pseudo Only’ for training with pseudo labels generated for all training samples, and (3) ‘Labeled
+ Pseudo’ for a mixture of pseudo-labels and labeled data, with the loss LSL. See the Appendix for
further implementation details and ablations.

Results on ImageNet100. We first conduct experiments on ImageNet100 by training the model
for 20 epochs using different fractions of labeled data from 1% to 100%. From the results shown
in Fig. 1, we observe that: (1) Our model outperforms all baseline methods on both two networks
by large margins. For example, we achieve 5.5% and 5.3% gains (Top-1 Acc) on DaViT over the
‘Labeled + Pseudo’ method for 20% and 80% labeled data, respectively. (2) The ‘Labeled + Pseudo’
method consistently beats the ‘Labeled Only’ baseline. (3) While ‘Pseudo Only’ works for smaller
fractions of the labeled data (less than 30%) on DaViT, it is inferior to ‘Labeled Only’ on ResNet50.

Results on mini-ImageNet100. We also perform comparisons on mini-ImageNet100 to demonstrate
the performance when the total data volume is limited. From the results in Table 1, we see our model
generally outperforms all baselines. As the dataset size decreases and the number of training epochs
increases, the gain of our algorithm becomes smaller. This is expected, as (1) the models are not
adequately trained and thus have noise issues, and (2) there are an insufficient number of ground
truth labels to compute the last term of our loss function. In extreme cases, there is only one labeled
sample (1%) per class.

3.2 3D object detection

Doubly robust object detection. Given a visual representation of a scene, 3D object detection
aims to generate a set of 3D bounding box predictions {bi}i∈[m+n] and a set of corresponding class
predictions {ci}i∈[m+n]. Thus, each single ground-truth annotation Yi ∈ Y is a set Yi = (bi, ci)
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Table 1: Comparisons on mini-ImageNet100, all models trained for 100 epochs.

Labeled Data Percent Labeled Only Pseudo Only Labeled + Pseudo Doubly robust Loss
top1 top5 top1 top5 top1 top5 top1 top5

1 2.72 9.18 2.81 9.57 2.73 9.55 2.75 9.73
5 3.92 13.34 4.27 13.66 4.27 14.4 4.89 16.38
10 6.76 20.84 7.27 21.64 7.65 22.48 8.01 21.90
20 12.3 31.3 13.46 30.79 13.94 32.63 13.50 32.17
50 20.69 46.86 20.92 45.2 24.9 50.77 25.31 51.61
80 27.37 55.57 25.57 50.85 30.63 58.85 30.75 59.41

100 31.07 60.62 28.95 55.35 34.33 62.78 34.01 63.04

Table 2: Performance comparison on nuScenes val set.

Labeled Data Fraction Labeled Only Labeled + Pseudo Doubly robust Loss
mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

1/24 7.56 18.01 7.60 17.32 8.18 18.33
1/16 11.15 20.55 11.60 21.03 12.30 22.10
1/4 25.66 41.41 28.36 43.88 27.48 43.18

containing a box and a class. During training, the object detector is supervised with a sum of the box
regression loss Lloc and the classification loss Lcls, i.e. Lobj = Lloc + Lcls.

In the self-training protocol for object detection, pseudo-labels for a given scene Xi are selected from
the labeler predictions f(Xi) based on some user-defined criteria (typically the model’s detection
confidence). Unlike in standard classification or regression, Yi will contain a differing number of
labels depending on the number of objects in the scene. Furthermore, the number of extracted
pseudo-labels f(Xi) will generally not be equal to the number of scene ground-truth labels Yi due to
false positive/negative detections. Therefore it makes sense to express the doubly robust loss function
in terms of the individual box labels as opposed to the scene-level labels. We define the doubly robust
object detection loss as follows:

LDR
obj(θ) =

1

M +Nps

M+Nps∑
i=1

ℓθ(Xi, f(Xi))−
1

Nps

M+Nps∑
i=M+1

ℓθ(X
′
i, f(X

′
i)) +

1

N

M+N∑
i=M+1

ℓθ(Xi, Yi),

where M is the total number of pseudo-label boxes from the unlabeled split, N is the total number of
labeled boxes, X ′

i is the scene with pseudo-label boxes from the labeled split, and Nps is the total
number of pseudo-label boxes from the labeled split. We note that the last two terms now contain
summations over a differing number of boxes, a consequence of the discrepancy between the number
of manually labeled boxes and pseudo-labeled boxes. Both components of the object detection loss
(localization/classification) adopt this form of doubly robust loss.

Dataset and setting. To evaluate doubly robust self-training in the autonomous driving setting, we
perform experiments on the large-scale 3D detection dataset nuScenes (Caesar et al., 2020). The
nuScenes dataset is comprised of 1000 scenes (700 training, 150 validation and 150 test) with each
frame containing sensor information from RGB camera, LiDAR, and radar scans. Box annotations
are comprised of 10 classes, with the class instance distribution following a long-tailed distribution,
allowing us to investigate our self-training approach for both common and rare classes. The main 3D
detection metrics for nuScenes are mean Average Precision (mAP) and the nuScenes Detection Score
(NDS), a dataset-specific metric consisting of a weighted average of mAP and five other true-positive
metrics. For the sake of simplicity, we train object detection models using only LiDAR sensor
information.

Results. After semi-supervised training, we evaluate our student model performance on the nuScenes
val set. We compare three settings: training the student model with only the available labeled data

Table 3: Per-class mAP (%) comparison on nuScenes val set using 1/16 of total labels in training.
Car Ped Truck Bus Trailer Barrier Traffic Cone

Labeled Only 48.6 30.6 8.5 6.2 4.0 6.8 4.4
Labeled + Pseudo 48.8 30.9 8.8 7.5 5.7 6.7 4.0

Improvement +0.2 +0.3 +0.3 +1.3 +1.7 -0.1 -0.4
Doubly robust Loss 51.5 32.9 9.6 8.2 5.2 7.2 4.5

Improvement +2.9 +2.3 +1.1 +2.0 +1.2 +0.4 +0.1
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(i.e., equivalent to teacher training), training the student model on the combination of labeled/teacher-
labeled data using the naive self-training loss, and training the student model on the combination of
labeled/teacher-labeled data using our proposed doubly robust loss. We report results for training
with 1/24, 1/16, and 1/4 of the total labels in Table 2. We find that the doubly robust loss improves
both mAP and NDS over using only labeled data and the naive baseline in the lower label regime,
whereas performance is slightly degraded when more labels are available. Furthermore, we also
show a per-class performance breakdown in Table 3. We find that the doubly robust loss consistently
improves performance for both common (car, pedestrian) and rare classes. Notably, the doubly robust
loss is even able to improve upon the teacher in classes for which pseudo-label training decreases
performance when using the naive training (e.g., barriers and traffic cones).

4 Conclusions

We have proposed a novel doubly robust loss for self-training. Theoretically, we analyzed the
double-robustness property of the proposed loss, demonstrating its statistical efficiency when the
pseudo-labels are accurate. Empirically, we showed that large improvements can be obtained in both
image classification and 3D object detection.

As a direction for future work, it would be interesting to understand how the doubly robust loss might
be applied to other domains that have a missing-data aspect, including model distillation, transfer
learning, and continual learning. It is also important to find practical and efficient algorithms when
the labeled and unlabeled data do not match in distribution.
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A Implementation Details for Image Classification

We evaluate our doubly robust self-training method on the ImageNet100 and mini-ImageNet100
datasets, which are subsets of ImageNet-1k from ImageNet Large Scale Visual Recognition Challenge
2012 (Russakovsky et al., 2015). Two models are evaluated: (1) DaViT-T (Ding et al., 2022), a
state-of-the-art 12-layer vision transformer architecture with a patch size of 4, a window size of
7, and an embedding dim of 768, and (2) ResNet50 (He et al., 2016), a classic and powerful
convolutional network with 50 layers and embedding dim 2048. We evaluate all the models on the
same ImageNet100 validation set (50 samples per class). For the training, we use the same data
augmentation and regularization strategies following the common practice in Liu et al. (2021b);
Lin et al. (2017); Ding et al. (2022). We train all the models with a batch size of 1024 on 8 Tesla
V100 GPUs (the batch size is reduced to 64 if the number of training data is less than 1000).
We use AdamW (Loshchilov and Hutter, 2017) optimizer and a simple triangular learning rate
schedule (Smith and Topin, 2019). The weight decay is set to 0.05 and the maximal gradient norm is
clipped to 1.0. The stochastic depth drop rates are set to 0.1 for all models. During training, we crop
images randomly to 224× 224, while a center crop is used during evaluation on the validation set.
We use a curriculum setting where the αt grows linearly or quadratically from 0 to 1 throughout the
training. To show the effectiveness of our method, we also compare model training with different
curriculum learning settings and varying numbers of epochs.

B Additional Experiments in Image Classification

Table 4: Ablation study on different curriculum settings on ImageNet-100. All models are trained in
20 epochs.

Methods
30% GTs 50% GTs 70% GTs 90% GTs

top1 top5 top1 top5 top1 top5 top1 top5
Naive Labeled + Pseudo 28.01 54.63 37.6 66.72 43.76 73.42 47.74 77.15
doubly robust, αt = 1 28.43 56.65 38.06 67.18 43.22 73.18 48.52 77.21
doubly robust, αt = t/T (linear) 30.87 60.98 40.18 71.06 46.60 75.80 50.44 78.88
doubly robust, αt = (t/T )2 (quadratic) 31.15 61.29 40.86 71.14 45.50 75.11 49.64 77.77

Ablation study on curriculum settings. There are three options for the curriculum setting: 1)
αt = 1 throughout the whole training, 2) grows linearly with training iterations αt = t/T , 3) grows
quadratically with training iterations αt = (t/T )2. From results in Table 4, we see: the first option
achieves comparable performance with the ‘Naive Labeled + Pseudo’ baseline. Both the linear and
quadratic strategies show significant performance improvements: the linear one works better when
more labeled data is available, e.g., 70% and 90%, while the quadratic one prefers less labeled data,
e.g. 30% and 50%.

Table 5: Ablation study on the number of epochs. All models are trained using 10% labeled data on
ImageNet-100.

Training epochs
Labeled Only Pseudo Only Labeled + Pseudo doubly robust Loss

top1 top5 top1 top5 top1 top5 top1 top5
20 16.02 39.68 17.02 38.64 19.38 41.96 21.88 47.18
50 25.00 51.21 28.90 53.74 30.36 57.04 36.65 65.68

100 35.57 64.66 44.43 71.56 42.44 68.94 45.98 70.66

Ablation Study on the Number of Epochs. We conduct experiments on different training epochs.
The results are shown in Table 5. Our model is consistently superior to the baselines. And we can
observe the gain is larger when the number of training epochs is relatively small, e.g. 20 and 50.

Fully trained results (300 epochs) on ImageNet-100. In our original experiments, we mostly focus
on a teacher model that is not super accurate, since our method reduces to the original pseudo-labeling
when the teacher model is completely correct for all labels. In this experiment, we fully train the
teacher model with 300 epochs on ImageNet-100, leading to the accuracy of the teacher model as
high as 88.0%. From Figure 2, we show that even in this case, our method outperforms the original
pseudo-labeling baseline.
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Figure 2: Results on ImageNet-100 using fully trained (300 epochs) DaViT-T with different data
fractions.
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Comparisons with previous SOTAs on CIFAR-10 and CiFAR-100. We compare with another
11 baselines in terms of error rate on CIFAR-10-4K and CIFAR-100-10K under the same settings
(i.e., Wide ResNet-28-2 for CIFAR-10 and WRN-28-8 for CIFAR-100). We show that our method is
only 0.04 inferior to the best method Meta Pseudo Labels for CIFAR-10-4K, and achieves the best
performance for CIFAR-100-10K.

Table 6: Comparisons with previous SOTAs on CiFAR-10 and CIFAR-100.
Method CIFAR-10-4K (error rate, %) CIFAR-100-10K (error rate, %)

Pseudo-Labeling 16.09 36.21
LGA + VAT 12.06 –

Mean Teacher 9.19 35.83
ICT 7.66 –
SWA 5.00 28.80

MixMatch 4.95 25.88
ReMixMatch 4.72 23.03

EnAET 5.35 –
UDA 4.32 24.50

FixMatch 4.31 23.18
Meta Pesudo Labels 3.89 –

Ours 3.93 22.30

C Implementation Details of 3D Object Detection

Our experiments follow the standard approach for semi-supervised detection: we first initialize two
detectors, the teacher (i.e., labeler) and the student. First, a random split of varying sizes is selected
from the nuScenes training set. We pre-train the teacher network using the ground-truth annotations
in this split. Following this, we freeze the weights in the teacher model and then use it to generate
pseudo-labels on the entire training set. The student network is then trained on a combination of the
pseudo-labels and ground-truth labels originating from the original split. In all of our semi-supervised
experiments, we use CenterPoint with a PointPillars backbone as our 3D detection model (Yin et al.,
2021; Lang et al., 2019). The teacher pre-training and student training are both conducted for 10
epochs on 3 NVIDIA RTX A6000 GPUs. We follow the standard nuScenes training setting outlined
in Zhu et al. (2019), with the exception of disabling ground-truth paste augmentation during training
to prevent data leakage from the labeled split. To select the pseudo-labels to be used in training the
student, we simply filter the teacher predictions by detection confidence, using all detections above
a chosen threshold. We use a threshold of 0.3 for all classes, as in Park et al. (2022). In order to
conduct training in a batch-wise manner, we compute the loss over only the samples contained within
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the batch. We construct each batch to have a consistent ratio of labeled/unlabeled samples to ensure
the loss is well-defined for the batch.

D Additional Experiments in 3D Object Detection

Comparison with Semi-Supervised Baseline We compare our approach to another semi-supervised
baseline on the 3D object detection task, Pseudo-labeling and confirmation bias Arazo et al. (2020).
We shows that in multiple settings, our approach surpasses the baseline performance.
Ablation on Pseudo-label Confidence Threshold To demonstrate that appropriate quality pseudo-
labels are used to train the student detector, we performance ablation experiments varying the
detection threshold used to extract pseudo-labels from the teacher model predictions. We show that
training with a threshold of τ = 0.3 outperforms training with a more stringent threshold, and is the
appropriate experimental setting for our main experiments.

Table 7: Performance comparison with pseudo-labeling baseline on nuScenes val set.
Labeled Fraction Labeled Only Labeled + Pseudo Doubly robust Loss Pseudo-Labeling + Confirmation Bias

mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑
1/24 7.56 18.01 7.60 17.32 8.18 18.33 7.80 16.86
1/16 11.15 20.55 11.60 21.03 12.30 22.10 12.15 22.89

Table 8: Doubly Robust Loss performance comparison with differing detection thresholds for pseudo-
labels.

Labeled Data Fraction
τ = 0.3 τ = 0.5

Labeled+Pseudo Doubly Robust Loss Labeled+Pseudo Doubly Robust Loss
mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

1/24 7.56 18.01 8.18 18.33 7.15 15.82 4.37 13.17
1/16 11.15 20.55 12.30 22.10 11.05 21.22 8.09 19.70

E Considerations when f̂ is trained from labeled data

In Theorem 2, we analyzed the double robustness of the proposed loss function when the predictor f̂
is pre-existing and not trained from the labeled dataset. In practice, one may only have access to the
labeled and unlabeled datasets without a pre-existing teacher model. In this case, one may choose to
split the labeled samples D2 into two parts. The last n/2 samples are used to train f̂ , and the first
n/2 samples are used in the doubly robust loss:

LDR2
D1,D2

(θ) =
1

m

m∑
i=1

ℓθ(Xi, f̂(Xi))−
2

n

m+n/2∑
i=m+1

1

π(Xi)
ℓθ(Xi, f̂(Xi)) +

2

n

m+n/2∑
i=m+1

1

π(Xi)
ℓθ(Xi, Yi).

Since f̂ is independent of all samples used in the above loss, the result in Theorem 2 continues to
hold. Asymptotically, such a doubly robust estimator is never worse than the estimator trained only
on the labeled data.

F Proof of Proposition 1

For the labeled-only estimator θ̂TL, we have

E[(θ⋆ − θ̂TL)
2] = E

(E[Y ]− 1

n

m+n∑
i=m+1

Y

)2
 =

1

n
Var[Y ].
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For the self-training loss, we have

E[(θ⋆ − θ̂SL)
2] = E

(E[Y ]− 1

m+ n

(
m∑
i=1

f̂(Xi) +

m+n∑
i=m+1

Yi

))2


≤ 2

E

( m

m+ n

(
E[Y ]− 1

m

m∑
i=1

f̂(Xi)

))2
+ E

( n

m+ n

(
E[Y ]− 1

n

m+n∑
i=m+1

Yi

))2


≤ 2m2

(m+ n)2
E[(f̂(X)− Y )]2 +

2m

(m+ n)2
Var[f̂(X)− Y ] +

2n

(m+ n)2
Var[Y ].

For the doubly robust loss, on one hand, we have

E[(θ⋆ − θ̂DR)
2] = E

(E[Y ]− 1

m+ n

m+n∑
i=1

f̂(Xi) +
1

n

m+n∑
i=m+1

(f̂(Xi)− Yi)

)2


≤ 2E

(E[Y ]− 1

n

m+n∑
i=m+1

Yi

)2
+ 2E

(E[f̂(X)]− 1

n

m+n∑
i=m+1

f̂(Xi)

)2


+ 2E

(E[f̂(X)]− 1

m+ n

m+n∑
i=1

f̂(Xi)

)2


=
2

n
Var[Y ] +

(
2

m+ n
+

2

n

)
Var[f̂(X)].

On the other hand, we have

E[(θ⋆ − θ̂DR)
2] = E

(E[Y ]− 1

m+ n

m+n∑
i=1

f̂(Xi) +
1

n

m+n∑
i=m+1

(f̂(Xi)− Yi)

)2


≤ 2E

(E[Y ]− 1

m+ n

m+n∑
i=1

Yi

)2
+ 2E

(E[f̂(X)− Y ]− 1

n

m+n∑
i=m+1

(f̂(Xi)− Yi)

)2


+ 2E

(E[f̂(X)− Y ]− 1

m+ n

m+n∑
i=1

(f̂(Xi)− Yi)

)2


=

(
2

m+ n
+

2

n

)
Var[f̂(X)− Y ] +

2

m+ n
Var[Y ].

The proof is done by taking the minimum of the two upper bounds.

G Proof of Theorem 2

Proof. We know that

∥∇θLDR
D1,D2

(θ⋆)− E[∇θLDR
D1,D2

(θ⋆)]∥2

=
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))]) +
1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)−∇θℓθ⋆(Xi, f̂(Xi))

− E[∇θℓθ⋆(X,Y )−∇θℓθ⋆(X, f̂(X))]
)∥∥∥

2

≤
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))])
∥∥∥
2
+
∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)−∇θℓθ⋆(Xi, f̂(Xi))

− E[∇θℓθ⋆(X,Y )−∇θℓθ⋆(X, f̂(X))]
)∥∥∥

2
.
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From the multi-dimensional Chebyshev inequality (Bibby et al., 1979; Marshall and Olkin, 1960),
we have that with probability at least 1− δ/2, for some universal constant C,∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))])
∥∥∥
2
≤ C∥Σf̂

θ⋆∥2

√
d

(m+ n)δ
.

Similarly, we also have that with probability at least 1− δ/2,∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)−∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X,Y )−∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2
≤ C∥ΣY−f̂

θ⋆ ∥2

√
d

nδ
.

Furthermore, note that

E[∇θLDR
D1,D2

(θ⋆)] = E[∇θℓθ⋆(X,Y )] = ∇θE[ℓθ⋆(X,Y )] = 0.

Here we use Assumption 1 and Assumption 2 to ensure that the expectation and differentiation are
interchangeable. Thus we have that with probability at least 1− δ,

∥∇θLDR
D1,D2

(θ⋆)∥2 ≤ C

(
∥Σf̂

θ⋆∥2

√
d

(m+ n)δ
+ ∥ΣY−f̂

θ⋆ ∥2

√
d

nδ

)
.

On the other hand, we can also write the difference as

∥∇θLDR
D1,D2

(θ⋆)− E[∇θLDR
D1,D2

(θ⋆)]∥2

=
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))]) +
1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X,Y )]

)
− 1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤
∥∥∥ 1

m+ n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi))− E[∇θℓθ⋆(X, f̂(X))])
∥∥∥
2
+
∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X,Y )]

)∥∥∥
2

+
∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi)− E[∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤C

(
∥Σf̂

θ⋆∥2

(√
d

(m+ n)δ
+

√
d

nδ

)
+ ∥ΣY

θ⋆∥2

√
d

nδ

)
.

Here the last inequality uses the multi-dimensional Chebyshev inequality and it holds with probability
at least 1− δ. This finishes the proof.

H Proof of Proposition 3

Proof. We have

E[LDR2
D1,D2

(θ)] =
1

m

m∑
i=1

EXi∼PX
[ℓθ(Xi, f̂(Xi))]−

1

n

m+n∑
i=m+1

EXi∼QX

[
1

π(Xi)
ℓθ(Xi, f̂(Xi))

]

+
1

n

m+n∑
i=m+1

EXi∼QX ,Yi∼PY |Xi

[
1

π(Xi)
ℓθ(Xi, Yi)

]
= EX∼PX

[ℓθ(X, f̂(X))]− EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
+ EX∼QX ,Y∼PY |X

[
1

π(X)
ℓθ(X,Y )

]
.
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In the first case when π(x) ≡ PX(x)
QX(x) , we have

E[LDR2
D1,D2

(θ)] = EX∼PX
[ℓθ(X, f̂(X))]− EX∼QX

[
PX(X)

QX(X)
ℓθ(X, f̂(X))

]
+ EX∼QX ,Y∼PY |X

[
PX(X)

QX(X)
ℓθ(X,Y )

]
= EX∼PX

[ℓθ(X, f̂(X))]− EX∼PX

[
ℓθ(X, f̂(X))

]
+ EX∼PX ,Y∼PY |X [ℓθ(X,Y )]

= EX,Y∼PX,Y
[ℓθ(X,Y )] .

In the second case when ℓθ(x, f̂(x)) = EY∼PY |X=x
[ℓθ(x, Y )], we have

E[LDR2
D1,D2

(θ)] = EX∼PX
[ℓθ(X, f̂(X))]− EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
+ EX∼QX

EY∼PY |X

[
1

π(X)
ℓθ(X,Y ) | X

]
= EX∼PX

[ℓθ(X, f̂(X))]− EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
+ EX∼QX

[
1

π(X)
ℓθ(X, f̂(X))

]
= EX∼PX

[ℓθ(X, f̂(X))]

= EX,Y∼PX,Y
[ℓθ(X,Y )] .

This finishes the proof.
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