
Towards the Difficulty for a Deep Neural Network to
Learn Concepts of Different Complexities

Dongrui Liua∗ Huiqi Denga∗ Xu Chenga Qihan Rena Kangrui Wangb
Quanshi Zhanga †

aShanghai Jiao Tong University bUniversity of Chicago

Abstract

This paper theoretically explains the intuition that simple concepts are more likely
to be learned by deep neural networks (DNNs) than complex concepts. In fact,
recent studies have observed [45, 27] and proved [47] the emergence of interactive
concepts in a DNN, i.e., it is proven that a DNN usually only encodes a small
number of interactive concepts, and can be considered to use their interaction
effects to compute the inference score. Each interactive concept is encoded by the
DNN to represent the collaboration between a set of input variables. Therefore,
in this study, we aim to theoretically explain that interactive concepts involving
more input variables (i.e., more complex concepts) are more difficult to learn. Our
finding clarifies the exact conceptual complexity that boosts the learning difficulty.

1 Introduction

Deep neural networks (DNNs) have exhibited superior performance in various tasks, but the reason
for their superior performance remains an open problem. To this end, many attempts have been made
to explain the representation capacity of DNNs from different perspectives. For example, Montufar
et al. [35] used the number of linear response regions in a DNN to evaluate the expressive power
of the DNN. Dinh et al. [13] and Petzka et al. [39] used the flatness of loss functions at minima to
explain the generalization power.

In this paper, we explore a fundamental yet not well-formulated problem in terms of the representation
capacity of DNNs, i.e., what types of concepts are easier to be learned by DNNs. However, the core
challenge of this problem is that researchers have not reached a consensus on how to define a concept
encoded by DNNs. Therefore, previous findings [5, 28, 34] that DNNs easily learn simple concepts
remain intuition or empirical observations, without a clear theoretical formulation and explanation.

Fortunately, Ren et al. [45], Li and Zhang [27] have observed and Ren et al. [47] have, for the first
time, mathematically proven that the emergence of interactive concepts is a common phenomenon
shared by different DNNs. I.e., it is proved that under some common conditions, a well-trained
DNN will encode just a small number of interactive concepts for inference. Specifically, the
interactive concept encoded by a DNN is defined as a Harsanyi interaction [18] in game theory,
which represents an AND relationship between input variables in a specific set S. For example, as
Figure 1(a) shows, the DNN encodes the co-appearance relationship between input variables (image
patches) x1, x2, and x3 to form the mouth concept S = {x1, x2, x3}. Only when all three patches are
all present, the mouth concept is triggered, and adds a numerical effect I(S) to the inference score y.
The masking of any patches (e.g., x1) will break this AND/co-appearance relationship of the mouth
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Figure 1: (a) Interactive concepts encoded by a DNN. Each interactive concept S represents an
AND relationship between input variables (image patches) in S. Masking any input variables in S
will deactivate the concept S. (b) Extensive experiments illustrate the common concept-emergence
phenomenon. Various DNNs all encode very sparse interactive concepts for inference. Only a
small number of interactions have salient effects I(S) and are termed interactive concepts. Other
interactions w.r.t. other S ⊆ N all have almost zero effect I(S) ≈ 0, thus being termed noisy patterns.
For clarity, we sort the strength of interaction effects in a descending order.

concept, and removes the numerical effect I(S), i.e., making I(S) = 0. More crucially, it proved in
[47] that the network output y on each input sample can be represented as the sum of numerical
effects of such a few interactive concepts, i.e., y =

∑
S∈ConceptSet I(S).

The mathematical proof in [47] makes the interactive concept the first concept whose emergence in
DNNs is certificated. Furthermore, Li and Zhang [27] have discovered that the interactive concepts
have considerable transferability over different samples and strong discrimination power for
classification. In this way, we can roughly consider such interactive concepts a rigorous definition of
concepts encoded by DNNs.

Explaining the difficulty of learning complex interactive concepts. Therefore, in this study, given
the above interactive concepts, we aim to further explore the learning difficulty of these concepts, and
explain that a DNN is more likely to encode simple interactive concepts. Here, we use the number
of variables in an interactive concept S to represent the complexity of the concept, which is also
termed the order of the concept. Thus, low-order interactive concepts usually represent simple AND
interactions among a few input variables.

Specifically, we find that low-order interactive concepts encoded by DNNs are generally more stable
to inevitable noises in data. In this way, low-order interactive concepts usually exhibit consistently
positive (or negative) effects on the inference score of different samples in the same category. In
comparison, a high-order interactive concept is more likely to have significantly diverse effects
on inference scores of different samples. This explains the reason why DNNs easily learn simple
interactive concepts.

In addition, we discover that our research may provide a new perspective to explain previous find-
ings/understandings of the conceptual complexity [5, 34, 63, 28]. Besides, the conceptual complexity
can directly explain the adversarial robustness of a DNN. Thus, our study is of considerable value in
explaining the representation capacity of a DNN.

Interactive concepts vs. cognitive concepts. Although the Harsanyi interactive concepts visualized
by [27] seem partially aligned with cognitive concepts to some extent, we do not think such interactive
concepts fit humans’ cognition [24, 53]. For example, the recognition of a big ball concept and that
of a small ball concept have almost the same cognitive complexity for humans. In comparison, it is
more difficult for the DNN to recognize a large ball, because it has to use a high-order interaction
that contains a lot of pixels to examine whether all pixels within the ball have the same color. Thus,
this study clarifies the exact formulation for the conceptual complexity on interactive concepts that
boosts the learning difficulty, which is different from the cognitive difficulty.

2 Explainable AI (XAI) theories based on game-theoretic interactions

Explaining DNNs based on a system of game-theoretic interactions becomes an emerging direction
in recent years. Specifically, such a system aims to tackle the following challenges in XAI.
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• Defining, extracting, and quantifying interactive concepts encoded by DNNs. Quantifying the
interactions between different input variables [57, 58] is a new perspective to formulate the knowledge
encoded by a DNN. Based on game theory, Zhang et al. [66, 68, 67] introduced multi-variate
interaction and multi-order interaction to quantify the interactions encoded by the DNN. Ren et al.
[45] empirically observed and Ren et al. [47] further proved that a DNN usually just encoded a small
number of salient interactions. Ren et al. [44] defined the optimal baseline value for computing the
Shapley value based on these interactions. Li and Zhang [27] found that salient interactions usually
have high transferability over different samples and DNNs. These findings showed that these salient
interactions could be viewed as interactive concepts encoded by a DNN.

• Using interactive concepts to explain/measure the representation power of DNNs. The repre-
sentation power of DNNs has been explained by game-theoretic multi-order interaction, including
generalization power [67, 70], adversarial robustness [45, 70], and adversarial transferability [60].
Besides, Cheng et al. [8] used interactions to investigate how shapes and textures were encoded in
DNNs. Cheng et al. [9] found that salient interactions often represented prototypical patterns encoded
by DNNs. Deng et al. [11] derived that the DNN was less likely to encode mid-order interactions.
In comparison, Ren et al. [46] proved that the Bayesian neural network was less likely to encode
high-order interactions, thereby obtaining good adversarial robustness.

• Unifying the common underlying mechanism shared by previous empirical findings. Interactions
have superior representation power, and we find that many previous studies can be re-explained
from the perspective of interactions. Deng et al. [12] proved that fourteen attribution methods could
be reformulated and considered as a certain allocation of interaction effects. Besides, Zhang et al.
[69] proved that reducing the interactions was the common underlying mechanism shared by twelve
previous studies for improving adversarial transferability.

3 Explaining simple interactive concepts are easy to learn

3.1 Preliminaries: sparse interactive concepts emerge in DNNs

It is generally believed that the learning of DNNs is a fitting problem between the ground-truth label
and the model output, instead of explicitly learning specific concepts like graphical models. However,
Ren et al. [45], Li and Zhang [27] have empirically observed and Ren et al. [47] have mathematically
proven the counter-intuitive emergence of concepts in DNNs, i.e., it is proven that under a set of
common conditions, a DNN encodes just a small number of interactive concepts for inference.

Specifically, given a pre-trained DNN v and an input sample x = [x1, . . . , xn] with n variables indexed
by N = {1, . . . , n}, v(x) ∈ R denotes a scalar output of the DNN3. Each interaction in [45, 27, 47]
is defined as Harsanyi dividend (or Harsanyi interaction) [18] in game theory, which represents a
collaboration (AND relationship) between input variables in a specific set S (S ⊆ N). For example,
as Figure 1(a) shows, the co-appearance of image patches forms a mouth interaction S = {x1, x2, x3}.
Only when these three patches are all present, the mouth interaction will be triggered, and make a
certain interaction effect I(S) on the network output. The absence (masking) of any patches of x1, x2,
and x3 will deactivate the mouth interaction and remove the interaction effect, i.e., I(S) = 0. The
interaction effect I(S|x) on the input sample x is computed as follows.

I(S|x) =
∑

T⊆S
(−1)|S|−|T | · v(xT ), (1)

where xT denotes the masked input sample, when we mask input variables in N \T and keep variables
in T unchanged. Please see more properties of the Harsanyi dividend in the supplementary material.

Theoretically, there are 2n potential subsets S of input variables (S ∈ 2N = {S|S ⊆ N}). The
proven concept-emergence phenomenon refers to that only a small number of subsets S ∈ Ωsalient ⊆
2N make salient interaction effects I(S|x) on the network output, and can be considered as
interactive concepts. Interaction effects of all other subsets are close to zero (I(S|x) ≈ 0), which
can be considered as ignorable noisy patterns. Therefore, the network output v(x) can be well
approximated by interaction effects of a small number of interactive concepts, i.e.,

v(x) =
∑

S⊆N
I(S|x) ≈

∑
S∈Ωsalient

I(S|x) (2)

3Here, v(x) ∈ R can be implemented as either a scalar output of the DNN or a dimension of an output vector
(e.g., the confidence score of classifying the sample x to the ground-truth category v(x) = log p(y=ytruth|x)

1−p(y=ytruth|x)
).
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We also conduct experiments to illustrate the concept-emergence phenomenon on various DNNs,
including multi-layer perceptrons (MLPs), long short-term memory (LSTM), AlexNet [23], ResNet
[19], convolutional neural networks (CNNs), and PointNet [41] trained on different types of data,
including tabular data (UCI dataset [6]), natural language data (CoLA [61] and SST-2 [56]), image
data (MNIST [26] and CelebA [31]), and point cloud data (ShapeNet [65]). We follow experimental
settings in [45, 27], and Figure 1(b) shows that interactive concepts encoded by a DNN are usually
indeed sparse.
Theorem 1. Given an input sample x ∈ Rn with n variables, there are 2n different masked samples
xT w.r.t. all potential subsets T ⊆ N . Then, [45] has proven that

∀ T ⊆ N, v(xT ) =
∑

S⊆T
I(S|x) ≈

∑
S∈Ωsalient&S⊆T

I(S|x). (3)

Theorem 1 means that we can use a small number of interactive concepts in Ωsalient to well approximate
network outputs on anyone xT of the 2n masked samples.

Trustworthiness of interactive concepts. The mathematical proof in [47] makes I(S) become the
first concepts whose emergence in DNNs is certificated. Equations (2) and (3) further guarantee
that interactive concepts can faithfully explain the output of DNNs. In addition, Li and Zhang [27]
have discovered that (i) interactive concepts are transferable across different samples; (ii) interactive
concepts are discriminative, i.e., if a concept S has salient interaction effects I(S) on a set of samples,
then the concept tends to push these samples to be classified towards the same category. In this way,
we can roughly consider such interactive concepts a relatively rigorous definition of concepts.

Complexity (order) of interactive concepts. The complexity of an interactive concept S is defined as
the number of input variables involved in S, which is also termed the order of the interactive concept,
i.e., complexity(S) = order(S) = |S|. Thus, low-order interactive concepts usually represent simple
AND relationships among a few input variables. In comparison, high-order interactive concepts often
refer to as relatively complex AND relationships among a large number of input variables.

3.2 Simple interactive concepts in data are more stable and easier to learn

Unlike other interaction metrics [16, 32, 57], sparse interactive concepts are certificated to emerge in
DNN, and can faithfully represent the inference score of DNNs. Therefore, in this study, we aim to
further explore the learning difficulty of these certificated concepts. Specifically, we theoretically
explain that a DNN is more likely to encode simple (i.e., low-order) interactive concepts.

In this subsection, we show that low-order interactive concepts encoded by DNNs are generally more
stable to inevitable noises in data, compared to high-order interactive concepts. Specifically, we
derive an approximate analytical solution to the variance (instability) of interactive concepts’ effects
w.r.t. data noise, and show that the variance (instability) increases along the order of concepts in an
exponential manner.
Theorem 2 (proven in the supplementary material). Given a neural network v and an arbitrary
input sample x′ ∈ Rn, the network output can be decomposed by using the Taylor expansion i.e.,
v(x′) =

∑
S⊆N

∑
π∈QS

US,π · J(S,π|x′). In this way, according to Equation (1), the Harsanyi
interaction effect I(S|x′) on the sample x′ can be reformulated as follows.

I(S|x′) =
∑

π∈QS

US,π · J(S,π|x′). (4)

Here, J(S,π|x′)=
∏

i∈S

(
sign(x′

i − bi) · x
′
i−bi
τ

)πi

denotes a Taylor expansion term of the degree π,
where the degree π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0} and bi is the baseline
value to mask the input variable xi. In addition, US,π=

τm∏n
i=1 πi!

∂mv(x′
∅)

∂x
π1
1 ···∂xπn

n
·
∏

i∈S [sign(x
′
i − bi)]

πi ,
where x′

∅ denotes the sample whose input variables are all masked. m =
∑n

i=1 πi.

Theorem 2 rewrites the Harsanyi interaction effect I(S|x) of each concept from a new perspective,
to facilitate the analysis of the instability of interactive concepts. The derivation of Theorem 2 is
inspired by [12, 70, 46], in which the Harsanyi interaction effect is re-written as the sum of the Taylor
interaction effects. Therefore, in this study, we define a new baseline value bi to further extend the
finding in [12] and obtain Theorem 2, which significantly simplifies the further proof. Specifically,
the new baseline value bi is set as follows to represent the masked state of the i-th input variable. i.e.,
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xi ← bi. Previous studies usually set bi = µi = Ex[xi] as the average value over different samples to
represent the masked state [4, 12]. However, we consider that pushing the input variable xi to move
a large distance τ ∈ R towards µi has been significant enough to remove its information. To this
end, we set bi = xi − τ 4, if xi > µi; else, bi = xi + τ 4. The above new setting ensures comparable
perturbation magnitudes over different dimensions.

Next, we analyze the variance (instability) of the interaction effect I(S|x′ = x+ ϵ) when we add a
Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. Here, the Gaussian perturbation ϵ ∈ Rn

is considered as a rough representation of inevitable variations in data, e.g., shape deformation and
object rotation variations in image classification. However, such variations are quite difficult to
formulate, so we use a Gaussian perturbation as a rough representation. Fortunately, we find that our
reformulation of interactions in Theorem 2 enables us to directly apply the finding in [46] to prove
the variance (instability) of the interaction effect I(S|x′ = x+ ϵ).
Theorem 3. Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. Let us first
consider the case with the lowest degree π̂ = [π̂1, . . . , π̂n] ∈ QS , satisfying that ∀i ∈ S, π̂i = 1;∀i /∈
S, π̂i = 0. The mean and variance of J(S, π̂|x+ ϵ) over the Gaussian perturbation ϵ are given as

Eϵ[J(S, π̂|x+ ϵ)] = 1, Varϵ[J(S, π̂|x+ ϵ)] =

(
1 +

(σ
τ

)2
)|S|

− 1. (5)

Furthermore, for the more general case with an arbitrary degree π ∈ QS = {[π1, · · · , πn]|∀i ∈ S, πi ∈
N+; ∀i /∈ S, πi = 0}, the mean and variance of J(S,π|x+ ϵ) are computed as

Eϵ[J(S,π|x+ ϵ)] = Eϵ[
∏

i∈S
(1 +

ϵi
τ
)πi ], Varϵ[J(S,π|x+ ϵ)] = Varϵ[

∏
i∈S

(1 +
ϵi
τ
)πi ]. (6)

Theorem 3 shows the (variance) instability of interactive concepts of different complexities (orders)
w.r.t. data variations. It indicates that the variance of J(S,π|x+ ϵ) roughly increases along with the
order(S) = |S| in an exponential manner. Similar conclusions are also introduced in [70]. Furthermore,
according to Equation (4), the interaction effect I(S|x+ ϵ) of the concept S can be represented as
the weighted sum of J(S,π|x+ ϵ), and coefficients US,π w.r.t. different orders s and degrees π are
usually chaotic. Hence, we can roughly consider that the variance (instability) of the interaction
effect I(S|x+ ϵ) increases along with the order |S| exponentially, as well. In other words, compared
to high-order concepts, low-order concepts are much more stable to slight input perturbations.

Experimental verification. Here, we conduct experiments to verify whether the variance (instability)
of interaction effects indeed increased along with the order in an approximately exponential manner.
Specifically, to mimic variations in the data, we add Gaussian perturbations ϵ ∼ N (0, 0.022I) to each
training sample. Then, we compute the average mean E(s)=Ex∈X [ES⊆N,|S|=s[|Eϵ[I(S|x+ ϵ)]|]] and
the average variance V (s)=Ex∈X [ES⊆N,|S|=s[Varϵ[I(S|x+ ϵ)]]] of interaction effects of the s-th order
concepts w.r.t. Gaussian perturbations. For verification, we calculate such metrics on DNNs trained
for image classification and DNNs trained on tabular data. We train AlexNet [23], VGG-11 [55],
ResNet-18/20 [19] on the CIFAR-10 dataset [22] and the Tiny-ImageNet dataset [25], respectively.
We also train a five-layer MLP [45] on the UCI census dataset (namely census dataset) and the
UCI TV news dataset (namely TV news dataset) [6], respectively. In addition, considering the
computational cost of I(S|x+ ϵ) in Equation (1) is intolerable if each pixel is considered as an input
variable, we divide images into 8×8 patches [45] to calculate I(S|x+ϵ). Please see the supplementary
material for more implementation details.

Figure 2 shows that the variance (instability) V (s) of interaction effects increases in an exponential
manner along with the order s of the interactive concept. In addition, the relative stability E(s)/

√
V (s)

of interaction effects decreases significantly along with the order s. Such phenomenon successfully
verifies findings in Theorem 3.

3.2.1 Formulating the conceptual learning as a linear regression problem

Note that, Li and Zhang [27] have discovered that interactive concepts have high transferability over
samples in the same category, i.e., most interactive concepts extracted from different samples may

4We need to avoid the case of over-perturbation, by setting bi ← max(bi, µi) if xi > µi; bi ← min(bi, µi),
otherwise. Fortunately, such cases are uncommon in real applications, so we ignore such settings in the following
theoretical analysis.
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Figure 2: The logarithm of the variance of interaction effects log[V (s)] and the stability of interaction
effects (measured by E(s)/

√
V (s)). The variance V (s) of interaction effects increases along with the

order of interactive concepts exponentially. The stability of effects decreases along with the order.

all belong to the same subset Ωc ⊆ Ωsalient. Therefore, we can consider the interactive concepts as
common knowledge learned by the DNN, and we aim to analyze the difficulty of learning each
interactive concept with different complexity.

To facilitate the analysis, we first simplify the conceptual learning as a linear regression problem.
Specifically, we first rewrite the interaction effect of an interactive concept S. Given an input sample
x, according to Equation (4), the interaction effect of the concept S on the sample x′ (obtained by
applying some transformations on x), I(S|x′), can be rewritten as

I(S|x′) = US · CS(x
′), (7)

where the constant US = I(S|x) denotes the interaction effect on the sample x, and the function for
the triggering state on the transformed sample x′ is given as CS(x

′) =
∑

π∈QS
US,πJ(S,π|x′)/US .

Theorem 4. Given an arbitrarily masked sample xT (T ⊆ N), the function CS(xT ) defined above
can be computed as the binary triggering state of the concept S in the sample xT .

∀ T ⊆ N, CS(xT ) =
∏

i∈S
Ai(xT ) = 1(S ⊆ T ), (8)

where Ai(xT ) ∈ {0, 1} denotes whether the variable xi is present Ai(xT ) = 1 or being masked
Ai(xT ) = 0 in the sample xT .

The function CS(xT ) represents the triggering state of the concept S under an arbitrarily masking
condition ∀ T ⊆ N . Only when all variables in S are present under the masking condition T , the
concept S is triggered CS(xT ) = 1. If any of variables in S is masked, then the concept S will not be
triggered CS(xT ) = 0, yielding zero interaction effect I(S|xT ) = 0. Theorem 4 shows that given a
masked sample xT , the concept S is only triggered when the sample xT contains all variables in S,
i.e., T ⊇ S.

Thus, inspired by [46], we can extend the conclusion to a continuous version that explains the output
of the DNN as a linear regression of very few salient interactive concepts based on Equation (3).

v(x′) =
∑

S⊆N
US · CS(x

′) ≈
∑

S∈Ωsalient
US · CS(x

′), (9)

where the triggering state CS(x
′) of each interactive concept S can be considered as an input

dimension of the linear function, which reflects whether the input sample x′ contains the concept S.

Therefore, the absolute value of the weight coefficient US in Equation (9) can be viewed as the
strength of the DNN encoding the interactive concept S. Considering the sparsity of interactive
concepts discussed in Section 3.1, most interactive concepts have ignorable coefficients US ≈ 0, and
not so many concepts S have large absolute value of |US |. Thus, we can consider that the DNN only
learns a small number of salient interactive concepts.

3.2.2 Explaining the learning difficulty of concepts

Equation (9) in the previous subsection enables us to understand a DNN for the classification task as a
pseudo-linear function. Then, if an input feature dimension has a stable value (i.e., the triggering state
CS of an interactive concept S stably being present/absent) across all samples in the same category,
then we consider this feature dimension (i.e., the concept) is easy to learn. In comparison, when
we extract the same concept from different samples in the same category, if this concept exhibits
inconsistent interaction effects (e.g., such a concept does not consistently present or absent over
different samples), then this feature dimension (i.e., the concept) is hard to learn.
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Figure 4: Instability κ(S) of s-order interactive concepts to data variations. The curve shows the
average instability ES⊆N,|S|=s[κ(S)] over different interactive concepts of the s-th order, and the
shade represents the standard deviation StdS⊆N,|S|=s[κ(S)]. Effects of high-order concepts are more
sensitive to data variations than those of low-order concepts.

To analyze the consistency/stability of the concept w.r.t data variations, we use small perturbations ϵ
to represent various inevitable variations in the data, such as shape deformation and object rotation
variations. Theorem 3 shows that high-order interactive concepts are much more unstable to inevitable
variations in the data than low-order interactive concepts. This makes high-order concepts more likely
to be influenced by data variations and less likely to be consistently present or absent in samples of
the same category, which boosts the learning difficulty.

Experimental verification. We conduct experiments to verify the claim that high-order interac-
tive concepts are less stably extracted under data variations than low-order interaction. We use
the following two metrics to evaluate the each interactive concept S (i.e., each single input di-
mension of the above linear function) of a certain order. Specifically, we use the first metric
β(S) = Ec

[
|Ex∈Xc [I(S|x)]|/Stdx∈Xc [I(S|x)]

]
to measure the relative consistency of the interactive

concept appearing over different input samples in a certain category c. Here, Xc denotes a set of
training samples belonging to the category c, and Stdx∈Xc [I(S|x)] indicates the standard deviation of
I(S|x) over different input samples. A large β(S) value means that the interactive concept S in all
samples of the category c has similar/consistent effects I(S|x). It is easier for a DNN to learn such a
consistent concept S.

In addition, we use another metric κ(S) to verify whether the interaction effect of the high-
order interactive concept is usually less stably extracted than those of the low-order interac-
tive concept. To this end, the metric κ(S) =Ex∈X [Eϵ[|I(S|x+ ϵ)− I(S|x)|]]/Ex∈X

[
|I(S|x)|] =

Ex∈X [Eϵ[|CS(x+ ϵ)− CS(x)|]]/Ex∈X

[
|CS(x)|] measures the relative instability of the interactive

concept S to the inevitable slight variations ϵ in the data. Here, CS(x+ϵ) = I(S|x+ϵ)/US computed
in Equation (7) denotes the trigger state of the interactive concept S on the sample x′ = x+ ϵ.

To this end, we use DNNs and experimental settings in the experimental verification paragraph
of Section 3.2 for evaluation. Figure 3 and Figure 4 show the change of the average consistency
β(S) and the average instability κ(S) of s-order interactive concepts through the learning process,
respectively. At each training epoch, low-order concepts usually obtain higher consistency β(S) and
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Figure 5: The weighted Jaccard similarity sim(I
(s)
t , I

(s)
final) between s-order interactive concepts learned

after the intermediate epoch I
(s)
t and those learned after the final epoch I

(s)
final. Low-order concepts

usually have higher Jaccard similarity during the learning process, which indicates that DNNs first
learn low-order concepts and then gradually learn more about high-order concepts.

lower instability κ(S) than high-order concepts. It means that low-order concepts usually are more
consistent and more stable. Thus, this experiment explains the reason why low-order interactive
concepts are easier to learn.

3.2.3 Fast learning of low-order concepts

In this subsection, we illustrate the phenomenon that low-order interactive concepts are usually
learned faster than high-order concepts, as a support for the claim that low-order interactive concepts
are easier to be learned. We have theoretically proven in Section 3.2 and experimentally verified
that low-order interactive concepts are more consistently present or consistently absent in different
samples of the same category, which makes low-order interactive concepts easier to be learned. Then,
this experiment is conducted to check whether low-order concepts are really learned faster than
high-order concepts.

Specifically, we examine whether interactive concepts encoded by the finally-learned DNN vfinal(x)
have already been encoded by the DNN that is vt(x) trained after t epochs. If so, we consider
such interactive concepts are learned fast. Specifically, let I(s)

t = [It(S1|x), · · · , It(Sd|x)]⊤ ∈ Rd

denote a vector of interaction effects for all d =
(
n
s

)
interactive concepts of s-order. Then, we

compute the Jaccard similarity between s-order interactive concepts encoded by the DNN vfinal(x)

and those encoded by the DNN vt(x), i.e., sim(I
(s)
t , I

(s)
final)=∥min(Ĩ

(s)
t , Ĩ

(s)
final)∥1/∥max(Ĩ

(s)
t , Ĩ

(s)
final)∥1

and ∥ · ∥1 denotes L1-norm. We extend the d-dimensional vector I(s)
t into a 2d-dimensional vector

with non-negative elements Ĩ
(s)
t = [(I

(s),+
t )⊤, (I

(s),−
t )⊤]⊤ = [max(I

(s)
t , 0)⊤,−min(I

(s)
t , 0)⊤]⊤ ∈ R2d.

Similarly, we compute Ĩ
(s)
final with non-negative elements based on I

(s)
final. In this way, a large similarity

sim(I
(s)
t , I

(s)
final) at an earlier epoch t indicates that interactive concepts are easier to be learned.

To this end, let us use DNNs and experimental settings introduced in the experimental verification
paragraph of Section 3.2 for evaluation. Figure 5 shows that DNNs first learn low-order interactive
concepts, and then learn high-order interactive concepts. Such a phenomenon verifies the conclusion
that a DNN easily learns low-order (simple) interactive concepts.

4 Explaining findings in previous studies

4.1 Explaining adversarial robustness

Previous study [43] has discovered that low-order interactions are more robust to adversarial attacks
than high-order interactions. Notice that their high-order (low-order) interactions are different from,
but highly related to our high-order (low-order) interactive concepts. Specifically, our interactive
concepts can be explained as elementary components for such multi-order interactions in [43]. Please
see the supplementary material for the proof. Therefore, from this perspective, our conclusion that

“low-order interactive concepts are easy to learn” can also explain how a DNN encodes concepts of
different adversarial robustness.
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Figure 6: Average adversarial sensitivity A(s) of s-order interactive concepts to adversarial pertur-
bations. Low-order interactive concepts are usually much less sensitive to adversarial attacks than
high-order interactive concepts.

Can we use interactive concepts in this paper to verify the heuristic findings of adversarial
robustness in [43]? According to Equation (2), we can represent the inference logic of a DNN by
a set of interactive concepts, i.e., v(x) ≈

∑
S∈Ωsalient

I(S|x). In this way, we conduct experiments
to evaluate the sensitivity of each interactive concept S to adversarial perturbations. The symbolic
conceptual representation of interactive concepts allows us to measure the adversarial robustness in a
more direct way. That is, if the effect of an interactive concept does not significantly change under
adversarial attacks, we consider this interactive concept is robust to adversarial attacks. In contrast, if
the effect of an interactive concept changes significantly under adversarial attacks, we consider this
interactive concept is sensitive to adversarial attacks.

To this end, we use the metric α(S) = Ex∈X [|I(S|x+ δ)− I(S|x)|] /Ex∈X

[
|I(S|x)|] to evaluate the

sensitivity of the interactive concept S to adversarial perturbations, where δ denotes the adversarial
perturbation generated by the ℓ∞ attack [33]. In this way, a small α(S) value indicates that the
interactive concept S is robust to the adversarial attack.

We follow experimental settings in the experimental verification paragraph of Section 3.2 to evaluate
different DNNs. Figure 6 shows that compared to high-order interactive concepts, low-order concepts
usually obtain smaller A(s) = ES⊆N,|S|=s[α(S)] values. Such phenomena demonstrate that low-order
interactive concepts are more robust to adversarial attacks.

4.2 Connections to existing findings on what are learned first by a DNN

In this subsection, we discuss some related studies on which kind of knowledge is usually first learned
by a DNN. Most previous studies conducted experiments to explore the knowledge that was easier
to be learned by a DNN, without providing much theoretical support. However, we find that our
theorems can partially explain mechanisms behind some previous findings.

• Arpit et al. [5] trained DNNs to classify both normal samples and white-noise samples to different
object categories. In this way, they considered that the DNN encoded simple concepts to classify
normal samples, but the DNN had to learn complex concepts to classify white noises to randomly-
assigned labels. They observed that the DNN usually learned normal samples first, because the
classification accuracy of normal samples increased before that of white noises. To this end, our
research provides more insights into such an observation. Specifically, Cheng et al. [8] have proven
that the classification of noisy data usually depends on high-order concepts, i.e., the classification of
noisy data forces the DNN to memorize each specific white-noise sample as a specific high-order
interactive concept. Let us combine this conclusion with our finding that high-order interactive
concepts are hard to learn. Then, we can easily owe the slow learning of white-noise samples
observed in [5] to the difficulty of learning high-order concepts.

• Mangalam and Prabhu [34] considered/defined easy samples as training samples that could be
correctly classified by shallow machine learning models, such as support vector machine (SVM)
and random forests (RF). They discovered that DNNs first learned easy samples, and then gradually
learned more about hard samples. To this end, our research verifies such observation. Specifically, we
claim that easy samples mainly contain low-order interactive concepts. Thus, hard samples mainly
contain high-order interactive concepts corresponding to complex interactions between numerous
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input variables, and thus are difficult to be classified by shallow models (e.g., the SVM and the RF).
In this way, the fast learning of low-order concepts is another understanding of the finding in [34].

• Xu et al. [63] discovered that during the training process, DNNs usually first learned samples of
low frequencies (e.g., robust to noises), and then encoded samples of high frequencies (e.g., sensitive
to noises). However, the original design of DNNs is not towards learning specific spectrums, and
techniques of deep learning are not developed by assuming a periodic loss landscape of training
samples. Therefore, we believe there should be a more direct explanation for the spectrum-learning
phenomenon discovered by [63]. To this end, our research explains this phenomenon as the difficulty
of learning high-order concepts. According to Section 4.1, low-order concepts usually are less
sensitive to input perturbations, thereby corresponding to low-frequency components defined in the
loss landscape in [63]. Accordingly, high-order concepts correspond to high-frequency components.

• Liu et al. [28] discovered that during adversarial training, the training loss of the DNN trained on
easy samples decreased faster than that of the DNN trained on hard samples. To this end, we consider
easy samples in adversarial training mentioned by [28] may mainly contain low-order interactive
concepts. It is because, as discussed in Section 4.1, [43] discovered that low-order interactions were
robust to adversarial perturbations. Thus, the fast learning of easy samples in adversarial training can
be roughly owing to the learning of low-order concepts.

5 Conclusion and discussion

In this paper, we theoretically explain the trend of DNNs learning simple concepts. Since the
emergence of interactive concepts of DNNs has been observed [45, 27] and proved [47], we aim
to theoretically explain the explicit theoretical connection between the conceptual complexity and
the difficulty of learning concepts. In this way, we prove that low-order interactive concepts in the
data are much more stable than high-order interactive concepts, which makes low-order interactive
concepts more likely to be encoded. Besides, our research can also provide new insights into several
previous empirical understandings [5, 34, 63, 28] w.r.t. the conceptual representation of DNNs.

There are very few ways to define and examine what is a “concept.” In this paper, we only use the
following three properties to support the faithfulness of using sparse salient interactions as concepts
encoded by the DNN.
• Ren et al. [47] have proved that a well-trained DNN can encode just a small number of salient
interactions for inference under some common conditions.
• Ren et al. [45] have proved that, such a small number of salient interactions extracted from a sample
can well mimic DNN’s outputs on numerous masked samples.
• Li and Zhang [27] have discovered that salient interactions have considerable transferability and
strong discrimination power.
However, the above properties cannot guarantee a clear correspondence between an interactive
concept and a concept in human cognition. Up to now, we cannot mathematically formulate what is a
concept in cognitive science. Thus, there is still a long way to unify the learning difficulty of a DNN
and the cognitive difficulty of human beings.
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[5] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A
closer look at memorization in deep networks. In International conference on machine learning,
pages 233–242. PMLR, 2017.

[6] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[7] Chuanchuan Chen, Dongrui Liu, Changqing Xu, and Trieu-Kien Truong. Saks: Sampling
adaptive kernels from subspace for point cloud graph convolution. IEEE Transactions on
Circuits and Systems for Video Technology, 2023.

[8] Xu Cheng, Chuntung Chu, Yi Zheng, Jie Ren, and Quanshi Zhang. A game-theoretic taxonomy
of visual concepts in dnns. arXiv preprint arXiv:2106.10938, 2021.

[9] Xu Cheng, Xin Wang, Haotian Xue, Zhengyang Liang, and Quanshi Zhang. A hypothesis for
the aesthetic appreciation in neural networks. arXiv preprint arXiv::2108.02646, 2021.

[10] Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, and Xia Hu. A general taylor
framework for unifying and revisiting attribution methods. arXiv preprint arXiv:2105.13841,
2021.

[11] Huiqi Deng, Qihan Ren, Xu Chen, Hao Zhang, Jie Ren, and Quanshi Zhang. Discovering
and explaining the representation bottleneck of dnns. International Conference on Learning
Representations, 2022.

[12] Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Ziwei Yang, Zheyang Li,
and Quanshi Zhang. Understanding and unifying fourteen attribution methods with taylor
interactions. arXiv preprint arXiv:2303.01506, 2023.

[13] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pages 1019–1028. PMLR,
2017.

[14] Stanislav Fort, Paweł Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Stiffness:
A new perspective on generalization in neural networks. arXiv preprint arXiv:1901.09491,
2019.

[15] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

[16] Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction
among players in cooperative games. International Journal of game theory, 28(4):547–565,
1999.

[17] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International conference on machine learning, pages 1225–1234.
PMLR, 2016.

[18] John C Harsanyi. A simplified bargaining model for the n-person cooperative game. Interna-
tional Economic Review, 4(2):194–220, 1963.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11



[20] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip
Isola. The low-rank simplicity bias in deep networks. Transactions on Machine Learning
Research, 2022.

[21] S Kornblith, M Norouzi, H Lee, and G Hinton. Similarity of neural network representations
revisited. In International Conference on Machine Learning, pages 3519–3529. PMLR, 2019.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[24] Stephen Laurence and Eric Margolis. Concepts and cognitive science. 1999.

[25] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Mingjie Li and Quanshi Zhang. Does a neural network really encode symbolic concept? In
International conference on machine learning. PMLR, 2023.

[28] Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, and Sabine Süsstrunk. On the
impact of hard adversarial instances on overfitting in adversarial training. arXiv preprint
arXiv:2112.07324, 2021.

[29] Dongrui Liu, Shaobo Wang, Jie Ren, Kangrui Wang, Sheng Yin, Huiqi Deng, and Quanshi
Zhang. Trap of feature diversity in the learning of mlps. arXiv preprint arXiv:2112.00980,
2021.

[30] Dongrui Liu, Chuanchaun Chen, Changqing Xu, Robert C Qiu, and Lei Chu. Self-supervised
point cloud registration with deep versatile descriptors for intelligent driving. IEEE Transactions
on Intelligent Transportation Systems, 2023.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of the IEEE international conference on computer vision, pages
3730–3738, 2015.

[32] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution
for tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[34] Karttikeya Mangalam and Vinay Uday Prabhu. Do deep neural networks learn shallow learnable
examples first? 2019.

[35] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. Advances in neural information processing systems, 27,
2014.

[36] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems, 31,
2018.

[37] Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

[38] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of
deep feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098,
2013.

12



[39] Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley.
Relative flatness and generalization. Advances in Neural Information Processing Systems, 34:
18420–18432, 2021.

[40] Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and
Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in
Neural Information Processing Systems, 34:1256–1272, 2021.

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[42] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and interpretability. Advances
in neural information processing systems, 30, 2017.

[43] Jie Ren, Die Zhang, Yisen Wang, Lu Chen, Zhanpeng Zhou, Yiting Chen, Xu Cheng, Xin Wang,
Meng Zhou, Jie Shi, et al. A unified game-theoretic interpretation of adversarial robustness.
35th Conference on Neural Information Processing Systems (NeurIPS 2021), 2021.

[44] Jie Ren, Zhanpeng Zhou, Qirui Chen, and Quanshi Zhang. Can we faithfully represent absence
states to compute shapley values on a dnn? In The Eleventh International Conference on
Learning Representations, 2022.

[45] Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quanshi Zhang. Defining and quantifying the
emergence of sparse concepts in dnns. In IEEE Conference on Computer Vision and Pattern
Recognition, 2023.

[46] Qihan Ren, Huiqi Deng, Yunuo Chen, Siyu Lou, and Quanshi Zhang. Bayesian neural net-
works avoid encoding complex and perturbation-sensitive concepts. Proceedings of the 40th
International Conference on Machine Learning, pages 28889–28913, 2023.

[47] Qihan Ren, Jiayang Gao, Wen Shen, and Quanshi Zhang. Where we have arrived in proving the
emergence of sparse symbolic concepts in ai models. arXiv preprint arXiv:2305.01939, 2023.

[48] Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra.
Can contrastive learning avoid shortcut solutions? Advances in neural information processing
systems, 34:4974–4986, 2021.

[49] Luca Scimeca, Seong Joon Oh, Sanghyuk Chun, Michael Poli, and Sangdoo Yun. Which
shortcut cues will dnns choose? a study from the parameter-space perspective. arXiv preprint
arXiv:2110.03095, 2021.

[50] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli.
The pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing
Systems, 33:9573–9585, 2020.

[51] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):
307–317, 1953.

[52] Wen Shen, Qihan Ren, Dongrui Liu, and Quanshi Zhang. Interpreting representation quality of
dnns for 3d point cloud processing. Advances in Neural Information Processing Systems, 34:
8857–8870, 2021.

[53] Thomas J Shuell. Cognitive conceptions of learning. Review of educational research, 56(4):
411–436, 1986.

[54] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810, 2017.

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

13



[56] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[57] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The shapley taylor interaction
index. In International Conference on Machine Learning, pages 9259–9268. PMLR, 2020.

[58] Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-shap: The faithful shapley
interaction index. arXiv preprint arXiv:2203.00870, 2022.

[59] Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen Wang, and Quanshi Zhang. A unified ap-
proach to interpreting and boosting adversarial transferability. arXiv preprint arXiv:2010.04055,
2020.

[60] Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen Wang, and Quanshi Zhang. A unified
approach to interpreting and boosting adversarial transferability. In International Conference
on Learning Representations, 2021.

[61] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability
judgments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

[62] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh,
and Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory
approach. arXiv preprint arXiv:1801.10578, 2018.

[63] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

[64] Zhiqin John Xu. Understanding training and generalization in deep learning by fourier analysis.
arXiv preprint arXiv:1808.04295, 2018.

[65] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation
in 3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

[66] Die Zhang, Hao Zhang, Huilin Zhou, Xiaoyi Bao, Da Huo, Ruizhao Chen, Xu Cheng, Mengyue
Wu, and Quanshi Zhang. Building interpretable interaction trees for deep NLP models. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 14328–14337. AAAI Press, 2021.

[67] Hao Zhang, Sen Li, YinChao Ma, Mingjie Li, Yichen Xie, and Quanshi Zhang. Interpreting
and boosting dropout from a game-theoretic view. In International Conference on Learning
Representations, 2020.

[68] Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, and Quanshi Zhang. Interpreting multi-
variate shapley interactions in dnns. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pages 10877–10886. AAAI Press, 2021.

[69] Quanshi Zhang, Xin Wang, Jie Ren, Xu Cheng, Shuyun Lin, Yisen Wang, and Xiangming Zhu.
Proving common mechanisms shared by twelve methods of boosting adversarial transferability.
arXiv preprint arXiv:2207.11694, 2022.

[70] Huilin Zhou, Hao Zhang, Huiqi Deng, Dongrui Liu, Wen Shen, Shih-Han Chan, and Quan-
shi Zhang. Concept-level explanation for the generalization of a dnn. arXiv preprint
arXiv:2302.13091, 2023.

14



A Literature on the representation capacity of DNNs

Formulating and evaluating the representation ability of DNNs is an emerging perspective to explain
DNNs. Pascanu et al. [38] and Montufar et al. [35] evaluated the representation capacity of DNNs
based on the number of linear response regions. Kornblith et al. [21], Raghu et al. [42], and Morcos
et al. [36] analyzed representations similarity between DNNs by using canonical correlation analysis.
Shen et al. [52], Chen et al. [7], and Liu et al. [30] measured the quality of knowledge representations
encoded in DNNs for point cloud processing. The information-bottleneck theory [54] quantified
information encoded in DNNs, and was extended to improve the representation capacity of DNNs
[1, 3]. Xu [64] and Xu et al. [63] explained the generalization of DNNs from the perspective of Fourier
analysis. Furthermore, several metrics were proposed to evaluate the robustness or generalization
capacity of DNNs, including the flatness of loss functions at minima [13], the stability of optimization
[17], the CLEVER score [62], the stiffness [14], and the sensitivity metrics [37].

In contrast to previous empirical studies, we mathematically formulate concepts encoded by DNNs
and theoretically prove that DNNs mainly learn simple concepts.

B Literature on interactions

Many studies investigated interactions between input variables of DNNs in recent years. Grabisch and
Roubens [16] proposed the Shapley interaction index to measure the interaction between players in a
cooperative game, based on the Shapley value [51]. Lundberg et al. [32] used the Shapley interaction
index to analyze tree ensembles. Sundararajan et al. [57] proposed the Shapley-Taylor interaction
index, and Tsai et al. [58] defined Faith-Shap, which was another interaction index.

In this paper, we use interactions between input variables of a DNN to represent concepts encoded by
the DNN. In this way, We theoretically explain and empirically verify that DNN is easier to learn
simple interactive concepts.

C Literature on the shortcut learning and simplicity bias of DNNs

Many studies focused on the underlying principles and limitations of DNNs. Geirhos et al. [15],
Robinson et al. [48], and Scimeca et al. [49] investigated the shortcut learning in DNNs. I.e., DNNs
may find decision rules that perform well on standard datasets, but fail to generalize to real-world
scenarios. For example, DNNs successfully detected pneumonia by identifying hospital-specific metal
tokens on the scan, but they failed to learn much about pneumonia and achieved low performance for
scans from novel hospitals. Meanwhile, many studies proposed simplicity bias, i.e., standard training
procedures for DNNs have a bias towards learning simple models [50, 20, 40]. Specifically, DNNs
tend to learn low-rank embeddings [20] or simple features [50, 29, 40, 2].

From the perspective of the simplicity bias, our study considers the definition of interactive concepts
in [47], and analyzes the bias towards learning simple concepts. This work clarifies an exact form of
the complexity of concepts that a DNN is difficult to learn.

D Axioms and theorems for the Harsanyi dividend interaction

In this section, we introduce that the Harsanyi dividend interaction I(S) satisfies several desirable
axioms and theorems.

The Harsanyi dividend interactions I(S) satisfies the efficiency, linearity, dummy, symmetry, anonymity,
recursive and interaction distribution axioms, as follows.

(1) Efficiency axiom (proved by [18]). The reward of a neural network can be decomposed into
interaction effects of different contexts, i.e. v(N) =

∑
S⊆N I(S).

(2) Linearity axiom. If we merge rewards of two neural networks w and v as the reward of model u,
i.e. ∀S ⊆ N, u(S) = w(S) + v(S), then their interaction effects Iv(S) and Iw(S) can be represented
as ∀S ⊆ N, Iu(S) = Iv(S) + Iw(S).

(3) Dummy axiom. If a variable i ∈ N is a dummy variable, i.e. ∀S ⊆ N\{i}, v(S ∪ {i}) =
v(S) + v({i}), then it does not interact with other variables, ∀∅ ̸= S ⊂ N \ {i}, I(S ∪ {i}) = 0.
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Figure 7: The average histograms of absolute effects of interactive concepts encoded by five-layer
MLPs.

(4) Symmetry axiom. Given two input variables i, j ∈ N , if ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}),
then ∀S ⊆ N\{i, j}, I(S ∪ {i}) = I(S ∪ {j}).

(5) Anonymity axiom. For any permutations π on N , we have ∀S ⊆ N, Iv(S)= Iπv(πS), where
πS{π(i)|i∈S}, and the new model πv is defined by (πv)(πS)=v(S). This indicates that interaction
effects are not changed by permutation.

(6) Recursive axiom. The interaction effects can be calculated recursively. Given i ∈ N and S ⊆
N\{i}, the interaction effect of the pattern S∪{i} can be represented as the interaction effect of S with
i minus the interaction effect of S without i, i.e. ∀S⊆N\{i}, I(S∪{i})=I(S|i is always present)−I(S).
I(S|i is always present) denotes the interaction effect when the variable i is always present as a constant
context, i.e. I(S|i is always present) =

∑
L⊆S(−1)

|S|−|L| · v(L ∪ {i}).

(7) Interaction distribution axiom. This axiom shows how interactions are distributed for “interaction
functions” [57]. The definition of the interaction function vT parameterized by a subset of variables
T is given as follows. ∀S ⊆ N , if T ⊆ S, vT (S) = c; otherwise, vT (S) = 0. The function vT models
pure interaction among the variables in T , because only if all variables in T are present, the output
value will be increased by c. The interactions encoded in the function vT satisfies I(T ) = c, and
∀S ̸= T , I(S) = 0.

E Sparsity of interactive concepts

In this section, we conducted experiments to verify the sparsity of interactive concepts. To this end,
we computed effects US of all 2n interactive concepts encoded by a DNN following [45]. Specifically,
we trained a five-layer MLP on the census dataset and the TV news dataset), respectively. For better
visualization, we re-scaled effects of interactive concepts US by |US |/maxS′⊆N |US′ |. Moreover, the
strength of effects are average over different samples in each dataset. Fig. 7 shows histograms of
absolute effects of interactive concepts.

F Complexity of interactive concepts

Many previous studies [11, 67, 59, 45, 43] used multi-order interactions to analyze DNNs. Specif-
ically, Given a pre-trained DNN v and a masked sample xS , the multi-order interaction I(m)(i, j)
used in [59, 11, 67] is given as follows:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆v(i, j, S)], (1)

where ∆v(i, j, S) = v(xS∪{i,j})− v(xS∪{i})− v(xS∪{j}) + v(xS). They consider that I(m)(i, j)
reflects the collaboration with m contextual variables (m pixels). In this way, the order m measures the
number of variables in S. Therefore, a low-order interaction denotes a relatively simple collaboration
between input variables with a small context S. In contrast, a high-order interaction represents a
complex collaboration between input variables with a large context S.

In this paper, we consider that the number of variables in an interactive concept S can measure the
complexity of an interactive concept encoded by a DNN, namely the order of the interactive concept,
complexity(S)=order(S)= |S|. Thus, low-order concepts usually represent simple AND relationships
among a few input variables. In comparison, high-order concepts often refer to as relatively complex
AND relationships among a large number of input variables.
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G Proof of Theorems

G.1 Proof of Theorem 2 in the main paper

Theorem 2. Given a neural network v and an arbitrary input sample x′ ∈ Rn, the network output can
be decomposed by using the Taylor expansion [10], i.e., v(x′) =

∑
S⊆N

∑
π∈QS

US,π · J(S,π|x′). In
this way, according to Eq. (1), the interaction effect I(S|x′) on the sample x′ can be reformulated as
follows.

I(S|x′) =
∑

π∈QS

US,π · J(S,π|x′). (2)

Here, J(S,π|x′)=
∏

i∈S

(
sign(x′

i − bi) · x
′
i−bi
τ

)πi

denotes a Taylor expansion term of the degree π,
where the degree π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0} and bi is the baseline
value to mask the input variable xi. In addition, US,π=

τm∏n
i=1 πi!

∂mv(x′
∅)

∂x
π1
1 ···∂xπn

n
·
∏

i∈S [sign(x
′
i − bi)]

πi ,
where x′

∅ denotes the sample whose input variables are all masked. m =
∑n

i=1 πi.

Proof. Let us denote the function on the right of Eq. (2) by Ĩ(S|x′), i.e.,

Ĩ(S|x′) =
∑

π∈QS

US,πJ(S, π|x′) (3)

We need to prove that for any arbitrary input sample ∀x′ ∈ Rn, Ĩ(S|x′) = I(S|x′).

Actually, it has been proven in [16] and [45] that the Harsanyi dividend I(S|x′) is the unique metric
satisfying the faithfulness requirement mentioned in the main paper, i.e., satisfying

∀ T ⊆ N, v(x′
T ) =

∑
S∈Ω,S⊆T

I(S|x′). (4)

Thus, as long as we can prove that Ĩ(S|x′) also satisfies the above faithfulness requirement, we can
obtain Ĩ(S|x′) = I(S|x′).

To this end, we only need to prove Ĩ(S|x′) also satisfies the faithfulness requirement in Eq. (4).
Specifically, given an input sample ∀x′ ∈ Rn, let us consider the Taylor expansion of the network
output v(xT ) of an arbitrarily masked sample x′

T (T ⊆ N), which is expanded at x′
∅ = [b1, . . . , bn].

Then, we have

∀ T ⊆ N, v(x′
T ) =

∞∑
π1=0

∞∑
π2=0

· · ·
∞∑

πn=0

1∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n
·

n∏
i=1

[(x′
T )i − bi]

πi , (5)

where π ∈ {[π1, . . . , πn]|∀i ∈ N,πi ∈ N} denotes the degree vector of Taylor expansion terms, and
m =

∑n
i=1 πi. In addition, bi denotes the reference value to mask the input variable xi.

According to the definition of the masked sample x′
T , we have that all variables in T keep unchanged

and other variables are masked to the reference value. That is, ∀ i ∈ T , (x′
T )i = xi; ∀ i ̸∈ T , (x′

T )i = bi.
Hence, we obtain ∀i ̸∈ T, [(x′

T )i − bi]
πi = 0. Then, among all Taylor expansion terms, only terms

corresponding to degrees π in the set P = {[π1, . . . , πn]|∀i ∈ T, πi ∈ N;∀i ̸∈ T, πi = 0} may not be
zero. Therefore, Eq. (5) can be rewritten as

∀ T ⊆ N, v(x′
T ) =

∑
π∈P

1∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n
·
∏
i∈T

(x′
i − bi)

πi . (6)

We find that the set P can be divided into multiple disjoint sets as follows, P = ∪S⊆TQS , where
QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+;∀i ̸∈ S, πi = 0}. Then, we can derive that

∀ T ⊆ N, v(x′
T ) =

∑
S⊆T

∑
π∈QS

1∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n
·
∏
i∈S

(x′
i − bi)

πi

=
∑
S⊆T

∑
π∈QS

τm∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n

∏
i∈S

(δi)
πi

︸ ︷︷ ︸
termed US,π

·
∏
i∈S

(δi
x′
i − bi
τ

)πi

︸ ︷︷ ︸
termed J(S,π|x′)

,
(7)

where τ ∈ R is a pre-defined constant and δi = sign(xi − ri) ∈ {−1, 1} is a sign function satisfying
δ2mi = 1 (m =

∑n
i=1 πi). Then, Eq. (7) can be re-written as

∀ T ⊆ N, v(x′
T ) =

∑
S⊆T

∑
π∈QS

US,π · J(S,π|x′) =
∑
S⊆T

Ĩ(S|x′). (8)
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Thus, Ĩ(S|x′) satisfies the faithfulness requirement in Eq. (4) when Ω = 2N .

Therefore, Theorem 2 holds.

G.2 Proof of Theorem 3 in the main paper

Theorem 3. Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. Let us first
consider the case with the lowest degree π̂ = [π̂1, . . . , π̂n] ∈ QS , satisfying that ∀i ∈ S, π̂i = 1;∀i /∈
S, π̂i = 0. The mean and variance of J(S, π̂|x+ ϵ) over the Gaussian perturbation ϵ are given as

Eϵ[I(S|x+ ϵ)] = US,π̂, Varϵ[I(S|x+ ϵ)] = U2
S,π̂

[ (
1 + (σ/τ)2

)s − 1

]
.

Furthermore, for the more general case with an arbitrary degree π ∈ QS = {[π1, · · · , πn]|∀i ∈ S, πi ∈
N+; ∀i /∈ S, πi = 0}, the mean and variance of J(S,π|x+ ϵ) are computed as

Eϵ[J(S,π|x+ ϵ)] = Eϵ[
∏

i∈S
(1 + ϵi/τ)

πi ], Varϵ[J(S,π|x+ ϵ)] = Varϵ[
∏

i∈S
(1 + ϵi/τ)

πi ].

Proof. If we only consider Taylor expansion term of the lowest degree, then I(S|x′) ≈ US,π̂ ·
J(S, π̂|x′), where J(S, π̂|x′) =

∏
i∈S sign(x′

i − bi) · x′
i−bi
τ .

Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. Then, we have

I(S|x+ ϵ) ≈ US,π̂ · J(S, π̂|x+ ϵ)

J(S, π̂|x+ ϵ) =
∏
i∈S

sign(xi + ϵi − bi) ·
xi + ϵi − bi

τ

=
∏
i∈S

(
sign(xi + ϵi − bi) ·

xi − bi
τ

+ sign(xi + ϵi − bi) ·
ϵi
τ

) (9)

According to the setting of the baseline value, we have ∀i ∈ S, xi − bi ∈ {−τ, τ}. In Section
2.2, we have assumed that the perturbation is small, i.e., ∀i ∈ S, |ϵi| ≤ τ . In this way, we have
sign(xi + ϵi − bi) = sign(xi − bi), and we can obtain

J(S, π̂|x+ ϵ) =
∏
i∈S

(
sign(xi − bi) ·

xi − bi
τ

+ sign(xi − bi) ·
ϵi
τ

)
=

∏
i∈S

(
1 + sign(xi − bi) ·

ϵi
τ

) (10)

⇒ Eϵ[J(S, π̂|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 + sign(xi − bi) ·

ϵi
τ

)]

Varϵ[J(S, π̂|x+ ϵ)] = Varϵ

[∏
i∈S

(
1 + sign(xi − bi) ·

ϵi
τ

)] (11)

Since sign(xi − bi) ∈ {−1, 1}, we have 1 + sign(xi − bi) · ϵi
τ ∼ N (1, (σ/τ)2),∀i ∈ S.

Proposition 1. If random variables X1, X2, · · · , Xk are independent of each other, then
E[X1X2 · · ·Xk] =

∏k
i=1 E[Xi], and Var[X1X2 · · ·Xk] =

∏k
i=1(E[Xi]

2 + Var[Xi]
2) −∏k

i=1 E[Xi]
2.

According to the above proposition, we have

Eϵ[J(S, π̂|x+ ϵ)] =
∏
i∈S

1 = 1

Varϵ[J(S, π̂|x+ ϵ)] =
∏
i∈S

(
12 + (σ/τ)

2
)
−

∏
i∈S

12

=
(
1 + (σ/τ)

2
)|S|

− 1

(12)
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Therefore,

Eϵ[I(S|x+ ϵ)] = Eϵ[US,π̂ · J(S, π̂|x+ ϵ)] = US,π̂

Varϵ[I(S|x+ ϵ)] = Varϵ[US,π̂ · J(S, π̂|x+ ϵ)] = U2
S,π̂

((
1 + (σ/τ)

2
)|S|

− 1

)
(13)

According to Theorem 2, given an arbitrary input sample x′, we have

J(S,π|x′) =
∏

i∈S

(
sign(x′

i − bi) ·
x′
i − bi
τ

)πi

(14)

Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. In this way, we have

J(S,π|x+ ϵ) =
∏
i∈S

(
sign(xi + ϵi − bi) ·

xi + ϵi − bi
τ

)πi

=
∏
i∈S

(
sign(xi + ϵi − bi) ·

xi − bi
τ

+ sign(xi + ϵi − bi) ·
ϵi
τ

)πi
(15)

According to the setting of the baseline value, ∀i ∈ S, xi − bi ∈ {−τ, τ}. We assume that the
perturbation is small, i.e., ∀i ∈ S, |ϵi| ≪ τ . In this way, sign(xi + ϵi − bi) = sign(xi − bi), and we
can obtain

J(S,π|x+ ϵ) =
∏
i∈S

(
sign(xi − bi) ·

xi − bi
τ

+ sign(xi − bi) ·
ϵi
τ

)πi

=
∏
i∈S

(
1 + sign(xi − bi) ·

ϵi
τ

)πi
(16)

⇒ Eϵ[J(S,π|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 + sign(xi − bi) ·

ϵi
τ

)πi

]

Varϵ[J(S,π|x+ ϵ)] = Varϵ

[∏
i∈S

(
1 + sign(xi − bi) ·

ϵi
τ

)πi

] (17)

Since ∀i ∈ S, ϵi is independent of each other, according to Proposition 1 and Eq. (17), we have

Eϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 + sign(xi − bi) ·

ϵi
τ

)πi
]

Varϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 + sign(xi − bi) ·

ϵi
τ

)2πi
]
−

∏
i∈S

(
Eϵi

[(
1 + sign(xi − bi) ·

ϵi
τ

)πi
])2

(18)

Since sign(xi − bi) ∈ {−1, 1}, we have Eϵi

[(
1 + sign(xi − bi) · ϵi

τ

)k]
= Eϵi

[(
1 + ϵi

τ

)k]
,∀k ∈

N+. Therefore, we obtain

Eϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 +

ϵi
τ

)πi
]

= Eϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]

Varϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 +

ϵi
τ

)2πi
]
−

∏
i∈S

(
Eϵi

[(
1 +

ϵi
τ

)πi
])2

= Varϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]
.
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G.3 Proof of Theorem 4 in the main paper

Theorem 4. Given an arbitrarily masked sample xT (∀T ⊆ N), the function CS(xT ) defined above
can well fit the binary activation state of the concept S in the sample xT .

∀ T ⊆ N, C(S|xT ) =
∏

i∈S
Ai(xT ) = 1(S ⊆ T ), (19)

where Ai(xT ) ∈ {0, 1} denotes whether the variable xi is present Ai(xT ) = 1 or being masked
Ai(xT ) = 0 in the sample xT .

Proof. We know that the function of the activation state on an arbitrary sample x′ is given by

CS(x
′) =

∑
π∈QS

US,πJ(S,π|x′)/US ,

where J(S,π|x′) =
∏

i∈S

(
sign(x′

i − bi) ·
x′
i − bi
τ

)πi (20)

Specifically, now we consider a masked sample xT , and we will prove that CS(xT ) = 1(S ⊆ T ).
We consider the following two cases.

Case 1: S ⊊ T . Then there exists some j ∈ S \ T . Since j /∈ T , according to the masking rule of
the sample xT , we have (xT )j − bj = 0. Since j ∈ S, we have

∀π ∈ QS , J(S,π|xT ) =
∏

i∈S

(
sign((xT )i − ri) ·

(xT )i − bi
τ

)πi

= 0 (21)

In this way, we have CS(xT ) =
∑

π∈QS
US,πJ(S,π|xT )/US = 0.

Case 2: S ⊆ T . In this case, ∀i ∈ S, we have i ∈ T . According to the setting of the reference value
in Section 2.3 of the main paper, we have (xT )i − bi ∈ {τ,−τ}. Then we have sign((xT )i − bi) ·
(xT )i−bi

τ = 1, ∀i ∈ S. This further implies that

∀π ∈ QS , J(S,π|xT ) =
∏

i∈S

(
sign((xT )i − bi) ·

(xT )i − bi
τ

)πi

= 1. (22)

Therefore, we can derive
CS(xT ) =

∑
π∈QS

US,π/US . (23)

Recall that US = I(S|x) =
∑

π∈QS
US,πJ(S,π|x), in which J(S,π|x) =∏

i∈S

(
sign(xi − ri) · xi−bi

τ

)πi
= 1, because xi − bi ∈ {τ,−τ}. So actually, we have

US =
∑

π∈QS

US,π. (24)

Therefore, CS(xT ) =
∑

π∈QS
US,π/US = 1.

Combining the two cases, we can conclude that CS(xT ) = 1(S ⊆ T ) =
∏

i∈S Ai(xT ).

G.4 Relation between interactive concepts and multi-order interactions

In this section, we derive that high-order interactive concepts (computed via the Harsanyi dividend
[18]) can be considered as elementary components for high-order interactions used in [43].

Given a pre-trained DNN v and a masked sample xS , the multi-order interaction I(m)(i, j) used in
[43] is given as follows:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆v(i, j, S)], (25)

where ∆v(i, j, S) = v(xS∪{i,j})− v(xS∪{i})− v(xS∪{j}) + v(xS).

Let ∆vT (S) =
∑

L⊆T (−1)|T |−|L|v(xL∪S) denote the marginal benefit of variables in T ⊆ N \ S,
given the environment S. In this way, ∆vT (S) can be represented as the sum of interaction effects
inside T and sub-environments of S, i.e. ∆vT (S) =

∑
S′⊆S I(T ∪ S′) [45].
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Thus, the I(m)(i, j) can be represented as follows,

I(m)(i, j) =ES⊆N\{i,j},|S|=m[∆v(i, j, S)]

=ES⊆N\{i,j},|S|=m[
∑
L⊆S

I(L ∪ {i, j})]

=
1(

n−2
m

) ∑
S⊆N\{i,j}

|S|=m

[
∑
L⊆S

I(L ∪ {i, j})]

=
∑

L⊆N\{i,j}
|L|≤m

I(L ∪ {i, j})
∑

L⊆S⊆N\{i,j}
|S|=m

1(
n−2
m

)
=

∑
L⊆N\{i,j}

|L|≤m

I(L ∪ {i, j})
(
n−2
m−l

)(
n−2
m

)
=

m∑
l=0

∑
L⊆N\{i,j}

|L|=m

(
n−2
m−l

)(
n−2
m

) I(L ∪ {i, j}).

Therefore, we prove that I(m)(i, j) =
∑m

l=0

∑
L⊆N\{i,j}

|L|=m

(n−2
m−l)
(n−2

m )
I(L ∪ {i, j}).

G.5 Theoretical connection between variance and learning difficulty

There is a close connection between the variance of interactive concepts and the learning difficulty.
In fact, a similar connection has been discovered by [46]. The theoretical connection is proved as
follows. Specifically, we simplify the learning of a DNN into a linear regression problem. In this
very simple setting, we assume each i-th concept encoded by the DNN to be a specific feature, and
use fi to represent the triggering (presence) state of the i-th concept in a training sample. Because
according to Eq. (9) in the main paper, the network output v(·) is the sum of a small number of
salient interactive concepts, we roughly simplify and rewrite the inference output of the DNN as the
following linear function

y = w⊤f = w1f1 + · · ·+ wdfd ,

where f = [f1, · · · , fd]⊤. Then, wi can be viewed as the strength of the DNN encoding the i-th
interactive concept. In this way, if wi ≈ 0, the DNN does not learn the i-th interactive concept.

We suppose that training samples are sampled from f ∼ P (f) = N(µ,Σ2) and y∗ denotes the
ground truth label. Specifically, µ = [µ1, µ2, ..., µd]

⊤ and Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
d).

The toy regression problem can be formulated as follows,

L = EP (f)[
1

2
(w⊤f − y∗)2] (26)

We derive the optimal weights to the above regression task in three steps.

Step 1. The optimal weight wi for the regression problem in Eq. (26) is computed by

∀1 ≤ i ≤ d, wi =
1

detK
det(K1, · · · ,Ki−1, ζ,Ki+1, · · · ,Kd) (27)

where K = µµ⊤ +Σ2, ζ = y∗µ, and Kj denotes the j-th column of the matrix K.

Step 2. We further prove that for the optimal w, we have

∀1 ≤ i, j ≤ d,
|wi|
|wj |

=
|µi/σ

2
i |

|µj/σ2
j |

(28)

Step 3. Based on Step 2, we can derive |wi| ∝ |1/σ2
i |, where wi denotes the strength of the DNN

encoding the i-th interactive concept. |wi| ∝ |1/σ2
i | indicates that the learning effect of the i-th

interactive concept is inversely proportional to the variance of the i-th interactive concept. Therefore,
interactive concepts with high variances (high-order interactive concepts) are more difficult to learn.
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H Experimental Settings

Training details. We trained AlexNet [23], VGG-11 [55], ResNet-18/20 [19] on the CIFAR-10
dataset [22] and the Tiny ImageNet dataset [25], respectively. We also trained a five-layer MLP on
the UCI census dataset (namely census dataset) and the UCI TV news dataset (namely TV news
dataset) [6], respectively. Each layer of the MLP contained 100 neurons. We trained each neural
networks for 200 epochs with the SGD optimizer.

Sampling details. Since, the computational cost of I(S|x) was intolerable in real implementation,
we applied the sampling-based approximation method in [67] to calculate I(S|x). Due to the high
dimension of image data (e.g. 224 × 224 for ImageNet), we uniformly split the input image into 8×8
patches. Furthermore, we random sampled 12 patches and considered these patches as input variables
for each image. The remaining 52 patches are set to the baseline value.

Implementations details. Here, we introduce how to measure β(S) and κ(S) in Section 2.3. On
the Tiny ImageNet dataset, we randomly sampled 100 training images. These training images were
randomly sampled from different 10 classes. On the CIFAR-10 dataset, we randomly sampled 10
training images from each class. For tabular datasets, we randomly sampled 50 training samples
from each class. For image datasets, we set τ = 2 when the input data is normalized by its standard
deviation. For tabular datasets, we set τ = 1 when the input data is normalized by its standard
deviation. In this way, we set the baseline bi = max(xi − τ, µ), if xi > µi, and we set the baseline
bi = min(xi + τ, µ), if xi < µi. For Gaussian perturbation ϵ, we set σ = 0.02. Besides, for
each training sample, we randomly sampled five Gaussian perturbation with five different seeds,
respectively.

Adversarial attack. Here, we introduce how to measure A(s) in Section 3.1. For tabular datasets, we
randomly sampled 50 training samples from each class from the training set. On the Tiny-ImageNet
dataset, we randomly sampled 100 training images. These training images were randomly sampled
from different 10 classes. On the CIFAR-10 dataset, we randomly sampled 10 training images
from each class. We used the l∞ untargeted PGD attack by following [33], in which the constraint
ϵ = 16/255, and the attack was conducted with 5 steps with the step size ϵ = 3/255.

22


	Introduction
	Explainable AI (XAI) theories based on game-theoretic interactions
	Explaining simple interactive concepts are easy to learn
	Preliminaries: sparse interactive concepts emerge in DNNs
	Simple interactive concepts in data are more stable and easier to learn
	Formulating the conceptual learning as a linear regression problem
	Explaining the learning difficulty of concepts
	Fast learning of low-order concepts


	Explaining findings in previous studies
	Explaining adversarial robustness
	Connections to existing findings on what are learned first by a DNN

	Conclusion and discussion
	Literature on the representation capacity of DNNs
	Literature on interactions
	Literature on the shortcut learning and simplicity bias of DNNs
	Axioms and theorems for the Harsanyi dividend interaction
	Sparsity of interactive concepts
	Complexity of interactive concepts
	Proof of Theorems
	Proof of Theorem 2 in the main paper
	Proof of Theorem 3 in the main paper
	Proof of Theorem 4 in the main paper
	Relation between interactive concepts and multi-order interactions
	Theoretical connection between variance and learning difficulty

	Experimental Settings

