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Abstract

After discovering that Language Models (LMs) can be good in-context few-shot
learners, numerous strategies have been proposed to optimize in-context sequence
configurations. Recently, researchers in Vision-Language (VL) domains also de-
velop their few-shot learners, while they only use the simplest way, i.e. , randomly
sampling, to configure in-context image-text pairs. In order to explore the effects
of varying configurations on VL in-context learning, we devised four strategies for
image selection and four for caption assignment to configure in-context image-text
pairs for image captioning. Here Image Captioning is used as the case study since it
can be seen as the visually-conditioned LM. Our comprehensive experiments yield
two counter-intuitive but valuable insights, highlighting the distinct characteristics
of VL in-context learning due to multi-modal synergy, as compared to the NLP case.
Furthermore, in our exploration of optimal combination strategies, we observed an
average performance enhancement of 20.9 in CIDEr scores compared to the base-
line. The code is given in https://github.com/yongliang-wu/ExploreCfg.

1 Introduction

In contemporary times, the Language Model (LM) [1; 2] has emerged as a pivotal player in the
field of Natural Language Processing (NLP). It accomplishes this by unifying a range of diverse
NLP tasks into a shared prompt paradigm [3; 4]. To elaborate, a LM, unsupervised trained via
conditional language modeling on a substantial volume of non-annotated data collected from the web,
can reformulate various downstream tasks into fitting textual prompts. These prompts contain slots,
the word probabilities of which are calculated using the pre-trained LM. This process obviates the
necessity for gradient updates to the parameters of LM, thus mitigating the challenges associated
with additional data collection and fine-tuning. To further enhance the effectiveness of this paradigm,
the few-shot prompt (or in-context learning) [5] is proposed where a few examples are provided as
additional contexts to guide the LM to generate the desired result.

Witnessing the success of the prompt paradigm in the NLP field, there has been a concerted effort
by researchers to replicate its function in the Vision-Language Model (VLM). To facilitate this,
Flamingo [6] is proposed to align well-trained large-scale vision and language models through
some trainable cross-modal adapters. Consequently, the resultant model is capable of addressing
Vision-Language (VL) tasks by processing a prompt sequence, which includes several interleaved
image and text examples for in-context learning. Since the primary objective of Flamingo is to build
a VLM for the few-shot prompt, they only apply a straightforward strategy to configure the in-context
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A women riding a bike on 

the bike path. 

[Good Caption]

People riding on a street 
on a street. 
[Bad Caption]

People walking down a 
street and a street.
[Bad Caption]

The man is riding a pink 
bike threw traffic. 
[Good Caption]

A women riding a bike on 

the bike path. 

[Good Caption]

People riding on a street 
on a street. 
[Bad Caption]

People walking down a 
street and a street.
[Bad Caption]

The man is riding a pink 
bike threw traffic. 
[Good Caption]

A man riding a bike in a street a 
street.               [CIDEr 61.4] 

A cyclist riding in the bike lane 
of a city street.       [CIDEr 164.6]

(c)

(d)
A man riding a bike in a street a 
street.               [CIDEr 61.4] 

A cyclist riding in the bike lane 
of a city street.       [CIDEr 164.6]

(c)
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VLM

People ride on elephants 
through a field. 
[Good Caption]

Some elephants are 
walking and walking.
[Bad Caption]

A kitchen with a stove 
and a stove. 
[Bad Caption]

A kitchen scene with a 
fridge and an oven. 
[Good Caption]

People ride on elephants 
through a field. 
[Good Caption]

Some elephants are 
walking and walking.
[Bad Caption]

A kitchen with a stove 
and a stove. 
[Bad Caption]

A kitchen scene with a 
fridge and an oven. 
[Good Caption]

A group of people riding on a 
city street.              [CIDEr 72.9] 

A bicycler riding in the bike lane 
next to traffic.        [CIDEr 126.8]

(e)

(f)
A group of people riding on a 
city street.              [CIDEr 72.9] 

A bicycler riding in the bike lane 
next to traffic.        [CIDEr 126.8]

(e)

(f)

Figure 1: The distinction between LM and VLMs as few-shot learners. LM generally excel with
examples akin to the test case (blue blocks in (a)). In contrast, for VLMs, the performance is not
strictly correlated with image similarity but heavily relies on the caption quality. For instance, when
low-quality captions are used, similar images (d) lead to worse performance than dissimilar ones (f)
since VLMs may build a short-cut by reusing in-context captions without seeing the given images.

sequence by randomly sampling a few image-text pairs. Nevertheless, a plethora of studies within the
NLP field [7] have demonstrated that diverse in-context configurations lead to dramatic effects on
few-shot performance, e.g., the selection or ordering of in-context samples [8; 9; 10], while only a
limited number of studies systematically explore such effects in the VL case.

To narrow this gap, we explore the effects of various in-context configurations on the performance
of few-shot VL tasks. Among various VL tasks, Image Captioning (IC) aims at generating a text
conditioned on the source image, and thus can be considered as the visually-conditioned LM. Just as a
multitude of NLP tasks can be recast as LM tasks, IC performs a similar function [11; 12; 13], which
motivates our decision to select IC as the subject of our case study. However, unlike in NLP, where
only single-modal texts are considered in the in-context configuration, in IC, the synergy between
multiple modalities significantly influences the performance. For instance, our experiments revealed
that selecting images similar to the test image for the in-context sequence does not always lead to
good performance, a result closely tied to the quality of the associated captions. Figure 1 shows the
comparison between LM and VLM as the few-shot learners.

Consequently, we design diverse ways to select images as the in-context images. After selection, the
captions of different qualities are assigned to these images for constructing the multi-modal in-context
sequence. By combining diverse image selection and caption assignment techniques, we undertake a
comprehensive exploration of the effects of multi-modal mutual synergy on VL in-context captioning.
We implement all experiments using the prevalent captioning dataset, MSCOCO [14], employing its
training set as the database for image selection.

To select images, we use 4 different ways, which are Random Sampling, Similarity-based Image-
Image Retrieval, Similarity-based Image-Caption Retrieval, and Diversity-based Image-Image Re-
trieval. Following image selection, various types of captions produced by 4 different strategies are
assigned, which are Ground-Truth Captions, Model-Generated Captions, Iteratively Prompting, and
Model-Generated Captions as Anchors.

Through extensive evaluation of various image selection and caption assignment strategies, we un-
cover two counter-intuitive yet valuable insights. (1) Caption quality is determined by descriptiveness
and language patterns, but their influence on in-context captioning performance is unequal. When
captions adequately describe salient image objects, simpler language patterns may yield better results.
(2) The efficacy of similar images depends on the quality of the paired captions. Excessive similarity
might cause VLM to create a short-cut inference [15] from in-context captions, potentially misleading
the model with low-quality captions. Beyond these findings, we introduce a practical in-context
captioning strategy, Iterative Prompting, for cases with limited or no Ground-Truth Captions. Further-
more, when Ground-Truth Captions are available, we recommend using Model-Generated Captions as
anchors to identify which Ground-Truth Caption is a more suitable in-context caption. Experimental
results indicate that even when utilizing low-quality model-generated captions, there is an average
CIDEr improvement of 7.3. Moreover, in optimal conditions, the average enhancement reaches up to
20.9 points compared to the random sampling baseline.
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Since the Flamingo code is not publicly available, our experiments mainly utilize the unofficial
Open-Flamingo [16]2. It’s worth noting that the performance of Open-Flamingo is not on par with
the official Flamingo due to its training on less data.

2 Related Work

Prompting Language Model (LM). The research paradigms of NLP have encountered two sea
changes in the past few years [3]. The first one is the LM that is pre-trained by predicting the next
word conditioned on observed words and can be fine-tuned for solving various downstream tasks,
including GPT [17], BERT [1], and BART [18]. The second sea change is the emergence of the
prompt paradigm, which was introduced with GPT-3 [2]. Within this paradigm, a pre-trained LM does
not require fine-tuning to solve downstream tasks; instead, tasks are reformulated into appropriate
prompts with empty slots to be filled. Subsequently, more advanced prompt-based techniques have
been proposed, including prompt-tuning [19; 20; 21] and Chain-of-Thought [22; 23; 24; 25].

Prompting Vision-Language Model (VLM). In contrast to NLP, the Vision-Language (VL) domain
has made significant strides in the first sea change, as evident by the development of various VL-
BERT models. These models leverage large volumes of web-collected image-caption pairs to learn
VL-generalizable embeddings [26; 27; 28; 29; 30; 31; 32; 33]. However, the prompt paradigm,
despite revolutionizing NLP studies, only appears when a certain scale of the model is reached [34].
This scale prerequisite poses further challenges to the development of a VLM with prompt and
in-context learning ability.

To mitigate training burdens, instead of updating all the parameters of a VLM [35; 36], some
VLMs [35; 36; 37] freeze well-trained Language Models and only train a smaller network, referred
to as adapters [38; 39; 40], to align the pre-trained vision and language models. Inspired by these
models, both Frozen [41] and Flamingo [6] evolve into multi-modal few-shot learners by training
vision and cross-modal adapters, respectively. Given its superior in-context learning ability, we use
Flamingo to explore the effects of various in-context configurations [16].

There are also models that address VL tasks through in-context learning. For instance, PICa [11]
utilizes captions as mediators to construct an in-context text for solving Visual Question Answering
(VQA) tasks, while this may lose the mutual synergy in the representation space of different modalities.
The models proposed in [42] and [36] both fine-tune VLMs for specific VQA tasks, but lack the
generalized few-shot prompt ability for other VL tasks. UNIFIED-IO [43]demonstrates a unified
approach to a myriad of tasks, from classical computer vision to natural language processing, without
task-specific fine-tuning. And ProGrad [44] introduces a technique to prevent prompt tuning from
forgetting pre-trained vision-language models’ general knowledge by only updating aligned prompts,
outperforming other methods in various few-shot learning scenarios.

Exploring In-Context Configurations in NLP. Upon observing that pre-trained LMs are good few-
shot learners, researchers also discover that diverse in-context configurations have dramatic effects
on performance [3]. This observation sparks numerous studies aimed at determining the optimal
in-context configurations, such as the format of the in-context examples [45; 21; 5], the selection of
these examples [8; 9; 46; 47], and even the order in which these examples are presented [48; 49; 10].
However, these studies are predominantly conducted within the NLP field and fail to consider the
unique characteristics and complexity of multi-modal data. In order to address this gap, we propose a
series of strategies to explore the effects of various multi-modal in-context sequence configurations.

Image Caption. Image Captioning (IC) [50] aims at correctly verbalizing one image using descriptive
languages, which can be solved through both retrieve [51] and generation [50], the former retrieves
complete sentences from a corpus, while the latter generates words sequentially. Researchers have
recently combined these approaches by first retrieving image-caption pairs and inputting them into
generation models [52; 53]. This process resembles in-context captioning, which also retrieves
image-caption pairs to help captioning. However, in contrast to them [52; 53], our work introduces
novel image and caption selection strategies to study in-context captioning and these methods can
also enhance traditional retrieval-generation methods.

2Project: https://laion.ai/blog/open-flamingo/
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Figure 2: Image selection strategies: (a) SIIR-CLIP, (b) SIIR-TAG, (c) DIIR-TT, (d) SICR-CLIP.

3 Configuring In-Context Sequences

The in-context captioning can be treated as a vision-language conditioned text generation task. Given
the multi-modal in-context sequence S = {(I1,C1); (I2,C2); ...; (In,Cn); Î} that contains n-shot
image-caption pairs (I,C) and one test image Î , we hope to generate the corresponding image
caption Ĉ = {ŵ1, ..., ŵT } in an auto-regressive manner. Here the t-th word ŵt is sampled from the
following word distribution:

P (ŵt|S, ŵ1:t−1), (1)

where the probability P (·) is calculated by a pre-trained Vision-Language Model (VLM) (e.g.,
Flamingo [6] or Otter [54]).

Various studies in NLP [8; 45; 48; 46] field have shown that the performance of in-context learning
varies significantly with different in-context configurations. We explore these effects in the case of
Image Captioning (IC). Unlike pure NLP tasks, IC is a dual-modal task, which makes it more complex
than NLP tasks. Specifically, the mutual synergy of image-caption examples must be considered in
in-context learning, as opposed to considering the images or the captions independently. We next
respectively introduce the image selection (cf. 3.1) and caption assignment (cf. 3.2) strategies used to
configure in-context image-caption pairs.

3.1 Selecting Images

Random Selection (RS). Given a set D = {(I1,C1), ..., (IM ,CM )} with M image-caption pairs,
we randomly sample n images as {I1, ..., IN} in S.

Similarity-based Image-Image Retrieval (SIIR). Certain NLP studies suggest that performance
can be enhanced by retrieving examples similar to the test case [8; 46; 47]. Following this approach,
we retrieve n images with the highest similarity scores to the test image Î from D. We employ two
methods to compute these similarities: 1) SIIR-CLIP (Figure 2 (a)): Using the vision encoder of
CLIP [35], we extract image embeddings to determine similarities. 2) SIIR-TAG (Figure 2 (b)): We
utilize some scene graph extractors to derive tags for each image. Specifically, we employ Vinvl [55]
to extract objects and their attributes, and IETrans [56] to determine the relations present within the
image. Following this extraction, we conduct an AND operation to compute the similarity between
tags.

Similarity-based Image-Caption Retrieval (SICR-CLIP) (Figure 2 (d)). Taking advantage of the
cross-modal retrieval capability of CLIP [35], we use its vision and language encoders to embed
images and captions into a shared space for computing similarities. Given Î , we calculate its
cross-modal embedding similarities with {C1, ...,CM} ∈ D, and select the images whose captions
have top-n similarities with Î . Note that we use different kinds of captions as mediators; the
methods to generate these captions will be detailed in Section 3.2. These captions are also used as
C1, ...,CN ∈ S.
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Diversity-based Image-Image Retrieval (DIIR). For a single test sample, beside using similar in-
context examples, some NLP studies find that diversity is also crucial [57]. Consequently, we retrieve
a diverse set of images from D to configure S. Specifically, we employ the following strategies: 1)
DIIR-TR: We extract discrete tags from the aforementioned VinVL and IETrans. Then we randomly
divide the tags into N clusters and apply SIIR-TAG to retrieve the most similar image from each
cluster. 2) DIIR-TT (Figure 2 (c)): To conveniently control the number of shots, we incorporate class
tags generated by the IETrans model, extending the basis of SIIR-Tags to four categories: object,
class, attribute, and relation. We then employ SIIR-TAG to identify the top-k similar images within
each category, allowing us to create 4k-shot images in S. Note that both DIIR methods take into
account a certain level of similarity during retrieval, rather than selecting entirely distinct images.

3.2 Assigning Captions

After selecting images, we need to assign one caption to each image to construct in-context image-
caption pairs. To explore the effects of multi-modal mutual synergy, we use captions with diverse
qualities as introduced in the following.

Ground-Truth Captions (GTC). In the MSCOCO dataset [14], each image has 5 GTCs and we
simply use the first one in S.

Model-Generated Captions (MGC). Compared with GTC, MGC has lower quality due to two
disadvantages. Firstly, MGC uses poorer language, e.g., simple words or rigid sentence patterns.
Secondly, MGC has less descriptiveness that it may mis-verbalize or miss certain salient vision
patterns of an image. However, we will see these two disadvantages do not equally cause worse
performance compared with GTC in in-context captioning and surprisingly, we find that sometimes
simple words or rigid sentence patterns even help generate good captions.

Here we apply two different models to generate the captions with diverse qualities. MGC-TF@X: a
Transformer is trained from scratch by using VinVL features and X denotes the CIDEr score [58]
on the test set. To get captions of different qualities, we use the checkpoints from different training
epochs and totally generate three kinds of MGCs. 1) MGC-TF@66 contains grammar mistakes
while can describe the most salient objects. 2) MGC-TF@88 can use relatively correct grammar to
describe the salient objects. 3) MGC-TF@135 is generated by a well-trained Transformer, i.e. , the
loss converges. MGC-VLM(N )@X: Another way to get MGCs is to use VLM in a N -shot manner.
To achieve this, for each image I ∈ D, we treat I as the test image and then use Eq. (1) to generate a
corresponding caption C conditioned on S constructed by only N image-caption pairs. As a result,
two kinds of captions are got which are MGC-VLM(0)@63 and MGC-VLM(32)@81.

Both two ways can construct the set D with M image-caption pairs. Then for a novel test image Î ,
we can select some image-caption pairs from D by some above-mentioned approaches, e.g., using
RS or SIIR-CLIP to get images and assigning the MGCs to the image, to configure S for generating
a new caption. Compared with MGC-TF, MGC-VLM is more practical as it addresses scenarios
where only a handful or even no human-labelled captions are available, which means we do not have
enough data to train a Transformer from scratch.

Iteratively Prompting (IP). For MGC-VLM introduced before, one natural extension is IP. To
achieve this, in the first iteration, we generate a caption for each image I ∈ D by MGC-VLM. In
the subsequent iteration, these generated captions are paired with the selected images to prompt
VLM to generate enhanced captions. This process can be repeated across multiple iterations, thereby
iteratively prompting the VLM.

Model-Generated Captions as Anchors (MGCA). A MGC can serve not only as an in-context
caption but also as an anchor for selecting a suitable caption from the five GTCs. As MGCs typically
verbalize salient visual patterns in an image but may miss finer details, using them as anchors can lead
to the selection of GTCs that highlight these salient patterns. Furthermore, the selected GTC may
supplement interesting details about these patterns, potentially assisting VLM to generate superior
captions during in-context learning. In the MGCA implementation, for each selected image, we
measure the similarity between the MGC and five GTCs using CIDEr and select the GTC with the
highest CIDEr score.
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Figure 3: The line charts of various in-context captions with diverse image-selection strategies.

Figure 4: The line charts of various in-context images with diverse caption-assignment strategies.

4 Experiments

4.1 Dataset and Implementation Details

MSCOCO. We evaluate the proposed strategies on MSCOCO dataset [14], which is the most widely
used benchmark in image captioning. We used the Karpathy split [59] in the experiments, which
contains 113,287/5000/5000 training/validation/test images and each image is associated with 5
human-annotated captions.

Implementation Details We employ the Open-Flamingo model [16] to test our strategies, setting the
length penalty to -2.0 and a maximum generation length of 20. We follow Flamingo [6] to use 4, 8,
16, and 32 shots. We respectively use ViT-L/14 and as the vision and language encoders to extract
image and sentence embeddings that used in SIIR-CLIP and SICR-CLIP. For MGC-TF, we train the
standard Transformer encoder-decoder architecture on the MSCOCO dataset and use the checkpoints
underwent 1000, 3000, and 170,000 iterations respectively. These checkpoints generate the captions
with CIDEr scores of 66, 88, and 135 on the test set. We implement all experiments on a single RTX
3090 using FP16.

4.2 Results and Analyses

Given our varied strategies for image selection and caption assignment, displaying results for each
configuration in table format, especially at 4, 8, 16, and 32-shot levels, could become overwhelming.
For clarity, we’ve chosen to present results using line charts and histograms in the main paper, while
detailed numerical outcomes are in the supplementary material. The line charts in Figures 3 and 4
illustrate trends as the shot number grows. Each subplot within these figures corresponds to a unique
strategy for image selection or caption assignment. Furthermore, Figures 5 and 6 show histograms of
average CIDEr scores for the various shot results. To facilitate comprehension, we first analyze the
effects of caption qualities 4.2.1 and then of image selection strategies 4.2.2.

4.2.1 Effects of Caption Qualities

Figure 4(a)-(e) reveals that performance typically improves with an increase in shot numbers. How-
ever, the rate of improvement varies, or even declines, depending on the quality of the captions
used. For instance, in Figure 4(a), using Ground-Truth Captions (GTC), the increase rates of the
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Figure 5: The histograms of various in-context captions with diverse image-selection strategies.

Figure 6: The histograms of various in-context images with diverse caption-assignment strategies.

six image selection strategies surpass those in Figure 4(b) where MGC-TF@88 is used. Further,
low-quality captions, such as MGC-TF@66, may become "toxic examples" which can misguide
the Vision-Language Model (VLM) as the shot number increases. Next we compare different kinds
of captions to figure out what characteristics of the captions affect the performance of in-context
captioning.

Ground-Truth Captions (GTC) vs. Model-Generated Captions (MGC). As discussed in Sec 3.2,
MGC exhibits two primary shortcomings when compared to GTC: poorer language and less de-
scriptiveness. However, we will see that these two shortcomings do not always make MGC achieve
poorer performance when compared to GTC. Specifically, we find that up to a certain level of
descriptiveness, simpler sentence patterns are more easily recognized by the VLM, thereby improving
caption generation.

Evidence for this can be observed in Figure 5 by comparing GTC with MGC-TF@135. Compared to
the caption generated by MGC-TF@135, ground-truth caption has better language patterns, e.g., rich
vocabulary and complex sentence pattern, and better descriptiveness. Then when the selected images
cannot provide enough vision cues, i.e. , when Random Selection (RS) is applied in Figure 5 (a), GTC
outperforms MGC-TF@135. However, once the similarity-based retrieval methods like Similarity-
based Image-Image Retrieval (SIIR) or Similarity-based Image-Caption Retrieval (SICR-CLIP) is
used, the selected similar images offer useful visual patterns that help address the descriptiveness
issue. Consequently, the VLM is more likely to recognize the consistent, simple patterns in MGC
than the rich, diverse patterns in GTC and then generate better captions. Figure 7 (a) visualizes 2
examples about the above comparisons.

This effect is more pronounced in 4-shot cases, where VLM lacks sufficient in-context captions to
discern sentence patterns, making simpler patterns advantageous. As long as the descriptiveness issue
is addressed, MGC often outperforms GTC, e.g., MGC-TF@88>GTC in Figure 3(b-d). Especially,
when SICR-CLIP is employed to select captions with high cross-modal similarity to the test image,
it significantly mitigates the descriptiveness problem. Then as demonstrated in Figure 3(d), even
MGC-TF@66 surpasses GTC.

MGC-TF vs. MGC-VLM. Before we see that using more low-quality captions like MGC-TF@66
will misguide VLM to generate worse captions. Yet, Figure 4 (f) indicates that using MGC-
VLM(0)@63 improves performance with increased shot numbers, contrasting MGC-TF@66 in
Figure 4 (c). This raises the question: why do weaker captions (MGC-VLM(0)@63) surpass those
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Several motor scooters 
are jammed into a small 
market street.

A row of parked bicycles 
sitting in front of a store.

Rows of motor scooters 
are parked in front of a 
store.

This slice of cake looks 
like half cheesecake and 
half vanilla.

A bite is taken out of a 
piece of cake.

This slice of cake looks 
like half cheesecake and 
half vanilla cake.

A piece of cake on a 
plate with a fork. 

A piece of cake on a 
plate with a fork. 

A piece of cake on a 
plate with a fork and a 
spoon. 

A row of motorcycles 

parked in front of a street.

A group of motorcycles 
parked in front of a 
street.

A group of motorcycles 
parked in front of a 
street. 

A piece of cake on a 
plate with a fork. 

A piece of cake on a 
plate with a fork. 

A piece of cake on a 
plate with a fork and a 
spoon. 

A row of motorcycles 

parked in front of a street.

A group of motorcycles 
parked in front of a 
street.

A group of motorcycles 
parked in front of a 
street. 

(a) MGC-TF@135(blue) v.s. GTC(red)

......
A stop sign that is on a 
street.

A stop sign on a street 
with a street.

A stop sign on the side 
of a street with a street 
light. 

A group of boats in the 
water and a boat.

A boat on a boat in the 
water.

A boat with a boat in the 
water and a boat in the 
water .

Two sailing boats are 
moored in a harbour.

A view of a lake with a 
boat and a dock in the 
foreground. 

A view of a lake with a 
boat and a dock in the 
foreground. 

A close up view of a 
traffic light that's red.

A close up picture of a 
red traffic light.

A picture of a traffic 
light that's red. 

Two sailing boats are 
moored in a harbour.

A view of a lake with a 
boat and a dock in the 
foreground. 

A view of a lake with a 
boat and a dock in the 
foreground. 

A close up view of a 
traffic light that's red.

A close up picture of a 
red traffic light.

A picture of a traffic 
light that's red. 

(b) MGC-VLM(0)@63(blue) v.s. MGC-TF@66(red)

Figure 7: (a) Two examples show that GTC uses more diverse words than MGC-TF@135, making
VLM hard to recognize the major pattern, e.g., it mis-generates "a store" in left or neglects "a fork"
in right. (b) Two examples demonstrating how VLM is misguided by syntactic errors in MGC-
VLM@66, where certain phrases are repeated such as "a street" or "a boat in the water".

with higher CIDEr (MGC-TF@66)? This discrepancy aligns with our assumption: descriptiveness
and language pattern influence in-context captioning differently.

MGC-TF@66 excels in object detection but struggles with language decoding, causing salient objects
to be identified correctly but with syntactical errors in captions. As such examples increase, VLM
produces worse captions due to these errors. Conversely, MGC-VLM(0)@63, though limited in
object recognition, maintains better grammar. When more vision cues are provided, VLM leverages
these along with the better-formed captions from MGC-VLM(0)@63, resulting in improved captions.
Figure 7 (b) offers two comparison examples.

Model-Generated Captions as Anchors (MGCA). From Figure 5, we see that using MGC as
the in-context captions usually underperforms GTC. However, by the MGCA strategy, we observe
consistent improvements over GTCs, as demonstrated by the higher blue histograms of different
MGCs compared to the grey dashed line. For example, despite MGC-TF@66 only achieves 64.24
CIDEr score in Figure 5(a), we still observe a 3.2 CIDEr improvement when using MGC-TF@66 as
the anchor, compared to simply selecting the first GTC. Specifically, when using MGC-TF@66/MGC-
TF@88/MGC-TF@135/MGC-VLM(0)@63/MGC-VLM(32)@81 as the anchors, the average im-
provements over six image selection strategies compared to GTC are 7.3/8.0/8.8/3.6/4.8 respectively.
In contrast to solely leveraging the RS+GTC method, the combination of SIIR-CLIP and using
MGC-TF@135 as anchor chalked up an average boost of 20.9.

The primary reason for such improvement is likely that MGC, to some extent, verbalize the major
patterns, such as the salient objects of an image. This helps identify which GTC provides more
detailed information about these patterns. Such detailed information of the salient objects provide
help VLM generate better captions. This assumption is further supported by comparisons between
MGC-TF and MGC-VLM. Given that MGC-TF prioritizes verbalizing the salient objects of an
image, using MGC-TF@66/MGC-TF@88 as anchors tends to select superior GTC than MGC-
VLM(0)@63/MGC-VLM(32)@81, thus yielding higher improvements.

Iter 1 2 3 4 5

MGC-VLM(0) 63.0 74.1 79.9 79.3 77.3
MGC-VLM(32) 85.3 80.5 79.4 78.9 77.1

Table 1: The CIDEr scores of IP in dif-
ferent iterations.

Iteratively Prompting (IP). Table 1 showcases the IP
CIDEr scores. "Iter 1" represents either the 0 or 32-shot
performance, with subsequent columns reflecting average
CIDEr scores for 4, 8, 16, and 32-shot scenarios. In the
inaugural iteration, we employ a consistent set of 0 or
32-shot image-caption pairs. For the following iterations,
images are selected via the Random Sampling (RS) ap-
proach, and captions generated in the prior iteration serve as the in-context captions. Analyzing
the data, it’s evident that MGC-VLM(0) stabilizes by the third iteration and MGC-VLM(32) by
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A long table with a plant 
on top of it surrounded 
with wooden chairs.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs and 
bananas.

...A long table with a plant 
on top of it surrounded 
with wooden chairs.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs with red 
accents. 

...

(a) Experiment (1) 

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A table is adorned with 
wooden chairs with blue 
accents.

Bananas on a wooden 
table. 

...A long table with a plant 
on top of it surrounded 
with wooden chairs.

A table is adorned with 
wooden chairs with blue 
accents.

A car with a sign that 
says stop. ...

(c) Experiment (3) 

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A table is adorned with 
wooden chairs with blue 
accents.

A long table with 
bananas on it.

...A long table with a plant 
on top of it surrounded 
with wooden chairs.

A table is adorned with 
wooden chairs with blue 
accents.

A stop sign on a road....

(b) Experiment (2) 

Figure 8: Four examples illustrate the phenomenon of short-cut inference. (a) When the in-context
images are identical to the test image, the generated caption mirrors the in-context captions. (b) When
using SIIR-CLIP to select similar examples, the generated caption tends to amalgamate features from
both the in-context and test images, sometimes leading to ambiguous or partially accurate descriptions.
(c) In contrast, when the in-context images are distinct from the test image, the generated caption
more aptly describes the image, including specific words such as "car" or "bananas".

the second, indicating that extended VLM iterations might be redundant. Remarkably, even when
confined to just 32-shot GTCs, merely two iterations of IP — for instance, where MGC-VLM(32)
attains an average CIDEr of 80.5 — can rival performances seen when all GTCs are utilized, as
exemplified by RS-GTC’s average CIDEr of 80.04 in Figure 5(a).

4.2.2 Effects of Image Qualities

We evaluated the outcomes of several image selection techniques. SIIR-CLIP, leveraging vision
embeddings to compute retrieval similarities, generally identifies images that are more analogous
than those found by SIIR-TAG. This is likely attributed to the intrinsic noise present in semantic
tags. SICR-CLIP, emphasizing captions that spotlight prominent objects, naturally gravitates towards
images showcasing similar objects. In contrast, both DIIR-TR and DIIR-TT produce more varied
selections. Nevertheless, when benchmarked against RS, every retrieval-based model consistently
fetches images that exhibit greater similarity.

At first glance, one could reasonably infer that using more similar images would invariably lead
to superior performance. Yet, as demonstrated in Figure 6, this assumption doesn’t universally
hold. When engaging high-quality captions, namely GTC in (a) and MGC-TF@135 in (d), the
correlation stands, with more analogous images indeed translating to enhanced results. For instance,
all retrieval-based techniques surpass RS in this context. However, with medium-quality captions,
as in MGC-TF@88 in (b) and VLM(32)@81 in (e), only the similarity-based retrieval methods like
SIIR or SICR-CLIP manage to outdo RS, and this is specifically observed in (e). Most intriguingly,
when low-quality captions like MGC-TF@66 in (c) and VLM(32)@63 in (f) are in play, analogous
images inversely impact performance, as illustrated by RS outperforming SIIR-CLIP in (f). This
critical insight underscores a pivotal revelation: the efficacy of utilizing similar images is intricately
tied to the caliber of the corresponding captions.

Similar Images Lead to Short-Cut Inference. A relatively bold hypothesis to elucidate this
phenomenon is: when in-context images are similar to the test image, VLM may take a short-cut by
leveraging in-context captions to generate a new one, rather than learning how to caption from the
in-context pairs. Consequently, the greater the similarity between in-context and test images, the
more the VLM is influenced by the in-context captions.
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In-Context Images GTC CIDEr ICC CIDEr

(1) Test Image 6.7 192. 2
(2) SIIR-CLIP 12.8 180.7
(3) RS 58.5 54.8

Table 2: The results for verifying short-
cut inference.

To robustly test our underlying assumption, we designed
three distinct experimental setups. In each setup, the in-
context captions remain consistent, comprising 5 ground-
truth captions sourced randomly from an image unrelated
to the test image. However, the in-context images are cho-
sen differently in each experiment: (1) they are identical
to the test image; (2) they are picked using SIIR-CLIP; (3)
they are chosen via RS. This progression results in decreasing similarity between the in-context and
test images from experiments (1) through (3). Table 2 showcases two sets of CIDEr scores. One set
compares the generated captions to the five ground-truth captions (GTC) of the test image, and the
other set contrasts them with the five in-context captions (ICC). Our findings suggest a clear pattern:
the closer the in-context images are to the test image, the more the VLM tends to mirror the ICC in
its generated caption. For illustration, method (1) registers the highest CIDEr score when compared
to the ICC. However, the caption it produces doesn’t accurately depict the image, as reflected by
its notably lower CIDEr score in relation to the GTC. These observations solidify our hypothesis
that images with high similarity can inadvertently prompt short-cut inference. Additionally, Figure 8
provides visual representations to further elucidate the phenomenon of short-cut inference.

DIIR. As depicted in Figure 6, the performance of the two DIIR methods noticeably lags behind
SIIR-TAG. This observation underscores the contention that the strength of diversity may not always
translate to superior results in every context. One plausible explanation we propose is the inherent
nature of captioning as a task. Contrary to certain complex NLP challenges, where diversity can
be instrumental in offering a multifaceted understanding of a problem [57], captioning is relatively
straightforward and may not benefit as much from diverse in-context examples. Delving deeper into
the DIIR methods, DIIR-TT consistently outshines DIIR-TR. This leads us to infer that the clustering
based on semantic tag types might be a more optimal strategy. Such a strategy, we believe, not only
ensures diversity but also completeness in the selection of images. For instance, given a caption
like "a brown dog is running", DIIR-TT could potentially source images that highlight elements like
"brown objects", "dogs", and the "action of running".

5 Conclusion and Limitations

In this study, we utilize image captioning as a case study to examine the impacts of varied multi-
modal in-context configurations on few-shot vision-language prompting. Specifically, we design 4
different ways to select images and 4 different strategies to assign captions to the selected images for
constructing multi-modal in-context configurations. Exhaustive experiments reveal that, contrary to
single-modal NLP cases, multi-modal mutual synergy significantly influences performance. Notably,
we observe that the descriptiveness and language patterns of the captions differently affect perfor-
mance: better performance may be achieved with simpler and consistent sentence patterns when
selected images compensate for descriptiveness issues. And we also discover that when the in-context
images are similar to the test one, VLM may build a short-cut by directly using the in-context captions
instead of really learning to captioning. Moreover, our optimal strategy lead to a 20.9 average increase
in CIDEr scores compared to a random sampling baseline.

This study’s primary limitation is that at the inception of our exploration, the only open-source
multi-modal few-shot learner available is Open-Flamingo [16]. However, Open-Flamingo, when
compared with the official Flamingo [6], underperforms due to its training on significantly less data.
Consequently, some findings in this paper might shift if a more robust multi-modal few-shot learner
is employed. Nevertheless, even in such a scenario, the diverse configuration strategies proposed
in this paper maintain their utility, aiding researchers in swiftly exploring the characteristics of the
employed VLMs. Additionally, we have provided experimental results on Otter [54] and smaller
version of Open-Flamingo, with detailed findings available in Appendix.
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Supplementary Material

A Experimental results on Open-Flamingo v1 9B

Here we present all the numerical results from the experiment, divided into four tables (Table 3,
Table 4, Table 5, and Table 6) based on different Image Selection strategies. Additionally, we have
calculated the average values for each method in the "mean" column.

Image Selection Caption Assignment 4-shot 8-shot 16-shot 32 -shot mean

RS GTC 75.80 78.93 81.97 83.47 80.04
RS MGC-TF@66 69.18 64.59 62.73 60.46 64.24
RS MGCA-TF@66 78.52 82.44 85.48 86.53 83.24
RS MGC-TF@88 74.60 74.47 77.80 78.71 76.39
RS MGCA-TF@88 78.40 81.28 84.93 87.62 83.06
RS MGC-TF@135 72.35 70.10 72.73 77.76 73.23
RS MGCA-TF@135 78.81 80.64 83.86 86.74 82.51
RS MGC-VLM(0)@63 70.45 73.92 74.83 77.00 74.05
RS MGCA-VLM(0)@63 76.13 79.61 82.14 83.63 80.38
RS MGC-VLM(32)@85 78.33 80.94 82.62 82.75 81.16
RS MGCA-VLM(32)@85 77.22 80.16 82.97 85.01 81.34

Table 3: Using Random Selection (RS) image selection strategy results.

Image Selection Caption Assignment 4-shot 8-shot 16-shot 32 -shot mean

SIIR-CLIP GTC 80.32 88.76 95.18 98.24 90.62
SIIR-CLIP MGC-TF@66 69.08 66.78 65.79 65.51 66.79
SIIR-CLIP MGCA-TF@66 89.69 97.53 102.31 104.63 98.54
SIIR-CLIP MGC-TF@88 81.86 82.43 84.77 84.89 83.49
SIIR-CLIP MGCA-TF@88 91.11 98.23 102.74 106.24 99.58
SIIR-CLIP MGC-TF@135 95.64 96.62 97.66 98.32 97.06
SIIR-CLIP MGCA-TF@135 92.73 99.47 104.09 107.52 100.95
SIIR-CLIP MGC-VLM(0)@63 65.98 69.52 71.88 73.49 70.22
SIIR-CLIP MGCA-VLM(0)@63 86.72 93.30 98.42 100.85 94.82
SIIR-CLIP MGC-VLM(32)@85 79.46 81.34 84.14 84.86 82.45
SIIR-CLIP MGCA-VLM(32)@85 88.09 95.70 98.98 102.12 96.22
SIIR-TAGS GTC 78.37 86.40 92.08 94.94 87.95
SIIR-TAGS MGC-TF@66 71.23 68.27 66.77 65.12 67.85
SIIR-TAGS MGCA-TF@66 87.40 93.31 97.85 102.16 95.18
SIIR-TAGS MGC-TF@88 82.70 81.80 82.51 83.33 82.58
SIIR-TAGS MGCA-TF@88 87.86 94.26 98.69 102.64 95.86
SIIR-TAGS MGC-TF@135 89.35 91.14 92.73 94.86 92.02
SIIR-TAGS MGCA-TF@135 88.89 94.45 100.34 104.44 97.03
SIIR-TAGS MGC-VLM(0)@63 67.11 70.21 72.21 74.45 71.00
SIIR-TAGS MGCA-VLM(0)@63 83.23 89.35 94.51 98.79 91.47
SIIR-TAGS MGC-VLM(32)@85 79.69 81.96 82.82 84.25 82.18
SIIR-TAGS MGCA-VLM(32)@85 85.04 91.23 96.10 100.10 93.12

Table 4: Using Similarity-based Image-Caption Retrieval (SIIR-CLIP) image selection strategy
results.
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Image Selection Caption Assignment 4-shot 8-shot 16-shot 32 -shot mean

SICR-CLIP GTC 72.91 81.76 89.40 94.51 84.64
SICR-CLIP MGC-TF@66 76.03 74.66 74.73 73.75 74.79
SICR-CLIP MGCA-TF@66 87.50 95.67 101.56 104.42 97.29
SICR-CLIP MGC-TF@88 84.30 84.09 85.34 84.83 84.64
SICR-CLIP MGCA-TF@88 88.41 96.37 101.89 105.07 97.94
SICR-CLIP MGC-TF@135 92.60 93.69 94.64 95.30 94.06
SICR-CLIP MGCA-TF@135 91.19 98.41 103.24 107.24 100.02
SICR-CLIP MGC-VLM(0)@63 68.19 70.34 73.97 76.91 72.35
SICR-CLIP MGCA-VLM(0)@63 82.49 91.08 96.64 101.55 92.94
SICR-CLIP MGC-VLM(32)@85 82.39 85.02 87.22 87.08 85.43
SICR-CLIP MGCA-VLM(32)@85 84.18 91.52 98.02 102.89 94.15

Table 5: Using Similarity-based Image-Caption Retrieval (SICR) image selection strategy results.

Image Selection Caption Assignment 4-shot 8-shot 16-shot 32 -shot mean

DIIR-TR GTC 76.01 82.88 87.13 93.25 84.82
DIIR-TR MGC-TF@66 71.45 66.82 66.22 65.80 67.57
DIIR-TR MGCA-TF@66 82.27 87.45 93.56 97.49 90.19
DIIR-TR MGC-TF@88 81.03 79.50 81.88 83.06 81.37
DIIR-TR MGCA-TF@88 82.85 88.84 93.93 99.18 91.20
DIIR-TR MGC-TF@135 83.59 82.63 84.33 89.03 84.89
DIIR-TR MGCA-TF@135 83.44 88.83 94.26 98.23 91.19
DIIR-TR MGC-VLM(0)@63 67.64 70.91 73.21 74.86 71.66
DIIR-TR MGCA-VLM(0)@63 78.68 84.41 89.96 93.59 86.66
DIIR-TR MGC-VLM(32)@85 77.35 80.72 81.97 83.72 80.94
DIIR-TR MGCA-VLM(32)@85 79.88 85.40 89.59 94.62 87.37
DIIR-TT GTC 75.65 83.21 89.70 95.42 86.00
DIIR-TT MGC-TF@66 72.59 68.51 66.66 65.53 68.32
DIIR-TT MGCA-TF@66 84.88 91.36 96.81 100.73 93.44
DIIR-TT MGC-TF@88 81.94 81.76 82.19 83.80 82.42
DIIR-TT MGCA-TF@88 85.13 92.61 97.35 101.61 94.17
DIIR-TT MGC-TF@135 88.01 88.65 90.58 94.04 90.32
DIIR-TT MGCA-TF@135 86.77 93.25 97.92 102.97 95.23
DIIR-TT MGC-VLM(0)@63 66.42 69.64 72.71 74.56 70.83
DIIR-TT MGCA-VLM(0)@63 79.32 87.36 92.76 97.69 89.28
DIIR-TT MGC-VLM(32)@85 76.91 80.21 83.24 84.43 81.20
DIIR-TT MGCA-VLM(32)@85 81.39 87.83 93.64 98.61 90.37
Table 6: Using Diversity-based Image-Image Retrieval (DIIR) image selection strategy results.

B Experimental results on Open-Flamingo v2 3B

Here we present the numerical results on Open-Flamingo v2 3B model 3 in Table 7 based on two
different Image Selection strategies. Additionally, we have calculated the average values for each
method in the "mean" column.

From the values in the table, it can be seen that the trend is basically consistent with the v1 model. It
can be considered that our strategy and analysis can be transferred to different models.

C Experimental results on Otter

Here we present the numerical results on Otter model in Table 8 based on two different Image
Selection strategies. Additionally, we have calculated the average values for each method in the
"mean" column.

3Project: https://laion.ai/blog/open-flamingo-v2/
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Image Selection Caption Assignment 4-shot 8-shot 16-shot 32 -shot mean

RS GT 77.90 86.14 90.80 93.17 88.47
RS MGC-TF@66 82.16 86.49 88.16 86.61 86.55
RS MGC-TF@88 82.47 88.43 91.81 93.83 90.12
RS MGC-TF@135 84.64 89.93 90.70 92.03 90.31
RS MGCA-TF@66 77.95 87.64 92.54 95.14 90.09
RS MGCA-TF@88 78.95 88.21 92.17 95.28 90.19
RS MGCA-TF@135 79.61 87.99 91.92 95.22 89.95
SIIR GT 84.53 92.36 96.36 98.66 94.36
SIIR MGC-TF@66 84.72 77.69 75.29 76.49 77.09
SIIR MGC-TF@88 93.38 91.29 90.50 89.25 90.90
SIIR MGC-TF@135 104.10 103.80 103.31 102.39 103.56
SIIR MGCA-TF@66 90.00 97.51 102.04 103.50 99.78
SIIR MGCA-TF@88 91.15 98.88 102.17 104.55 100.53
SIIR MGCA-TF@135 91.91 99.01 103.26 104.93 101.14

Table 7: Open-Flamingo v2 3B results with various strategies.

From the values in the table, it can be seen that the trend is basically consistent with the v1 model. It
can be considered that our strategy and analysis can be transferred to different models.

Image Selection Caption Assignment 4-shot 8-shot 16-shot 32 -shot mean

RS GT 83.43 88.36 91.86 93.09 90.11
RS MGC-TF@135 75.49 80.77 85.46 89.53 83.115
RS MGCA-TF@135 84.67 89.6 92.45 93.97 91.025
SIIR GT 87.4 90.72 94.42 95.94 92.57
SIIR MGC-TF@135 95.02 97.37 98.8 99.88 98.085
SIIR MGCA-TF@135 90.93 96.59 97.08 101.3 96.835

Table 8: Otter results with various strategies.

D More Results of MGC-TF@135 vs. GTC

We further elucidate the performance of MGC-TF@135(blue) and GTC(red), by offering additional
examples shown in Figure 9. It can be easily observed that GTC has a more diverse range of
sentence structures in comparison to MGC-TF@135. In the initial two examples, the words "cat" and
"dachshunds" were inaccurately recognized by GTC, demonstrating its limitation in some specific
instances. A shift can be noticed in the subsequent three examples, where the GTC generates captions
with complex sentence structures, with a notable proportion of incorrect information. This finding
serves to reinforce the notion that simpler sentence patterns, up to a certain degree of descriptiveness,
are more readily deciphered by the VLM, thereby enhancing the quality of generated captions.

E More Results of MGC-TF@66 vs. MGC-VLM(0)@63

Similarly, we supplement with more examples, as depicted in Figure 10, to facilitate the compar-
ison between MGC-TF@66(red) and MGC-VLM(0)@63(blue). A striking observation from this
comparative study reveals that MGC-TF@66 demonstrates a significant number of syntactical errors.
This flaw becomes problematic as it misdirects VLM, resulting in a substantial volume of syntactical
mistakes in the produced sentences.This correlation implies that the syntax errors in the initial input
by MGC-TF@66 tend to propagate into the VLM’s output. Therefore, it becomes clear that the
accuracy of grammar in the prompt is crucial for achieving better results.
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Dog and cat sleeping on a 
couch.

two dogs laying on top of a 
brown couch.

Dog and cat lying on floor 
side by side sleeping.

a dog and a cat laying on 
the floor.

Cats sleeping on top of a 
bed with blue and white 
striped blankets.

two cats laying on top of a 
bed.

two white black and brown 
dogs are lying on a red 
couch.

two dogs laying on top of a 
red couch.

A couple of dogs sleeping 
on top of a couch.

three dogs laying on top of a 
couch.

two dachshunds and a cat 
sleep on a couch.

two dogs laying on top of a 
couch.

two dachshunds and a cat 
sleep on a couch.

two dogs laying on top of a 
couch.

two dachshunds and a cat 
sleep on a bed.

two dogs laying on top of a 
bed.

TWO DOGS LYING ON A 
BED ON TOP OF THE 
COVERS.

two dogs laying on top of a 
bed.

A couple of dogs sleeping 
on top of a couch.

three dogs laying on top of a 
couch.

Cats sleeping on top of a 
bed with blue and white 
striped blankets.

two cats laying on top of a 
bed.

A bed in a hotel room with a 
window looking into the 
bathroom.

a hotel room with two beds 
and a window.

A bed in a hotel room with a 
window looking into the 
bathroom.

a hotel room with two beds 
and a window.

A very clean bedroom with 
two beds, lights and a TV.

a hotel room with two beds 
and a television.

Two beds in a hotel room 
with a window looking into 
the bathroom.

a hotel room with two beds 
and a mirror.

A bed in a bedroom next to 
a slide glass door.

a hotel room with two beds 
and a table.

A pink bedspread is featured 
in this bedroom.

a bedroom with a bed with 
two lamps.

A pizza sitting on top of a 
wooden cutting board with 
different toppings.

a person with a pizza sitting 
in a box on a table.

A pizza sitting on top of a 
wooden cutting board with 
different toppings.

a person with a pizza sitting 
in a box on a table.

A pizza sitting on top of a 
wooden cutting board.

a pizza sitting in a box on a 
table.

There is an open box with a 
pizza inside the box.

a pizza in a box on a table.

A box with pizza in it that 
has different toppings.

a person with a pizza in a 
box.

A pizza sitting on top of a 
cardboard box on a table.

a pizza sitting in a box on a 
table.

A kid is trying to catch a 
frisbee while standing in a 
park.

a young girl flying a kite in 
the sky.

A kid is trying to catch a 
frisbee while standing in a 
park.

a young girl flying a kite in 
the sky.

A person in a park holding a 
kite.

a person holding a kite in a 
field.

A man that is chasing a 
frisbee in the grass.

a man playing with a frisbee 
in a park.

A kid is trying to catch 
something while standing in 
a park.

a woman playing with a 
frisbee in a park.

A kid is trying to catch a 
frisbee while standing in a 
park.

a young girl flying a kite in 
the sky.

A person in a park holding a 
kite.

a person holding a kite in a 
field.

A man that is chasing a 
frisbee in the grass.

a man playing with a frisbee 
in a park.

A kid is trying to catch 
something while standing in 
a park.

a woman playing with a 
frisbee in a park.

A young boy flying a kite in 
a blue sky with clouds.

a young boy flying a kite in 
the sky.

Figure 9: MGC-TF@135(blue) vs. GTC(red). Five examples demonstrate that more diverse words
will be used in GTC than in MGC-TF@135 which making VLM hard to catch the major pattern. e.g.,
the first line and the second line incorrectly state "cat" and "dachshunds."
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a vase of flowers sitting on a 
table and a cup of coffee on a 
table.

A vase of daffodils and a cup of 
coffee on a table.

a vase of flowers sitting on a 
table.

A vase of pink flowers sitting on 
a wooden table.

a group of people sitting on a 
table.

A vase of daffodils on a table 
with a cup of coffee.

a close up of a laptop on a 
table.

A cup of coffee sitting on a 
desk.

a kitchen with a table and a 
table.

a rome with a cup of coffee and 
a kettle.

a clock tower with a clock on it.

a close up of a clock on the side 
of a building reads 12:00.

a clock tower with a clock on it.

a close up of a clock on the side 
of a building reads 12:00.

a clock tower with a clock on it.

A clock on the side of a 
building.

a clock tower with a clock on it.

A clock on the side of a 
building reads 12:00.

a clock tower with a clock on it.

a close up of a clock on the side 
of a building.

a clock tower with a clock on it.

a clock on the side of a 
building.

a laptop sitting on top of a desk 
with a desk and a desk.

A woman sitting at a desk with 
a laptop in front of her.

a laptop sitting on top of a desk 
with a desk and a desk.

A woman sitting at a desk with 
a laptop in front of her.

a laptop sitting on a desk with a 
desk.

A laptop computer on a table 
with a cup of coffee.

a laptop sitting on top of a 
desk.

A laptop on a desk in a hotel 
room.

a laptop sitting on top of a 
desk.

A laptop on a table.

a desk with a desk and a desk.

A man sitting at a desk with a 
laptop in front of him.

a man riding a motorcycle on a 
motorcycle.

A man riding a motorbike with 
a police radio.

a man riding a motorcycle on a 
motorcycle.

A man riding a motorbike with 
a police radio.

a man riding a motorcycle on a 
motorcycle.

a man riding a motorbike with a 
woman and a child on the back.

a man riding a motorcycle on a 
motorcycle.

A man riding a bicycle in front 
of a row of motorcycles.

a group of people walking 
down a street.

A man riding a motorbike with 
his daughter.

a man riding a motorcycle on a 
motorcycle.

A man rides a motorbike while 
talking on a cell phone.

a vase with a vase in a vase and 
a vase.

A vase filled with orange 
flowers.

a vase with a vase in a vase and 
a vase.

A vase filled with orange 
flowers.

a table with a vase and flowers 
on it.

a glass vase with orange 
flowers.

a vase with a vase and a vase.

A blue vase with a purple flower 
in it.

a vase with a vase and a vase.

A vase filled with purple 
flowers.

a vase with a vase in a vase and 
a vase.

A vase filled with orange 
flowers.

a table with a vase and flowers 
on it.

a glass vase with orange 
flowers.

a vase with a vase and a vase.

A blue vase with a purple flower 
in it.

a vase with a vase and a vase.

A vase filled with purple 
flowers.

a vase with a vase and a vase.

A vase made out of a 
newspaper.

Figure 10: MGC-VLM(0)@63(blue) vs. MGC-TF@66(red). Five examples show that VLM will be
misguided by the syntactic errors in MGC-VLM@66. Lots of outputs have repeated phrases, such as
"a table", "a clock", "a desk", "a motorcycle" and "a vase".
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F More Results of short-cut inference

In this section, we provide additional examples to demonstrate how similar images can lead our VLM
to exhibit a tendency for short-cut inference, where it might relies heavily on in-context captions to
generate the captions, disregarding the image information in the prompt and the inherent relationships
within the in-context pairs. In Figure 11, we present the results for the same test image under two
different scenarios of choosing in-context images: "identical to the test image" (top row) and "via
random sampling" (bottom row).

In the first scenario, for the majority of cases, our results are largely unrelated to the image content but
similar to the in-context captions, with only a few instances capturing some elements from the image,
such as "pink" in (a) and "on the beach" in (b). However, in the second scenario, our results are
heavily influenced by the in-context captions, as evident in (c) and (d) with the mention of "wooden
chairs".

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs with pink 
accents.

(a) 

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A mother and daughter 
are carrying their 
luggage.

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs with red 
accents.

(d) 

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A small boy sits on a 
wooden chair.

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs with red 
accents.

(c) 

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs and a 
bowl of dog food.

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A table is adorned with 
wooden chairs with blue 
accents on the beach.

(b) 

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

A long table with a 
flower arrangement in 
the middle for meetings.

A table is adorned with 
wooden chairs with blue 
accents.

A man is running on the 
beach.

A long restaurant table 
with rattan rounded 
back chairs.

A long table with a plant 
on top of it surrounded 
with wooden chairs.

A restaurant has modern 
wooden tables and 
chairs.

Figure 11: Five examples of verifying short-cut inference. we provide two different ways of choosing
in-context images: "identical to the test image" (top row) and "via random sampling" (bottom row).
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