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Abstract
We present a rich, multimodal dataset consisting of data from 40 teams of three hu-
mans conducting simulated urban search-and-rescue (SAR) missions in a Minecraft-
based testbed, collected for the Theory of Mind-based Cognitive Architecture for
Teams (ToMCAT) project. Modalities include two kinds of brain scan data—
functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG),
as well as skin conductance, heart rate, eye tracking, face images, spoken dialog
audio data with automatic speech recognition (ASR) transcriptions, game screen-
shots, gameplay data, game performance data, demographic data, and self-report
questionnaires. Each team undergoes up to six consecutive phases: three behavioral
tasks, one mission training session, and two collaborative SAR missions. This
dataset will support studying a large variety of research questions on topics includ-
ing teamwork, coordination, plan recognition, affective computing, physiological
linkage, entrainment, and dialog understanding. We provide an initial public release
of the de-identified data, along with analyses illustrating the utility of this dataset
to both computer scientists and social scientists.

1 Introduction

Teams of the future will increasingly involve humans and AI agents working together as trusted
partners, leveraging their complementary skills to achieve shared goals. The efficacy of AI teammates
will be enhanced if they are able to understand the beliefs, desires, and intentions of their human
teammates, i.e., if they have a machine theory of mind (MToM) [1, 2]. However, this capability
alone is not sufficient—they will need to understand the interpersonal dynamics between their human
teammates, that is, they will need a machine theory of teams. A natural first step for constructing a
(computational) theory of teams is to draw upon the vast amount of existing literature on teamwork
in purely human teams. However, as Roberts et al. [3] note, significant additional work is needed to
extend existing models of teamwork to human-machine teams.

We present the ToMCAT (Theory of Mind-based Cognitive Architecture for Teams) dataset—a rich,
multimodal dataset developed to significantly advance our understanding of teaming in both purely
human and hybrid human-machine teams. The dataset contains data from experiments in which teams
of three humans (and optionally, an AI advisor) execute complex collaborative tasks—specifically,
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urban search-and-rescue (USAR) missions—in a virtual Minecraft-based testbed [4]. However, we
emphasize that the primary focus of this paper is not on the USAR missions themselves, but rather
the complex social behaviors that the testbed is designed to elicit. Additionally, we instrument
the participants with additional sensors that capture data via the following modalities: spoken
communications, gaze, facial image captures, galvanic skin response (GSR), electroencephalography
(EEG), and functional near-infrared spectroscopy (fNIRS), and have them perform a set of novel
behavioral baseline tasks (§ 4).

Main contributions. 1) A rich multi-person, multimodal dataset for teams collaborating on complex,
time-constrained tasks, 2) Three structured behavioral baseline tasks designed to ground the physio-
logical data, as well as serve as independent multi-person, multi-task, multimodal datasets; and 3)
Exploratory analyses suggestive of the huge space of inquiry possible with this data.

2 Related work

This paper builds upon multiple lines of research related to human-machine teaming, synthetic task
environments, and interpersonal coordination as evidenced by physiological linkage. The primary
motivation for this dataset is to accelerate the development of effective artificial agent teammates with
artificial social intelligence through a deeper understanding of purely human and human-machine
teaming in cognitively complex, time-constrained scenarios.

Machine Theory of Mind Given the core role played by theory of mind (ToM) [5] in human
social intelligence, there has been steadily increasing interest in developing artificial agents with
MToM [1, 2, 6–22]. A significant portion of the literature on MToM, however, evaluates it in contexts
that are either disembodied (e.g., image classification and purely language-based tasks [6, 12, 16])
or ‘lightly-embodied’ (e.g., text adventure games [13] and small 2D gridworlds [1, 2, 14, 18]).
Voxel-based environments such as Minecraft [23] represent a natural step up in complexity.

Minecraft for AI research Minecraft is an open-world adventure game that is gaining popularity
as an AI testbed due to its ability to support diverse tasks [24], modifiability, and large user base. Of
the projects that use Minecraft for AI research, a large number use it as a testbed for reinforcement
learning [25–27], or for training AI agents to perform tasks based on natural language commands [28–
32]. However, following others [8, 9, 11, 15, 21, 33–39], we are interested in using Minecraft as a
testbed for ToM and human-machine teaming—that is, rather than having AI agents execute tasks
within a Minecraft-based environment, we have humans executing the tasks, with AI agents (if
present) acting as passive observers or advisors.

USAR tasks in synthetic task environments The environment we use [4, 40] is an example of
a synthetic task environment (STE) [41]—a medium-fidelity simulation environment that strikes
a pragmatic balance between highly abstracted lab settings (more controlled, cheap, less likely
to generalize to real-world situations) and high-fidelity simulations/real-world environments (less
controlled, expensive, more representative of real-world scenarios). The USAR task was chosen due
to its time-constrained, cognitively demanding nature, coupled with the potential for humans and
robots to perform complementary team roles in real-world USAR scenarios [33, 42]. The use of
Minecraft-based USAR STEs to study human-machine teaming is relatively well-established—they
have been used for small-scale studies [33, 43] as well as large-scale datasets [38, 39] upon which
numerous analyses have been performed [8, 10, 11, 15, 17, 21, 44].

The dataset most closely related to ours is the ASIST Study 3 dataset [39]. We use the same STE [4]
and Minecraft USAR tasks [45]. However, our data differs from theirs in several ways, the most
important of which is the inclusion of a number of of additional sensing modalities in our experiments:
gaze, facial image capture, EKG, GSR, EEG, and fNIRS (see § 2.1 for more details), which opens up
a number of additional research opportunities.

First, since we are concerned with theory of mind, recording EEG and fNIRS signals provides us a
way to ground inferences about cognitive and affective components of human mental state in rich
data that reflects the actual underlying brain activity of the participants—in a sense, getting us closer
to the ‘ground truth’. Notably, the study of the affective component of human mental states (i.e.,
emotions) is conspicuously absent from existing works on MToM, despite affect playing a crucial
role in human social interactions and decision making. Additionally, affect is reflected in other forms,
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e.g. facial expressions and changes in heart rate, neither of which are represented in the ASIST Study
3 dataset. While we do not expect, say, USAR team members to wear fNIRS/EEG caps in the field,
we believe that the modalities in this dataset will allow us to create mappings between surface-level
indicators of affect and coordination (e.g., facial expressions, tone of voice) and deeper underlying
affect and coordination as detected from fNIRS/EEG signals.

Second, physiological linkage (PL)—i.e., statistical association between the physiological markers of
two or more people over time [46]—has been shown to be predictive of performance and attributes [47,
48]. Furthermore, PL may depend on the interaction of individual differences and context—e.g.,
differences in individual social skills and attachment styles have been found to be associated with
qualitatively distinct forms of PL in competitive and collaborative contexts [49]. Therefore, PL may
be a promising predictor and outcome of team dynamics. Through the addition of physiological
sensing modalities, our dataset enables the study of PL in the context of human-machine teams.

Third, unlike in ASIST Study 3, the participants in our study perform a set of tasks designed to
compare physiological changes and phonetic entrainment resulting from performing team tasks.
Finally, instead of running multiple AI advisor experimental conditions, we only have one (the
ToMCAT agent), resulting in a much larger amount of data for this single advisor, which will
enable increased statistical power for analyses that are not focused on comparing the outcomes of
interventions by different AI advisors (one of the primary goals of ASIST Study 3).

Open-access fNIRS datasets Notably, to the best of our knowledge, our dataset is also the largest
open-access fNIRS dataset to date. It is approximately 13.5 times the size of the fNIRS2MW [50]
dataset (1.5× more subjects and ≈ 9× more fNIRS data per subject).

2.1 Physiological measures

We simultaneously record multiple subjects’ neural activities (hyperscanning) during real-time social
interactions [51]. Based on previous literature on team cognition and hyperscanning [52], we selected
EEG, fNIRS, EKG, GSR, and gaze as our main physiological measurement modalities. These were
collected for each participant for the duration of the group session (see § 3). This approach provides
opportunities for data analysis at various time resolutions [52], optimal variable control by using
data from different modalities for denoising, and higher-level feature selection/construction [53].
Details on the equipment and procedures for data acquisition and signal processing are provided in
the appendices.

EEG EEG is a non-invasive measure of the scalp electrical activity generated from the cerebral
cortex. It provides data on brain activity with temporal resolution on the order of a millisecond [54].
This high temporal resolution affords us opportunities for event-related (task-based) analysis (event-
related potential, ERP), which has been widely adopted in cognitive science research on various
topics including decision-making, emotion elicitation, and team cognition [55]. EEG hyperscanning
has yielded fruitful results for human-human social interaction research [52]. Sinha et al. [51] found
that inter-brain synchrony calculated from simultaneous EEG recordings of paired subjects was
found to be significantly higher when the subjects were in a cooperative scenario compared to when
they were in a competitive scenario. EEG has also been used to study human-machine teaming
scenarios—e.g., Shayesteh, Ojha, and Jebelli [56] measured EEG signals from subjects performing a
collaborative construction task with a virtual robot in an immersive environment, and found that a
k-nearest neighbors model (kNN) trained on EEG signals was able to predict the human’s level of
trust in the robot with an accuracy of ≈88%.

fNIRS fNIRS is an non-invasive optical brain imaging technology that assesses the contrast between
oxygenated and de-oxygenated hemoglobin in the cortex, and uses the hemodynamic fluctuation as
an indirect measure of brain activity in targeted brain areas [52]. While fNIRS has a lower temporal
resolution than EEG [57] (on the order of 10 ms), it is highly portable and less susceptible to motion,
making it an increasingly popular modality for social interaction experimental settings [58]. For this
study, we use optodes that mainly cover the frontal lobe area, based on previous research [52, 59, 60]
that found that greater interpersonal brain synchronization occurs at the frontopolar area, indicating
better coordination performance. Oxygenation changes in the prefrontal cortex (PFC) have also found
to be related to performance on various individual cognitive tasks [61], including language translation
and switching [62], verbal fluency [63], and mental manipulation [64].
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Leopard Cheetah

(a) Participant layout (b) Individual participant

Figure 1: Our experimental setup for data collection. Figure 1a shows the layout of the participants.
The ‘Lion’, ‘Tiger’, and ‘Leopard’ stations are for regular participants, while the ‘Cheetah’ station is
used for the experimenter that joins the group session for the competitive ping-pong task (§ 4.3). The
‘Lion’ and ‘Tiger’ stations are separated from the ‘Leopard’ and ‘Cheetah’ stations by a divider, in
order to reduce audio cross-contamination between the participants’ microphones. Figure 1b shows a
more detailed view of an individual participant, who is instrumented to record EEG, fNIRS, GSR,
EKG, and gaze data and in the midst of a Minecraft SAR mission.

EKG An electrocardiogram (EKG) measures heart activity over time and offers high temporal
resolution. Common EKG signal derivatives include inter-beat interval (i.e., the time between
heartbeats) and respiratory sinus arrhythmia (i.e., variability in heart rate due to breathing). These
signals result from coordinated biological activity within a person and are commonly used to model
coordination between people, as reflected by physiological linkage. Additionally, EKG data can be
used to filter out systematic cardiac activity noise (1–1.5 Hz [65]) from fNIRS data.

GSR Galvanic skin response (GSR), is a measure of electrical conductivity on the surface of the
skin [66]. Sweat gland activity varies unconsciously and automatically, peaking approximately 1–5
seconds after stimulus onset. GSR is commonly used in the study of emotion processes and teamwork.
For example, studies have found that GSR activity is associated with team performance [67], mental
effort [68], and self-reported emotion during team tasks [69]. For our study, we were interested in the
peak amplitudes (i.e., change from stimulus onset to highest peak), which can be used to examine
sweat gland activity within and between teammates following a stimulus presentation or during
team-based tasks.

Gaze An eye tracker works by shining infrared light onto the eyes of a participant, creating
reflections on the corneae that are then used to identify the locations of their pupils. By capturing
their eye/pupil movements, the eye tracker software can infer the point of gaze (where the participant
is looking) in real time [70, 71]. Eye-tracking is widely used in a variety of disciplines, including
psychology [70], marketing [72], and UI/UX research [73]. Additionally, eye-tracking can provide
event markers for other modalities such as EEG, fNIRS, and EKG.

3 Experimental design

The study was held at the University of Arizona. Individuals were deemed eligible if they were at
least 18 years of age, read and spoke English, and did not have any major physical limitations that
would interfere with completing tasks on a computer. Interested individuals contacted the research
team via e-mail, text, or phone. Details on the ethical review and the recruitment process are provided
in § A.3 and Appendix B respectively. All participants were compensated with either an Amazon gift
card or course credit. Participants were asked to complete a 30-minute individual ‘pre-session’ and a
3-hour ‘group session’.
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3.1 Pre-session

Participants started by completing the online consent form if they had not already done so. We then
measured their heads to select an appropriately sized EEG/fNIRS cap for them.

Speech elicitation tasks We conducted two speech elicitation tasks, collecting speech data for each
participant prior to their interaction with their teammates. This created a speech baseline for each
player prior to their interactions with their teammates and was used to study phonetic entrainment
between teammates during the course of the Minecraft missions. For more details, see Appendix K.
Entrainment is a useful method for assessing the dynamics of a social interaction and levels of
rapport [74, 75]. Prior work has found strong correlations between entrainment and success in group
tasks [74, 76, 77].

Questionnaires The following questionnaires were administered: (i) a COVID-19 health screener,
(ii) a survey that collected information about basic demographics (e.g., sex, racial background,
household income, highest level of education), experience with video games, and health (e.g.,
speech/hearing, language, impairments, diagnoses, psychoactive medication, etc.), (iii) the Big Five
Inventory- 2 Short Form (BFI-2-SF) personality questionnaire [78], and (iv) the Attachment Style
Questionnaire that assessed adult attachment [79].

3.2 Group session

When required, the participants interacted with each other through a keyboard and mouse located
at each experimental station. Each participant was positioned in front of a computer monitor, with
dividers used to increase physical separation between the participants (see Figure 1). If only two
out of the three planned participants showed up to the group session, or if one of the participants
dropped out in the midst of it, a confederate (i.e., a member of our research team) would step in
to take their place. Out of the 1014 task instances for which data was supposed to be recorded for
regular participants, 147 (i.e., 14.5%) had experimenters filling in for participants.

Baseline tasks Participants started by conducting a set of behavioral baseline tasks (§ 4).

Search-and-rescue missions Next, participants conducted the Minecraft-based SAR missions
described by Huang et al. [45]. Each team conducted a 20-minute tutorial mission, followed by two
17-minute main missions: Saturn A and Saturn B. The tutorial mission consists of a series of tasks
designed to familiarize participants with the game environment and their avatars’ specific abilities.
The first 2 minutes of the main missions were devoted to planning—participants were encouraged to
discuss strategies and review good and bad practices they adopted in the previous mission. In the next
15 minutes, access to the building is unblocked and participants can effectively start to earn points,
which happens after they find, treat and move victims of an in-game building collapse to assigned
safe areas. A subset of the teams were advised by the ToMCAT AI agent [80], which was designed to
improve team coordination by intervening on team communication.

Post-game survey After completing the Minecraft tasks, participants completed a brief post-game
survey. They were asked to rate their emotions due to (i) ther AI agent teammate, (ii) how the
game went, and (iii) the other team members, on a scale of ‘not at all’ to ‘a very large amount’. In
addition, participants indicated their impression of the agent and other team members by sliding a bar
between a pair of adjectives (e.g., intelligent–unintelligent, inexpert–expert, etc.). Lastly, participants
responded on the extent to which they disagreed or agreed to general statements along with statements
about other team members and the agent (e.g., “It seemed like my emotional reaction was wrong or
incorrect because of the agent’s response.”).

4 Baseline tasks

We collected rest state physiological data and conducted three behavioral baseline tasks to ground
complex physiological signals expected in collaborative missions to simpler, well-studied settings.
For example, we can map patterns in the Minecraft tasks to patterns of coordination established
in a simple task. These tasks closely resemble well-established ones, facilitating connections with
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existing research. Our approach extends prior studies by (i) addressing the underexplored area
of emotion in hyperscanning [81] through affective behavioral tasks and (ii) expanding from the
prevalent two-person paradigm to experiments involving three participants.

4.1 Rest state and finger tapping tasks

Rest state task This task was designed to collect baseline physiological data from the participants
while they were in a resting state. This is consistent with standard neurophysiological research [82]
and important for comparison purposes—by establishing a resting baseline, we can better understand
an individual’s functional baseline in the absence of exposure to the stimuli in the other tasks. In
this task, participants sat quietly for 5 minutes without engaging in any activity, with their monitor
displaying a countdown timer showing them the time remaining in the task.

Finger-tapping task This task was designed to record physiological data during team synchro-
nization in a cooperative activity. It allows us to observe neural processes during synchronization.
Results from Tognoli et al. [83] suggest certain neural correlates when participants are tasked with
finger-tapping with and without visual cues from each other. Furthermore, hyperscanning [52] studies
have shown an association between EEG signals and behaviors [81, 84]. Our finger-tapping task is a
variant of the one proposed by Tognoli et al. [83].

4.2 Affective task

In this task, participants viewed a curated set of images (see Appendix L) designed to elicit various
emotions. We employed Russell’s valence-arousal scale [85]—a widely recognized tool in affective
research—to quantitatively assess emotions. The task aims to collect physiological and emotional
data for interpreting emotional experiences based on physiological responses in subsequent tasks.
Prior studies indicate a connection between fNIRS, EEG, and autonomic functioning during the
processing of emotions—specifically, PFC activation [86] and potential dual motive systems in the
brain [87]. These findings align with literature on the PFC’s role in memory, emotion regulation, and
cognition [88–92]. The affective task includes ‘individual’ and ‘team’ affective subtasks.

Individual Affective Task For each image, the participant was shown the following sequence: (i)
a black screen for one second, (ii) a ‘+’ icon at the center of the screen (guiding the participant’s
attention to the center) for 0.5 seconds, (iii) the image itself for 5 seconds. After viewing each image,
participants had 20 seconds to rate the emotions they experienced during their observation. The rating
screen presented a 5-point valence scale (-2 for upset to +2 for happy) and a 5-point arousal scale
(-2 for ‘calm’ to +2 for ‘excited’), with 0 denoting ‘neutral’. These scales were adapted from the
Self-Assessment Manikin (SAM) [93] pictorial rating—a non-verbal technique for gauging individual
affect. Participants were prompted to register their emotional responses and submit them before the
onset of the subsequent image.

Team Affective Task This task is similar to the individual affective task, except that participants
viewed each image together instead of separately, after which they discussed their emotional experi-
ence and submitted a single rating representing their collective emotional experience in response to
the image.

4.3 Ping-pong task

The primary objective of this task is to collect neurophysiological data when participants are engaged
in competitive and cooperative scenarios. A range of tasks including card games, ping-pong, and
music and rhythm synchronization exercises have been used in the hyperscanning literature—e.g.,
studies have found evidence of inter-brain synchronization among participants collectively perform
a piece of music [94, 95] and in a cooperative task based on the Prisoner’s Dilemma [96]. The
ping-pong task is divided into two subtasks: competitive and cooperative.

Competitive Ping Pong Task Inspired by Sinha et al. [97], our competitive ping-pong task has
participants compete against each other in a 2-minute 1-on-1 computer-based ping-pong game.
Typically, two of the three participants would compete against each other, while the third competed
against a confederate. Players controlled an on-screen paddle with a mouse. Paddles were positioned
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on the left and right sides of the screen, and constrained to move solely vertically. Participants scored
a point whenever the ball hit the wall of the side opposite to that of their paddle. After hitting the
wall, the ball would ricochet back with the vertical component of its velocity being randomized. Prior
to the match, a 10-second familiarization phase was provided during which the participants could
practice moving their paddles while the ball remained stationary at the center of the screen.

Cooperative Ping Pong Task This task was similar to the competitive version, except that all three
participants were on the same side, playing against an AI agent instead of against each other. The
horizontal component of the ball’s velocity during the cooperative task was higher than that in the
competitive task. The participants’ paddles could move through each other and were on the left
side of the screen, while the AI agent’s paddle was on the right. Similar to the competitive task, a
10-second familiarization phase was provided before the start of the match.

5 Exploratory experiments

We developed two simple experiments to illustrate the large scope of new studies our data set can
support. The first is designed to compare the power of EEG and fNIRS data to predict self-reported
affect, and the second explores whether synchronization of EEG and fNIRS signals among team
members is predictive of team performance. Note that while we do not fuse the data from the two
modalities, these experiments are intrinsically multimodal since the EEG and fNIRS modalities are
recorded simultaneously for each participant, thus enabling us to compare their predictive power.

We emphasize that these experiments are exploratory (i.e., meant to recognize novel patterns in the
data, which can potentially lead to the generation of new hypotheses) rather than confirmatory (i.e.,
testing existing hypotheses). Both types of experiments are required for scientific progress [98].
Exploratory experiments are especially appropriate when the topic of research—in our case, machine
learning based on brain data—is relatively less well-studied compared to other modalities (due to the
inherently challenging nature of collecting brain data) such as images, text, and audio.

5.1 Predicting affect from brain scan data

Predicting affect from brain scan data is a challenging, yet intriguing endeavor in the realm of
neuroscience and affective computing. In this study, we use a multimodal dataset comprising EEG
and fNIRS data to examine the feasibility of predicting individuals’ self-reported valence and arousal
using data from the individual affective task (§ 4.2). We focus on specific regions of the head to
ensure spatial alignment of EEG and fNIRS data, enabling the comparison of these two modalities.

Most work on mapping brain scan data to valence and arousal uses EEG data. This includes
Rayatdoost et al. [99], who developed a deep domain adversarial neural network (DANN) to link
EEG data to valence and arousal, achieving average classification accuracies of 72.8% and 65.0% for
valence and arousal respectively on the MAHNOB-HCI database [100], and accuracies of 69.8% and
57.6% for valence and arousal classification on the DAI-EF database [101]. Galvão, Alarcão, and
Fonseca [102] used kNN on features derived from the EEG frequency domain to predict valence and
arousal values, achieving accuracies of 79.4%, 83%, and 80.6% on the DEAP [103], AMIGOS [104],
and DREAMER [105] datasets, respectively. For all five datasets, participants watched videos and
subsequently rated their emotions using SAM scales [106] for valence and arousal (a 9-point scale
for MAHNOB-HCI, DAI-EF, DEAP, and AMIGOS, and a 5-point scale for DREAMER)

Bandara et al. [107] used a support vector machine (SVM) to predict valence and arousal scores
from fNIRS data, achieving an �1 score of 0.74 on the DEAP dataset. For images, Trambaiolli,
Biazoli, Cravo, et al. [108] achieved a classification accuracy of 89% in discerning positive from
negative valence using fNIRS signals and a linear discriminant analysis (LDA). Finally, Sun, Ayaz,
and Akansu [109] combined EEG and fNIRS data, and used an SVM to classify with 75% accuracy.

While many studies use a SAM scale with ranges of 1–9, 1–5, or 1–10, we use a scale with a range of
−2 to +2 for a more compact scale and a clear neutral reference. We use brain scan data obtained from
EEG and fNIRS recording trimmed to sets whose EEG and fNIRS samples overlap as best as possible.
Specifically, for EEG we selected channels FC5, FCz, FC6, F7, F8, AFF1h, and AFF2h, whereas for
fNIRS we selected channels Fz-F1, Fz-F2, F3-F7, F3-F1, F4-F2, F4-F6, AF3-F7, AF3-Afz, AF4-F6,
and AF4-Afz. We trained separate CNNs [110] for fNIRS and EEG data. The fNIRS data were kept
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Table 1: Accuracy and loss (mean ± standard error of the mean, computed over 5 folds) for classifica-
tion of valence and arousal scores.

Model Offset (s) Window size (s) Accuracy (%) Loss

Valence Arousal

CNNfNIRS 0 2 26.8 ± 1.2 30.1 ± 0.8 3.02 ± 0.012
CNNfNIRS 2 2 30.4 ± 1.2 28.0 ± 0.8 3.02 ± 0.008
CNNfNIRS 5 2 28.4 ± 1.2 30.3 ± 0.8 3.01 ± 0.007
CNNEEG 0 1 29.3 ± 1.4 29.8 ± 1.3 2.80 ± 0.004
BaselinefNIRS N/A N/A 29.0 ± 0.9 29.7 ± 0.1 N/A
BaselineEEG N/A N/A 27.5 ± 0.7 30.3 ± 0.5 N/A

in the spatial domain, while EEG data were segmented into frequency bands (theta, alpha, beta, and
gamma) and their wavelet features were extracted with four levels of decomposition.

fNIRS signals exhibit a phenomenon known as the hemodynamic response factor (HRF) [111, 112]
which represents the relationship between neural activity and the corresponding changes in blood
oxygenation levels that occur in response to that activity (when a participant views a specific image).
The HRF consists of two phases: (i) the initial dip, which typically lasts for 1–2s and involves an
initial drop in the concentration of oxygenated hemoglobin (HbO) and a simultaneous increase in
deoxygenated hemoglobin (HbR) shortly after neural activation, and (ii) the hemodynamic response
peak, in which there is an increase in HbO concentration and a decrease in HbR concentration,
resulting in a peak in HbO concentration that occurs ≈ 4–6s after activation.

We present our results in Table 1. We tried several offsets for the fNIRS data to see if there was a
noticeable effect due to the HRF as discussed above. We note that accuracies for EEG and fNIRS are
not precisely comparable due to the disparity in participant numbers—97 for EEG and 102 for fNIRS.
Unfortunately, our attempt at using basic CNNs for classification did not perform any better than
the baseline. In contrast to prior work, we held out data in units of participant-image pairs, rather
than predicting solely within participants. The relationship between functional brain regions and
cap location varies among participants. While the training data did contain some data for held out
participants looking at other images, most of the training data was for other participants. Success on
this task will likely require addressing functional regions to individualized cap locations, as well as
more effort on neural network design. Given basically baseline performance, we are not surprised
that accounting for the HRF with an offset did not make any real difference. Further details and
quantitative results can be found in the confusion matrices provided in § F.1.

5.2 Linking temporal correlation of brain signals with scores

Shared cognition in team environments is gaining interest, particularly in understanding social
dynamics that lead to successful performance, and in developing intervention techniques to enhance
collaboration [113, 114]. Research has consistently shown that cooperation plays a vital role in
influencing overall task performance [113], enabling coordination and information sharing, which
enhances the effectiveness of the team [115, 116]. Studies have found behavioral and neurological
synchronization between subjects during cooperative tasks [115–118], reinforcing the idea that
cooperation may go beyond mere action coordination or knowledge sharing and may suggest a shared
mental model within cooperative settings that includes coordination and sharing of social content like
emotion and intentions [113, 119].

Research efforts on these fronts will benefit from more comprehensive data, specifically, data
containing a larger set of modalities, and from multiple interacting participants. Existing studies
mostly focus on limited brain regions with a single modality (i.e., either fNIRS or EEG but not both)
during a single task [116, 117], which undermines their ability to capture the complex nature of
shared mental models. Our research extends previous methods of classifying cognitive processes in
single-participant studies [120] to identifying cognitive processes in teams, thus enabling the study of
shared mental models of teams.

In this second experiment to illustrate the potential of our dataset, we study whether synchronization
of EEG and fNIRS signals between team members can predict team performance. Building on
research establishing a connection between synchronization and higher cooperation levels [115–117],
we examine the brain holistically for associations between the correlation of EEG and fNIRS data
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Table 2: Linear regression coefficient V (slope) and associated significance (p-value), cross-validation
with leave-one-out mean error (4̄) with standard error of those means (f4̄) in parentheses for each
fNIRS and EEG channel over average correlation from all experiments. fNIRS (EEG) channels with
'2 < 0.165(0.075) for all three tasks are excluded from the table. Blue and red numbers indicate
positive and negative slopes respectively. '2 of the null model for all channels is 0.0. The values
under the 4̄∗ and V∗ columns are in units of 102. p-values less than 0.05 are in bold.

Ping Pong Cooperative Minecraft Saturn A Minecraft Saturn B

Channel '2 p 4̄ (f4̄) V '2 p 4̄∗ (f4̄) V∗ '2 p 4̄∗ (f4̄) V∗

fNIRS

F3-F5 (HbO) 0.03 0.30 2.3 (.3) 2.45 0.10 0.07 1.5 (.2) −2.99 0.27 0.01 1.1 (.1) −7.60
F3-F1 (HbO) 0.00 0.89 2.3 (.3) 0.43 0.07 0.12 1.6 (.2) −2.40 0.17 0.03 1.2 (.2) −9.13
Fz-AFz (HbO) 0.02 0.35 2.2 (.3) 2.11 0.23 0.00 1.3 (.2) 4.56 0.02 0.44 1.2 (.2) −2.73
FPz-FP1 (HbO) 0.19 0.01 2.1 (.3) 6.43 0.09 0.08 1.6 (.2) −2.64 0.01 0.62 1.3 (.2) −2.66
FPz-AFz (HbO) 0.00 0.68 2.3 (.3) 0.77 0.26 0.00 1.3 (.2) 4.49 0.02 0.45 1.2 (.2) −3.45
F4-F2 (HbO) 0.00 0.74 2.3 (.3) −0.77 0.01 0.50 1.7 (.3) 1.02 0.20 0.02 1.2 (.2) −10.32
AF3-FP1 (HbR) 0.11 0.04 2.2 (.3) 3.90 0.19 0.01 1.4 (.2) −3.94 0.05 0.27 1.2 (.2) −3.41
FPz-FP2 (HbR) 0.00 0.78 2.3 (.3) −0.58 0.21 0.00 1.3 (.2) −4.32 0.01 0.56 1.2 (.2) 2.16
AF8-F6 (HbR) 0.00 0.94 2.4 (.4) 0.17 0.29 0.00 1.3 (.2) −4.99 0.10 0.10 1.2 (.2) 4.13

EEG

FCz 0.09 0.08 2.3 (.3) −4.20 0.27 0.00 1.2 (.2) −3.66 0.12 0.08 1.2 (.2) −2.77
AFF1h 0.14 0.02 2.3 (.3) −5.79 0.00 0.75 1.6 (.2) 0.60 0.02 0.53 1.3 (.2) 0.79
O2 0.04 0.24 2.4 (.3) −2.54 0.24 0.00 1.4 (.2) 4.44 0.02 0.54 1.3 (.2) 0.88
TP9 0.13 0.03 2.3 (.3) −6.98 0.02 0.43 1.6 (.2) −1.06 0.17 0.04 1.2 (.2) 3.88
P3 0.00 0.70 2.4 (.3) −0.90 0.00 0.76 1.6 (.2) 0.56 0.10 0.11 1.2 (.2) 1.81
P8 0.06 0.16 2.3 (.3) −3.30 0.25 0.00 1.2 (.2) −4.53 0.00 0.80 1.3 (.2) −0.51
C4 0.00 0.91 2.4 (.4) −0.31 0.07 0.13 1.5 (.2) 3.03 0.09 0.14 1.3 (.1) −4.56
AFF2h 0.03 0.32 2.4 (.3) −2.17 0.17 0.02 1.4 (.2) 4.45 0.02 0.54 1.3 (.2) −0.98
T8 0.03 0.33 2.4 (.3) −2.29 0.00 0.79 1.6 (.2) −0.47 0.08 0.18 1.3 (.2) −1.88

channels between participants with scores on the ping-pong tasks (a more constrained laboratory
setting), and the two Minecraft-based SAR missions (a more naturalistic setting). We expect that
stronger linkage between certain parts of the brain will be associated with better performance. Our
analysis methods are similar to those in existing studies [116, 117]. Specifically, we are looking at
whether the temporal correlation across participant brain signals can predict team performance.

For each of the three tasks, for each of the EEG and fNIRS channels, we computed the Pearson
correlation of the brain data between the three participants in a team by taking the average of their
pairwise correlations. If there were only two participants, we simply used their correlation. We
compute correlations by synchronizing the measurements to a common start time and frequency (500
Hz for EEG and 10 Hz for fNIRS) using linear interpolation. We then used the correlation for each
EEG and fNIRS channel as the predictor for the final task performance score as the outcome variable
in a linear regression model fit to these variables over all teams. We evaluated the performance of
the resulting models using the '2 measure, which quantifies the proportion of variance in the task
performance that can be accounted for by the EEG and fNIRS correlations, and cross-validation
with leave-one-out mean error, where we fit the regression model over all but one team and evaluate
prediction error on the one held-out team in each fold. Our results are shown in Table 2.

For the Ping Pong Cooperative baseline task, many fNIRS channels had a positive slope for the
fit of the task performance predicted by fNIRS synchronization. Conversely, the linkage between
EEG-measured brain regions among participants and task performance often had negative slopes. In
our Minecraft Saturn A mission, participants were in the process of familiarizing themselves with the
task’s challenges. Here, the EEG/fNIRS correlation between participants and task performance was
varied, without a clear pattern. However, in the Minecraft Saturn B mission, in which participants
were now familiar with the mission and each other, there was a larger number of fNIRS and EEG
channels with a negative correlation between brain data linkage and task performance when compared
to Minecraft Saturn A. Understanding what is going on will require more thorough analysis on where
we suspect spurious results, mapping to brain function as seen in the baseline tasks, and accounting
for the differences in what we expect EEG and fNIRS signals to tell us.
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6 Dataset usage

Accessing the dataset The dataset and its documentation is available at https://tomcat.ivilab.
org. We provide access to the data in two ways. The first is through a Datasette [121] instance, which
provides graphical and programmatic interfaces for users to explore the data, retrieve subsets of it
that they are interested in, or simply download the backing SQLite database. The second is in the
form of pre-built files containing subsets of data that we (i) used for the experiments in this paper,
and (ii) expect will be commonly requested by other researchers.

A key issue with using the raw data is that it comprises data from multiple asynchronous data
streams. Hence, aligning the data for multiple participants entails interpolation. A second issue is
recording specific issues encountered during data collection, such as an experimenter stepping in for
a participant. Finally, derived data will also include standard data transformations and cleaning.

Continued engagement The scale and complexity of this dataset make it infeasible for us to
annotate every type of label that might be of interest. Rather, we hope that the release of the dataset
will seed the development of a community that works together to fully explore this data. We envision
a process by which researchers build upon this dataset by adding layers of annotations for labels of
interest, unlocking the ability to answer additional research questions. We are also happy to include
pointers on our website to papers that use this dataset, in order to facilitate connections between
researchers working with this dataset.

We highly encourage users to sign up for our mailing list to get updates on data issues and annotation
layers, benchmarks, and documentation.

6.1 Additional usage examples

In § 5, we presented illustrative experiments in that study the affective component of ToM and the
relationship between brain signal correlations and team performance on a collaborative task. One
could study other aspects of ToM as well.

Intention detection For example, intentions are commonly considered part of human mental states.
Consider a researcher who is interested in developing algorithms to infer participant intentions from
observed behavior (i.e., plan recognition [122]). This could be done by encoding the observations as
sequences of discrete actions—either manually or semi-automatically, depending on the temporal,
spatial, and semantic granularity of interest. Data that could be used for this include the participant’s
in-game position and velocity, as well as the semantic contents of their utterances.

Utterance classification Another example use case involves labeling participant utterances with
sentiment, emotion, and dialog act labels will enable developing models for sentiment, emotion
and dialog act classification in task-related dialog. Unlike previous dialog datasets, the ToMCAT
dataset contains text, speech, and physiological data that can be simultaneously leveraged for these
classification tasks.

7 Conclusion

In this transdisciplinary work, we integrate numerous threads of research in computer science,
psychology, and cognitive science to present the ToMCAT dataset, which to our knowledge is the only
dataset that contains both (i) data on human-machine teaming in a complex synthetic task environment
and (ii) rich physiological data from a number of sensors, including fNIRS and EEG, thus enabling the
exploration of fundamental research questions related to the interplay of competition, cooperation, and
neurophysiological responses in human-machine teams. Furthermore, to our knowledge, this is the
largest open-access fNIRS dataset currently available. Finally, we conduct exploratory experiments
linking valence, arousal, and team performance to brain signals, illustrating the potential of the dataset
for exploring a variety of research questions. We are excited to share this dataset with the community
and look forward to seeing the research findings it enables.
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A Datasheet

A.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description.

The dataset was created to significantly advance our understanding of teaming in both purely human
and hybrid human-machine teams. While there exist prior datasets involving human-AI collaboration
in complex open-ended environments, none include the large number of physiological measures that
we provide.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

This dataset was created by members of the ToMCAT research project (https://ml4ai.github.
io/tomcat), spanning five departments (School of Information, Computer Science, Norton School
of Human Ecology, Psychology, and Linguistics) and three labs (ML4AI, IVILab, and the TIES Lab)
at the University of Arizona.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of
the grantor and the grant name and number.

The creation of this dataset was funded by the Army Research Office and was accomplished under
Grant Number W911NF-20-1-0002. The grant was awarded through the Defense Advanced Research
Projects Agency (DARPA). We would also like to acknowledge intramural funding from the University
of Arizona’s SensorLab.

A.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions
between them; nodes and edges)? Please provide a description.

The dataset consists of data from experiments in which teams of three humans (and optionally, an
AI advisor) execute urban search-and-rescue (USAR) missions in the ASIST Study 3 testbed [4],
which is based on Minecraft and instrumented to capture in-game states, actions, and events with
a high level of granularity. Additionally, we instrument the participants with additional sensors
that capture data via the following modalities: spoken communications, eye tracking, facial image
captures, galvanic skin response (GSR), electroencephalography (EEG), and functional near-infrared
spectroscopy (fNIRS).

How many instances are there in total (of each type, if appropriate)?

We provide data from 40 teams.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representa-
tive of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness
was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to
cover a more diverse range of instances, because instances were withheld or unavailable).

The dataset is a sample of the subset of the human population that meet the following criteria: (i) over
18 years of age, (ii) able to read and speak English, and does not have any major physical limitations
that would interfere with completing tasks on a computer (e.g., limited vision or hearing, problems
with fine motor control).

The sample is weighted heavily towards younger participants (ages 18–22, corresponding to the
typical age range for undergraduates at the university where the study was conducted). The ratio of
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female to male participants is representative of the sex distribution of the students at the university
[123].

Of the participants whose race was recorded, 48% identified as ‘Non-Hispanic White’ or ‘European
American’, which is lower than the proportion of enrolled students at the university that identified
as ‘White’ (66%). 7% identified as ‘African American’ and 13% as ‘Asian American’, which
is roughly consistent with the proportion of students at the university who identify as ‘Black or
African American‘ (6.7%) or ‘Asian’ (10.6%) of the student population at the university. 27% of the
participants identified as Hispanic, which is consistent with the portion of students at the university
who identify as ‘Hispanic or Latinx‘, and greater than the percentage of ‘Hispanic or Latino’ people
in the US population in the 2020 census (18.7%) [124]—this can be attributed to the geographic
location of the university (the southwestern US). Most deviations from representativeness of the
sample from the larger population can be attributed primarily to the sampling methods we used
(convenience and snowball sampling, described later in this document).

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features?
In either case, please provide a description.

Modalities include two kinds of brain scan data—functional near-infrared spectroscopy (fNIRS) and
electroencephalography (EEG), as well as skin conductance, heart rate, eye tracking, face images,
spoken dialog audio data with automatic speech recognition (ASR) transcriptions, game screenshots,
gameplay data, game performance data, demographic data, and self-report questionnaires.

We provide both nearly-raw and derived data products.

Is there a label or target associated with each instance? If so, please provide a description.

There are many potential prediction tasks that can be performed with this dataset. Some that may be
of interest to researchers are provided below:

• Individual and team scores on the baseline tasks.
• Post-game survey questionnaire responses.

Is any information missing from individual instances? If so, please provide a description, explaining
why this information is missing (e.g., because it was unavailable). This does not include intentionally
removed information, but might include, e.g., redacted text.

There are instances of missing data in the dataset. Some of the instances are expected, as it is built
into the design of the experiment (e.g., when participants skip optional questions in questionnaires).
However, as is the case with any complex study involving human subjects, there are many ways for
data collection to not proceed as originally expected, resulting in missing data. We have instances of
missing data due to a variety of reasons:

• When an experimenter sat in for a no-show participant or a participant that left in the middle
of a group session, most of the time, the experimenter did not wear an EEG/fNIRS cap or
eye tracker. This is because properly setting up the cap and calibrating the eye tracker for
a participant is a time-consuming process, and so in such cases, we chose to prioritize the
number of tasks for which we had data for the group session over ensuring the presence of
the EEG/fNIRS/gaze modalities. Thus, we do not obtain physiological measures for them
for the whole group session.

• There were a few group sessions where a participant either refused to wear their EEG/fNIRS
cap (and/or eye tracker) or had to take them off due to physical discomfort, usually caused
by the cap not setup right for the participant’s head size, or glasses not fitting right on their
head or over their own eyeglasses. In these cases, the physiological measures were not
obtained for the entire group session for that participant.

• Participant takes cap or glasses off sometime in the middle of the experiment after tasks have
been completed: Again, this was usually caused by the participant not feeling comfortable
with the device on, the cap not setup right for the participant’s head size, glasses not fitting
right on head or over personal glasses, or the participant feeling sick. Therefore, the EEG,
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NIRS, and/or gaze data would be good for completed tasks up to the point where the
participant took the device off.

• The following group sessions had no EEG amplifier at the ‘lion’ station:
exp_2023_04_17_13, exp_2023_04_18_14, exp_2023_04_20_14, exp_2023_04_21_10,
exp_2023_04_24_13, exp_2023_04_26_10, and exp_2023_04_27_14. We had to send
the amplifier in for repair around 2023-04-17 and did not receive a loaner amplifier until
2023-04-28. Therefore, the EEG data for the ‘lion’ station for those group sessions is either
missing or invalid.

• In earlier group sessions, we attempted to run the NIRx Aurora fNIRS data acquisition
software on an iMac. However, it would crash sometimes. If we noticed the crash, in most
cases, we would immediately go to the iMac and restart it. However, there were some
sessions where we did not find out that Aurora had crashed until after the session had ended,
leading to missing fNIRS data for these sessions. In later group sessions, we switched to
using a Windows computer, which resolved the problem.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.

Each participant has a unique ID, as does each group session. These can be used to link data from
different modalities and tasks.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them.

We do not provide recommended data splits.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

Sources of noise EEG signals are susceptible to artifacts from eye movements/blinks [125] and
external sources like fluorescent lights or grounding problems [126]. From plotting the raw EEG
data, we observed a predictable 60 Hz electrical noise in the signal (and related harmonics). We also
observed a peak around 5 Hz that may be due to a grounding issue or some other environmental
influence. Using MNE-Python [127] we eliminated noise from these sources using a notch filter with
frequency set to 60 Hz, trans bandwidth set to 9 Hz and notch widths set to 2 Hz.

fNIRS signals are known to have motion artifacts (MA) (e.g., cardiac and respiratory artifacts). MA
of all fNIRS channels’ oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations were then
filtered using a bandpass filter with bandwith set to 0.01–0.2Hz [128].

EKG data may contain high-frequency noise and artifacts due to muscle movements. These were
filtered using a filter with highpass: 0.0 Hz lowpass: 250.0 Hz using MNE-Python [127].

The GSR data may contain high-frequency noise and rapid-transient artifacts, these were filtered
using a filter with highpass: 0.0 Hz lowpass: 250.0 Hz using MNE-Python [127].

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that
they will exist, and remain constant, over time; b) are there official archival versions of the complete
dataset (i.e., including the external resources as they existed at the time the dataset was created); c)
are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might
apply to a dataset consumer? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate.

The dataset is self-contained. However, documentation for the schemas of the messages that comprise
the data from the testbed is not on our website but is available in the repository for the ASIST Study
3 testbed [4].
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Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)? If so, please provide a description.

The dataset does not contain data that might be considered confidential.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? If so, please describe why.

The data contains screenshots of a Minecraft-based urban search-and-rescue mission involving
rescuing victims that were injured in a building collapse. While we expect that these are unlikely to
cause anxiety due to the low visual fidelity of Minecraft, we are not able to rule it out.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset. Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.

The dataset includes questions on demographics, gaming experience, and health. Depending on the
variables on interest, it is possible for researchers to look at data by gender, race/ethnicity, and age,
among other variables. However, no one was purposefully excluded based on any of these criteria.

To the best of our knowledge, it is not possible to identify individuals either directly or indirectly
from the publicly released portions of this dataset.

Aggregated demographic data for selected dimensions are provided in Table 3. Note that demographic
data is missing for two regular participants and the 9 experimental confederates that filled in for
missing participants.

Table 3: Aggregated demographic data for selected dimensions.

(a) Age distribution
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(b) Sex

Female 54
Male 45
Prefer not to say 1
Other 0

(c) Race

Other 32
Non-Hispanic White 28
European American 20
Asian American 13
African American 7

(d) Hispanic

No 73
Yes 27

(e) Videogaming experience

Have played them occasionally 38
Have played them fairly often 30
Have played them regularly for years 28
Never played them 4

(f) Minecraft experience

Have played it occasionally 42
Have played it fairly often 24
Have played it regularly for years 18
Never played it 16

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of government
identification, such as social security numbers; criminal history)? If so, please provide a description.

All publicly released data in the dataset has been deidentified.

Questionnaires While we collected socio-demographic and health data through self-report, any
identifiable information has been removed so the data we provide does not include personal informa-
tion (e.g., e-mail, phone number, etc.) for any of the participants.
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Audio We recorded spoken audio data from participants during the study. While participants have
given their consent for their audio recordings to be shared publicly, we do not do so at this time since
we believe that the audio data is still fairly sensitive. We will publish derived features from the audio
data (e.g., vocalic features extracted using openSMILE [129]). We will support researchers who want
to perform alternative processing on the raw audio files by working with them to run their processing
code on our machines and sharing the resulting derived data with them.

Face images We do not plan to release the face images that we captured during the experimental
sessions, as they contain personally identifiable information (PII). We plan to provide automated
FACS codes for the images by processing them using OpenFace [130], contingent on the codes
passing a manual validation/spot-checking procedure1. Similar to the raw audio, we are willing to
work with researchers to run their custom face image processing pipelines on our machines and share
the (de-identified) results with them.

Any other comments?

None.

A.3 Collection process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If the data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If
so, please describe how.

The data was directly observable in some case (e.g., raw audio/images/physiological measures), and
reported by subjects for other cases (e.g. self-report questionnaires). For the data that was reported
by subjects, we used questionnaires that were previously validated in the literature.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? How were these mechanisms
or procedures validated?

See Appendix H for details on how the data was collected.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

The sampling strategy for this study was a convenience sample, which is a non-probabilistic sampling
strategy where participants are included due to ease of access. We also used snowball sampling as
participants were asked to pass along our study contact information to any of their friends, peers,
co-workers, and other people who they thought might be interested in participating.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?

An interdisciplinary research team comprised of individuals from Computer Science (CS), Human
Development & Family Science (HDFS), Psychology, and Speech, Language, and & Hearing
Sciences (SLHS) was involved in the data collection process. A postdoctoral research associate in
HDFS recruited and scheduled participants for the study, among other study-related responsibilities.
Data collection was conducted by a team of graduate students who working hands-on and oversaw
undergraduate research assistants (RAs). All graduate students were financially compensated as this
project provided funding in the form of a research assistantship. However, undergraduate students
were compensated in the form of independent research study credit with the study PI. Undergraduates

1Participants wore masks throughout the experiment, which poses a significant challenge for automated
FACS coding.
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Figure 2: Workflow showing the IRB process for human subjects research.
.

enrolled in the independent study as part of their semester coursework and received 3 credits at the
end of the semester in a graded format (pass/fail).

Participants were compensated in the form of an electronic Amazon.com gift card. Compensation
was calculated based on time spent in the study—$5.00 for the 30-minute pre-session and $10.00 for
each hour of the testing session for a maximum of $35.00.

Participants were further incentivized through gamification—they had a chance of winning an
additional $20.00 Amazon gift card if they obtained the highest score on the Minecraft missions out
of 20 group sessions.

Participants who enrolled in the study through the SONA system received compensation in the form
of SONA credit. For the pre-session and testing session, participants received 1 credit and 3 credits,
respectively.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of
the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the instances was created.

The data was collected between September 9, 2022, and March 5, 2023.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please
provide a description of these review processes, including the outcomes, as well as a link or other
access point to any supporting documentation.

Yes, the project (IRB 2001272896) was approved by the institution (see approval below).

Prior to beginning the study, an in-depth ethical review process was conducted by the University
of Arizona’s Institutional Review Board (IRB). This step requires the study PI(s) to complete the
application for human subjects research and provide any documentation that will be used during the
study including, but not limited to, the following:

• List of all members of the research team
• Updated Collaborative Institutional Training Initiative (CITI) and Conflict of Interest (COI)

trainings for all members of the research team.
• Informed consent forms
• E-mails to participants
• Advertisements
• Phone call/e-mail script
• Debriefing
• Study questionnaires
• Research design and methods

The human subjects research application is submitted to our electronic IRB system (eIRB) where it
undergoes the workflow shown in Figure 2.

The IRB reviewer and the study PI and/or primary contact for IRB on the research team’s side are
always in communication to address requested edits. When all edits have been completed, the project
goes to the full IRB for review. At this stage, more clarifications may be requested or the project goes
to post-review. Once everything is finalized and the IRB approval is on all documents, then those
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documents are used until they are updated (e.g., when modifications are necessary, continuing review,
etc.).

The recruitment materials submitted to the IRB are included in this document (see Appendix P).

Did you collect the data from the individuals in question directly, or obtain it via third parties or
other sources (e.g., websites)?

We collected the data from the individuals in question directly.

Were the individuals in question notified about the data collection? If so, please describe (or show
with screenshots or other information) how notice was provided, and provide a link or other access
point to or otherwise reproduce, the exact language of the notification itself.

The informed consent form explained to participants the data collection process in depth. In addition,
the research team would always ensure that the participants were aware of the various parts of data
collection (e.g., fNIRS, EEG, REDCap survey, etc.) and had opportunity to ask questions at any point
in time. At the beginning and throughout each session, the research team went over what will be
asked of the participants. The research team were always communicating with the participants and
vice versa about what data we were going to collect in a specific part of the study.

Participants also were able to contact the research team whenever they had questions prior to coming
in for the in-lab sessions. The questions would range from ensuring they understood the duration
of the pre-session and testing session to questions about the consent form to scheduling needs and
verifying study location.

Did the individuals in question consent to the collection and use of their data? If so, please describe
(or show with screenshots or other information) how consent was requested and provided, and provide
a link or other access point to, or otherwise reproduce, the exact language to which the individuals
consented.

Informed consent was obtained in-person when participants visited the University for their initial
lab session (referred to as the pre-session). When participants arrived at the research lab a trained
undergraduate RA or graduate student went over the consent form which covered all study-related
information. Then the RA asked the participant to read/look over the consent form to ensure that the
participant understood the study and was able to ask any questions or concerns. The RA reminded
the participant that they are not required to participate and can refuse to consent without penalty.

We also conducted informed consent online through REDCap. Participants who were interested in
the study and agreed to participate were sent an individualized link for the consent form in REDCap.
The consent form was housed in the File Repository in REDCap which is secure. When participants
came for the in-lab sessions, they were again asked if they had any questions or concerns about the
study. If participants had not completed the consent form prior to their in-lab sessions, then their
individualized link was opened on the computer and they completed the consenting process then.
The experimenter conducting the consent reminded the participants that they were not required to
participate and could refuse to consent without penalty.

For any in-person informed consent, the research team left the participant alone in the room so that
the participant could carefully read through the consent form and would not feel pressured to respond
due to timing, presence of others, etc.

The consent forms are included in this document (see Appendix O).

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link
or other access point to the mechanism (if appropriate).

Participants were notified throughout the consent and during the in-lab sessions by the research team
that they could opt out of the study at any point in time. In such circumstances, the participants had
access to the research team through e-mail, phone, and in-person so that they could withdraw from
the study.
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Consent for future research was requested on the informed consent form for the present UA research
team to store the identifiable data indefinitely (video and audio recording; eye tracking data) and to
use it for future research without obtaining additional consent.

We recently had to change the PI of record on the IRB protocol since the previous PI of record
unexpectedly passed away. We are preparing to submit a modification to contact all study participants
and notify them of the contact information for the new PI. Once this has been approved, we will be
updating the participants with this contact information.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.

While we did not perform a formal data protection impact analysis, the IRB approval process required
us to describe impacts on study participants. The UArizona IRB deemed the risks to participants
from our study to be minimal.

A.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of
missing values)? If so, please provide a description. If not, you may skip the remaining questions in
this section.

EEG electrode setup alteration In our study, we made an alteration to our EEG electrode setup
for experiments on or after November 11, 2022. Prior to this date, our EEG data comprised several
channels, including AFF5h, FC1, CP5, CP1, PO9, Oz, PO10, CP6, CP2, FC2, and AFF6h. However,
due to the prolonged calibration time required for these electrodes, we opted to exclude them from
our experimental sessions starting November 11, 2022. The montage in Figure 5 reflects the updated
setup.

For experiments prior to November 11, 2022, our dataset contains the following EEG channels:
AFF1h, F7, FC5, C3, T7, TP9, Pz, P3, P7, O1, O2, P8, P4, TP10, Cz, C4, T8, FC6, FCz, F8, AFF2h,
AFF5h, FC1, CP5, CP1, PO9, Oz, PO10, CP6,CP2, FC2, AFF6h. For experiments on or after
November 11, 2022, our dataset contains the following EEG channels: AFF1h, F7, FC5, C3, T7, TP9,
Pz, P3, P7, O1, O2, P8, P4, TP10, Cz, C4, T8, FC6, FCz, F8, AFF2h (omitting AFF5h, FC1, CP5,
CP1, PO9, Oz, PO10, CP6,CP2, FC2, AFF6h) to meet the time constraint of each experiment.

Note that while the raw EEG data collected before November 11, 2022 contains a greater number of
channels, for the purposes of consistency and comparative analysis, we confined our analysis to the
channels that were present in the data both before and after the mentioned date. The channels we
retained and used in the valence/arousal prediction benchmark analysis are the following: AFF1h,
F7, FC5, C3, T7, TP9, Pz, P3, P7, O1, O2, P8, P4, TP10, Cz, C4, T8, FC6, FCz, F8, AFF2h. By
streamlining our channels, we aimed to ensure more efficient data collection and analysis, while
maintaining the rigor and validity of our findings.

The following preprocessing and cleaning steps were performed for the data in the SQLite database:

Minecraft issues For instances where a Minecraft mission has to be restarted due to technical
issues, we remove the data from the previous (interrupted) mission, and only keep the data from the
new (uninterrupted) mission.

Physiological measure data for confederates We remove physiological measure data from group
session tasks in which a confederate stepped in to fill the role of a no-show participant or a participant
that left in the midst of a group session if that confederate did not put on an EEG/fNIRS cap or eye
tracker.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
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The raw data is saved on our lab servers. While we do not rule out sharing it (sans the identifiable
data) with the public in the future, we believe that its size (just shy of 20 TB), complexity, and unclean
nature makes its utility to downstream consumers limited enough to not justify the considerable
logistical effort required to share it at the moment.

We do provide cleaned data though through our SQLite database, which consists of of non-PII data
that has been checked to be valid. We also provide the scripts that were used to clean the data.

Is the software that was used to preprocess/clean/label the data available? If so, please provide a
link or other access point.

The software used to preprocess/clean/label the data is available at https://github.com/ml4ai/
tomcat.

• The code for building the SQLite database from the raw data is in the
human_experiments/datasette_interface directory.

• The code for creating the processed datasets for the benchmark analyses are in the
human_experiments/lab_software/tomcat-physio-data-extraction and tomcat-
physio-data-extraction-v2 directories. The results from these are then further processed
by the code in the data_products/scripts directory. This code effectively segmented
the data into manageable chunks, specifically isolating the task data relevant to our bench-
mark analyses. Also, the code for constructing the synchronized physio data from the raw
data is in the human_experiments/lab_software/tomcat-physio-synch directory. This
synchronizes all the physio data.

Any other comments?

None.

A.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description.

The dataset has not been used for any tasks already (besides the benchmark analyses in the main
paper).

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

Links to papers and systems that use the dataset are listed at https://tomcat.ivilab.org/
papers-and-systems.

What (other) tasks could the dataset be used for?

With some additional annotations effort, the dataset could also be used for the following tasks:

• Sentiment analysis
• Emotion recognition
• Plan recognition
• Entrainment detection

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a dataset
consumer might need to know to avoid uses that could result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g., legal risks, financial
harms)? If so, please provide a description. Is there anything a dataset consumer could do to mitigate
these risks or harms?
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Future analyses of the derived data products may be affected by the specific filtering/interpolation
strategies used. We do not currently know of specific uses of the dataset that could result in unfair
treatment of individuals or groups.

Are there tasks for which the dataset should not be used? If so, please provide a description.

We do not currently know of specific tasks for which the dataset should not be used, but users should
in general strive to make sure that their usage of the dataset does not perpetuate systemic inequalities.
The dataset should not be used to attempt to re-identify individual participants.

Any other comments?

None.

A.6 Distribution

Will the dataset be distributed to third parties outside of the en- tity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

The dataset will be distributed publicly.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?

The dataset is available at https://tomcat.ivilab.org. See Appendix C for more details.

We have not set up a DOI for the dataset yet, since the size of the dataset is too large for commonly
used DOI providers (e.g., Zenodo, Figshare). We are working with CyVerse to set up a DOI. In any
case, we do not expect the current URL (https://tomcat.ivilab.org) to change in the foreseeable
future.

When will the dataset be distributed?

The initial release of the dataset is already public at https://tomcat.ivilab.org. We will add
additional raw and derived data in the near future.

Will the dataset be distributed under a copyright or other intel- lectual property (IP) license, and/or
under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a
link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as
any fees associated with these restrictions.

The data is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) license (https://creativecommons.org/licenses/by-nc-sa/
4.0). The software is licensed under the MIT License.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

No third parties have imposed restrictions on the data associated with the instances.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.

The dataset is not subject to export control or other regulatory restrictions.

Any other comments?

None.
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A.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?

The responsibility for supporting the dataset will lie with the ToMCAT project principle investigators
Adarsh Pyarelal, Clayton Morrison, and Kobus Barnard. The data will be initially hosted on a web
server in the Computer Science department at U. Arizona, and will be mirrored by CyVerse as curated
data. CyVerse (https://cyverse.org) is a cyber infrastructure system led by U. Arizona, initiated
by NSF in 2008, and has external and institutional support for curating data indefinitely.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The maintainers can be contacted by email: tomcat-dataset-maintainers@list.arizona.edu.

Is there an erratum? If so, please provide a link or other access point.

Errata will be published at https://tomcat.ivilab.org/errata.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If
so, please describe how often, by whom, and how updates will be communicated to dataset consumers
(e.g., mailing list, GitHub)?

The dataset will be updated periodically by the maintainers, with three types of updates.

Type of update Frequency

Adding new raw data (e.g., from ad-
ditional modalities as they get pro-
cessed)

We expect a number of updates to be published in summer
and fall 2023 as we process more of the raw data and
upload data from additional modalities. It is unlikely (but
not impossible) that we will add data from new participants
to this particular dataset, post fall 2023.

Fixing previously uploaded data. This is likely to occur often in summer and early fall 2023,
and very infrequently post 2023.

Adding new derived data (e.g., from
improved interpolation procedures)

We expect this to happen relatively infrequently, triggered
by either (i) a new publication on the data or (ii) a request
from a collaborator for a particular form of derived data.

Updates will be communicated to dataset consumers via the mailing list tomcat-dataset-
updates@list.arizona.edu. They will also be published at https://tomcat.ivilab.org/
updates .

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were the individuals in question told that their data would be retained for
a fixed period of time and then deleted)? If so, please describe these limits and explain how they
will be enforced.

There are no limits on the retention of the data.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe
how. If not, please describe how its obsolescence will be communicated to dataset consumers.

We will rename and/or move older versions of the data to an archive location. As appropriate,
we will communicate such changes to dataset consumers via the mailing list tomcat-dataset-
updates@list.arizona.edu and at https://tomcat.ivilab.org/updates. We will continue to
host older versions for a minimum of two years, and we will only remove data if it is judged to have
no value moving forward. Obsolescence of such versions will be communicated to dataset consumers
as above.
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If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified? If
so, please describe how. If not, why not? Is there a process for commu- nicating/distributing these
contributions to dataset consumers? If so, please provide a description.

Others wishing to extend/augment/build on/contribute to the dataset will be encouraged to email us at
tomcat-dataset-maintainers@list.arizona.edu about their plans.

We will validate proposed contributions to some extent before integrating them into the hosted data.
One possible category of contribution is a new way distill, transform, or represent the raw data,
leading to a new derived data tables. Here we will require the code to replicate producing the new
data. Another possible contribution would be a labeling of the data, such as manual transcription of
speech data, or human evaluation of emotive speech. Here we will compare with existing versions
and/or perform spot checks.

Any other comments?

None.

B Recruitment

Participants were recruited at the University of Arizona. All advertisement and recruitment materials
provided contact information for the Temporal Interpersonal Emotion Systems (TIES) Lab and the
corresponding Gmail address and Google Voice phone number. IRB-approved flyers were posted
across campus and shared on social media and the project’s website (see Appendix P).

To further reach the undergraduate student body at the university, study information was placed on
the SONA system for Psychology as the project’s PIs were affiliate faculty in the department. This
allowed students to either receive credit for research experience in their lower-level Psychology
courses and/or receive extra credit for participation in research experience in their Family Studies &
Human Development (FSHD) courses.

Lastly, we also recruited through word-of-mouth and sending e-mails with IRB-approved language to
undergraduate, graduate student, and faculty listservs and/or newsletters.

C Data format

The dataset uses two open and widely used data formats—namely, SQLite and CSV, both of which
are recommended storage formats for datasets according to the Library of Congress [131].

We provide access to the data in two ways. The first is through a Datasette [121] instance, which
provides graphical and programmatic interfaces for users to perform SQL queries to retrieve subsets
of data they are interested in, or simply download the backing SQLite database. The second is through
links to pre-built files containing selected parts of the data that we (i) used for the experiments in this
paper, and (ii) expect will be commonly requested as good starting points for analysis. We provide
all valid raw data and several derived data products. One key issue with using the raw data is that
it is it is comprised of data from multiple asynchronous data streams. Hence, aligning the data for
multiple participants entails interpolation, which we typically do for most of the derived data sets. A
second issue is recording specific issues encountered during data collection, such as an experimenter
stepping in for a participant who decided to leave in the midst of a group session. Finally, derived
data will typically also include standard data transformations and cleaning. More details are available
on the website itself.

D Structured metadata

Structured metadata using web standards (schema.org) has been added to the index page for https:
//tomcat.ivilab.org.

We have also added a route to the Datasette instance to enable quick inspection and programmatic
access to the structured metadata: https://tomcat.ivilab.org/-/structured_metadata.json.
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E Long-term preservation

We are committed to long term preservation and availability of this data. We have redundancy in our
maintainers, all three of whom are faculty at the University of Arizona. We are able to host the data
on new servers in two different academic units. Initially, we will host the primary data source on a
web server maintained by the U. Arizona Computer Science Department. We will also mirror the data
on the CyVerse curated data repository. CyVerse (https://cyverse.org) is a cyber infrastructure
system led by U. Arizona, initiated by NSF in 2008, and has external and institutional support for
curating data indefinitely.

F Reproducibility

We use the ML reproducibility checklist v2.0 (https://www.cs.mcgill.ca/~jpineau/
ReproducibilityChecklist.pdf). Since we do not present any new models, algorithms, or theo-
retical claims in this work, we skip the corresponding items in the checklist.

F.1 CNN experiments

fNIRS and EEG were trained and tested separately using Convolutional Neural Networks (CNN)
models.

For all datasets used, check if you include:

X Relevant statistics We use the data from the individual affective task, encompassing five
distinct classes (-2, -1, 0, 1, 2) that represent valence and arousal scores. The dataset
consists of fNIRS recordings obtained from 102 subjects and EEG recordings obtained
from 97 subjects. The disparity in subject counts can be attributed to instances where the
EEG amplifier encountered technical issues, resulting in a failure to record data for certain
individuals.

X Details regarding train/validation/test splits. To ensure robust model evaluation, the
dataset is divided into an 80% training set and a 20% testing set, employing a 5-fold
cross-validation approach, where each fold acts as a validation set for training the model.

X An explanation of any data that were excluded, and all pre-processing steps. Within
the affective task dataset, encompassing both EEG and fNIRS data, we find two essential
columns: valence_score and arousal_score. These columns capture the participant’s
subjective ratings of images during specific time intervals. However, it is important to note
that numerous entries within these columns may currently lack values and remain empty.
We used the pandas [132, 133] fillna function with the bfill method in this code to fill
those empty entries with appropriate values. By using bfill, the missing values in these
columns were filled with the next available value from the same column, going backwards.
This ensures that the missing values are replaced with values that are likely to be similar to
the previous ratings given by the participants.
To transform signals into images for CNN processing, we may need to perform an offset,
particularly when accounting for the Hemodynamic Response Factor in fNIRS data. This
offset determines the starting point for data extraction corresponding to each image viewed
by the participant. For example, setting an offset of 10 means that the first 10 rows of data
for each unique stimulus-response instance are skipped, and extraction begins from the 11th
row. By default, the offset is set to 0.
To create images, we must consider multiple rows of data, defined by the window size
parameter. Setting a window size results in the extraction of a data segment for the length of
the window size following the stimulus presentation. For example, if the window size is set
to 10, it would extract 10 rows of data from the segment in which the participant is rating an
image.
The images generated are subsequently annotated based on the predominant valence and
arousal scores observed within their respective windows.

X A link to a downloadable version of the dataset or simulation environment.
The dataset used for these experiments is available at https://tomcat.ivilab.org/
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Table 4: CNN architecture for fNIRS data. , is the size of the window.
Layer (Type) Output shape # of parameters

Conv2d-1 [-1, 16, , , 22] 160
BatchNorm2d-2 [-1, 16, , , 22] 32
MaxPool2d-3 [-1, 16, ,

2 , 11] 0
Conv2d-4 [-1, 32, ,

2 , 11] 12,832
BatchNorm2d-5 [-1, 32, ,

2 , 11] 64
MaxPool2d-6 [-1, 32, ,

4 , ,
4 ] 0

Conv2d-7 [-1, 64, ,
4 , ,

4 ] 100,416
BatchNorm2d-8 [-1, 64, ,

4 , ,
4 ] 128

MaxPool2d-9 [-1, 64, ,
8 , ,

8 ] 0
AdaptiveAvgPool2d-10 [-1, 64, 1, 1] 0
Linear-11 [-1, 128] 8,320
Dropout-12 [-1, 128] 0
Linear-13 [-1, 64] 8,256
Linear-14 [-1, 5] 325
Linear-15 [-1, 5] 325

derived-data-products. After extracting the data, you will find two folders named
fnirs_10hz and eeg_500hz. Within each of these folders, there will be an experiment folder.
Inside the experiment folder, you will find files named affective_individual_*.csv.

X For new data collected, a complete description of the data collection process, such as
instructions to annotators and methods for quality control. The data collection process
is detailed in the main paper and in Appendix H.

For all shared code related to this work, check if you include:

X Specification of dependencies. The dependencies are listed in the requirements.txt file
of the directory code/ToMCAT-ML-Modeling in the supplementary material.

X Training code. The training code is included with the supplementary materials (see the
directory code/ToMCAT-ML-Modeling)

X Evaluation code. The evaluation code is included with the supplementary materials (see
the directory code/ToMCAT-ML-Modeling).

X (Pre-)trained model(s). We do not provide pre-trained models, since our CNN models are
relatively small and quick to train, and since we provide the training data as well.

X README file includes table of results accompanied by a precise command to run to
produce those results.

For all reported experimental results, check if you include:

X The range of hyper-parameters considered, method to select the best hyper-parameter
configuration, and specification of all hyper-parameters used to generate results.
The architecture and configuration of the CNN models we used are summarized in Table 4
and Table 5. Notably, the EEG CNN model incorporates an input shape of [W,56]. Here, ,
represents the window size. The value 56 is derived from 7 EEG channels, each divided into
4 frequency bands (Theta, Alpha, Beta, Gamma). Thus, we obtain 28 values (4 frequency
bands per channel). From these, wavelet features are extracted and then horizontally
appended, resulting in 56 columns of EEG data. In contrast, the fNIRS CNN model has an
input size of [W,22], which represents the 11 HbO and 11 HbR fNIRS channels considered.
Both the EEG and fNIRS CNN models shared a common number of classes, set to 5.
For the fNIRS CNN model with a 2-second window and a 2-second offset, the optimal con-
figuration was found with 15 epochs and a batch size of 50. This configuration, specifically
for the 0-second offset, achieved an accuracy of 30.4 ± 1.2 for valence and 30.3 ± 0.8 for
arousal, with a loss of 3.02 ± 0.008. The confusion matrices for fNIRS arousal and valence
are presented in Figure 3.
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Table 5: CNN architecture for EEG data. , is the size of the window.
Layer (Type) Output shape # of parameters

Conv2d-1 [-1, 16, W, 56] 2,000
BatchNorm2d-2 [-1, 16, W, 56] 32
Conv2d-3 [-1, 32, W-27, 56] 896
BatchNorm2d-4 [-1, 32, W-27, 56] 64
ELU-5 [-1, 32, W-27, 56] 0
AvgPool2d-6 [-1, 32, W-27, 14] 0
Dropout-7 [-1, 32, W-27, 14] 0
Conv2d-8 [-1, 32, W-27, 15] 16,384
BatchNorm2d-9 [-1, 32, W-27, 15] 64
ELU-10 [-1, 32, W-27, 15] 0
AvgPool2d-11 [-1, 32, W-27, 3] 0
Dropout-12 [-1, 32, W-27, 3] 0
Linear-13 [-1, 128] 11,956,352
ELU-14 [-1, 128] 0
Linear-15 [-1, 5] 645
Linear-16 [-1, 5] 645

(a) fNIRS Arousal Confusion Matrix (b) fNIRS Valence Confusion Matrix

Figure 3: Confusion matrices for arousal and valence prediction based on fNIRS data with a 1-second
window and a 2-second offset.

Regarding EEG CNN model with a 1-second window and a 0-second offset, the optimal
configuration was found with 15 epochs and a batch size of 50. This configuration, specifi-
cally achieved an accuracy of 29.3 ± 1.4 for valence and 29.8 ± 1.3 for arousal, with a loss
of 2.8 ± 0.004. The confusion matrices for EEG arousal and valence are shown in Figure 4.
The hyperparameters used for the fNIRS and EEG CNN models include a learning rate of
0.01, a batch size of 50, and training for 15 epochs.

X The exact number of training and evaluation runs. We conducted a total of 7 training and
evaluation runs for each model. These runs were performed using a 5-fold cross-validation
strategy, ensuring comprehensive and robust assessment. During each run, we evaluated the
models based on two key metrics: classification accuracy and loss.

X Definition of the specific measure or statistics used to report results.
– The average accuracy and error of the mean are calculated from all folds for the arousal

score.
– The average accuracy and error of the mean are calculated from all folds for the valence

score.
– Average loss per fold and error of the mean are calculated from all folds for the valence

score.
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(a) EEG Arousal Confusion Matrix (b) EEG Valence Confusion Matrix

Figure 4: Confusion matrices for arousal and valence prediction based on EEG data with a 1-second
window and a 0-second offset.

– Confusion matrix for valence score and arousal score.
These measures provide a clear understanding of the reported results, including accuracy
and variability for both arousal score and valence score, as well as the average loss and its
variability across different folds. Additionally, the confusion matrix provides insights into
the classification performance for valence score and arousal score.

X A description of results with central tendency (e.g.mean) & variation (e.g.errorbars).
For arousal score, the average accuracy is reported as the mean, indicating the central
tendency of the data. The standard deviation is provided as a measure of variation, reflecting
the spread or dispersion of the accuracy scores. This helps to understand the consistency or
variability in the performance of the model for arousal score.
Similarly, for valence score, the average accuracy is presented as the mean, representing the
central tendency. The standard deviation serves as a measure of variation, illustrating the
extent of variability in the accuracy scores for valence score.
The average loss per fold provides the central tendency measure for the model’s performance
in terms of loss. It gives an insight into the average magnitude of errors made by the model
across different folds. The standard deviation of the loss per fold helps to understand the
variability or dispersion of the loss values, indicating how consistent or varied the model’s
performance is across different folds.

X The average runtime for each result, or estimated energy cost. The training of the
fNIRS CNN model required 1.5 seconds for each fold of cross-validation, utilizing 24 GB
of RAM and 2.5 GB of GPU memory. In contrast, the EEG model took 9 seconds per fold,
consuming 35 GB of RAM and 7 GB of GPU memory.

X A description of the computing infrastructure used. The models were trained on high
performance computing cluster with dual AMD EPYC 7542 32-Core processors (3.3 GHz),
1 TB of RAM and two Nvidia A100 GPUs.

F.2 Correlation experiments

For all datasets used, check if you include:

X Relevant statistics. Tables 6 and 8 present the number of (group session, task) combinations
considered and accepted for computing fNIRS correlations among participants, and tables 7
and 9 present the experiments rejected and the reasons for their rejections. Some experiments
were not included in the final results because they do not have physio data recorded for one
of the tasks. Among all experiments that were considered for the Ping Pong Cooperative
task, one experiment was rejected because of its abnormally high task score.
Furthermore, unlike the physio task data synchronized dataset we discuss in § J.1 that
provides 1000 Hz synchronized EEG-EKG-GSR data, our physio correlation analysis
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Table 6: Experiments considered and accepted into the computation of results for fNIRS data.
Task Experiments accepted Total # Experiments considered

Ping Pong Cooperative 38 40
Minecraft Saturn A 36 36
Minecraft Saturn B 27 27

Table 7: Group sessions for which the data from the Ping Pong Cooperative task were rejected from
the computation of results for fNIRS channels.

Group session Reason for Rejection

exp_2023_01_30_13 Missing fNIRS data
exp_2023_01_31_14 Task score greater than 20

experiment uses synchronized EEG-EKG-GSR data synchronized at 500 Hz and fNIRS
synchronized at 10 Hz.

X Details of train/validation/test splits. NA

X An explanation of any data that were excluded, and all pre-processing steps. Notably,
there were three experiments that were not processed by both the physio synchronization
program and the physio correlation analysis program. Two of these experiments contain
Minecraft mission data that require additional cleaning to be useful. The last experiment
contain file structure that also nseeds to be cleaned.
During the physio correlation analysis process, three more experiments were chosen to be
removed from the analysis. These experiments contain very high physio channel correlation
values but their Minecraft scores were extremely low. These experiments were considered
noise and were removed from the physio correlation analysis.

X A link to a downloadable version of the dataset or simulation environment. The
intermediate dataset (chunked data) used for these experiments is available at https://
tomcat.ivilab.org/derived-data-products.

X For new data collected, a complete description of the data collection process, such as
instructions to annotators and methods for quality control. The data collection process
is detailed in the main paper and in Appendix H.

For all shared code related to this work, check if you include:

X Specification of dependencies. The dependencies are listed in the requirements.txt file
of the code respository.

X Training code. N/A

X Evaluation code. The evaluation code is included in the supple-
mentary material. (code/tomcat-signal-correlation-analysis-main,
code/synchronize_signal_task, and code/signal_filtering). Specifically, the
evaluation metric is '2, which evaluates how well linear regression predicts the team score
from physio correlation.

X (Pre-)trained model(s). N/A

X README file includes table of results accompanied by precise command to run to
produce those results. A README file is included in the code repository, but it does not
include a table of results.

For all reported experimental results, check if you include:

X The range of hyper-parameters considered, method to select the best hyper-parameter
configuration, and specification of all hyper-parameters used to generate results. NA

X The exact number of training and evaluation runs. The evaluation is ran once.
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Table 8: Experiments considered and accepted into the computation of results for EEG data.
Task Experiments accepted Total # of Experiments considered

Ping Pong Cooperative 36 40
Minecraft Saturn A 33 35
Minecraft Saturn B 26 27

Table 9: Experiments rejected from the computation of results for EEG data.
EEG with Task Experiment Rejected Reason for Rejection

Ping Pong Cooperative exp_2022_10_24_12 Missing EEG data
exp_2023_01_30_13 Missing EEG data
exp_2023_01_31_14 Task score greater than 20
exp_2023_05_01_13 Missing EEG data

Minecraft Saturn A exp_2023_05_01_13 Missing EEG data
exp_2023_05_02_14 Missing EEG data

Minecraft Saturn B exp_2023_05_02_14 Missing EEG data

X A clear definition of the specific measure or statistics used to report results. We evaluate
the linear regression model using the R-square ('2) metric, which indicates how well the
the model can predict team score given physio correlation among participants.

X Results with central tendency The linear regression has low '2 score overall.

– '2 of fNIRS for Ping Pong Cooperative linear regression: Mean 0.0915, Var 0.007
– '2 of fNIRS for Minecraft Saturn A linear regression: Mean 0.069, Var 0.010
– '2 of fNIRS for Minecraft Saturn B linear regression: Mean 0.059, Var 0.006
– '2 of EEG for Ping Pong Cooperative linear regression: Mean 0.060, Var 0.001
– '2 of EEG for Minecraft Saturn A linear regression: Mean 0.045, Var 0.002
– '2 of EEG for Minecraft Saturn B linear regression: Mean 0.058, Var 0.008

X The average runtime for each result. To synchronize the data with the computing infras-
tructure below, the synchronization of physio data and task data took one hour to complete.
Then, from the output of the physio synchronization program, the physio correlation analysis
took under 10 minutes to complete.

X The computing infrastructure used. The models were trained on a server with dual AMD
EPYC 7542 32-Core processors, 1 TB of RAM and dual Nvidia A100 GPUs.

G Author statement

The authors bear all responsibility in case of any violation of rights during the collection of the data
or other work, and will take appropriate action when needed, e.g., to remove data with such issues.

H Data collection

H.1 Questionnaires

Questionnaire data were collected and managed using REDCap electronic data capture tools hosted
at the University of Arizona [134–136]. REDCap (Research Electronic Data Capture) is a secure,
web-based software platform designed to support data capture for research studies, providing 1) an
intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and export
procedures; 3) automated export procedures for seamless data downloads to common statistical
packages; and 4) procedures for data integration and interoperability with external sources.
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Figure 5: The montage we used for combined EEG/fNIRS data acquisition. EEG electrodes were
located in the anterior frontal (AFF1h, AFF2h), frontal (F7, F8), frontocentral (FC5, FCz, FC6),
central (C3, Cz, C4), occipital (O1, O2), temporal (T7, T8) and parietal (P7, P3, Pz, P4, P8) regions.
fNIRS optodes were located in frontal (Fz, F1, F2, F3, F4, F5, F6), anterior frontal (AF3, AF4, AFz,
AF7, AF8), frontal polar (FP1, FPz, FP2). The line is the channel formed when fNIRS source optode
(red) and fNIRS detector (blue) optode are combined.

H.2 EEG

Equipment We used actiCHamp Plus (Brain Vision, LLC), which records and streams EEG signals
at 500 Hz.

Montage We used an adapted, 32-electrodes, 10-20 electrode placement system [137], to provide
adequate coverage of all regions of the brain [54]. The actual placement of the electrodes (i.e., the
montage) used for our experiment is shown in the combined EEG/fNIRS montage in Figure 5.

For experiments prior to November 22, 2022, our dataset contains the following EEG channels:
AFF1h, F7, FC5, C3, T7, TP9, Pz, P3, P7, O1, O2, P8, P4, TP10, Cz, C4, T8, FC6, FCz, F8, AFF2h,
AFF5h, FC1, CP5, CP1, PO9, Oz, PO10, CP6,CP2, FC2, AFF6h. For experiments after November
22, 2022, our dataset contains the following EEG channels: AFF1h, F7, FC5, C3, T7, TP9, Pz, P3,
P7, O1, O2, P8, P4, TP10, Cz, C4, T8, FC6, FCz, F8, AFF2h (omitting AFF5h, FC1, CP5, CP1, PO9,
Oz, PO10, CP6,CP2, FC2, AFF6h) to meet the time constraint of each experiment.

Software EEG data was streamed using LSL-actiCHamp [138], streamed over the local area
network using Lab Streaming Layer [139] and recorded using LabRecorder [140] to XDF files [141].

H.3 fNIRS

Equipment We used NIRSport2 (NIRx Medical Technology LLC), which records and streams
fNIRS signals at 10.2Hz.
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Software fNIRS data was streamed using Aurora fNIRS [142], streamed over the local area network
using Lab Streaming Layer (LSL) [139] and recorded using LabRecorder [140] to XDF files.

Montage See Figure 5.

H.4 EKG

We measured heart activity continuously throughout the experiment. We connected EKG leads to the
Aux channel of the EEG/fNIRS caps. The EKG data was streamed alongside EEG and GSR data
using LSL and written to XDF files.

H.5 GSR

GSR was recorded continuously throughout the experiment at a sampling rate of 500 Hz. Two bipolar
electrodes were placed on the ulnar border of the palm on the participants’ right hand. We used an
electrode paste that mimicked the salt concentration of sweat (i.e., 0.5% saline) to improve signal
quality. Participants’ hands were wrapped in medical tape to secure the electrodes. Leads connected
the electrodes to the Aux channel of the EEG/fNIRS cap. The GSR data was streamed alongside
EEG and EKG data using LSL and written to XDF files.

H.6 Eye tracking

Equipment The eye tracking system used in this study was Pupil Core (Pupil Labs GmbH). The
eye tracker was connected to a computer via USB and eye tracking data was streamed using LSL at
250 Hz and written to XDF files.

Calibration The eye tracker is positioned in front of the participant’s eyes, then eye tracker was
calibrated using a 5-point calibration procedure (the participants were asked to look at the target on
the screen without moving their head). The calibration procedure gave a confidence score and we
made sure it was over 90%.

I Data Extraction and Labeling

The data extraction process encompassed retrieving diverse stream types such as EEG, EKG, GSR,
fNIRS, and Gaze from a consolidated XDF file, which had been stored using LSL. For enhanced
analysis and processing capabilities, each stream was then extracted from the xdf file and converted
into separate Python dataframes utilizing pyXDF [143].

To label the stream data frames with task-specific labels, the start and stop times of each task were
obtained from timestamps assigned by the task itself. For instance, let us consider the rest state. Its
start and stop timestamps were compared with the timestamps in the EEG data frame. Whenever a
match was found, the corresponding section in the EEG data was labeled as "start_rest_state" and
"stop_rest_state" accordingly. This process was repeated for the remaining streams, associating the
start and stop times of each task with their respective sections in the corresponding data frames. By
labeling the data in this manner, it becomes easier to identify and analyze specific segments of interest
within the recorded streams.

The extracted and labeled dataframes can be either saved as a CSV file or forwarded to the subsequent
stage of processing, known as signal processing, which will be described in the following section.

Note:

• For fNIRS dataframes, they consist of various components including raw signals representing
changes in attenuation values detected from two wavelengths (W1: 760 nm and W2: 850
nm), as well as HbO (oxygenated hemoglobin) and HbR (deoxygenated hemoglobin) signals.
When saving the data as a CSV file, typically only the HbO and HbR signals are preserved.
However, if further signal processing is required, we retain both the raw signals and the
HbO and HbR signals for subsequent analysis.
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• For EEG, EKG, and GSR dataframes, they were converted to voltage values since the data
was recorded in microvolts. The conversion was performed by multiplying the data by the
corresponding scale factor of 1 × 10−6.

J Signal Processing

J.1 Synchronization of EEG, EKG, GSR, and fNIRS Signals

In multimodal neuroimaging studies, synchronizing signals from multiple modalities is a crucial
step to conducting comprehensive studies on all these modalities together. The discrepancy between
EEG, EKG, GSR, and fNIRS signals’ time series is an issue that researchers encounter frequently
due to the limitations of recording hardware or the necessity to remove invalid signals. Additionally,
these two modalities have distinct recording rates, further complicating their alignment. To facilitate
comprehensive evaluation of EEG, EKG, GSR, and fNIRS signals, it is essential to synchronize these
signal modalities.

The synchronization process is a two-step approach involving noise artifacts removal of EEG and
fNIRS, followed by the synchronization process of the signals to the desired sampling rate,

J.1.1 Removing Noise in EEG Signals with Notch Filter

EEG signals often exhibit susceptibility to artifacts, an interference that can be attributed to several
sources. For instance, physiological factors such as eye movements or blinks can induce such artifacts
[125], as can environmental elements like fluorescent lighting or grounding complications [126].

Upon thorough examination and visualization of the raw EEG data, we identified a consistent 60 Hz
electrical disturbance within the signal, along with corresponding harmonics. An anomalous peak
was also noted around the 5 Hz mark, potentially attributable to a grounding irregularity or an other
environmental factors.

With the aid of MNE-Python [127], we efficiently mitigated these intrusive noises by deploying a
notch filter. The filter was configured with a frequency of 60 Hz, a transition bandwidth of 9 Hz, and
notch widths of 2 Hz. The filter is applied to each channel separately.

J.1.2 Mitigating Artifacts in fNIRS Signals Utilizing Bandpass Filter

fNIRS signals are often susceptible to motion artifacts (MA) stemming from physiological activities,
including cardiac and respiratory disturbances. These artifacts become particularly noticeable in
the measurement of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations within the
signal channels.

To address these challenges, we employed a bandpass filter as an effective noise reduction strategy.
The filter was calibrated in line with the recommendations provided by [128]. With a low cutoff
bandwidth of 0.01 Hz and a high cutoff bandwidth of 0.2 Hz for the 4th order Butterworth method,
the filter was tailored to selectively allow signal components within this frequency range while
attenuating components outside the range. The filter is applied to each channel separately.

J.1.3 Pre-processing EKG and GSR Signals

To remove noise and improve peak-detection accuracy for EKG signals, we employed a finite impulse
response (FIR) filter with 0.67 Hz low cutoff frequency, 45 Hz high cutoff frequency, and order of
1.5 × sampling rate (where sampling rate is 500 Hz) implemented by NeuroKit2 [144] on top of the
BioSPPy package.

We removed noise and smoothed the GSR signals using a low-pass filter with a 3 Hz cutoff frequency
and a 4th order Butterworth filter, both implemented by Neurokit2.

J.1.4 Synchronization of EEG, EKG, GSR, and fNIRS Signals

To obtain the EEG, EKG, GSR, and fNIRS signals at the desired sampling rate, we resampled the
signals using the FFT-based resampling method mne.filter.resample available in the Python
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MNE library [127]. Then, we used linear interpolation to synchronize all the signals to a time series
with a regular interval matching the desired sampling rate.

J.2 Synchronizing Task Data with EEG, EKG, GSR, and fNIRS Resampled Signals

Understanding the relationship between participants’ behaviors, environmental stimuli, and neu-
roimaging data requires a precise synchronization of task data with the corresponding EEG, EKG,
GSR, and fNIRS signals. By aligning these data streams, we can examine the influence of environ-
mental stimuli on the participants’ neuroimaging signals, which in turn, impact their behavior and
task performance.

The process of integrating EEG, EKG, GSR, and fNIRS signals with task data starts with grouping of
signals by the tasks during which they were recorded, followed by the synchronization of the task
data to the corresponding EEG, EKG, GSR, and fNIRS signals.

J.2.1 Grouping EEG, EKG, GSR, and fNIRS Signals by Task

The preliminary step in our approach to synchronizing EEG, EKG, GSR, and fNIRS signals with the
task data involves the grouping of EEG, EKG, GSR, and fNIRS signals by the tasks during which
the signals were recorded. The task data can be categorized into two distinct types: status-based and
event-based data.

Status-based task data This type of task data represent the current state of the task, such as task
score. For each task, the grouping process of these data begins by including the EEG, EKG, GSR,
and fNIRS signal recorded immediately before the task initiation and immediately following task
completion. This ensures no data is overlooked at the boundaries of the task. Subsequently, all EEG,
EKG, GSR, and fNIRS signals recorded between these two points are included, forming a complete
set of signals associated with the task.

Event-based task data This type of task data, on the other hand, correspond to specific events that
occur during the task, such as affective task arousal or the submission of a valence score. For each
task, we determine the EEG, EKG, GSR, and fNIRS entry associated with the first event and the last
event. These signal entries, as well as all entries recorded between these points, are included into the
data set related to the task.

J.2.2 Synchronizing Task Data with EEG, EKG, GSR, and fNIRS Signals

Having grouped the EEG, EKG, GSR, and fNIRS signals according to task type, we then proceed to
synchronize these signal entries with their respective task data.

Status-based task data The synchronization is accomplished by assigning the status data recorded
closest in time to each EEG, EKG, GSR, and fNIRS signal entry. This method ensures that each
EEG, EKG, GSR, and fNIRS entry is paired with the most representative status data.

Event-based task data We assign each event data to the EEG, EKG, GSR, and fNIRS signal entry
recorded at the time closest to the occurrence of the event. Those EEG, EKG, GSR, and fNIRS
signal entries without a corresponding event data are left unassigned, signifying that no specific event
occurred during these recordings.

K Speech Elicitation Task

K.1 Reading Task

In the reading task, participants were shown a short piece of text describing the Minecraft environment
used in the experiment and instructed to read it aloud with a natural tone and pace. The purpose of this
task was to elicit an identical set of specialized Minecraft terminology that the participants were likely
to use during the experiment, in order to control for possible word-frequency and other linguistic
effects. This task also creates a fallback audio recording in case participants are not sufficiently
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Figure 6: Top-down view of a building floor. Each room has a unique label. The map also contains
three places of interest, marked with overlaid graphics.

verbose during the spontaneous elicitation (i.e., during the Minecraft tasks), and gives them a short
introduction to the Minecraft environment.

Participants read out the following description of the Minecraft environment and game objectives:

Minecraft is a sandbox construction game in which players can control the environment. The Minecraft
world for this game will require players to pick roles. You are tasked with search and rescue in this scenario.
Keep the channels of communication open. Since this is a rescue site, be careful as you clear rubble and
identify the critical victims.

Some of the tools you will have access to include a medkit, a stretcher, and a hammer. Using the map,
identify the zone the team wishes to work on, and proceed to clear the floor and the rooms. As you orient
yourself in the environment, pay attention to doors and windows.

Player roles include a medic, and engineer and a searcher. You can pick your roles based on the game’s
requirements. Pay attention to the clock. Keep the game’s objectives in sight as you proceed.

K.2 Map Task

Next, we used a map task in order to capture audio containing speech representative of the participant’s
typical speaking style. Participants were shown a building floor plan with several labelled regions
and icons indicating locations of interest (see Figure 6).

Participants were instructed to imagine a friend standing at one of these locations and provide
descriptive verbal instructions directing their friend to the other two locations, using as many details
from the map and its labels as they could. This task also served as a way for participants to practice
giving navigational guidance to their teammates prior to doing so in the Minecraft tasks.

In the instructions, they were informed that their friend was located at the building entrance on the
mid-left of the map(indicated by the person icon) and needed to first travel to an office located in
room 203 E (top left, box icon) and then to Storage 242 (bottom-right, indicated with a ‘stop’ icon).
The instructions were as follows:
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For the following map task, you will be helping your friend reach their destination on a building floor. They
are located on the entrance on the left side of the map, at the point with the person emoji. Your friend does
not have access to the map. Therefore, you will need to give them directions so that they can:

Reach the room with the cardboard box (top left).
Travel to the room with the stop sign (bottom right).

Please make sure that your friend has as much information and details as possible so that they can navigate
the floor without getting lost.

L IAPS Stimuli for the affective task

For the affective task, we used stimuli from the International Affective Picture System (IAPS) [145]
following Balconi, Grippa, and Vanutelli [86]. Stimuli were selected from the neutral, pleasant (high
and low), and unpleasant (high and low) categories.

The IAPS stimuli numbers chosen are listed below.

• Individual task: 1525, 2025, 2352.2, 2487, 2521, 2635, 3019, 5260, 5900, 7270, 7405, 8034,
8485, 8531, and 9910.

• Team task: 1019, 1710, 1947, 2208, 2683, 2703, 3005.2, 5621, 6415, 6930, 7021, 7360,
7484, 8490, and 8502.

M Limitations

We note the following limitations.

The following factors limit the generalizability of the dataset:

• The dataset is primarily comprised of English-speaking undergraduates at a university in the
US.

• Minecraft is known for low visual fidelity, so it is possible that results from these experiments
may not generalize well to real-life SAR scenarios.

Additionally, due to the complexities of collecting this kind of data, there are a fair number of
instances of missing data for a subset of modalities for a subset of sessions.

Finally, while we provide an initial release of the data with this paper, we have not been able to
provide some of the planned modalities and documentation by the camera-ready deadline. However,
we will continue to work on providing these at a rapid pace, and expect to have all the planned data
modalities and documentation available by the time of the NeurIPS 2023 conference.

N Affect prediction score changed in camera-ready manuscript

The results for the experiment on affect prediction in this camera-ready version of the manuscript are
significantly different (i.e., the accuracy is lower) from the results in the accepted version of the paper
(i.e., after the rebuttal period). This is because our intention was to test on individual-image pairs not
seen in training, which is very challenging. However, there was a bug in the splits, where information
was leaked from training to testing.

The results in this camera-ready manuscript are generated by code that incorporates a fix for the data
leakage.
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University of Arizona 
Consent to Participate in Research

Study Title: ToMCAT: Theory of Mind-based Cognitive Architecture for Teams

Principal Investigator: Adarash Pyarelal

Sponsor: This research is funded by the U.S. Department of Defense. 

Summary of the research
This is a consent form for participation in a research project. Your participation in this research study 
is voluntary. It contains important information about this study and what to expect if you decide to 
participate.  Please consider the information carefully. Feel free to ask questions before making your 
decision whether or not to participate.

The purpose of this research is to develop an artificially intelligent computer agent that can help 
human teams perform better. If you choose to participate, you will play a Minecraft game, while the 
computer agent watches and sometimes provides advice. During the game we will measure your 
brain activity, eye gaze, heart rate, muscle activity and sweating and the computer agent may ask you 
questions about how you are feeling. We will also videotape you while you play the game. Your 
participation in the study will take place during two lab sessions and will require about 3.5 hours of 
your time. There is some risk that someone could recognize you in the videotape, or that you will be 
upset by the game. There is no direct benefit to you of participating.

Why is this study being done?
This research study is being done so that we can develop an artificially intelligent (AI) agent that can 
participate in human teams to improve the team’s performance. The first goal of the research is to 
train the agent to observe the team (including video of the team, chat messages, brain activity, heart 
rate, sweating and eye gaze) and predict from those observations what the humans are trying to do 
in the game, how coordinated they are as a team, and how they feel about the game and about each 
other. The second goal of the research is to train the agent to communicate with the humans and 
take actions that could improve the team’s performance. 

What will happen if I take part in this study?
If you choose to participate you will do the activities listed below during two lab sessions. 

• At the pre-session, you will be asked to answer some brief socio-demographic questions (e.g., your 
age, ethnicity, etc.) and do a speech/language task where you will read some sentences out loud 
and provide spoken directions for someone else to navigate from a start to an end point on a map 
that will be given to you. You will then be asked to schedule a time within 1-3 weeks to complete 
the second testing session.

• At the testing session, sensors will be placed on your torso and head that will measure heart rate, 
muscle activity, sweating, brain activity and eye gaze. You will also wear a headset with speakers 
and a microphone. 
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• The session will be videotaped.
• You will be asked to complete the following three baseline tasks on the computer: finger tapping, 

looking at emotional pictures, and a ping-pong game. 
 After the baseline tasks you will play a game in Minecraft. You will be given a tutorial about how to 

play the game and a chance to practice the game.
 You will then complete a 5-minute competency test so that we can better understand video-gaming 

proficiency across individuals.
• The Minecraft game will either involve: 1) saving villagers, who are hiding in closed rooms within a 

building, from various creatures that appear in Minecraft (e.g., zombies, creepers, etc.), or 2) a 
search and rescue mission where you must navigate through a building and rescue victims and 
remove hazards. There will be a 20-minute time limit on the game. Your performance during the 
game will be recorded.

• Every 3 minutes, the computer agent may pause the game and ask you to answer some questions 
about what you are thinking and feeling. The agent may also offer you some information or advice. 
The agent may be acting in a truly “intelligent” way, coming up with its own information and advice, 
or it may be preprogrammed or controlled by the research assistant. 

• After the game, all sensors and the headsets will be removed. You will answer another set of 
questions about your feelings about the game and the agent. 

• Finally, the game may be played back on the computer screen and you may be asked to pause the 
play-back (by pushing a computer key) at any point that you remember having a plan in mind (e.g., 
an idea about what you were trying to do, or a plan about a sequence of actions that you intended 
to take), or changing your plans, or feeling confused about what to do. You will be asked to tell the 
research assistant what you remember, and the research assistant may ask clarifying questions. 
This will be audio-recorded and may be translated into text using natural language processing 
algorithms.

How long will I be in the study?
You will be done with the study after the half hour pre-session and the three-hour lab session, both 
of which will occur sometime in the next few weeks.

How many people will take part in this study?
Approximately 900 people will take part in this study.

Can I stop being in the study?
Your participation is voluntary.  You do not need to participate in this study.  If you decide to take 
part in the study, you may leave the study at any time.  No matter what decision you make, there will 
be no penalty to you, and you will not lose any of your usual benefits.  Your decision will not affect 
your future relationship with The University of Arizona.  If you are a student or employee at the 
University of Arizona, your decision will not affect your grades or employment status.

What risks or benefits can I expect from being in the study?
The only risks are that you may find the game to be stressful. While playing the game, it is also 
possible that you may experience some motion sickness, but we have measures in place should that 
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occur. There is also a minimal risk that your data, including the videotape, could be accessed by 
someone not on the research team, although we will be very careful to keep all the data, including 
the video secure and confidential.

There are no benefits to you for participating, except that you may find it fun to play the game.

Will I be paid for participating in the study or experience any costs?
Participants will receive a $10.00 Amazon gift card for each hour of the study they complete. You will 
attend the half hour pre-session and one 3-hour lab session, so you will receive a $35.00 Amazon gift 
card at the end of the lab session. If you cannot, or choose not to, participate in both sessions you will 
still receive gift cards for the session you do attend.

You also have a chance of winning an additional $20.00 Amazon gift card if you get the highest score 
on the video game out of 20 lab sessions. 

You also have the option of receiving research credit if you are a student participating for credit 
through the UA SONA system in the Department of Psychology. Participants will attend the half hour 
pre-session and one three-hour lab session, so you will receive 3.5 to 4.0 SONA credits at the end of 
the lab sessions. If you cannot, or choose not to, participate in all sessions, you will still receive the 
SONA credits for the sessions you do attend.

Compensation for participation in a research study is considered taxable income for you. If your 
compensation for this research study or a combination of research studies is $600 or more in a 
calendar year (January to December), you will receive an IRS Form 1099 to report on your taxes. 
Please note, if you are an employee of UArizona, any compensation from a research study is 
considerable taxable income.

The only costs to you for participating are your time and any transportation costs due to attending 
the lab session(s).

Will my study-related information be kept confidential?
Every effort will be made to keep your information confidential. All the data for the study will be 
encrypted and password protected. Most of the measures that you provide in the study will be 
anonymous. You will be given a random ID number and your name will not be recorded anywhere. 
The audio and video recordings of the sessions are the only measures that could be used to identify 
you. You will not be identified in any report or publication of this study. However, you could be 
identified from the videotape of your session, but the video will not show anything sensitive. It will 
just show your face and torso as you play the video game.

Any audio data will be made publicly available but no personal information will be attached to any of 
the audio files. The audio recordings will include anything you or the other participants say during the 
speech/language tasks at presession as well as the planning and playing stages of the mission. We will 
ask you and the other participants to not speak your names or the names of other participants to 
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maintain confidentiality; instead, you may call each other by your computer’s name or any other 
anonymous manner. You can review the recording and/or request your recording be removed by 
contacting the principal investigator of the study (see contact information at the end of this consent 
form); otherwise, the audio recordings will be kept indefinitely.

We will also be collecting and storing data through REDCap (Research Electronic Data Capture). The 
REDCap electronic data management (EDM) system at the University of Arizona is housed on 2 virtual 
servers; one supporting database services and the other web services. In REDCap, appropriate 
measures are in place to maintain confidentiality and security of all incoming data.

The information that you provide in the study will be handled confidentially. However, there may be 
circumstances where this information must be released or shared as required by law. The University 
of Arizona Institutional Review Board; other federal, state, or international regulatory agencies; or 
the sponsor of the study, if any, may review the research records for monitoring purposes. In 
particular, representatives of the U.S. Department of Defense will have access to research records as 
part of their responsibilities for human subjects protection oversight of the study. 

Will my study-related information be used for future research? 
Information that may identify you, such as the videotape of the session, may be used for future 
research without additional consent. All data from the study will be kept forever and cannot be 
withdrawn once it has been collected, with the exception of the audio recordings as explained above.

Your data will also be shared with other research teams collaborating on this study at other 
universities and research companies. Arizona State University is organizing a secure data base that we 
and 12 other research teams will use to share data, including the videos from this study. Your data 
will be included in this data base and may be used by other researchers in future studies without 
contacting you.

Who can answer my questions about the study?
For questions, concerns, or complaints about the study you may contact Dr. Adarsh Pyarelal via 
phone at (503)-360-8824, or via e-mail at adarsh@arizona.edu.
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For questions about your rights as a participant in this study or to discuss other study-related 
concerns or complaints with someone who is not part of the research team, you may contact the 
Human Subjects Protection Program Director at 520-626-8630 or online at 
https://research.arizona.edu/compliance/human-subjects-protection-program. 

Signing the consent form
I have read (or someone has read to me) this form, and I am aware that I am being asked to 
participate in a research study.  I have had the opportunity to ask questions and have had them 
answered to my satisfaction.  I voluntarily agree to participate in this study. 

I am not giving up any legal rights by signing this form.  I will be given a copy of this form.

Printed name of subject Signature of subject Date

Approved by University of Arizona
Date Approved: 3/31/2023

47



Teamwork study – 
Butler Lab 

INSERT GOOGLE VOICE # 
INSERT study gmail 

Teamwork study – 
Butler Lab 

INSERT GOOGLE VOICE # 
INSERT study gmail 

Teamwork study – 
HIS Group 

 
HIS.FSHD@GMAIL.COM 

Teamwork study – 
Butler Lab 

INSERT GOOGLE VOICE # 
INSERT study gmail 

Teamwork study – 
Butler Lab 

INSERT GOOGLE VOICE # 
INSERT study gmail 

Teamwork study – 
Butler Lab 

INSERT GOOGLE VOICE # 
INSERT study gmail 

Teamwork study – 
Butler Lab 

INSERT GOOGLE VOICE # 
INSERT study gmail 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Teamwork study 
– TTIES Group 

(520)-497-0937 
HIS.FSHD@GMAIL.COM 

Teamwork study 
– TIES Group 

(520)-497-0937 
HIS.FSHD@GMAIL.COM 

Teamwork study 
– TIES Group 

(520)-497-0937 
HIS.FSHD@GMAIL.COM 

Teamwork study 
–   TIES Group 

(520)-497-0937 
HIS.FSHD@GMAIL.COM 

Teamwork study 
– TIES Group 

(520)-497-0937 
  HIS.FSHD@GMAIL.COM 

Teamwork study – 
TIES Group 

(520)-497-0937 
HIS.FSHD@GMAIL.COM 

The Institutional R
eview

 Board  responsible for hum
an subjects  research at  The  U

niversity of  Arizona  found this  
research project to be  acceptable  in accordance w

ith state and federal  regulations  and  U
niversity  policies  designed 

to protect the rights  and w
elfare of participants in research. 

Investigator:  Adarsh Pyarelal, Ph.D
. RESEARCH 
VOLUNTEERS  

NEEDED! 
The Tem

poral Interpersonal Em
otion 

System
s (TIES) lab in Fam

ily Studies and 
Hum

an Developm
ent at the University of 

Arizona is searching for volunteers  who  are: 
1. 

18+ years old 

2. 
W

illing  to spend up to three hours in the  lab 
interacting w

ith a  virtual agent and  other 
hum

an team
m

ates to com
plete a task in a  

video  gam
e environm

ent. 
 

3, N
o prior gam

ing experience required. 
 

Participants  w
ill be paid  for their tim

e.  
Please e -m

ail HIS.FSHD@
GMAIL.COM, or text/call at 

(520) -497 - 0937 if you are interested.  
 

Teamwork study 
– TIES Group 

(520)-497-0937 
HIS.FSHD@GMAIL.COM 

P Recruitment materials

48



 
 
 
 
 
 
 
 

RESEARCH VOLUNTEERS NEEDED! 
THE TEMPORAL INTERPERSONAL SYSTEM EMOTIONS (TIES) GROUP IN FAMILY STUDIES AND 

HUMAN DEVELOPMENT AT THE UNIVERSITY OF ARIZONA IS SEARCHING FOR 
VOLUNTEERS WHO ARE: 

1. 18+ YEARS OLD 

2.  WILLING TO SPEND UP TO THREE HOURS IN THE LAB INTERACTING WITH A VIRTUAL 
AGENT AND OTHER HUMAN TEAMMATES TO COMPLETE A TASK IN A 

VIDEO GAME ENVIRONMENT. 

3. NO PRIOR GAMING EXPEIRNECE REQUIRED. 

PARTICIPANTS WILL BE COMPENSATED FOR THEIR TIME 

PLEASE EMAIL HIS.FSHD@GMAIL.COM, OR TEXT/CALL AT (520)-497-0937 
IF YOU ARE INTERESTED. 

The Institutional Review Board responsible for human subjects research at The University of Arizona found this research project 
to be acceptable in accordance with state and federal regulations and University policies designed to protect the rights and 
welfare of participants in research. 
Investigator: Emily A. Butler, Ph.D. 
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Extra credit 
 
You have two extra credit opportunities in this course. Extra credit opportunities are optional. 

 
You can choose either Option 1 OR option 2 to earn up to points. Either of these options will 
take about the same amount of effort. The maximum number of extra credit points you can earn on 
Option 1 or Option 2 is 10 points. 

 
For Option 1 (online survey) OR Option 2 (paper): Deadline is by the time class starts on the date 
specified in the Course Outline. 

 
Option 1: 
Participate in a study examining how individuals and teams work with a virtual agent to complete a 
task in a video game environment. 
Inclusion criteria: 

1) At least 18 years of age 
2) Willingness to be in the lab for up to 3 hours 

Exclusion criteria: 
1) No major physical limitations that would interfere with completing tasks on a computer (e.g., 

limited vision or hearing, problems with fine motor control). 
 
To obtain extra credit: The individual who will participate in the study will need to register on the 
SONA system. The researcher will compile this information and return it to your instructor. Without 
this information, you will not be able to earn extra credit. 

 
*Additional information and answers to frequently asked questions, as well as a digital copy of the 
recruitment flyer, will soon be posted on D2L under Content under Extra Credit. Once posted, 
please read this document before taking the survey, as questions you have should be answered in 
this document.* 

 
Option 2: The details of this option will be decided by the class instructor. Here is an example 
of the type of option that might be provided: 

 
For the second option you can write a paper. For this paper you should find an empirical article that 
uses one of the theories covered in class, and write a summary (two pages; single spaced; 1 inch 
margins; 12 point font) describing the article and discussing how it is relevant to the theory covered in 
class. Full points will only be given if the main points of the tenets are used correctly when explaining 
the empirical article. Include a copy of the article on which the review is based. 

 
Include both your write up and the pdf of the article under dropbox on d2l as follows: 

 
Word document (your write up) should be labeled as follows: Your last name. Your first name. Last 
name of author from article and year (e.g., 1. Smith. Bob. Sassler 2004) 
For the actual article, please specify 2 and then switch the order (e.g., 2. Sassler 2004 Smith. Bob). 
This way, we will be able to match your write up with your article in the drop box. Including only the 
write up without the pdf will result in partial points for extra credit. 
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Recruiting Scripts 
 

For social media and listservs 
 

The Temporal Interpersonal Emotion Systems (TIES) research group, in the Department of 
Family Studies and Human Development, is currently recruiting participants for a study that 
will develop an artificially intelligent computer agent that can help human teams perform 
better. Participants will play a video game, either alone or with several other people, while 
the computer agent watches and sometimes provides advice. During the game we will measure 
the human player’s brain activity to help the agent learn how to predict what people are 
thinking and feeling. All participants should be at least 18 years of age or older. Participants will 
be financially compensated for their time. If you are interested or have any questions, please 
email  us at his.fshd@gmail.com or text/call us at (520)-497-0937. 

or  
The Institutional Review Board responsible for human subjects research at The University of 
Arizona found this research project to be acceptable in accordance with state and federal 
regulations and University policies designed to protect the rights and welfare of participants 
in research. Investigator: Adarsh Pyarelal, Ph.D. 

 
For SONA 

 
The Temporal Interpersonal Emotion Systems (TIES) research group, in the department of 
Family Studies and Human Development, is currently recruiting participants for a study that 
will develop an artificially intelligent computer agent that can help human teams perform 
better. Participants will play a video game, either alone or with several other people, while 
the computer agent watches and sometimes provides advice. During the game we will measure 
the human player’s brain activity to help the agent learn how to predict what people are 
thinking and feeling. All participants should be at least 18 years of age or older. Participants can 
either be financially compensated for their time or receive extra course credit. There is also an 
alternative extra credit assignment available for those who are not eligible to participate. If you 
are interested or have any questions, please email us at his.fshd@gmail.com or text/call us at 
(520)-497-0937. 

 
The Institutional Review Board responsible for human subjects research at The University of 
Arizona found this research project to be acceptable in accordance with state and federal 
regulations and University policies designed to protect the rights and welfare of participants 
in research. Investigator: Adarsh Pyarelal, Ph.D. 

 
In-person presentations in undergraduate classes: 

 

“Hello students, I am , a graduate student in the Department of Family Studies and 
Human Development. We are recruiting participants for a study that will develop an artificially 
intelligent computer agent that can help human teams perform better. Participants will play a 
video game, either alone or with several other people, while the computer agent watches and 
sometimes provides advice. During the game we will measure the human player’s brain activity 
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to help the agent learn how to predict what people are thinking and feeling. All participants 
should be at least 18 years of age or older. Participants can either be financially compensated 
for their time or receive extra course credit. There is also an alternative extra credit assignment 
available for those who are not eligible to participate. If you are interested or have more 
questions, please email us at his.fshd@gmail.com. 

 
The Institutional Review Board responsible for human subjects research at The University of 
Arizona has approved this study in accordance with state and federal regulations and University 
policies designed to protect the rights and welfare of participants in research. The primary 
investigator is Adarsh Pyarelal, Ph.D. This flyer will be provided on D2L. Thanks!” 

 
In-person informal conversations: 

 
" My lab is recruiting participants for a study that will develop an artificially intelligent computer 
agent that can help human teams perform better. Participants will play a video game, either 
alone or with several other people, while the computer agent watches and sometimes provides 
advice. During the game we will measure the human player’s brain activity to help the agent 
learn how to predict what people are thinking and feeling. The Institutional Review Board 
responsible for human subjects research at The University of Arizona has approved this study in 
accordance with state and federal regulations and University policies designed to protect the 
rights and welfare of participants in research. The primary investigator is Adarsh Pyarelal, Ph.D. 
You can let me know if you’re interested, or if you know of someone else who might be. " 
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