22

Structure Learning with Adaptive Random
Neighborhood Informed MCMC
(Supplementary Material)

Anonymous Author(s)
Affiliation
Address

email

A Derivation of the posterior model probability of DAG model

In this section, we will introduce the companion form for the prior on W, and derive the marginal
likelihood of ~ starting from a spike-and-slab prior, as described in Section 2. In addition, under the
Markov property, we show that the posterior distribution 7(-) can be factorised into a product form
[Koller and Friedmanl, 2009]].

Let «y; be the j-th column of of +, 7;; is the ¢-th component of «y; (equivalent to the 4, j-th entry
of indicator matrix v). Let v—; ; be ~; but excluding the i-th component v;;. Let X.,, denote the
“active" variables in -y; (those variables such that -;; = 1). The variables X, are the parents of X
implied by . Let W, ; be the coefficients of j-th column in W, selected by «vj. In addition, let
X; = {Xj.}7_, be a vector of nodes for a fixed i-th observation, w1th X being the j-th node, while

letz; = {X;;}Y, be the vector of the N observations corresponding to the j-th node. The matrix
T, is the collection of observations on the set of variables defined by ;.

Under , the parent set of X; (Pa(X;)) is equivalent to set of nodes collected in 7, (i.e., X ~;)- The
joint prior distribution on W, then is

n

pWylv,{o3}) = [[W+, 05) (S.1)
j=1
where
W, il i, 05 ~ Ng, (0,907 1,,) (S.2)

and g; is the the parent size of X;.

Remark A.1. The identity matrix 1, in the prior can be replaced by the inverse of the Gram

matrix defined as (2,7;7 Ty,)~L. The resulting prior is then an analog, in the context of DAG sampling,

to g-prior in the Bayesian variable selection context.

Note that in a DAG model, each node X; is independent of its non-descendants given its parents X,
This property implies a factorisation of the joint likelihood over data D given by

p(D|W77 {0]2'},’7) = Hp(Xj|X'Yj W 0?7 ’Vj)ﬂ
j=1
which translates into

p(DIW,, {o7},7) = [[N(x;laZ W, 5,07 In)
j=1

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

23 in the context of Gaussian graphical models. Due to the factorisation above, it is possible to exchange
24 the intggrgl of W, and {O’?} with the product in j, and integrate out ¥/, ; and 0]2 from the joint
25 probabilities

p(Xja W’y,jv 0_]2'|X’Y_7‘) 7]) = p(X] |X')’_7‘) W’y,j7 0]2'7 Vj)p(W%j |0]2'7 PY])p(JJQ) (5.3

26 for each individual node X;. In what follows, we will show how to derive p(X;| X, ;) from the
27 above, by solving these integrals.

28 We start from the integration of the coefficients W, ;. We can marginalise out W, ; simply due to
29 conjugacy as below

(XX, 07,7;) = /P(Xj|ijaWw,j»ff?»%)P(Ww,jlff?»%)dww

:/N(xj|xz/;W7J7JjI)N(W%j|0790g2'lqj)dW%j
N _ Y -1 1 T T -1, T
= (2m05) 2 g 2 det(%y) 2exp{ 5 2(35 Tj— X Ty 2 xwxj)}

_ T 1 : 2 : 2 -2
30 where ¥; = Lo Ty, F EI‘IJ' Recall that the prior for o7 is specified by p(arj) o 0 “, and thus we
31 can marginalise out crj2. in a similar way

(X1 Xy, 75) = /P(Xj|XvJ,ngvw)p(af)dff?

- NN 4 _1
7/1R+(27mj) 2g 2 det(X)) 2exp{20j i 5

1
T T 1T -2 2
s ay —xjay, X w) o -0 7 do;

a5 1 N 1
= (QW)_%g_T det(2;)" 2T <2> [2(:r;‘-rxj - x;‘-rxw Ejlzrzjxj)] (S.4)

N
2

32 where X; = xzj Ty, + é] p; and I'(-) is the Gamma function. Eventually, putting all the steps above

33 together, we can write down the model’s marginal likelihood, conditional on v only, as follows

p(Dly) = //p(D|W77{0]2},'y)dW7d{g]2}
*H// (X51X5,. By 05)dW, jdo?

H X |X'y,a%

11
x Hg ki det T2 [(x xzj — ijxA,].Zj* xzjxj) (S.5)

&

5Ty T Elpj. From the above derivation, we can also conclude the following property

35 for the posterior distribution 7 (-):

3¢ whereX; =z

ss Property 1 (Markov property.). The posterior distribution of indicator variable can be factorised as
37 the following

7(y) o [[p(3|D) x 1{G, is a DAG} (S.6)
j=1

a8 where p(v;|D) = p(X;|X,,,7j)p" () and p"(-) is the unconstrained prior

ho*
p”(w>=(1h) : 87

39

40
41
42
43
44
45

46
47

48

49
50

51

52

53

& 050

0 2500 5000 7500 10000
t

Figure S.1: The plot of diminishing sequence ¢, for 10,000 iterations with burn-in period of 2,000
iterations.

B The adaptive ¢, parameter

The decaying parameter ¢; is used for the adaptation of the algorithmic tuning parameter 7 as given
in (9), and controls the trade-off between the pre-processing approximation 7 and the ergodic average
#(®)_ Intuitively, one should rely more on the approximation 7 during the burn-in period, since the
ergodic average #(*) has not fully converged. After the burn-in period though, the proposal should
rely more heavily on the ergodic average. Based on the arguments, we use the following sequence of
¢, to adapt n:

1 1 0z
1—5<m) it < Ny

(bt = 1 1 0.5 .
§(t—Nb) 1ft>Nb

(S.8)

In particular, we have ¢» = 1/2 when t = N;. An example plot of decaying ¢; is given in Figure
[S.1} where we considered 10,000 iterations, with the first 2,000 iterations discarded as burn-in.

In addition, in the following lemma we derive the decaying rate of ¢;, and thus of n(*) as well:

Lemma S1. After the burn-in period, the diminishing rate of ¢, defined by is O(t~1). And thus
the diminishing rate of tuning parameter ") in (9) is O(t~1).

Proof. Suppose t > N;, we start from the definition of 7; and consider the diminishing rate

% _¢|_171 RGN
LT o\t 1= N 2\t—N,

1 (t +1-— Nb)0'5 — (t — Nb)0'5
=2 < (t+1— Np)05(t — N,)05)
1
2

1

IN

t—N,
o

as required.
We can also show that the diminishing rate of the ergodic average frfj has the same decaying rate
(1))|t o, Lty L)
L o, L e+

< ——n —_—

Sty T
2
=0t

IN

t+1

54

55

56

57

58
59
60

61

62
63

64

65
66
67
68
69

70
71
72

73

74
75

76

7
78

79
80

81

®

as both ~;; (t+1)

and ~y;;" " are bounded between 0 and 1.

We complete the proof by showing that also the tuning parameter 77() has the same decaying rate

™ = A5 = (60 = Ger) g + (G — d0) |
< |bt — el iy + | peg1 — ¢t|7T(t+1
=0t H+ot =00t
as 7;; is between 0 and 1.
O

Given the above lemma, and combining Lemmas 1 and 2 in Section 4.2.3 of |Liang et al.| [2022], we
can establish the similar ergodicity and strong law of large numbers as in Theorem 2 of [Liang et al.
(2022].

C The warm-start approximation 7;;

The main idea of how to compute the warm-start approximation 7;; is explained in Section 3.2 of the
main body. In this section, we will fill in with more details on calculation of 7;;.

Consider the extended collection of permissible parent set h’, formally defined as
b, =h U{mU{j} |meh, je (h)\{j}}. (S.9)

The extended set hﬁr includes the parent set implied by h7, but also the additional parent sets obtained

by including at least one more parent not included in h7. Trivially thus the extended set hi contains
more permissible parents and minimises the risk of leaving out important parents when reducing the
search space to a skeleton graph for scalability reasons [Kuipers et al., [2022].

We will show now how we calculate the marginal probability 77 under the unconstrained posterior

7 and the extended sets {hi} We define I'; C {0, 1}? to be the sub-space of I such that v;; = 0 if
v; € I';. Given Markov property, thanks to which the columns of « can be factorised, we can define
the unconstrained posterior distribution as

v o< [[p(vID), (S.10)
the marginal distribution of +; under the unconstrained posterior 7* is
u p(v5|D)
™ (y;) = . (S.11)
X p(yID)
7 €L

However, the sub-space I'; contains 2" ~! candidate parent sets and the full enumeration is computa-
tionally infeasible when n is big. So we replace the subspace by the extended collection of parent

sets hi which contains much less models then I';. So this approximate the above as

wioy . pylD)
O T e m) s12

mehi

where p : [p] — {0, 1}? is a one-to-one mapping that converts the parent set m to y; which lies in
the binary space I';. Then we approximate the PEP with the following formula:

m Sy =)~ Y w(p(m)). (S.13)
mEhi: 1€EM

The set {m € hi | ¢ € m} is equivalent to the set {; € T'; | v;; = 1} of which X; must be a parent
of X; from all these permissible parent sets. We also guarantee 7}/, = 0 since j is not one of the

permissible parents of j and not included in hﬂ_.

82
83
84

85
86

87

88
89
90
91
92
93
94
95

96

97

98
99

100
101

102

103
104

105
106
107
108
109
110
111
112
113

114

115
116

After the approximations, the 7% are calculated and stored, then we can compute the warm-start
approximations 7;;, followed by the equations (11) and (12) described in the main body. The
calculations of 7;; are equivalent to

(1)
(1 - Trjz) + (1 - W%)W_;Lz + (1 - 7T)(1 - 7T]7,)

The last step combines 7;; Wlth the ergodic average 7;; to form the algorithmic tuning parameters
7i; used in the PARNI-DAG proposal.

(S.14)

7'('7;]' =

D The full PARNI-DAG proposal

We first recall the random neighbourhood construction specified in Section 3.1 of the main body.
The neighbourhood indicator k € K = {0, 1}™*™ indicates the positions that can be potentially
flipped in the current DAG +, and & follows the conditional distribution as given in (3) of the main
body. The neighbourhood N (v, k) given in (4) of the main body consists of 2%+ DAG models, and
the full enumeration over it is computationally efficient (and sometimes infeasible). For this reason
we consider a pointwise implementation consisting in smaller sub-proposals. The first step in the
pointwise implementation is to convert k into a set of variables K = {K,}2_;, which can take two
categories:

e if k;; = 1 but k;; = 0, K, only consists of one position K, = {(¢,7)};
* if k;; = 1 and k;; = 1, K, then contains two positions K, = {(4,7), (j,4)}.

The order of K, is random. To fully specify the sub-neighbourhoods N (y(r — 1), K,.) at each time
r, we first define a new mapping that “flips" the components of v according to the set K,

v = flip(y, K) , (S.15)
with v}, = 1 — ;5 if (i,7) € K and ~y;; = ~;; otherwise. The resulting neighbourhoods N ((r —
1), K) are defined as follows:

* If K only contains one position (i, j), then
N(y(r=1), Ky) = {y(r = 1), flip(y(r — 1), K;)} . (S.16)

* If K contains two positions (%, j) and (7, 7), we construct a neighbourhood with reversal move
given by

N(y(r = 1), K;) = {y(r = 1), flip(y(r — 1), (4, 7)),
ﬂlp(”y(?" - 1)7 (]71))7 ﬂlp(’}/(r - 1)7Kr)} (517)

The next components in PARNI-DAG are the normalising constants of the sub-proposals g, ., and of
the reversal sub-proposals g, x, used to facilitate the calculations of Metropolis-Hastings acceptance
probability. As mentioned in the main body, we construct the auxiliary variables K’ in the reversal
move where K’ consists of the same elements of K but with different order. One property of such
a design is that the intermediate DAGs in the reversal move are identical to the those ones in the
proposal move but only with opposite order. We then can re-use the posterior model probabilities
calculated during the proposal move to compute the reversal probabilities directly. In addition, the
Proposition 3 of [Liang et al.| [2022] implies that the acceptance probability in (7) can be expressed in
terms of the product of the normalising constants. Given the normalising constants

r)= W(’y*)p(Kr|,y*)

7 ’Y*EN(WZ(T:—U,KT)Q <7T(’Y(7‘ —))p(K|y(r— 1))) (S.18)
—7r I 7T<7*)p(Kr|’Y*)

Z(R o ’Y*GN%”)J(T)Q (W(V(T))p([(rh(r))) ’ (S.19)

the MH acceptance probability is then simplified as follows

a(v,7") = min { H Z(R—r + 0 } (S.20)

To summarise the PARNI-DAG proposal, we now glve its full algorithmic pseudo-code is given in
Algorithm

117

118
119

120

121
122
123

Algorithm 1 The PARNI-DAG proposal
Compute {7;; } as described in Section 3.2 and Appendix

Initialise "), w™) and (V) = {772(;)}
fort=1tot=Tdo
Sample k ~ py (- | yV)) asin (3)
Construct K = {K,} as described in Appendix D]
Set (0) =y and N = 0
forr=1tor = Rdo

if K, has one element then

Construct N'(y(r — 1), K,.) as in (S.16)
else

Construct N'(y(r — 1), K,) as in (S.17)
end if

Sample Uy ~ Unif(0, 1)
if U7 < w® then
Sample y(r) ~ gg,x, (y(r — 1), -) asin(5)
Calculate Z(r) as in (S.18))
Calculate Z'(R — r 4+ 1) asin
else
Sety(r)=~(r—1),Z(r)=Z(R—r+1) =1.
end if
end for
Set 7/ = v(R), sample Uy ~ Unif(0, 1) and compute (v, /) as in (S.20);
if Uy < a(y¥,+') then
Set 4D — ~/
else
Set A(H+D) — ()
end if
Update 7j(t+1) = {ﬁgﬂ)} according to (9).
Update w**1) according to (13).

end for

E Implementation of other MCMC algorithms

In this section, we will briefly describe the Add-Delete-Reverse (ADR) proposal, the order MCMC
and the partition MCMC implemented in the experimental Section 4.

E.1 The Add-Delete-Reverse proposal

The ADR proposal is another example of random neighbourhood proposal. After the random
neighbourhood is generated, unlike the PARNI-DAG proposal, ADR uniformly proposes a model
within that neighbourhood.

124
125
126
127

128
129

130
131
132
133
134

136

137
138
139
140
141
142
143
144
145

146
147
148

149

150
151
152
153
154

156

157

158
159

In ADR, there are three possible moves, “Addition”, “Deletion” and “Reversal”, which defines the
space K of indicator k. The indicator £ is then uniformly drawn from one of these three possible
moves. We construct the neighbourhood N (v, k) according the the current DAG +y and indicator & as
the following

N (v, “Addition”) = {y* € T'|du(v,7") =1, dy= = d, + Ly =0ify;; =1}
N (7, “Deletion”) = {v* € T'|du(v,7*) =1, dy» =d, — 1}
N(v,“Reversal”) = {v* € I'|dg(v,7") = 2, dy» = dy, 34,5 vij = 7j; = 0if 5 = 7]; = 1}.

where dg (-, -) denotes the Hamming distance and d., is the number of edges induced by 7. A new
DAG model 4/ € T is proposed according to the uniform density:

éa lf’Y € N %k ’
@R (1,7) = {'N(””“)' (1.k)

. (S:21)
0, otherwise.

As ADR is not guaranteed (unlike PARNI-DAG) to return a DAG, we carry out acyclicity diagnostics
check when + is sampled. If v does not lead to a valid DAG, we will accept the current state ~y as the
next state of the Markov chain. If 4/ leads to a valid DAG, to preserve m-reversibility, we consider k'
in the reverse move where k' is the opposite move to k (e.g. the addition is opposite to the deletion
move, and vice versa). To complete the ADR proposal, the new DAG ~' is accepted as the next state
of the Markov chain with probability

(v

ak(fy,’y’)—min{l,W}

E.2 Order MCMC and Partition MCMC

Order and Partition MCMC samplers rely on DAG scoring measures where p(G|D) =
H;’:l S(X,,Pa(X,)|D), and on restricting the search space of DAGs to some lower capacity set.
Friedman and Koller| [2003]] first proposed order MCMC, which operates in the space of orders
(X, <) instead of the DAGs one. This search space is smoother, so that order MCMC generally
achieves faster convergence with respect to classic neighborhood MCMC. The method considers
permutations (41, ..., j,) of nodes that imply a linear order j; < ... < j,. Each linear order is
then given a score R(=< |D) equal to the sum of scores of all the compatible DAGs with the order

€ (X, <). To restrict the space capacity even more, sum and product operations can be swapped
so that the order’s score is:

R(<[D) =Y p(gID) ZHS X;,Pa(X;)|D)

ge< ge<j=1

<[] > S(x;,Pa(x;)D),

j=1Pa(X;)€=

where S(-) is a DAG scoring function, such as the Bayesian Gaussian equivalent (BGe) score
for continuous variables [|Geiger and Heckerman, [2002]]. Constructing a MCMC in the space of
orders means moving from order < to order <’ with MH acceptance probability a~ (<, <") =

min {1, 1;((17’”5)) } according to following moves: a) “Local Swap" swaps adjacent nodes in <; b)

“Global Swap" swaps random nodes in <; ¢) “Relocate" picks a node and replaces it in all possible
positions in <, while keeping the rest of the order unchanged. Order MCMC is efficient, but has two
main drawbacks compared to neighborhood-like structure MCMC: i) it outputs a sample of orders,
not a DAG directly; sample of DAGs can be obtained by sampling, for each node independently, a
parent set compatible with the relative order <, thanks to score decomposability (then get the DAG
with maximum score in the sample as MAP estimate); ii) Order MCMC places a non-uniform prior
on some DAGs by over-representing them in more than one order <, which causes the sample to be
biased [Ellis and Wong| [2008]].

In the attempt to correct sampling bias, [Kuipers and Motfa| [2017] proposes Partition MCMC, which
operates in the space of ordered partitions instead. A labelled partition A is a pair of order < and

160
161
162
163
164
165
166
167
168

169
170
171

172

173

174
175
176
177
178

179
180
181
182
183
184

185

186
187
188
189
190
191

Children nodes Children nodes
H I $ I

Children nodes
1 2 3 4 5 7

-. :
04
- os2 08
[
7- 040
7-
8- oz oz
8- i
9-
9- i
10-
10- 14 10-

" PEP "
Direct Edges disconnected . connected 0.00 0.25 0.50 0.75 Direct Edges disconnected . connected

8 9 10 11 12 3 4 8 9 10 11 12 3 4 8 9 10 11

s woN e

Parents nodes
Parents nodes
Parents nodes

(a) (b) (©

Figure S.2: Protein dataset: (a) The ground-truth DAG. (b) The true PEPs estimated by a long chain
of partition MCMC algorithm. (c) The full skeleton used in Section 5.1.

partitioning vector 6 = (d1, ..., 6,) where p < n, and Z§=1 d; = n. Vector ¢ divides the order into p
parts v1, ..., v such that v; contains the first §; nodes of the order < and so on. A DAG is compatible
with partition A = (<, d) if for every node X; € v;: i) X; has at least one parent in part v;1; ii)
all Pa(X ;) belong to parts with indices higher than j; iii) Pa(X;) = () only if j = p. The possible
moves of partition MCMC are: a) swap 2 nodes from different parts; b) swap 2 nodes from adjacent
parts; c) split or join two parts; d) move a node in another existing part or create a new part with that
node. Partition MCMC is unbiased in terms of DAG sampling; however it is extremely slow as it has
very high computational complexity, and therefore can only be used to sample DAGs with very few

nodes [Kuipers et al,[2022].

The orderMCMC and partitionMCMC schemes in the experiments are implemented via the BiDACﬂ
package [Suter et al, [2023]] (available from CRAN) written in rcpp [Eddelbuettel and Frangois,

F Additional experimental results

F.1 Addition to Section 5.1

Protein data. We provide additional information on the real-world protein-signalling dataset
(n = 11, N = 853) studied in Section 4.1. The ground-truth DAG constructed through expert
knowledge is provided in Figure[S.2|(a). The ground-truth estimate of PEP estimated by running a
long chain of the partition MCMC algorithm is provided in Figure[S.2](b). The full skeleton used to
implement different MCMC schemes is provided in[S.2](c).

gsim100 data. We also provide additional information on the simulated gsim100 dataset (n = 100,
N = 100) studied in Section 4.1, and featured in [2023]]. The ground-truth DAG,
containing 161 true edges, used to simulate data is presented in Figure[S.3](a). The ground-truth PEP
estimates obtained from a long chain run of the PARNI-DAG proposal are provided in[S.3|(b). The
skeleton learned via the PC-algorithm (with a significance rate of 5%) Hpc and the skeleton learned
from the iterative MCMC Hj, are provided in Figure[S.3](c) and (d) respectively.

F.2 Additional studies on the effects of tuning parameter of the PC-algorithm

In addition to Section 4.1 results, we perform another batch of numerical studies to study the PARNI-
DAG proposal run over different starting skeletons, by comparing their convergence behavior. The
skeletons are mainly obtained by running the PC-algorithm with different levels of significance. We
consider 4 different values of significance level, 0, 0.01, 0.05 and 0.1. The resulting skeletons are
provided in Figure[S.4] (The skeleton with significance level of 0.05 is provided in Figure[S.3(c)).
As the significance level of the PC-algorithm increases, the resulting skeleton includes more edges

'More information on: https://cran.r-project.org/web/packages/BiDAG/BiDAG . pdf,

https://cran.r-project.org/web/packages/BiDAG/BiDAG.pdf

192
193

194
195
196
197
198
199
200
201

202

204
205

1 12 23 34

23-
34-
45-

56 -

Parents nodes

67-
78-
89 -
100-

Direct Edges

1 12 23 34

12- . .
23-

34- . "

45- .o

56-"

Parents nodes

67-
78 .=

89- T
100-

Direct Edges

Children nodes
45 56 67 78 89

.. * So.
" - =
. - . F S
LI
ER TN .

disconnected . connected
(@

Children nodes
45 86 67 78 89

disconnected . connected

(c) Hec

100

Parents nodes

Parents nodes

Children nodes
1 12 23 34 45 56 67 78 89 100

1- ' e e ! s ' ' o0s6
0340, ' ooe om3 ' o %2 #062% 087
06 04882 085
12- o4g 086 & Mf 04s0iPhng 065t o7
091 * :
os1 0787 074 068°'® 085 o6 % W gy 0%
7 st os 049 09 %% 095 8 085
047 (| s 07 071 og5
34- 02 o6 1°%69 0rft (g Oy - . 073
044, 6o 069 aratoelOss 08, s
085 043 0%%es 097 o0
45- * 085, oes @69
087 = ML oss 0550:5 i, :
56 - 09 ®9% 61 Yoot 0%
075 087 v 04 o
085 o7 N
4 0450
67 ¢ TR
085 N
8- ous VRN
B
89- o 099 7¢
.
100~
per -
0.00 0.25 0.50 0.75 1.00
Children nodes
1 12 23 34 45 56 67 78 89 100
1 e Cao 3 g D '
- L o - .=t
12 = e " LI
- " - -
i "t - FE P S,
= - B oWt T L T T
34- " ="
- P - - are "
45- = " . L
56) - s =0T =t
- e W 5 .
- .- e - .
- - e
67 o - L e -
78 . e 27T] I" - - .
- . - " . -
89- o . - e . L e ..
" . 5 . -
100- . e ot .t

Direct Edges disconnected . connected

(d) Hiter

Figure S.3: gsim100 dataset: (a) The ground-truth DAG. (b) The true PEPs estimated by a long
chain of the PARNI-DAG proposal. (c) Hpc with significance level of 0.05. (d) Hicer-

whilst the skeleton is empty when significance level is 0. In addition, we also compare these results
to the skeleton from iteration MCMC as in Section 4.1.

Figure [S.3| presents the trace plots of the log posterior model probabilities from the PARNI-DAG
proposal under different skeletons. Using the skeleton Hpc with significance level of O trivially
leads to the slowest convergence rate, while the skeleton Hie,, (Which includes more possible parent
sets) results in the fastest convergence. The behaviour of the chains is similar. We can draw similar
conclusions from the median MSEs presented in Tablem The skeleton H;, leads to the minimum
MSE, while Hpc with significance level of 0 again trivially results in the largest MSE. The MSEs
from other three options of significance levels are not significant different between each other, so
using any one of them will give similar level of accuracy.

F.3 Additional studies on DAG learning performance

In addition to the results provided in Section 4.2 of the main body, in a similar way we compare
PARNI-DAG with ADR and the same other methods in terms of accuracy in recovering the underlying
DAG structure on an another example. We consider a randomly generated DAG structure featuring

206
207

208
209
210

211
212
213
214
215

Children nodes Children nodes
34 45 56 67 78 89 100 112 34 45 56 67 78 89 100 112 78 83 100

Parents nodes
Parents nodes
Parents nodes

Direct Edges ~ disconnected Direct Edges disconnected [JJ] connecte Direct Edges disconnect ted [conmec ted

(a) (b) (©

Figure S.4: gsim100 dataset: (a) Hpc with significance level of 0. (b) Hpc with significance level of
0.01. (c) Hpc with significance level of 0.1

Hpc, @ =0 Hpc, o = 0.01

-14000

-16000

-18000

Hpc, 0 =0.05 Hpc, @ =0.1

—-14000

-16000

—-18000

o

5000 10000 15000 20000

log posterior model probability

Hiter

-14000

-16000

-18000

o

5000 10000 15000 20000
iterations

Figure S.5: gsim100 dataset: trace plots of log posterior model probabilities for the PARNI-DAG
proposal under different skeletons.

50 nodes and 119 edges. Given this DAG structure, we simulate Gaussian data for three different
sample sizes N € {50, 100, 150}.

To recall, the models compared are: i) PC algorithm [Spirtes et al., [2000]; i1) GES algorithm
[Chickering, {1996 2002]; iii) Order MCMC |[Friedman and Koller] 2003]; iv) Iterative MCMC
[Kuipers et al.| 2022]; v) Partition MCMC [Kuipers and Motffa, |2017]]; vi) ADR; vii) PARNI-DAG.

Models’ performance is compared according to same metric, the Structural Hamming Distance
dr(9,) between the estimated and the true DAG. The experiments are replicated for 10 times,
for each of the sample sizes above. Results on the distributions of SHD are depicted in Figure
[S.6l We can see how Iterative MCMC and PARNI-DAG are the best competing models out of
this example. Note that this is a medium size graph, and while we have argued in the main body

10

skeleton | significance rate () ‘ MSE

0 2.40
0.01 1.92

H
ke 0.05 1.95
0.1 1.95
Hier | - | 1.85

Table 1: gsim100 dataset: time-normalised median MSE (x10~") on estimating posterior edge
probabilities. (Lower is better.)

N =50 N =100 N =150
150

175 ' l

150 120 Model

PC

100 f . GES
125 LINGAM
o
I 80 Order
0]
Iterative
100

0 @ ‘
. © ADR
' ' ' 40 L PARNI
Model

0
PC GES LINGAM Order lterative Partition ADR PARNI PC GES LINGAM Order lterative Partition ADR PARNI PC GES LINGAM Order Iterative Partition ADR PARNI

-
&

Figure S.6: Distribution of SHD of each compared model, for different sample sizes N &
{50,100, 150}, over 10 replications.

216 that PARNI-DAG particularly excels in settings characterized by larger size graphs (|]V| > N), it
217 is nonetheless competitive with the best performing method, Iterative MCMC here, also on lower
218 dimensional DAGs.

11

219

220
221

222
223

224
225

226
227

228
229

230
231
232

234

235
236

237
238

239
240
241

242
243

244
245
246

References

David Maxwell Chickering. Learning Bayesian networks is NP-complete. Learning from data:
Artificial intelligence and statistics V, pages 121-130, 1996.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507-554, 2002.

Dirk Eddelbuettel and Romain Frangois. Rcpp: Seamless R and C++ Integration. Journal of Statistical
Software, 40(8):1-18, 2011. doi: 10.18637/jss.v040.i08.

Byron Ellis and Wing Hung Wong. Learning causal Bayesian network structures from experimental
data. Journal of the American Statistical Association, 103(482):778-789, 2008.

Nir Friedman and Daphne Koller. Being Bayesian about network structure. A Bayesian approach to
structure discovery in Bayesian networks. Machine learning, 50:95-125, 2003.

Dan Geiger and David Heckerman. Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics, 30(5):1412-1440,
2002.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Jack Kuipers and Giusi Moffa. Partition MCMC for Inference on Acyclic Digraphs. Journal of the
American Statistical Association, 112(517):282-299, 2017.

Jack Kuipers, Polina Suter, and Giusi Moffa. Efficient Sampling and Structure Learning of Bayesian
Networks. Journal of Computational and Graphical Statistics, 31(3):639-650, 2022.

Xitong Liang, Samuel Livingstone, and Jim Griffin. Adaptive random neighbourhood informed
Markov chain Monte Carlo for high-dimensional Bayesian variable selection. Statistics and
Computing, 32(5):84, 2022.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Polina Suter, Jack Kuipers, Giusi Moffa, and Niko Beerenwinkel. Bayesian Structure Learning and
Sampling of Bayesian Networks with the R Package BiDAG. Journal of Statistical Software, 105
(9):1-31, 2023.

12

	Derivation of the posterior model probability of DAG model
	The adaptive t parameter
	The warm-start approximation ij
	The full PARNI-DAG proposal
	Implementation of other MCMC algorithms
	The Add-Delete-Reverse proposal
	Order MCMC and Partition MCMC

	Additional experimental results
	Addition to Section 5.1
	Additional studies on the effects of tuning parameter of the PC-algorithm
	Additional studies on DAG learning performance

