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A Derivation of the posterior model probability of DAG model1

In this section, we will introduce the companion form for the prior on Wγ and derive the marginal2

likelihood of γ starting from a spike-and-slab prior, as described in Section 2. In addition, under the3

Markov property, we show that the posterior distribution π(·) can be factorised into a product form4

[Koller and Friedman, 2009].5

Let γj be the j-th column of of γ, γij is the i-th component of γj (equivalent to the i, j-th entry6

of indicator matrix γ). Let γ−i,j be γj but excluding the i-th component γij . Let Xγj denote the7

“active" variables in γj (those variables such that γij = 1). The variables Xγj
are the parents of Xj8

implied by γ. Let Wγ,j be the coefficients of j-th column in Wγ selected by γj . In addition, let9

Xi = {Xj,i}nj=1 be a vector of nodes for a fixed i-th observation, with Xj being the j-th node, while10

let xj = {Xj,i}Ni=1 be the vector of the N observations corresponding to the j-th node. The matrix11

xγj
is the collection of observations on the set of variables defined by γj .12

Under γ, the parent set of Xj (Pa(Xj)) is equivalent to set of nodes collected in γj (i.e., Xγj
). The13

joint prior distribution on Wγ then is14

p(Wγ |γ, {σ2
j }) =

n∏
j=1

p(Wγ,j |γj , σ2
j ) (S.1)

where15

Wγ,j | γj , σ2
j ∼ Nqj (0, gσ

2
j Iqj ) (S.2)

and qj is the the parent size of Xj .16

Remark A.1. The identity matrix Iqj in the prior (S.2) can be replaced by the inverse of the Gram17

matrix defined as (xT
γj
xγj )

−1. The resulting prior is then an analog, in the context of DAG sampling,18

to g-prior in the Bayesian variable selection context.19

Note that in a DAG model, each node Xj is independent of its non-descendants given its parents Xγj .20

This property implies a factorisation of the joint likelihood over data D given by21

p(D|Wγ , {σ2
j }, γ) =

n∏
j=1

p(Xj |Xγj
,Wγ,j , σ

2
j , γj),

which translates into22

p(D|Wγ , {σ2
j }, γ) =

n∏
j=1

N(xj |xT
γj
Wγ,j , σ

2
j IN )
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in the context of Gaussian graphical models. Due to the factorisation above, it is possible to exchange23

the integral of Wγ and {σ2
j } with the product in j, and integrate out Wγ,j and σ2

j from the joint24

probabilities25

p(Xj ,Wγ,j , σ
2
j |Xγj , γj) = p(Xj |Xγj ,Wγ,j , σ

2
j , γj)p(Wγ,j |σ2

j , γj)p(σ
2
j ) (S.3)

for each individual node Xj . In what follows, we will show how to derive p(Xj |Xγj
, γj) from the26

above, by solving these integrals.27

We start from the integration of the coefficients Wγ,j . We can marginalise out Wγ,j simply due to28

conjugacy as below29

p(Xj |Xγj
, σ2

j , γj) =

∫
p(Xj |Xγj

,Wγ,j , σ
2
j , γj)p(Wγ,j |σ2

j , γj)dWγ,j

=

∫
N(xj |xT

γj
Wγ,j , σ

2
j In)N(Wγ,j |0, gσ2

j Iqj )dWγ,j

= (2πσ2
j )

−N
2 g−

qj
2 det(Σj)

− 1
2 exp

{
− 1

2σ2
j

(xT
j xj − xT

j xγj
Σ−1

j xT
γj
xj)

}

where Σj = xT
γj
xγj +

1
g Iqj . Recall that the prior for σ2

j is specified by p(σ2
j ) ∝ σ−2

j , and thus we30

can marginalise out σ2
j in a similar way31

p(Xj |Xγj , γj) =

∫
p(Xj |Xγj , σ

2
j , γj)p(σ

2
j )dσ

2
j

=

∫
R+

(2πσ2
j )

−N
2 g−

qj
2 det(Σj)

− 1
2 exp

{
− 1

2σ2
j

(xT
j xj − xT

j xγjΣ
−1
j xT

γj
xj)

}
· σ−2

j dσ2
j

= (2π)−
N
2 g−

qj
2 det(Σj)

− 1
2Γ

(
N

2

)[
1

2
(xT

j xj − xT
j xγj

Σ−1
j xT

γj
xj)

]−N
2

(S.4)

where Σj = xT
γj
xγj +

1
g Ipj and Γ(·) is the Gamma function. Eventually, putting all the steps above32

together, we can write down the model’s marginal likelihood, conditional on γ only, as follows33

p(D|γ) =
∫ ∫

p(D|Wγ , {σ2
j }, γ)dWγd{σ2

j }

=

n∏
j=1

∫ ∫
p(Xj |Xγj

, βj,γj
, σ2

j )dWγ,jdσ
2
j

=

n∏
j=1

p(Xj |Xγj , γj)

∝
n∏

j=1

g−
qj
2 det(Σj)

− 1
2

[
1

2
(xT

j xj − xT
j xγjΣ

−1
j xT

γj
xj)

]−N
2

(S.5)

where Σj = xT
γj
xγj

+ 1
g Ipj

. From the above derivation, we can also conclude the following property34

for the posterior distribution π(·):35

Property 1 (Markov property.). The posterior distribution of indicator variable can be factorised as36

the following37

π(γ) ∝
n∏

j=1

p(γj |D)× I {Gγ is a DAG} (S.6)

where p(γj |D) = p(Xj |Xγj , γj)p
u(γj) and pu(·) is the unconstrained prior38

pu(γj) =

(
h

1− h

)dγj

. (S.7)
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Figure S.1: The plot of diminishing sequence ϕt for 10,000 iterations with burn-in period of 2,000
iterations.

B The adaptive ϕt parameter39

The decaying parameter ϕt is used for the adaptation of the algorithmic tuning parameter η as given40

in (9), and controls the trade-off between the pre-processing approximation π̃ and the ergodic average41

π̂(t). Intuitively, one should rely more on the approximation π̃ during the burn-in period, since the42

ergodic average π̂(t) has not fully converged. After the burn-in period though, the proposal should43

rely more heavily on the ergodic average. Based on the arguments, we use the following sequence of44

ϕt to adapt η:45

ϕt =

1− 1
2

(
1

Nb−t+1

)0.2

if t ≤ Nb

1
2

(
1

t−Nb

)0.5

if t > Nb.
(S.8)

In particular, we have ϕt = 1/2 when t = Nb. An example plot of decaying ϕt is given in Figure46

S.1, where we considered 10,000 iterations, with the first 2,000 iterations discarded as burn-in.47

In addition, in the following lemma we derive the decaying rate of ϕt, and thus of η(t) as well:48

Lemma S1. After the burn-in period, the diminishing rate of ϕt defined by (S.8) is O(t−1). And thus49

the diminishing rate of tuning parameter η̂(t) in (9) is O(t−1).50

Proof. Suppose t > Nb, we start from the definition of ηt and consider the diminishing rate51

|ϕt+1 − ϕt| =
∣∣∣∣12

(
1

t+ 1−Nb

)0.5

− 1

2

(
1

t−Nb

)0.5 ∣∣∣∣
≤ 1

2

(
(t+ 1−Nb)

0.5 − (t−Nb)
0.5

(t+ 1−Nb)0.5(t−Nb)0.5

)
≤ 1

2

1

t−Nb

= O(t−1)

as required.52

We can also show that the diminishing rate of the ergodic average π̂t
ij has the same decaying rate53

|π̂(t+1)
ij − π̂

(t)
ij | =

∣∣∣∣ t

t+ 1
π̂
(t)
ij +

1

t+ 1
γ
(t+1)
ij − π̂

(t)
ij

∣∣∣∣
≤ 1

t+ 1
η̂
(t)
ij +

1

t+ 1
γ
(t+1)
ij

≤ 2

t+ 1
= O(t−1)
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as both γ
(t)
ij and γ

(t+1)
ij are bounded between 0 and 1.54

We complete the proof by showing that also the tuning parameter η̂(t)ij has the same decaying rate55

|η̂(t+1)
ij − η̂

(t)
ij | = |(ϕt − ϕt+1)π̃ij + (ϕt+1 − ϕt)π̂

(t+1)
ij |

≤ |ϕt − ϕt+1|π̃ij + |ϕt+1 − ϕt|π̂(t+1)
ij

= O(t−1) +O(t−1) = O(t−1)

as π̃ij is between 0 and 1.56

57

Given the above lemma, and combining Lemmas 1 and 2 in Section 4.2.3 of Liang et al. [2022], we58

can establish the similar ergodicity and strong law of large numbers as in Theorem 2 of Liang et al.59

[2022].60

C The warm-start approximation π̃ij61

The main idea of how to compute the warm-start approximation π̃ij is explained in Section 3.2 of the62

main body. In this section, we will fill in with more details on calculation of π̃ij .63

Consider the extended collection of permissible parent set hj
+, formally defined as64

hj
+ = hj ∪

{
m ∪ {j} |m ∈ hj , j ∈ (hj)c \ {j}

}
. (S.9)

The extended set hj
+ includes the parent set implied by hj , but also the additional parent sets obtained65

by including at least one more parent not included in hj . Trivially thus the extended set hj
+ contains66

more permissible parents and minimises the risk of leaving out important parents when reducing the67

search space to a skeleton graph for scalability reasons [Kuipers et al., 2022].68

We will show now how we calculate the marginal probability πu
ij under the unconstrained posterior69

πu and the extended sets {hj
+}. We define Γj ⊂ {0, 1}p to be the sub-space of Γ such that γjj = 0 if70

γj ∈ Γj . Given Markov property, thanks to which the columns of γ can be factorised, we can define71

the unconstrained posterior distribution as72

πu(γ) ∝
n∏

j=1

p(γj |D), (S.10)

the marginal distribution of γj under the unconstrained posterior πu is73

πu(γj) =
p(γj |D)∑

γj∈Γj

p(γj |D)
. (S.11)

However, the sub-space Γj contains 2n−1 candidate parent sets and the full enumeration is computa-74

tionally infeasible when n is big. So we replace the subspace by the extended collection of parent75

sets hj
+ which contains much less models then Γj . So this approximate the above as76

πu(γj) ≈
p(γj |D)∑

m∈hj
+

p(ρ(m)|D)
. (S.12)

where ρ : [p] → {0, 1}p is a one-to-one mapping that converts the parent set m to γj which lies in77

the binary space Γj . Then we approximate the PEP with the following formula:78

πu
ij

def
= πu(γij = 1) ≈

∑
m∈hj

+: i∈m

πu(ρ(m)). (S.13)

The set {m ∈ hj
+ | i ∈ m} is equivalent to the set {γj ∈ Γj | γij = 1} of which Xi must be a parent79

of Xj from all these permissible parent sets. We also guarantee πu
jj = 0 since j is not one of the80

permissible parents of j and not included in hj
+.81
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After the approximations, the πu
ij are calculated and stored, then we can compute the warm-start82

approximations π̃ij , followed by the equations (11) and (12) described in the main body. The83

calculations of π̃ij are equivalent to84

π̃ij =
πu
ij(1− πu

ji)

πu
ij(1− πu

ji) + (1− πu
ij)π

u
ji + (1− πu

ij)(1− πu
ji)

. (S.14)

The last step combines π̃ij with the ergodic average π̂ij to form the algorithmic tuning parameters85

η̂ij used in the PARNI-DAG proposal.86

D The full PARNI-DAG proposal87

We first recall the random neighbourhood construction specified in Section 3.1 of the main body.88

The neighbourhood indicator k ∈ K = {0, 1}n×n indicates the positions that can be potentially89

flipped in the current DAG γ, and k follows the conditional distribution as given in (3) of the main90

body. The neighbourhood N (γ, k) given in (4) of the main body consists of 2dk DAG models, and91

the full enumeration over it is computationally efficient (and sometimes infeasible). For this reason92

we consider a pointwise implementation consisting in smaller sub-proposals. The first step in the93

pointwise implementation is to convert k into a set of variables K = {Kr}Rr=1, which can take two94

categories:95

• if kij = 1 but kij = 0, Kr only consists of one position Kr = {(i, j)};96

• if kij = 1 and kji = 1, Kr then contains two positions Kr = {(i, j), (j, i)}.97

The order of Kr is random. To fully specify the sub-neighbourhoods N (γ(r − 1),Kr) at each time98

r, we first define a new mapping that “flips" the components of γ according to the set K,99

γ′ = flip(γ,K) , (S.15)
with γ′

ij = 1− γij if (i, j) ∈ K and γ′
ij = γij otherwise. The resulting neighbourhoods N(γ(r −100

1),Kr) are defined as follows:101

• If K only contains one position (i, j), then102

N (γ(r − 1),Kr) = {γ(r − 1), flip(γ(r − 1),Kr)} . (S.16)

• If K contains two positions (i, j) and (j, i), we construct a neighbourhood with reversal move103

given by104

N (γ(r − 1),Kr) = {γ(r − 1), flip(γ(r − 1), (i, j)),

flip(γ(r − 1), (j, i)), flip(γ(r − 1),Kr)}. (S.17)

The next components in PARNI-DAG are the normalising constants of the sub-proposals qg,Kr
and of105

the reversal sub-proposals qg,K′
r
, used to facilitate the calculations of Metropolis-Hastings acceptance106

probability. As mentioned in the main body, we construct the auxiliary variables K ′ in the reversal107

move where K ′ consists of the same elements of K but with different order. One property of such108

a design is that the intermediate DAGs in the reversal move are identical to the those ones in the109

proposal move but only with opposite order. We then can re-use the posterior model probabilities110

calculated during the proposal move to compute the reversal probabilities directly. In addition, the111

Proposition 3 of Liang et al. [2022] implies that the acceptance probability in (7) can be expressed in112

terms of the product of the normalising constants. Given the normalising constants113

Z(r) =
∑

γ∗∈N (γ(r−1),Kr)

g

(
π(γ∗)p(Kr|γ∗)

π(γ(r − 1))p(Kr|γ(r − 1))

)
(S.18)

Z(R− r + 1)′ =
∑

γ∗∈N (γ(r),Kr)

g

(
π(γ∗)p(Kr|γ∗)

π(γ(r))p(Kr|γ(r))

)
, (S.19)

the MH acceptance probability is then simplified as follows114

α(γ, γ′) = min

{
1,

R∏
r=1

Z(r)

Z ′(R− r + 1)

}
. (S.20)

To summarise the PARNI-DAG proposal, we now give its full algorithmic pseudo-code is given in115

Algorithm 1.116
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Algorithm 1 The PARNI-DAG proposal

Compute {π̃ij} as described in Section 3.2 and Appendix C

Initialise γ(1), ω(1) and η̂(1) = {η̂(1)ij }
for t = 1 to t = T do

Sample k ∼ pη̂(t)( · | γ(t)) as in (3)

Construct K = {Kr} as described in Appendix D

Set γ(0) = γ(i) and Ñ = 0

for r = 1 to r = R do

if Kr has one element then

Construct N (γ(r − 1),Kr) as in (S.16)

else

Construct N (γ(r − 1),Kr) as in (S.17)

end if

Sample U1 ∼ Unif(0, 1)

if U1 < ω(t) then

Sample γ(r) ∼ qg,Kr
(γ(r − 1), · ) as in (5)

Calculate Z(r) as in (S.18)

Calculate Z ′(R− r + 1) as in (S.19)

else

Set γ(r) = γ(r − 1), Z(r) = Z(R− r + 1)′ = 1.

end if

end for

Set γ′ = γ(R), sample U2 ∼ Unif(0, 1) and compute α(γ(i), γ′) as in (S.20);

if U2 < α(γ(i), γ′) then

Set γ(t+1) = γ′

else

Set γ(t+1) = γ(t)

end if

Update η̂(t+1) = {η̂(t+1)
ij } according to (9).

Update ω(t+1) according to (13).

end for

E Implementation of other MCMC algorithms117

In this section, we will briefly describe the Add-Delete-Reverse (ADR) proposal, the order MCMC118

and the partition MCMC implemented in the experimental Section 4.119

E.1 The Add-Delete-Reverse proposal120

The ADR proposal is another example of random neighbourhood proposal. After the random121

neighbourhood is generated, unlike the PARNI-DAG proposal, ADR uniformly proposes a model122

within that neighbourhood.123
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In ADR, there are three possible moves, “Addition”, “Deletion” and “Reversal”, which defines the124

space K of indicator k. The indicator k is then uniformly drawn from one of these three possible125

moves. We construct the neighbourhood N (γ, k) according the the current DAG γ and indicator k as126

the following127

N (γ, “Addition”) = {γ∗ ∈ Γ | dH(γ, γ∗) = 1, dγ∗ = dγ + 1, γ∗
ji = 0 if γij = 1}

N (γ, “Deletion”) = {γ∗ ∈ Γ | dH(γ, γ∗) = 1, dγ∗ = dγ − 1}
N (γ, “Reversal”) = {γ∗ ∈ Γ | dH(γ, γ∗) = 2, dγ∗ = dγ , ∃ i, j: γij = γ∗

ji = 0 if γji = γ∗
ij = 1}.

where dH(·, ·) denotes the Hamming distance and dγ is the number of edges induced by γ. A new128

DAG model γ′ ∈ Γ is proposed according to the uniform density:129

qADR
k (γ, γ′) =

{
1

|N (γ,k)| , if γ ∈ N (γ, k),

0, otherwise.
(S.21)

As ADR is not guaranteed (unlike PARNI-DAG) to return a DAG, we carry out acyclicity diagnostics130

check when γ′ is sampled. If γ does not lead to a valid DAG, we will accept the current state γ as the131

next state of the Markov chain. If γ′ leads to a valid DAG, to preserve π-reversibility, we consider k′132

in the reverse move where k′ is the opposite move to k (e.g. the addition is opposite to the deletion133

move, and vice versa). To complete the ADR proposal, the new DAG γ′ is accepted as the next state134

of the Markov chain with probability135

αk(γ, γ
′) = min

{
1,

π(γ′)qk′(γ′, γ)

π(γ)qk(γ, γ′)

}
= min

{
1,

π(γ′)|N (γ, k)|
π(γ)|N (γ′, k′)|

}
.

E.2 Order MCMC and Partition MCMC136

Order and Partition MCMC samplers rely on DAG scoring measures where p(G|D) =137 ∏n
j=1 S(Xj ,Pa(Xj)|D), and on restricting the search space of DAGs to some lower capacity set.138

Friedman and Koller [2003] first proposed order MCMC, which operates in the space of orders139

(X,≺) instead of the DAGs one. This search space is smoother, so that order MCMC generally140

achieves faster convergence with respect to classic neighborhood MCMC. The method considers141

permutations (j1, ..., jn) of nodes that imply a linear order j1 ≺ ... ≺ jn. Each linear order is142

then given a score R(≺ |D) equal to the sum of scores of all the compatible DAGs with the order143

≺∈ (X,≺). To restrict the space capacity even more, sum and product operations can be swapped144

so that the order’s score is:145

R(≺ |D) =
∑
G∈≺

p(G|D) ∝
∑
G∈≺

n∏
j=1

S(Xj , Pa(Xj)|D)

∝
n∏

j=1

∑
Pa(Xj)∈≺

S(Xj , Pa(Xj)|D) ,

where S(·) is a DAG scoring function, such as the Bayesian Gaussian equivalent (BGe) score146

for continuous variables [Geiger and Heckerman, 2002]. Constructing a MCMC in the space of147

orders means moving from order ≺ to order ≺′ with MH acceptance probability α≺(≺,≺′) =148

min
{
1, R(≺′|D)

R(≺|D)

}
, according to following moves: a) “Local Swap" swaps adjacent nodes in ≺; b)149

“Global Swap" swaps random nodes in ≺; c) “Relocate" picks a node and replaces it in all possible150

positions in ≺, while keeping the rest of the order unchanged. Order MCMC is efficient, but has two151

main drawbacks compared to neighborhood-like structure MCMC: i) it outputs a sample of orders,152

not a DAG directly; sample of DAGs can be obtained by sampling, for each node independently, a153

parent set compatible with the relative order ≺, thanks to score decomposability (then get the DAG154

with maximum score in the sample as MAP estimate); ii) Order MCMC places a non-uniform prior155

on some DAGs by over-representing them in more than one order ≺, which causes the sample to be156

biased [Ellis and Wong, 2008].157

In the attempt to correct sampling bias, Kuipers and Moffa [2017] proposes Partition MCMC, which158

operates in the space of ordered partitions instead. A labelled partition Λ is a pair of order ≺ and159

7
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Figure S.2: Protein dataset: (a) The ground-truth DAG. (b) The true PEPs estimated by a long chain
of partition MCMC algorithm. (c) The full skeleton used in Section 5.1.

partitioning vector δ = (δ1, ..., δp) where p < n, and
∑p

j=1 δj = n. Vector δ divides the order into p160

parts v1, ..., vp such that v1 contains the first δ1 nodes of the order ≺ and so on. A DAG is compatible161

with partition Λ = (≺, δ) if for every node Xj ∈ vj : i) Xj has at least one parent in part vj+1; ii)162

all Pa(Xj) belong to parts with indices higher than j; iii) Pa(Xj) = ∅ only if j = p. The possible163

moves of partition MCMC are: a) swap 2 nodes from different parts; b) swap 2 nodes from adjacent164

parts; c) split or join two parts; d) move a node in another existing part or create a new part with that165

node. Partition MCMC is unbiased in terms of DAG sampling; however it is extremely slow as it has166

very high computational complexity, and therefore can only be used to sample DAGs with very few167

nodes [Kuipers et al., 2022].168

The orderMCMC and partitionMCMC schemes in the experiments are implemented via the BiDAG1169

package [Suter et al., 2023] (available from CRAN) written in rcpp [Eddelbuettel and François,170

2011].171

F Additional experimental results172

F.1 Addition to Section 5.1173

Protein data. We provide additional information on the real-world protein-signalling dataset174

(n = 11, N = 853) studied in Section 4.1. The ground-truth DAG constructed through expert175

knowledge is provided in Figure S.2 (a). The ground-truth estimate of PEP estimated by running a176

long chain of the partition MCMC algorithm is provided in Figure S.2 (b). The full skeleton used to177

implement different MCMC schemes is provided in S.2 (c).178

gsim100 data. We also provide additional information on the simulated gsim100 dataset (n = 100,179

N = 100) studied in Section 4.1, and featured in Suter et al. [2023]. The ground-truth DAG,180

containing 161 true edges, used to simulate data is presented in Figure S.3 (a). The ground-truth PEP181

estimates obtained from a long chain run of the PARNI-DAG proposal are provided in S.3 (b). The182

skeleton learned via the PC-algorithm (with a significance rate of 5%) HPC and the skeleton learned183

from the iterative MCMC Hiter are provided in Figure S.3 (c) and (d) respectively.184

F.2 Additional studies on the effects of tuning parameter of the PC-algorithm185

In addition to Section 4.1 results, we perform another batch of numerical studies to study the PARNI-186

DAG proposal run over different starting skeletons, by comparing their convergence behavior. The187

skeletons are mainly obtained by running the PC-algorithm with different levels of significance. We188

consider 4 different values of significance level, 0, 0.01, 0.05 and 0.1. The resulting skeletons are189

provided in Figure S.4 (The skeleton with significance level of 0.05 is provided in Figure S.3 (c)).190

As the significance level of the PC-algorithm increases, the resulting skeleton includes more edges191

1More information on: https://cran.r-project.org/web/packages/BiDAG/BiDAG.pdf.
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(c) HPC
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Figure S.3: gsim100 dataset: (a) The ground-truth DAG. (b) The true PEPs estimated by a long
chain of the PARNI-DAG proposal. (c) HPC with significance level of 0.05. (d) Hiter.

whilst the skeleton is empty when significance level is 0. In addition, we also compare these results192

to the skeleton from iteration MCMC as in Section 4.1.193

Figure S.5 presents the trace plots of the log posterior model probabilities from the PARNI-DAG194

proposal under different skeletons. Using the skeleton HPC with significance level of 0 trivially195

leads to the slowest convergence rate, while the skeleton Hiter (which includes more possible parent196

sets) results in the fastest convergence. The behaviour of the chains is similar. We can draw similar197

conclusions from the median MSEs presented in Table 1. The skeleton Hiter leads to the minimum198

MSE, while HPC with significance level of 0 again trivially results in the largest MSE. The MSEs199

from other three options of significance levels are not significant different between each other, so200

using any one of them will give similar level of accuracy.201

F.3 Additional studies on DAG learning performance202

In addition to the results provided in Section 4.2 of the main body, in a similar way we compare203

PARNI-DAG with ADR and the same other methods in terms of accuracy in recovering the underlying204

DAG structure on an another example. We consider a randomly generated DAG structure featuring205
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Figure S.4: gsim100 dataset: (a) HPC with significance level of 0. (b) HPC with significance level of
0.01. (c) HPC with significance level of 0.1
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Figure S.5: gsim100 dataset: trace plots of log posterior model probabilities for the PARNI-DAG
proposal under different skeletons.

50 nodes and 119 edges. Given this DAG structure, we simulate Gaussian data for three different206

sample sizes N ∈ {50, 100, 150}.207

To recall, the models compared are: i) PC algorithm [Spirtes et al., 2000]; ii) GES algorithm208

[Chickering, 1996, 2002]; iii) Order MCMC [Friedman and Koller, 2003]; iv) Iterative MCMC209

[Kuipers et al., 2022]; v) Partition MCMC [Kuipers and Moffa, 2017]; vi) ADR; vii) PARNI-DAG.210

Models’ performance is compared according to same metric, the Structural Hamming Distance211

dH(γ̂, γ) between the estimated and the true DAG. The experiments are replicated for 10 times,212

for each of the sample sizes above. Results on the distributions of SHD are depicted in Figure213

S.6. We can see how Iterative MCMC and PARNI-DAG are the best competing models out of214

this example. Note that this is a medium size graph, and while we have argued in the main body215

10



skeleton significance rate (α) MSE

HPC

0 2.40
0.01 1.92
0.05 1.95
0.1 1.95

Hiter - 1.85
Table 1: gsim100 dataset: time-normalised median MSE (×10−7) on estimating posterior edge
probabilities. (Lower is better.)
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Figure S.6: Distribution of SHD of each compared model, for different sample sizes N ∈
{50, 100, 150}, over 10 replications.

that PARNI-DAG particularly excels in settings characterized by larger size graphs (|V| ≥ N ), it216

is nonetheless competitive with the best performing method, Iterative MCMC here, also on lower217

dimensional DAGs.218
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