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Abstract

We introduce AbDiffuser, an equivariant and physics-informed diffusion model
for the joint generation of antibody 3D structures and sequences. AbDiffuser
is built on top of a new representation of protein structure, relies on a novel
architecture for aligned proteins, and utilizes strong diffusion priors to improve the
denoising process. Our approach improves protein diffusion by taking advantage
of domain knowledge and physics-based constraints; handles sequence-length
changes; and reduces memory complexity by an order of magnitude, enabling
backbone and side chain generation. We validate AbDiffuser in silico and in
vitro. Numerical experiments showcase the ability of AbDiffuser to generate
antibodies that closely track the sequence and structural properties of a reference
set. Laboratory experiments confirm that all 16 HER2 antibodies discovered were
expressed at high levels and that 57.1% of the selected designs were tight binders.

1 Introduction

We focus on the generation of immunoglobulin proteins, also known as antibodies, that help the
immune system recognize and neutralize pathogens. Due to their potency and versatility, antibodies
constitute one of the most popular drug modalities, with 10 out of 37 newly FDA-approved drugs
in 2022 being immunoglobulins [58]. The ability to generate new antibodies with pre-defined
biochemical properties in silico carries the promise of speeding up the drug design process.

Several works have attempted to generate antibodies by learning to form new sequences that resemble
those found in nature [21; 19; 82]. An issue with sequence-based approaches is that it is hard to
determine the properties that render a protein a functional molecule (and an antibody a potent drug)
without inspecting a 3D model of the functional state such as an interface or active site. So far, almost
all of the first design methods that have enabled novel protein design used carefully curated structure-
function information to score the designs [45; 48; 30]. The determinant role of structure on function
has motivated numerous works to co-design sequence and structure [4; 24; 89; 34; 43; 3; 51] or to
first design the protein backbone and then fill in the amino acid identities [90; 32; 15; 87; 50; 92; 47].

An emerging paradigm for protein generation is that of equivariant diffusion [90; 89; 51]. Protein
diffusion models combine ideas from equivariant and physics-informed protein structure representa-
tions [37] with advances in denoising diffusion probabilistic models [28] to gradually transform noise
to a partial structure. The generated structure is then refined by adding side chains and optimizing
atom positions to form a full-atom 3D model of a protein.

A pertinent challenge when generating protein structure is satisfying the appropriate equivariance
and physics constraints while also balancing modeling complexity and fidelity. Most current protein
models rely on equivariant transformers [37; 73] or graph neural networks [11; 43] to satisfy SE(3)
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equivariance and typically represent parts of the protein geometry in angle space. The latter recipe can
be set up to build a physics-informed model that respects (many) desired constraints but comes with
increased complexity. As a consequence, these models are expensive to train and are often applied
to a partial protein, ignoring the side chain placement [43; 51] or even deferring the determination
of amino acid identity to a later stage [90; 32]. Alternatively, some works focus on the regeneration
of complementarity-determining regions (CDRs) of antibodies that are of particular importance to
binding [34; 43; 33; 53; 78; 44], which also helps to reduce the complexity of the problem.

Our work is motivated by the observation that key large protein families, here we focus on the antibody
protein family, typically have strong properties, such as an ability to be mapped to a reliable sequence
ordinate via sequence alignment. Our main contribution is an equivariant diffusion model called
AbDiffuser that is designed to exploit these properties. We show that incorporating family-specific
priors into the diffusion process significantly improves generation efficiency and quality.

AbDiffuser relies on a new universal SE(3) equivariant neural network that we call the Aligned
Protein Mixer (APMixer). In contrast to existing equivariant architectures used for antibodies and
proteins, APMixer models residue-to-residue relations implicitly and is particularly effective in
handling sequence length changes. Additionally, its significantly smaller memory footprint makes
it possible to generate full antibody structures, including framework, CDRs, and side chains. Our
approach to residue representation is made possible by a projection method guaranteeing that bond
and angle constraints are respected while operating in coordinate and not angle space, a better match
to diffusion with Gaussian noise. We also benefit from the effects of overparameterization by scaling
the network size to hundreds of millions of parameters on a single GPU; an order of magnitude
improvement over the corresponding (E)GNN architectures. Having a powerful model that generates
the full antibody structure is shown to be beneficial for the quality of the designed proteins.

We evaluate AbDiffuser on the generation of antibodies from paired Observable Antibody Space
(pOAS) [61], modeling of HER2 binders and antigen-conditioned CDR redesign. Numerical experi-
ments demonstrate that the proposed representation, architecture, and priors enable AbDiffuser to
better model the sequence and structural properties of natural antibodies. We also submitted a subset
of our proposed HER2 binders for experimental validation in a laboratory. Of the 16 samples submit-
ted, 100% were expressed as actual antibodies and 37. 5% bound to the target with an average pKD
of 8.7. Of these, the subset containing raw/filtered samples achieved a binding rate of 22.2%/57.1%
and an average pKD of 8.53/8.78, with our tightest binder slightly improving upon the affinity of
the cancer drug Trastuzumab. These results provide the first experimental evidence that a generative
model trained on mutagenesis data can reliably (with high probability) create new antibody binders
of high affinity, even without post-selection by learned or physics-based binding predictors.

Due to space limitations, we refer the reader to the appendix for a detailed discussion of related work,
for method details including proofs, as well as for additional numerical results.

2 Denoising Diffusion for Protein Generation

This section describes how we utilize denoising diffusion to generate antibody sequence and structure.
The ideas presented are influenced by previous work on denoising diffusion [26; 5; 28]. The main
contributions that distinguish our work are presented in Sections 3 and 4.

We adopt the denoising diffusion framework in which, given a data point X0, the forward diffusion
process gradually adds noise to form corrupted samples Xt. These samples form a trajectory
(X0, X1, ..., Xt, ..., XT ) of increasingly noisy data, interpolating from the data distribution X0 ∼
p(X0) to that of an easy-to-sample prior XT ∼ p(XT ), such as a Gaussian. The process is constructed
to be Markovian, so that q(X2, ..., XT |X0) = q(X1|X0)Π

T
t=2q(Xt|Xt−1).

To generate new data, a neural network learns to approximate the true denoising process X̂0 =
ϕ(Xt, t), which can be achieved by minimizing the variational upper bound of the negative log-
likelihood [84; 26; 5]. In our diffusion process, we factorize the posterior probability distribution
over the atom positions and residue types:

q(Xt|Xt−1) = q(Xpos
t |Xpos

t−1) q(X
res
t |X res

t−1),

where a Gaussian and a categorical distribution govern the noise applied to atom positions and residue
types, respectively. We cover these in detail in Sections B.2 and B.3. The reverse diffusion process is
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joint: the model jointly considers atom positions and residue types (X̂pos
0 , X̂ res

0 ) = ϕ(Xpos
t , X res

t , t).
Throughout the paper, we use Xpos ∈ Rn×3 as a matrix of antibody atom positions and X res ∈ Rr×21

as a matrix of one-hot encodings of residue types (20 amino acids and a gap).

3 Aligned Protein Mixer

We present Aligned Protein Mixer (APMixer), a novel neural network for processing proteins from a
family of aligned proteins. In particular, we focus on antibodies, although the method can in principle
be applied to any sufficiently large protein family by using a family-specific global alignment [81; 57].
We first explain how we ensure SE(3) equivariance and how we account for variable sequence
lengths in Sections 3.1 and 3.2. The model is detailed in Section 3.3 and our approach to incorporate
physics-based constraints on bond angles and lengths is described in Section 3.4.

3.1 SE(3) Equivariance by Frame Averaging

Any neural network ϕ whose input X has dimension n × 3 can be made equivariant or invariant
to group transformations by averaging the model outputs over a carefully selected subset of group
elements called frames F(X) [68]. For example, this has been used successfully to make equivariant
self-attention models for the prediction of protein-ligand binding energy [35].

We achieve the desired equivariance to rotations and translations (the SE(3) group) as follows:

Xpos =
1

|F(Xpos)|
∑

(R,t)∈F(Xpos)

ϕ(XposR− 1t,X res)RT + 1t, (1)

where t = 1
n1

TXpos is the centroid of our points and the four canonical rotation matrices R forming
the four frames F(Xpos) ⊂ SE(3) needed to achieve equivariance can be determined based on
Principle Component Analysis. More specifically, we obtain three unit-length eigenvectors v1, v2, v3
corresponding to the eigenvalues λ1, λ2, λ3 from the eigendecomposition of the covariance matrix
C = (Xpos − 1t)T (Xpos − 1t) ∈ R3×3 and define the four frames as

F(Xpos) =
{
([αv1, βv2, αv1 × βv2], t) |α, β ∈ {−1, 1}

}
.

To respect the fixed chirality of proteins observed in humans, we desire equivariance w.r.t. SE(3) and
not E(3) which also includes reflections. As such, when constructing frames the third axis sign is not
varied but its direction is determined by the right-hand rule (cross product of the first two axes).

SE(3) invariance can be similarly achieved:

X res =
1

|F(Xpos)|
∑

(R,t)∈F(Xpos)

ϕ(XposR− 1t,X res) (2)

We make use of equation 2 when denoising residue types X res as they are invariant to the rotation of
the antibody, and equation 1 for the prediction of atom positions Xpos.

3.2 Handling Length Changes by Multiple Sequence Alignment

The version of APMixer investigated in this work is built on top of the AHo antibody residue num-
bering scheme proposed by Honegger and Plückthun [27]. This numbering scheme was constructed
in a data-driven fashion using information from known antibody structures. For each residue in an
antibody chain, it assigns an integer position in [1, 149] based on the structural role of the residue
(e.g. being in a particular CDR loop or in the framework region between two particular CDR loops).
Essentially all known antibodies fit into this representation [27].

As we are modeling paired antibody sequences (the heavy and light chain), the full representation is a
2× 149 element sequence, where 149 heavy chain elements are followed by 149 light chain elements.
We represent AHo gaps physically as ‘ghost’ residue placeholders; their position is determined in
data pre-processing by linearly interpolating between the corresponding atoms of the nearest existing
residues (trivial, due to the use of AHo numbering).

Our experiments confirm that the proposed representation consistently improves generation quality.
The reason is two-fold: a) Each antibody chain is now represented as a fixed-length sequence with
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149 positions that are either empty gaps or are filled with an appropriate amino acid. This fixed-length
representation encompasses antibodies with diverse loop lengths via alignment and thus allows
our generative model to internally choose how many residues the generated protein will have. In
contrast, many of the non-sequence-based protein, small molecule, and graph generative models
[49; 54; 28; 90; 32] require the number of elements in the object to be specified beforehand. b) The
sequence position directly implies the structural role that the amino acid needs to perform, which
makes it easier for the model to pick up structure-specific rules.

3.3 The APMixer Architecture

Our use of a fixed length representation for the immunoglobin variable domain fold family (Sec-
tion 3.2) also allows us to forgo traditional architecture choices in favor of a more efficient architecture
inspired by the MLP-Mixer [86]. We build the model architecture out of blocks, where each block
consists of two MLPs, that are applied consecutively on the columns and the rows

X·,j = X·,j +W2ρ(W1LayerNorm(X·,j))for all j ∈ [c]

Xi,· = Xi,· +W4ρ(W3LayerNorm(Xi,·))for all i ∈ [r],

of the input matrix X ∈ Rr×c, with ρ being an activation function, and using the notation [k] =
(1, . . . , k). We define the model input as a fixed-size matrix X combining Xpos and X res with one
sequence element per row (2× 149 rows in total). In each row, we encode the residue type and all of
the atom positions for that residue (e.g., the C,Cα, N,Cβ backbone atoms). These input matrix rows
are embedded in higher-dimensional vectors using an MLP. Specifically, using this representation,
our input matrix X has r = 2× 149 rows and c = 21 + 4× 3 columns.

To achieve equivariance to atom translations and rotations, we can either apply frame averaging
(Section 3.1) on the whole model or on each AbDiffuser block individually. We chose the second
option as in our preliminary experiments this improved performance. Frame averaging can be applied
on high-dimensional embeddings simply by splitting them into three-dimensional sub-vectors and
using each to compute the SE(3) frames [68]. To account for that residue types are invariant to
Euclidean transformations, while the atom positions are equivariant, we split each block’s input and
output vectors in half, with one half being treated equivariantly and the other invariantly.

Model complexity and SE(3)-universality. APMixer models pairwise interactions implicitly by
operating on rows and columns of the input interchangeably. Thus, its memory complexity grows
linearly with the number of residues. This contrasts with the usual quadratic complexity of traditional
structure-based models and allows us to do more with a fixed run-time, parameter, and/or memory
budget. In Appendix G we prove that the model on top of which APMixer is built is SE(3)-universal,
meaning that it can approximate any SE(3)-equivariant function.

We also remark that, in principle, other models, such as a 1D CNN or a transformer, could be used in
place of the MLPs in APMixer. With such sequence-length-independent models, we would no longer
require a multiple sequence alignment of the given protein family, though this would possibly come
at the expense of universality and efficiency.

3.4 Physics-informed Residue Representation by Projection

Atoms within a protein adhere to strong constraints. In principle, a neural network trained with
enough data can learn to respect these constraints. However, over a fixed data budget, it can be
advantageous to construct a model in a manner that guarantees that its outputs never violate the
constraints. Previous work commonly represents proteins in terms of rotation and translation of
rigid residue frames and uses idealized residue representations to recover atom positions [37; 73].
Although there is a long tradition of modeling backbone and side chain degrees of freedom in angle
space [67; 14], operating in angle space adds modeling complexity and makes diffusion potentially
inaccurate [94; 8; 90]. We take a different route and devise a way to respect bond constraints while
operating in a global coordinate frame, which works seamlessly with standard Gaussian diffusion for
atom positions.

Specifically, inspired by interior-point methods [72] that alternate between optimization and projection
steps, we design a new non-parametric projection layer that is applied to both model inputs and
outputs. The model and the noising process are allowed to move the atoms freely, and the projection
layer then corrects their positions such that the constraints are respected.
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Backbone residue projection. We use a reference residue backbone (C,Cα, N,Cβ) with idealized
bond lengths and angles [17]. As the backbone atoms are rigid, we rely on the Kabsch algorithm [38]
to identify the optimal roto-translation between the projection layer’s input and the rigid reference
residue’s atom positions. We apply the transformation to the reference residue and output the resulting
atom positions. We also ensure that the distance between the corresponding C and O atoms in the
output is 1.231Åwhile staying as close as possible to the input O position. The reference residue is
also used to represent the AHo ghost residue atoms. Idealizing a backbone in this way usually results
in a negligible RMSE to the original structure of ∼ 5 · 10−3Å.
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Figure 1: The proposed internal generic side
chain representation. The dihedral-defining
atoms (orange) from the full-atom represen-
tation (top) are used to construct a generic
four-atom representation (bottom). If the side
chain has fewer than four angles, additional
atoms (gray) are placed in the generic side
chain to correspond to a 180◦ angle. The full
atom representation is recovered by apply-
ing matching rotations to an appropriate side
chain template.

Side chain projection. We employ a similar idea to
constrain the placement of side chains. In contrast to
structure prediction [37; 46], we cannot use one ide-
alized side chain per amino acid, since the sequence
is unknown during generation. Our solution is to con-
vert all side chains to a generic representation with
enough degrees of freedom to account for the exact
placement of all atoms. The amino acid side chains
have up to 4 bonds that they can rotate around by
dihedral angles. These degrees of freedom can be
captured by constructing a side-chain template that
consists of 4 pseudo-carbon atoms, for which the
dihedral angles are rotated in the same way as for
the original side chain. If the original side chain has
fewer degrees of freedom, we simply set the corre-
sponding dihedral angles to 180◦ such that the atoms
forming the dihedral angle lie on a plane. The pro-
jection layer then only has to ensure that the bond
lengths between the pseudo-atoms are respected. We
set the bond length to 1.54Å because carbon atoms
are the most common atoms that form the dihedral
angles of real amino acids. This representation can be
seen in Figure 1. To recover the full-atom structure,
we extract the dihedral angles from the side chain
template; the angles are then applied to idealized
amino acid-specific templates.

4 Informative Diffusion Priors

It has been hypothesized that diffusion processes for generation should be tailored to the particular
task to increase performance [88; 5]. In Appendix E.1, we present a theoretical argument confirming
that choosing a good prior reduces the complexity of the learnable model needed to achieve good-
quality denoising. Our bound stated in Theorem E.1 reveals that one cannot learn a simple generative
model that fits the data well unless the prior has a small Wasserstein distance to the data distribution.

Armed with this knowledge, we next introduce two types of priors that are incorporated into our
diffusion model: a) position-specific residue frequencies that describe sequence conservation of the
immunoglobulin fold, and b) conditional dependencies between atom positions.

4.1 AHo-specific Residue Frequencies

A separate benefit of having a fixed-length sequence representation (see Section 3.2) is that we can
use the residue frequency at each position as a diffusion prior. To do this, we estimate marginal
position-specific categorical distributions Q1, ..., Q2∗149 over residue types from the training data
and use these to define the noise in the discrete residue-type diffusion (see Appendix B.3). Since
AHo aligns residues based on their structural role within the protein, the estimated prior distributions
exhibit significant variability across positions and have low entropy in preserved regions of the
immunoglobulin fold. In this way, the noise q(X res

t |X res
0 ) = Cat(X res

0 (βtI + (1 − βt)Q
i)) at

every step of the forward process depends on the residue position i in the fixed-length sequence
representation. Gap frequencies are also captured in these noise matrices.
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4.2 Encoding Conditional Atom Dependencies

It is a consequence of their chain-like structure that neighboring residue atom positions of proteins
are strongly correlated. Theorem E.1 suggests that encoding these correlations within the diffusion
process eases the denoising complexity and can free the model to focus on more challenging aspects.

To this end, we capture the conditional independence relations between atom positions by a Gaussian
Markov Random Field (GMRF) [42]. The latter corresponds to a Gaussian N (0,Σ) over atom
positions whose precision matrix Σ−1 = L + aI is equal to the shifted graph Laplacian L =
diag(A1)−A associated with the adjacency matrix A. The GMRF operates under the assumption
that node features (e.g., 3D positions) for which there is no edge in the adjacency A are conditionally
independent. Some concurrent works [32; 36] also considered conditional atom dependencies by
hand-crafting correlation matrices that capture chain relations between residues. We take a step
further by proposing to automatically learn the sparse conditional dependence relations from the
training data. Our approach entails estimating a sparse adjacency matrix A that captures the data
variance under the GMRF model. The details are described in Appendix F.

5 Experiments

We evaluate AbDiffuser’s ability to design antibodies. After describing the experimental setup
and metrics, Section 5.1 presents in silico tests illustrating the effect of our proposed changes on
the generation quality. Section 5.2 details in vitro results showcasing the ability of our method to
design new expressing antibodies that bind to a known antigen. Further analyses can be found in the
Appendices K and L, whereas experiments on CDR redesign in SAbDab are in Appendix N.

Baselines. We compare APMixer with: a) a sequence transformer based on BERT [12; 74] whose
output is folded to recover the structure; b) an E(n) Equivariant Graph Neural Network (EGNN)
[75] which is a popular choice for tasks such as 3D molecule generation [28], antibody CDR loop
inpainting [43], and antibody generation [89]; and c) a FA-GNN [68], corresponding to a standard
GNN with SE(3) equivariance attained by frame averaging. We also evaluate the proposed informative
antibody-specific priors using all of these architectures. To ensure the comparison is performed fairly
and under similar settings, we always use the projection layer and our diffusion implementation only
varying the denoising model architecture. In the OAS task, we also compare our diffusion-based
approach with d) the IgLM [80] antibody language model. To ensure that it generates paired OAS-like
sequences, we condition the generation on the subsequences of the first and last few amino acids
taken from pOAS sequences (something that our approach does not need). It is also important to
note that the comparison is not fair, since the publicly available IgLM model was trained on 558M
sequences that also include the whole paired OAS (105k sequences) and the test set we use. So, in
many ways, IgLM’s performance represents the best results we could ever hope to achieve with a
sequence-only approach. We also compare with e) dyMEAN [44], which is the only other antibody
generative model previously shown to be able to jointly generate the full strucutre and sequence. In
the binder generation task, we compare with f) RefineGNN [34], g) MEAN [43] and h) DiffAb [53],
three state-of-the-art geometric deep learning methods for CDR redesign.

Metrics. The quality of generated sequences is measured in terms of their naturalness (inverse
perplexity of the AntiBERTy [74] model), closeness to the closest antibody in the training set
in terms of edit distance, and stability estimated by IgFold. We also verify that the generated
antibody sequences satisfy the appropriate biophysical properties using four additional structure-
based metrics [69]: CDR region hydrophobicity (CDR PSH), patches of positive (CDR PPC), and
negative charge (CDR PNC), and symmetry of electrostatic charges of heavy and light chains (SFV
CSP). The metrics applied to generated structures focus primarily on the estimated free energy
∆G using Rosetta [2] and RMSD for backbone heavy atom positions as compared to IgFold [73]
predictions. More details can be found in Appendix J.

As we want to estimate how well the entire data distribution is captured, in all cases except RMSD,
we report the Wasserstein distance between the scores of the sequences in the test split and the scores
of the generated sequences. As a reference, we also report the baseline metrics achieved by the
sequences and structures in the validation set. A generative model that approaches or matches these
values is effectively as good at modeling the distribution of the specific metric in consideration as
i.i.d. sampling. The test set and the generated set always have 1000 examples.

Further details on training and implementation can be found in Appendix M.
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Model W1(Nat.) ↓ W1(Clo.) ↓ W1(Sta.) ↓ W1(PSH) ↓ W1(PPC) ↓ W1(PNC) ↓ W1(CSP) ↓ W1(∆G) ↓ RMSD ↓
Validation Set Baseline 0.0150 0.0043 0.0102 0.8301 0.0441 0.0176 0.4889 1.0814 —

Transformer 0.5308 0.4410 1.2284 25.8265 0.2324 0.2278 2.7925 — —
Transformer (AHo) 0.4456 0.3474 0.5351 6.4490 0.1641 0.0593 2.3472 — —

IgLM∗ [80] 0.1103 0.0484 0.0577 11.0675 0.0413 0.0671 1.9274 — —

dyMEAN [44] 0.1319 0.1600 0.0423 3.9145 0.1566 0.2929 2.3711 601.1153 3.8157

EGNN 0.3988 0.2655 0.3547 2.1115 0.1486 0.1085 1.9881 1586.0160 9.8231
EGNN (AHo) 0.3329 0.2229 0.2904 8.1620 0.1263 0.1075 0.7978 1714.2734 10.0628
EGNN (AHo & Cov.) 0.3482 0.2374 0.2443 2.5632 0.1190 0.0462 1.2184 1015.8926 9.4814

FA-GNN 0.4141 0.2822 0.4302 2.5330 0.1696 0.1164 1.7886 22.7988 0.8617
FA-GNN (AHo) 0.3407 0.2263 0.2344 2.3272 0.1411 0.1306 1.6046 8.7506 0.8321
FA-GNN (AHo & Cov.) 0.2785 0.1669 0.0815 5.4440 0.0493 0.0212 0.7768 15.3670 0.8814

AbDiffuser (uniform prior) 0.2837 0.1419 0.2188 3.1364 0.0727 0.1691 1.3874 38.8417 0.8398
AbDiffuser (no projection) 0.2378 0.1529 0.0694 2.3530 0.0637 0.0793 0.7376 6313.2495 11.1431
AbDiffuser (no Cov.) 0.2309 0.1107 0.1235 1.2392 0.0664 0.0511 0.6453 17.7322 0.6302
AbDiffuser 0.1979 0.0921 0.0662 2.3219 0.0314 0.0285 0.6662 13.3051 0.5230
AbDiffuser (side chains) 0.0916 0.0520 0.0186 6.3166 0.0209 0.0754 0.8676 16.6117 0.4962

Table 1: Antibody generation based on Paired OAS [61]. AHo denotes models that use AHo
numbering and position-specific residue frequencies. Cov denotes models that use the learned
covariance. IgLM is denoted by ∗ since it was trained on significantly more data (including the test
set) and was given part of the sequence to bootstrap generation. The top three results in each column
are highlighted as First, Second, Third.

Model Parameters ↑ Memory (training) ↓ Memory (generation) ↓ Generation time ↓
Transformer 84M 14GB 15GB 3.2 min
EGNN 39.3M 78GB 16GB 22.6 min
FA-GNN 9.4M 75GB 38GB 9.5 min
AbDiffuser 169M 12GB 3GB 2.3 min

Table 2: Number of parameters, model memory consumption during training with a batch size of 4
and memory consumption with the time taken to generate a batch of 10 examples for paired OAS.

5.1 Paired OAS Generation

We focus on matching the distribution of 105k paired sequences from the Observed Antibody Space
database [61] folded with IgFold and optimized with Rosetta [2].

Table 1 summarizes the results. Generated samples by AbDiffuser improve upon baselines on nearly
all fronts, even compared to the IgLM language model which was trained on magnitudes more data
(especially when concerning structure-related metrics). dyMEAN GNN-based model struggles in this
distribution modeling task and is the only model tested that does not achieve the perfect uniqueness of
the generated samples (58. 2% unique). The experiment also corroborates our analysis (Theorem E.1)
on the benefit of informative priors to diffusion: using a position-specific residue type frequency
(AHo) and encoding conditional atom dependencies through a learned covariance matrix (Cov.) helps
to improve the ability of most models to capture the pOAS distribution. Interestingly, including
the learned covariance can sometimes noticeably improve the quality of the generated sequences
(FA-GNN), but its strong benefit to structure quality is only felt when the model is powerful enough to
model the structure well (APMixer). Inclusion of AHo numbering and position-specific frequencies
improves all models. We perform a similar ablation for APMixer by setting the prior distribution to
uniform (uniform prior) and observe a similar performance drop.

To interpret the fidelity of the generated structures, we recall that IgFold uses an ensemble of 4
models followed by Rosetta optimization and that, on average, individual IgFold models (before
ensembling) achieve an RMSD of 0.4239 on the test set. Therefore, in this regard, the structures
created by AbDiffuser are nearly indistinguishable from the test set structures (RMSD of 0.4962).
A more detailed analysis of per-region RMSD can be found in Appendix K. We further observe
that when no projection layer is used and instead one uses standard diffusion to predict the noise
added to the atom positions [28], the training becomes less stable and the model can fail to learn to
generate good structures. Encouragingly, forcing AbDiffuser to model side chain positions alongside
the backbone tends to improve the similarity of the generated sequences (Naturalness, Closeness,
Stability). This is likely due to the strong coupling between feasible side chain conformations and
residue types. The generated side chains get an average Rosetta packing score of 0.624, whereas
folded and Rosetta-optimized structures have a mean packing score of 0.666. Recalling that a packing
score above 0.6 is widely considered good [77; 66; 3], we deduce that AbDiffuser is able to generate
physically plausible side chain conformations. When available, we also use the side chain positions
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Model W1(Nat.) ↓ W1(Clo.) ↓ W1(Sta.) ↓ W1(PSH) ↓ W1(PPC) ↓ W1(PNC) ↓ W1(CSP) ↓ W1(∆G) ↓ RMSD ↓ pbind ↑ Uniq. ↑
Validation Set Baseline 0.0011 0.0003 0.0061 1.3183 0.0196 0.0114 0.3280 2.0350 — 0.8676 100%

MEAN [43] 0.0072 0.0009 0.0267 8.4184 0.0184 0.0231 0.4108 8.5981 0.7792 0.7767 38.9%
DiffAb [53] 0.0074 0.0014 0.0498 0.5481 0.0097 0.0067 3.4647 6.7419 0.4151 0.8876 99.7%
RefineGNN [34] 0.0011 0.0004 0.0026 0.5482 0.0053 0.0046 0.1260 — — 0.7132 100%

Transformer (AHo) 0.0014 0.0031 0.0097 1.3681 0.0171 0.0140 0.2657 — — 0.3627 100%
EGNN (AHo & Cov.) 0.0013 0.0030 0.0102 1.1241 0.0123 0.0236 0.2441 1967.5280 9.2180 0.3626 100%
FA-GNN (AHo & Cov.) 0.0018 0.0030 0.0063 0.4158 0.0107 0.0056 0.2644 76.7852 3.1800 0.4576 100%

AbDiffuser 0.0013 0.0018 0.0028 0.4968 0.0205 0.0113 0.1588 6.4301 0.3822 0.5761 100%
AbDiffuser (side chains) 0.0010 0.0005 0.0062 1.2909 0.0115 0.0029 0.0948 32.0464 0.4046 0.6848 100%

AbDiffuser (τ = 0.75) 0.0005 0.0011 0.0054 0.3934 0.0148 0.0129 0.1785 6.2468 0.3707 0.6382 100%
AbDiffuser (s.c., τ = 0.75) 0.0005 0.0004 0.0126 1.8510 0.0126 0.0017 0.0917 12.8923 0.3982 0.7796 100%

AbDiffuser (τ = 0.01) 0.0008 0.0014 0.0265 2.5944 0.0206 0.0053 0.2378 15.2200 0.3345 0.9115 99.7%
AbDiffuser (s.c. τ = 0.01) 0.0015 0.0024 0.0159 1.5043 0.0210 0.0126 0.5173 114.4841 0.6795 0.9436 91.4%

Table 3: Generating Trastuzumab mutants based on the dataset by Mason et al. [55]. The top three
results in each column are highlighted as First, Second, and Third. Multiple approaches can generate
sequences similar to the test set, but generating predicted binders (large pbind) is considerably harder.

predicted by the model for the ∆G energy estimation. Even though this procedure is expected to
generate results slightly different when compared to backbone-only models (in the latter case missing
side chain atoms are first repacked based on the rotamer libraries before the energy minimization
step), we still observe a high overlap between the resultant energies. This further highlights the
quality of side-chain prediction.

It should be noted that ∆G energy computation and some additional structure-based metrics [69]
(i.e., CDR PSH, CDR PPC, CDR PNC, SFV CSP) are inherently susceptible to even minor changes
in the geometry of the modeled structures. Thus, in line with the discussions by Raybould et al. [69],
the overal trends of these metrics can be used to assess the generated samples as similar or dissimilar
to the reference distributions, but one should not fall into the trap of overly focusing on the specific
values attained. From this perspective, most structure-based models do sufficiently well on these
metrics, perhaps with the exception of EGNN ∆G.

In Table 2 we show that APMixer is able to use an order of magnitude more parameters with a
smaller memory footprint during training and offers more efficient sample generation, compared to
the baseline architectures, on Nvidia A100 80GB GPU.

5.2 Generating HER2 Binders

Antibody generative models can be used to explore a subset of the general antibody space, such as
the binders of the target antigen. The purpose of modeling and expanding a set of binders is twofold:
a) it allows us to rigorously validate our generative models in a setup more tractable than denovo
design; b) from a practical standpoint, it sets the ground for the optimization of properties that render
binding antibodies drugs, such as developability, immunogenicity, and expression, allowing efficient
exploration of the binder space [21; 63]. Note that sufficiently large libraries consisting of antibodies
of variable binding affinity are usually discovered during the very early stages of the drug design
process by means of high-throughput experiments [64; 76; 55]. Thus, the data used here can be
sufficiently easier to obtain than the crystal structures usually assumed in CDR redesign experiments.

We use the Trastuzumab CDR H3 mutant dataset by Mason et al. [55] which was constructed by
mutating 10 positions in the CDR H3 of the cancer drug Trastuzumab. The mutants were then
evaluated using a high-throughput noisy assay to determine if they bind the HER2 antigen. After
discarding all duplicate sequences and sequences that appear in both the binder set and the non-binder
set, we are left with 9k binders and 25k non-binders. The generative models were trained only on the
binder set. Separately, we train a classifier based on the APMixer architecture to distinguish binders
from non-binders. The classifier achieves 87.8% accuracy on a randomly selected test set of 3000
antibodies, implying that the predicted binding probability is a somewhat informative metric for how
tightly the binder distribution is approximated by the models.

The computational results summarized in Table 3 evidence that AbDiffuser closely approximates the
binder distribution. Although most models achieve results close to those achieved by the validation
set1, the sequence-based baseline struggles to capture the features that convey binding; evidenced by
the low predicted binding probability. GNN-based baselines struggle to predict the correct structure

1The Wasserstein distance of the validation set is likely overestimated here due to the validation set being
smaller than the test set (100 vs 1000 samples).
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(RMSD above 3) producing structures with unreasonably high Amber energy. As a result, the binding
probability of their designs is lower than that of the more powerful structural models.

Next, we look at the two baselines that only redesign CDR H3 instead of generating the whole
antibody. RefineGNN [34] manages to closely capture the sequence and biophysical characteristics
and generates sufficiently good binders. DiffAb [53], which is another diffusion-based model,
achieves the best binding probability out of the CDR redesign baselines. MEAN [43] generated few
unique sequences (38.9% uniqueness) and failed some of the distribution-based metrics (Naturalness,
CDR PSH). dyMEAN [44] collapsed to always generating a single sample, thus we did not report its
results. The overfitting behavior of MEAN and dyMEAN can be attributed to the reconstruction-based
training objective and the fact that they were designed for a slightly different task of CDR redesign
with different antigens, instead of the single antigen we have here.

Due to the use of iterative refinement and reconstruction-based training objectives, RefineGNN and
MEAN focus on the generation of the most likely examples. Focusing on high-likelihood modes is
especially beneficial here, as the experiment that was used to create the dataset is noisy. Diffusion
models can also be adjusted to focus on prevalent modes by reducing the temperature τ of the
denoising process. In the Gaussian case, we specified the temperature as the scaling factor of the
noise added during the reverse process (Appendix B.2), whereas in the discrete case we specified it
as the temperature of the model output softmax function (Appendix B.3). We observe that a slight
reduction of the temperature helps to improve the general distribution fit across almost all metrics.
Reducing the temperature further boosts the binding probability, but, as expected, can result in a slight
loss of diversity. Using a higher temperature slightly increases the Stability Wasserstein distance
while improving Stability. The phenomenon occurs because the model is no longer concerned with
fitting low-likelihood modes of the real distribution that contain structures of poor stability.

In contrast to MEAN, RefineGNN and DiffAb, which only redesign the CDR H3 of the test-set
structures, AbDiffuser generates full antibodies and still achieves better sequence similarity. MEAN
[43] also produced structures of noticeably worse RMSD, which can be explained as follows: a) as
we see in Appendix K, MEAN does not predict CDR H3 positions as well; b) changing CDR H3
can impact the most-likely conformation of the overall antibody, something that the CDR inpainting
models cannot account for. We do not report the RMSD and ∆G for RefineGNN as it does not place
the generated CDR H3 loop in the reference frame of the original antibody.

The AbDiffuser model that also generates side chains generally achieved better sequence similarity
(Naturalness, Closeness) and better binding probability than the backbone-only model, but a worse
similarity of sequence stability. Furthermore, while the side chain model achieved a worse overall
structure quality (∆G, RMSD), as we see in Appendix K it predicted CDR H3 positions more
precisely, which is the main desideratum in this experiment.

5.3 In Vitro Validation

We further validate our designs through an in vitro experiment. As shown in Figure 2, all submitted
designs were expressed and purified successfully (average concentration of 1.25 mg/ml) and an
average of 37.5% of the designs were confirmed binders with pKD ∈ [8.32, 9.50] (higher is better)
whose average was 8.70. The binding rate was improved (from 22. 2% to 57. 1%) when considering
designs that were additionally filtered so that they were better than the bottom 25th quantile in every
metric (naturalness, RMSD, etc.) and a classifier trained to distinguish binders from non-binders
predicted that they bound with high confidence. This increase in binding for filtered samples suggests
that our selected metrics indeed correlate with desirable in vitro characteristics. Our best binder
belonged to the latter set and its pKD of 9.50 was slightly above Trastuzumab (not in the training
set) while differing in 4 positions of the CDR H3 loop. Further examination of the top binders is
performed in Figure 3 and Appendix L.

In contrast to the only other comparable study for ML-based Trastuzumab CDR H3 mutant design
by Shanehsazzadeh et al. [76], our best binder had pKD = − log10(3.17

−10) = 9.50, while the best
binder found by Shanehsazzadeh et al. had pKD = 9.03. Two important differences between the two
studies are that: we trained on binders and tested 16 samples in the wet lab, while Shanehsazzadeh et
al. used a simpler sequence infiling model trained on a large set of generic antibodies to generate 440k
candidate sequences that were filtered in the wet-lab using high-throughput screening to identify 4k
binders, of which 421 were selected to be tested using precise SPR measurements. The fact that our
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Figure 2: In vitro validation of AbDiffuser designs in terms of their ability to express (left), binding
affinity (center), and binding rate (right). The ‘raw’ column corresponds to randomly selected
generated antibodies, whereas ‘filtered’ designs were additionally filtered by in silico screening.

Design H3 KD (M)

SRWLASGFYTFAY 4.72e-09

SRWSGDGFYQFDY 4.12e-09

SRWRGSGFYEFDY 2.89e-09

SRWRASGFYAYDY 2.00e-09

SRYGGFGFYQFDY 1.86e-09

SRYGGSGFYTFDY 3.17e-10

SRWGGDGFYAMDY 6.12e-10

ANTIGEN: erbB-2 (HER2) 

HEAVY

LIGHT
(Trastuzumab)

Binding interfaces

Figure 3: HER2 structure and the 3D structures of generated binders highlighted in different colors.
AbDiffuser has learned to redesign part of the binding interface while maintaining affinity. Our
tightest binder achieved a pKD of 9.5 which, accounting for experimental variability, is akin to
Trastuzumab whose average measured pKD was 9.21.

approach required 26x fewer precise SPR wet-lab experiments to find a better binder hints toward a
major improvement in efficiency. This highlights the importance of new and more efficient generative
models for antibodies and more efficient, and thus powerful architectures such as APMixer.

The work of Shanehsazzadeh et al. [76] also shows that high-throughput wet-lab experiments can
be used to build sufficiently large datasets of target-specific binders without starting from a known
binder. This provides a straightforward way to train AbDiffuser on new targets.

After good binders are determined through high-throughput and SPR experiments, at the end of the
drug discovery process, an experimental 3D structure of the bound complex is often produced. In
recent works, redesigning CDRs in such co-crystal structures has been a popular task [53; 43; 34].
To that end, Appendix N investigates how AbDiffuser can be adopted for it and shows that it offers
much better sequence recovery rates than the current state-of-the-art diffusion model for the CDR
redesign [53].

6 Conclusions

We propose a denoising model that deviates from conventional practice in deep learning for protein
design. APMixer enjoys the benefits of the best protein models (SE(3) equivariance, universality),
while being significantly more memory efficient. We also show how to tailor the diffusion process to
antibody generation by incorporating priors that enable the handling of variable-length sequences
and allow the model to navigate strong bond constraints while operating in an extrinsic coordinate
space that supports Gaussian noise. In our future work, we want to apply our method to protein
families beyond antibodies, as organized in CATH [81] and Pfam [57]. Promising examples include
the TIM-barrel fold and enzyme families, such as SAM-dependent methyltransferases, long-chain
alcohol oxidases, and amine dehydrogenases [83].
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A Related Work

The literature on computational methods for protein design is vast. We focus here on machine learning
methods for protein sequence and structure generation and refer the interested reader to the relevant
reviews by Woolfson [91]; Ferruz et al. [18] for broader context.

A.1 Protein Language Models

The first works on protein generation focused on language modeling [16; 21; 71; 85]. Motivated by the
observation that the natural forces driving antibody sequence formation, namely V(D)J recombination
and the selective pressure in the presence of an antigen referred to as somatic hypermutation, are
distinct from other proteins, recent works have also built antibody-specific language models. Therein,
large-scale models trained on millions of sequences, such as AntiBERTy [74] and IgLM [80], have
been used to generate full-length antibody sequences across different species or restore missing
regions in the antibody sequence [62; 56].

A.2 Protein Structure Generation

These approaches use equivariant architectures to generate proteins and antibodies in 3D. We broadly
distinguish two strategies: backbone-first and sequence-structure co-design.

The backbone-first strategy simplifies the generation problem by splitting it into two steps: the
generation of the protein backbone and of the protein sequence given the backbone structure. A
backbone can be designed by refining a rationally constructed template [24] or by a structure-based
generative model [90; 32; 15; 87; 50; 92; 47]. On the other hand, the determination of the residues that
fit the backbone can be cast within the self-supervised learning paradigm [3; 11] or by minimizing
some score that is a proxy for energy [60]. Despite the promise of backbone-first strategies, in
the context of deep learning, it is generally preferable to solve problems in an end-to-end fashion.
Decoupling the problem into separate steps can also prohibit the modeling of complex dependencies
between backbone and sequence, as early decisions are not updated in light of new evidence. As
discussed by Harteveld et al. [24], one failure mode of the backbone-first strategy is obtaining
a secondary structure that is not physically realizable with natural amino acids. It is also worth
mentioning that structure diffusion generative models can also be used for protein-protein docking,
as shown by Ketata et al. [40].

Sequence and structure co-design entails learning to generate a full protein in an end-to-end fash-
ion [51; 89]. In this paper we also adopt this strategy. As highlighted in the introduction, AbDiffuser
differs from these previous works in the neural architecture and protein representation (APMixer), as
well as by shaping the diffusion process to better suit the problem domain.

A relevant line of works has also focused on the re-generation of the complementarity-determining
regions (CDRs) of antibodies, a subset of the heavy and light chains containing typically between 48
and 82 residues [10] of particular relevance to binding [34; 20; 43; 33; 53; 78; 44]. These constitute
meaningful first steps towards the goal of full-atom antibody design that we consider in this work.
Having the ability to regenerate the full antibody sequence and structure significantly enlarges the
design space while also enabling the probing of properties beyond affinity, such as stability and
immunogenicity. Furthermore, even in the context of affinity optimization, it can be beneficial to also
redesign the framework and vernier regions, as the latter sometimes interact with the antigen and
affect the CDR conformation [1; 70; 79].

B Antibody Diffusion

This section complements the discussion in Section 2 by describing in greater detail how we frame
denoising diffusion.
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B.1 Additional Background on Denoising Diffusion

Recall that the forward process q(X1, ..., XT |X0) = q(X1|X0)Π
T
t=2q(Xt|Xt−1), is Markovian.

This Markovianity allows for the recovery of the reverse process

q(Xt−1|Xt, X0) =
q(Xt|Xt−1) q(Xt−1|X0)

q(Xt|X0)
.

Thus, to generate new data, a neural network learns to approximate the true denoising process
X̂0 = ϕ(Xt, t), which can be accomplished by minimizing the variational upper bound on the
negative loglikelihood [84; 26; 5]:

Lelbo(X0) := Eq(X0)

DKL(q(XT |X0)∥p(XT ))︸ ︷︷ ︸
LT (X0)

(3)

+

T∑
t=2

Eq(Xt|X0) DKL(q(Xt−1|Xt, X0)∥pθ(Xt−1|Xt))︸ ︷︷ ︸
Lt(X0)

− Eq(X1|X0) log(pθ(X0|X1))︸ ︷︷ ︸
L1(X0)


In practice, the model is trained to optimize each of the Lt(X0) loss terms and the L0(X0) loss term
individually, by sampling an arbitrary time step t ∈ {1, T}. Note that LT (X0) approaches 0 for any
data distribution if sufficiently many time steps are used. The latent variable distribution q is usually
defined so that one can directly sample any step in the trajectory efficiently.

As discussed in Section 2, in our diffusion process, we factorize the posterior probability distribution
over the atom positions and residue types:

q(Xt|Xt−1) = q(Xpos
t |Xpos

t−1) q(X
res
t |X res

t−1).

We discuss the constituent processes in the following two sections.

B.2 Equivariant Diffusion of Atom Positions

One of the most important features in the training of a diffusion model is the ability to efficiently
sample any step in the forward process q(Xpos

t |Xpos
0 ). This is easily achieved if we use a Gaussian dis-

tribution q(Xpos
t |Xpos

0 ) = N (αtX
pos
0 , σ2

tΣ), where αt and σ2
t are positive, scalar-valued functions of

t, with α1 ≈ 1 and αT ≈ 0. A common way to define the noising process is the variance-preserving
parameterization [84; 26] with αt =

√
1− σ2

t . A forward process step in this general diffusion for-
mulation can be expressed as q(Xpos

t |Xpos
t−1) = N (αt|t−1X

pos
0 , σ2

t|t−1Σ), where αt|t−1 = αt/αt−1

and σ2
t|t−1 = σ2

t − α2
t|t−1σ

2
t−1. Similarly, a reverse process step q(Xpos

t−1|X
pos
t , Xpos

0 ) can then be
expressed as the following Gaussian:

N

(
αt|t−1σ

2
t−1X

pos
t + αt−1σ

2
t|t−1X

pos
0

σ2
t

,
σ2
t|t−1σ

2
t−1

σ2
t

Σ

)
.

Similarly to Watson et al. [90], we can reduce the temperature τ of the Brownian motion of the
backward process by scaling the variance of this Gaussian distribution by τ .

Kingma et al. [41] showed that the training objective for the Gaussian distribution can be simplified
to

Lt(X
pos
0 ) =

1

2
(SNR(t− 1)− SNR(t)) ∥X̂pos

0 −Xpos
0 ∥2Σ−1 ,

where the signal-to-noise ratio is SNR(t) = (αt/σt)
2 and ∥ · ∥2Σ−1 = tr

(
(·)TΣ−1(·)

)
.

It is quite common in the literature to choose a slightly different optimization objective. In particular,
it has been found that predicting the noise ϵ̂ = ϕ(Xpos

t , t) that has been added Xpos
t = αtX

pos
0 + σtϵ,
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ϵ ∼ N (0,Σ) and using an unweighted loss Lt(X
pos
0 ) = 1

2∥ϵ̂ − ϵ∥2Σ−1 improves model training
[26; 41; 28]. A possible explanation is that this parameterization makes it easier for the model
to minimize the loss at time steps close to T . We found that a similar effect can be obtained by
re-weighing the mean prediction loss (Appendix C):

Lt(X
pos
0 ) =

1

2
SNR(t) ∥X̂pos

0 −Xpos
0 ∥2Σ−1 , (4)

which empirically renders the mean X̂pos
0 = ϕ(Xpos

t , t) and error ϵ̂ = ϕ(Xpos
t , t) prediction alter-

natives perform comparably. We rely on equation 4 throughout our experiments, since predicting
X̂pos

0 = ϕ(Xpos
t , t) allows for easier incorporation of known constraints, such as atom bond lengths

(see Section 3.4). As shown in Appendix D, L1(X
pos
0 ) can also be optimized using the same objective.

B.3 Discrete Residue-type Diffusion

To define the discrete diffusion process for the residue types we adopt the formulation introduced by
Austin et al. [5]. If we have a discrete random variable with k categories, represented as a one-hot
vector X res, we define the forward process q(X res

t |X res
0 ) = Cat(X res

0 Qt), where the transition matrix
Qt = βtI + (1 − βt)Q is a linear interpolation between identity and target distribution Q (e.g.,
uniform distribution). Similarly to atom diffusion, one forward process step is q(X res

t |X res
t−1) =

Cat(X res
t Qt|t−1), where Qt|t−1 = Q−1

t−1Qt. From this, a single reverse process step can be expressed
as:

q(X res
t−1|X res

t , X res
0 ) = Cat

(
X res

t QT
t|t−1 ⊙X res

0 Qt−1

Z

)
,

for an appropriate normalizing constant Z . In the discrete case, we implement temperature τ scaling
as the temperature of the softmax applied to the model output. This serves to sharpen the target
categorical distribution ∼ p1/τ .

Similarly to the atom diffusion case, we use a simplified objective for the discrete diffusion [22; 7]
which has been found to lead to better results:

Lt(X
res
0 ) = −βt log pθ(X

res
0 |X res

t )

Hyperparameter βt ensures that the loss weight is proportional to the fraction of unchanged classes
and we set βt = α2

t to keep the noise schedules for the residue-type diffusion and atom-position
diffusion the same. We also note that now the L1(X0) loss term is simply the cross-entropy of the
model prediction L1(X0) = log pθ(X0|X1). The derivation of our loss can be found in Appendix E.

C Re-weighted Optimization Objective for Atom Positions

As shown by Kingma et al. [41], the Lt term in the variational upper bound corresponds to

Lt(X
pos
0 ) =

1

2
(SNR(t− 1)− SNR(t)) ∥X̂pos

0 −Xpos
0 ∥2Σ−1 .

If we instead parameterize Xpos
t = αtX

pos
0 + σtϵ we can directly re-write this as

Lt(ϵ) =
1

2

(
SNR(t− 1)

SNR(t)
− 1

)
∥ϵ̂− ϵ∥2Σ−1 .

Meanwhile, the simplified objective of Ho et al. [26] is instead defined as

Lt(ϵ) =
1

2
∥ϵ̂− ϵ∥2Σ−1 .

If we reverse the parameterization as ϵ = Xpos
t −αtX

pos
0

σt
and using the fact that SNR(t) = α2

t /σ
2
t this

becomes

Lt(X
pos
0 ) =

1

2

∥∥∥∥∥Xpos
t − αtX̂

pos
0

σt
− Xpos

t − αtX
pos
0

σt

∥∥∥∥∥
2

Σ−1

=
1

2
SNR(t) ∥X̂pos

0 −Xpos
0 ∥2Σ−1 .
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D Reconstruction Loss for Atom Positions

For the Gaussian atom position diffusion (Section B.2 we need to account for a few considerations in
the reconstruction term L1(X0) of the variational upper bound. Assuming that the data probability is
constant, q(Xpos

0 |Xpos
1 ) ≈ N (

Xpos
1

α1
,

σ2
1

α2
1
Σ). Similarly to Hoogeboom et al. [28], we parameterize the

mean using the model prediction instead:

L1(X
pos
0 ) = logZ−1 − 1

2
SNR(1)∥Xpos

0 − X̂pos
0 ∥2Σ−1 .

As highlighted by Hoogeboom et al. [28], this increases the quality of the results.

Isotropic distributions, such as Gaussians with appropriate covariance matrices, assign the same prob-
ability to every rotation of a vector in 3D, implying that the resulting atom diffusion process is equiv-
ariant w.r.t. orthogonal group O3. To additionally impose that the diffusion is translation-equivariant,
we follow Hoogeboom et al. [28] and use a re-normalized multivariate Gaussian distribution, where
the sample center of mass is fixed to zero:

∑n
i=1 X

pos
i = 0. The latter has the same law as an ordinary

Gaussian with the main difference that the normalizing constant is now Z =
(√

2πσ
)3(n−1)

for n
atoms in 3D space.

It is clear to see that the O3 property is satisfied if we have an identity covariance. However,
it also holds for non-isotropic covariance matrices. Let us define Z ∼ N (0, I) of dimension
n × 3 and Xpos = KZ, where Σ−1 = KKT . The latter can be re-written as x0 = vec(X0) =
(I ⊗ K)vec(Z) = Σ1/2z. We then note that for any 3x3 unitary matrix U , we have x⊤

0 (U
⊤ ⊗

I)Σ−1(U ⊗ I)x0 = x⊤
0 (U

⊤ ⊗ I)(I ⊗L)(U ⊗ I)x0 = x⊤
0 (U

⊤U ⊗L)x0 = x⊤
0 (I ⊗L)x0. In other

words, since the covariance acts on the node dimension and the unitary matrix acts on the spatial
dimension, they are orthogonal and do not affect each other.

E Simplified Discrete Diffusion Optimization Objective

We can obtain the simplified training objective by taking a slightly different bound on the negative
log-likelihood to the one presented in Equation 3 [22]:

− log (pθ (X0)) ≤ EX1:T∼q(X1:T |X0)

[
− log

(
pθ (X0:T )

q (X1:T |X0)

)]
= Eq

[
− log

(
pθ (X0:T )

q (X1:T |X0)

)]
= Eq

[
− log (pθ (XT ))−

T∑
t=2

log

(
pθ (Xt−1|Xt)

q (Xt|Xt−1)

)
− log

(
pθ (X0|X1)

q (X1|X0)

)]

= Eq

[
− log (pθ (XT ))− log

(
pθ (X0|X1)

q (X1|X0)

)
−

T∑
t=2

log

(
q (Xt−1|Xt, X0) pθ (X0|Xt)

q (Xt−1|Xt, X0)
· q (Xt−1|X0)

q (Xt|X0)

)]

= Eq

− log

(
pθ (XT )

q (XT |X0)

)
︸ ︷︷ ︸

LT (X0)

−
T∑

t=2

log (pθ (X0|Xt))︸ ︷︷ ︸
Lt(X0)

− log (pθ (X0|X1))︸ ︷︷ ︸
L1(X0)


In this formulation, compared to equation 3, the term Lt = DKL (q (Xt−1|Xt, X0) ∥pθ (Xt−1|Xt))
is replaced by

Lt = − log (pθ (X0|Xt))

To form the discrete loss Lt(X
res
0 ), we additionally weight each loss term Lt by βt to match the loss

weighting used for the atom positions (Appendix C). Note that when this objective is minimized, the
original DKL term will also be at a minimum.
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E.1 Non-Informative Priors Demand Higher Complexity Denoising Models

Denote by p the data distribution and by pθ the learned distribution, the latter of which is obtained
by the push-forward pθ(fθ(Z)) = q(Z) of some prior measure q by function fθ. In the context of
denoising diffusion, Z = XT , while fθ = ϕ(XT , T ) is the learned reverse process.

We prove the following general result which relates the informativeness of the prior with the quality
of the generative model and the complexity of the function computed:

Theorem E.1. For any fθ that is an invertible equivariant function w.r.t. a subgroup G of the
general-linear group GL(d,R) the following must hold:

cq(fθ) ≥ Wt(p, q)−Wt(p, pθ),

where cq(f) := (ming∈G EZ∼q[∥f(g Z)− Z∥tt])
1/t quantifies the expected complexity of the

learned model under q, Wt(p, pθ) is the Wasserstein t-distance of our generative model to the
data distribution, and Wt(p, q) is the distance between prior and posterior.

The bound asserts that one cannot learn a simple (in terms of cq(f)) generative model that fits the
data well unless the prior has a small Wasserstein distance to the data distribution.

The complexity measure cq(f) is particularly intuitive in the context of denoising diffusion. For the
diffusion of atom positions with a SE(3) equivariant model ϕ, we have

cq(ϕ) = min
g∈SE(3)

EXT
[∥ϕ(g XT , T )−XT ∥22],

that corresponds to the expected amount of denoising that the model performs throughout the reverse
process, discounting for rotations. By selecting an informative prior, we decrease Wt(p, q) and
therefore reduce the amount of denoising our model needs to do.

Proof. We recall that the Wasserstein t-distance between two probability measures p, p′ with finite
t-moments is

Wt(p, p
′) :=

(
inf

γ∈Γ(p,p′)
E(X,X′)∼γ [∥X −X ′∥t]

)1/t

,

where the coupling γ is a joint measure on Rd×Rd whose marginals satisfy
∫

Rd γ(X,X ′)dx′ = p(X)

and
∫

Rd γ(X,X ′)dx = p′(X ′), whereas Γ(p, p′) is the set of all couplings of p, p′.

We will first lower bound W1(pθ, q). To achieve this, let X = f(Z) and X ′ = fθ(Z
′) and select

γ∗(X,X ′) = 0 when Z ̸= Z ′ and γ∗(X,X ′) = q(Z) otherwise, which is a coupling because
it satisfies

∫
X′ γ

∗(X,X ′)dx′ = q(Z) = p(X) and
∫
X
γ∗(X,X ′)dx = q(Z ′) = pθ(X

′). Then,
exploiting that the Wasserstein distance is a metric (and thus abides by the triangle inequality), we get

Wt(pθ, q) ≥ Wt(p, q)−Wt(p, pθ) (by the triangle inequality)

= Wt(p, q)−
(

inf
γ∈Γ(p,pθ)

∫
X,X′

γ(X,X ′)∥X −X ′∥tt dx dx′
)1/t

≥ Wt(p, q)−
(∫

X,X′
γ∗(X,X ′)∥X −X ′∥tt dx dx′

)1/t

= Wt(p, q)−
(∫

X

(∫
X′

γ∗(X,X ′)∥X −X ′∥tt dx′
)
dx

)1/t

= Wt(p, q)−
(∫

X

p(X)∥X − fθ(f
−1(X))∥ttdx

)1/t

(by the definition of γ∗ and invertibility of f )

= Wt(p, q)−
(
EX∼p[∥X − fθ(f

−1(X))∥tt]
)1/t

= Wt(p, q)−
(
EZ∼q[∥f(Z)− fθ(f

−1(f(Z)))∥tt]
)1/t

= Wt(p, q)−
(
EZ∼q[∥f(Z)− fθ(Z)∥tt]

)1/t
(5)
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Next, we upper bound Wt(pθ, q). Let G be any subgroup of the general linear group GL(d,R) for
which fθ(Z) is equivariant and further denote by g ∈ G an element of the said group.

We fix γ#(X,Z) = q(Z) when X = fθ(gZ) and γ#(X,Z) = 0, otherwise. To see that the latter is
a valid coupling notice that fθg is bijective as the composition of two bijective functions, implying:∫

γ#(X,Z)dz = q(zx) and
∫

γ#(X,Z)dx = q(Z),

with zx = (fθ ◦ g)−1(X). Further,

q(zx) = pθ(fθ(g
−1(f−1

θ (X)))) (since pθ(X) = q(fθ(Z)))

= pθ(g
−1fθ(f

−1
θ (X))) (by the equivariance of fθ)

= pθ(g
−1X)

= pθ(X), (by the exchangeability of pθ)

as required for γ# to be a coupling. We continue by bounding the Wasserstein metric in light of γ#:

Wt(pθ, q)
t = inf

γ∈Γ(pθ,q)

∫
γ(X,Z)∥X − Z∥tt dx dz (by definition)

≤
∫

γ#(X,Z)∥X − Z∥tt dx dz (due to the inifimum)

=

∫ (∫
γ#(X,Z)∥X − Z∥tt dx

)
dz

=

∫
q(Z) ∥fθ(gZ)− Z∥tt dz (by definition of γ#)

= EZ∼q[∥fθ(gZ)− Z∥tt] (6)

Combining equation 5 and equation 6, we get

min
g∈G

EZ∼q[∥fθ(gZ)− Z∥tt] ≥ Wt(p, q)−
(
EZ∼q[∥f(Z)− fθ(Z)∥tt]

)1/t
, (7)

as claimed.

In the context of our paper, we have Z = XT ∼ N (0,Σ), fθ(Z) = X̂0 = ϕ(XT , T ), f(Z) = X0,
G is the standard Euclidean group SE(3), and we select t = 2. Then, the aforementioned inequality
becomes

min
g∈SE(3)

EXT
[∥ϕ(XT , T )− g XT ∥22] ≥ W2(p, qT )−

√
EXT

[∥ϕ(XT , T )− ϕ∗(XT , T )∥22], (8)

where we have changed the position of g by exploiting that the ℓ2 norm is unitary invariant and that ϕ
is SE(3) equivariant. Alternatively, we can obtain the following tighter bound by stopping earlier at
the derivation of equation 5:

EXT
[∥ϕ(XT , T )−XT ∥22] ≥ W2(p, qT )−W2(pθ, p), (9)

where qT is the law of XT .

F Learning the Conditional Dependence Relations Between Atoms

We consider the zero-mean multivariate Gaussian whose inverse covariance matrix Σ−1 = L+ aI
corresponds to a sparse weighted Laplacian matrix L. Intuitively, Lij should be zero if the position of
the point i is independent of that of j given the positions of the neighbors of i being fixed. The term
a is a small constant whose role is to shift the spectrum of L and thus make the Laplacian invertible.

We follow the framework of [39] and optimize L by minimizing the following objective:

min
L∈L

tr((Xpos)TLXpos) + f(L),
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where the m× 3 matrix X contains the 3D positions of the m points modeled and f(L) are some
optional constraints we can enforce on the graph Laplacian (and thus also to the adjacency matrix A).

The log-likelihood of vectors X on the graph defined by L can be directly expressed as a function of
the graph adjacency matrix and the pairwise distance matrix Z:

tr((Xpos)TLXpos) = A⊙ Z =
1

2

∑
i,j

Aij∥Xpos
i −Xpos

j ∥22.

Kalofolias [39] propose the following optimization objective, to recover the optimal adjacency, which
with a logarithmic term also ensures that every node has at least one neighbor, which is something
we also desire:

min
A∈A

∥A⊙ Z∥1 − 1T log(A1) +
1

2
∥A∥22.

An efficient primal-dual algorithm exists for solving this optimization problem [39]. The adjacency
matrix that we recover using the mean distance matrix over all of the proteins in paired OAS can be
seen in Figure 4. Our use of AHo numbering allows us to directly estimate such mean distances, as
with our representation every antibody effectively possesses the same number of residues.

To increase the stability of the Cholesky decomposition L = KKT , which is needed for sampling
co-variate noise Xpos

t = αtX
pos
0 + σtKϵ, ϵ ∼ N (0, 1), we instead use the generalized Laplacian

L = diag(A1)−A+ I for the diffusion process.

Figure 4: We define a Gaussian prior on the atom positions by learning an adjacency (conditional
dependence) matrix for antibody backbone atom positions from all of the folded paired heavy and
light chains in the Observed Antibody Space (OAS) [61]. Dependencies between framework residue
atom positions and even correlations between heavy (top-left) and light (bottom-right) chain atom
positions are distinctly captured.

G Proof of SE(3) universality

In the following, we prove the SE(3) universality of an MLP-mixer backbone model combined with
frame-averaging.

Concretely, let X be an n × m matrix with bounded entries and consider the backbone model:
ϕ(X) = cL ◦ rL−1 ◦ · · · ◦ c3 ◦ r2 ◦ c1(X), where the subscript denotes layer, cl is an MLP operating
independently on each column of its input matrix, and similarly, rl is an MLP operating independently
on each row of its input.

It is a consequence of Theorem 4 in [68] that if F is a bounded G-equivariant frame and if ϕ is a
backbone model that is universal over any compact set, then combining ϕ with frame-averaging over a
frame-finite domain (i.e., a domain within which the frame cardinality is finite) yields a G-equivariant
universal model ⟨ϕ⟩F . Since the SE(3) frame is bounded and thus the domain is frame-finite (see also
Proposition 1 [68]), to show that ⟨ϕ⟩F is a universal approximator of any continuous SE(3) function,
it suffices to show that the MLP-mixer is a universal approximator over continuous functions over
any compact set (or simply universal).

To proceed, we will show that there exists a parameterization so that ϕ(X) = cL([z; vec(X)]) for
some vector z. We can then rely on the universal approximation property [23] of MLPs to conclude
that ϕ is also universal.
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We first provide an exact constructive argument on how this can be achieved:

1. Let V be a (n+1)× (n+1) unitary matrix whose first column is the constant vector 1 and
set U = V:,1: to be the n + 1 × n submatrix. The first MLP embeds each column vector
x isometrically into n+ 1 as follows: c1(x) = Ux. By construction, every column of the
output X ′ is now orthogonal to 1.

2. The network appends U to the left of X ′ and (

×n−1︷ ︸︸ ︷
UX; · · · ;UX) to the right. Since appending

to the right involves replicating each row multiple times, it can be done by a linear row
operation. Appending to the left is slightly more involved and can be achieved by iteratively
building U column by column, with each column added by using a row MLP to add one
dimension with a constant value and a column MLP to project the new constant vector
introduced to the appropriate column of U . The key here is that, since we have guaranteed
that the columns are always orthogonal to the constant vector, the column MLP can always
distinguish the newly introduced column from the ones already at play. Let X ′′ be the result
of this process.

3. A column MLP projects each column of the (n+1)× (n+ nm) matrix to n dimensions by
multiplying by U⊤. The output of this layer is X ′′′ = [I;X; · · · ;X].

4. A row MLP zeros out all elements except those indexed by the one-hot encoding in the
first n entries. The latter can be done by a ReLU MLP with one hidden layer: if all entries
of our input are smaller than b and the input is (onehot(i), x), the first linear layer adds
b to only the entries [n + in : n + in + n) and shifts every element by −b using its
bias. The latter lets the correct elements pass the ReLU with an unchanged value while
setting all other elements to zero, as required. Let the output of this layer be X ′′′′ with

X ′′′′
i,: = (Ii,:;

×i−1︷ ︸︸ ︷
0; · · · 0;Xi,:;

×n−i︷ ︸︸ ︷
0; · · · 0).

5. A column MLP sums up all entries. The output is now a row vector (1;X⊤
1,:; · · · ;X⊤

n,:)
⊤ of

length n+ nm, as required.

Steps 1 and 2 of the above constructive argument are inefficient because they rely on very simple
layers. This can be avoided if we utilize more powerful MLPs (i.e., functions cl and rl) and an
existence argument. Specifically, as there exists a continuous function that achieves step 2, by the
universality of MLPs there also exists an MLP that approximates the step arbitrarily well. Similarly,
rather than increasing the dimension to n + 1 at step 1, one may argue that the MLP can assign
some vector outside of the bounded domain where the input data resides, and thus the dimension
can remain n. Therefore, in this setting, only a constant number of MLPMixer blocks are needed to
obtain the desired output.

This concludes the proof.

H Noise Schedule

In our denoising model, we use the cosine-like schedule proposed by Hoogeboom et al. [28], with a
1000 denoising steps:

αt = (1− 2s) ·

(
1−

(
t

T

)2
)

+ s,

where a precision s = 1e−4 is used to avoid numerical instability. As σt =
√

1− α2
t and βt = α2

t ,
it is sufficient to define just αt. Following Nichol and Dhariwal [59] we clip αt|t−1 to be at least
0.001, to avoid instability during sampling and then recompute αt as a cumulative product. To
further ensure numerical stability, as recommended by Kingma et al. [41] we compute the negative
log SNR curve γ(t) = − logα2

t + log σ2
t . This parameterization allows for numerically stable

computation of all important values [41], for example, α2
t = sigmoid(−γ(t)), σ2

t = sigmoid(γ(t)),
σ2
t|t−1 = −expm1(softplus(γ(t−1))− softplus(γ(t))) = −expm1(γ(t−1)−γ(t))σ2

t , and SNR =

exp(−γ(t)). Where expm1(x) = exp(x)− 1 and softplus(x) = log(1 + exp(x)).
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I Full Training and Sampling Algorithms

For convenience, in Algorithms 1 and 2 we describe the full training and sampling procedures.

Algorithm 1 Training
1: repeat
2: Get a data point:
3: Xpos

0 , Xseq
0 ∼ q(Xpos

0 , Xseq
0 )

4: Sample some time step:
5: t ∼ Uniform(1, ..., T )
6: Xpos

t ∼ N (αtX
pos
0 , σ2

tΣ)
7: Xseq

t ∼ Categorical(X res
0 Qt), here Qt = βtI + (1− βt)Q

8: Predict:
9: X̂pos

0 , X̂seq
0 = fθ

(
Project

(
Xpos

t

)
, Xseq

t , t
)

10: X̂pos
0 = Project

(
X̂pos

0

)
11: Compute losses:
12: Lt(X̂

pos
0 ) = 1

2 SNR(t) ∥X̂pos
0 −Xpos

0 ∥2Σ−1

13: Lt(X̂
res
0 ) = βtCrossEntropy

(
X̂ res

0 , X res
0

)
14: Take a gradient step on: ∇θ

(
Lt(X̂

pos
0 ) + Lt(X̂

seq
0 )
)

15: until converged

Algorithm 2 Sampling
1: Initialize:
2: Xpos

T ∼ N (0, Σ)
3: Xseq

T ∼ Categorical(Q)
4: Loop over the time steps:
5: for t = T, ..., 1 do
6: Predict:
7: X̂pos

0 , X̂seq
0 = fθ

(
Project

(
Xpos

t

)
, Xseq

t , t
)

8: X̂pos
0 = Project

(
X̂pos

0

)
9: Sample next state:

10: if t > 1 then
11: Xpos

t−1 ∼ N
(

αt|t−1σ
2
t−1X

pos
t +αt−1σ

2
t|t−1X̂

pos
0

σ2
t

,
σt|t−1σt−1

σt
Σ

)
12: Xseq

t−1 ∼ Categorical
(

X res
t QT

t|t−1⊙X̂ res
0 Qt−1

Z

)
13: else
14: Xpos

0 ∼ N (X̂pos
0 ,

σ2
1

α2
1
Σ)

15: Xseq
0 ∼ Categorical

(
X̂seq

0

)
16: return Xpos

0 , Xseq
0 .

J Metrics Used in the Numerical Experiments

The metrics applied to generated sequences include methods that measure naturalness, similarity
to the closest extant antibody, and stability. To examine Naturalness we use the inverse perplexity
of the AntiBERTy [74] model trained on a large corpus of antibody chain sequences. As shown by
Bachas et al. [6] this score correlates with antibody developability and immunogenicity. To explore
Closeness we use fast sequence alignment [9] to determine the closest sequence in the training set.
The mean sequence identity (fractional edit distance) to the closest training sequence is then reported
as a score. Here Stability is operationalized by estimating the error of the folded structure using
IgFold [73]. This error can be used to rank the sequences by how stable we expect their folds to
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be. We take the 90th percentile of the residue error as an estimate of the sequence fold stability;
the latter typically corresponds to the CDR H3 and L3 loops, which have the most influence over
the antibody’s functional properties. To further verify that the generated antibody sequences satisfy
appropriate biophysical properties, we rely on four additional structure-based metrics Raybould
et al. [69]: CDR region hydrophobicity (CDR PSH), patches of positive (CDR PPC), and negative
charge (CDR PNC), and symmetry of electrostatic charges of heavy and light chains (SFV CSP).
These metrics operate on folded sequences (using IgFold) and take into account distance-aggregated
structural properties of CDR regions (and their spatial vicinity), and their significant deviation from
reference values is typically associated with bad developability properties of antibodies such as poor
expression, aggregation, or non-specific binding [69].

To evaluate the overall similarity of the generated and the test-set distributions, for all of these
sequence metrics, we report the Wasserstein distance between the scores of the sequences in the test
split and the scores of the generated sequences.

The metrics applied to the generated structures focus primarily on scores known to correlate with
free energy and RMSD. a) We use free energy ∆G estimated using Rosetta [2] to evaluate the
stability of the generated structure. Although lower energy is normally associated with higher stability
of the protein structure, one needs to be careful not to reward disproportionally small energies
achieved when a miss-formed protein collapses into a morph-less aggregate. Thus, we again report
the Wasserstein distance between the generated and test energy distributions. b) RMSD. We also
re-fold the generated sequence with IgFold [73] and report the RMSD for the backbone N,Cα, C, Cβ

and O atom positions. RMSD is reported as a mean over the generated structures as it captures how
well each generated structure matches its sequence.

K Detailed Generated Structure RMSD Evaluation

Model Full ↓ Fr ↓ Fr. H ↓ CDR H1↓ CDR H2↓ CDR H3↓ Fr. L ↓ CDR L1↓ CDR L2↓ CDR L3↓
EGNN 9.8231 9.3710 9.2929 13.1720 13.0032 10.3360 9.3918 14.6768 10.1584 10.4860
EGNN (AHo) 10.0628 9.4717 9.3552 13.1730 13.4611 12.2434 9.5314 15.3884 10.6975 11.0732
EGNN (AHo & Cov.) 9.4814 8.7581 8.6206 12.9454 13.2237 12.0939 8.8174 15.2841 10.0504 11.1167

FA-GNN 0.8617 0.5748 0.5093 0.6671 0.7438 2.2530 0.6157 0.8199 0.5946 1.1576
FA-GNN (AHo) 0.8321 0.4777 0.4618 0.6881 0.7867 2.2884 0.4860 0.9398 0.5053 1.1165
FA-GNN (AHo & Cov.) 0.8814 0.5934 0.5236 0.5968 0.6213 2.0788 0.5966 0.7907 0.4521 1.3536

AbDiffuser (uniform prior) 0.8398 0.5937 0.5742 0.7623 0.6705 1.8365 0.6095 0.8825 0.4795 1.0698
AbDiffuser (no projection) 11.1431 11.0062 10.8279 13.8692 14.4139 10.4367 11.1709 15.7536 11.5205 11.2404
AbDiffuser (no Cov.) 0.6302 0.4011 0.3826 0.4946 0.5556 1.6553 0.4169 0.5585 0.4321 0.8310
AbDiffuser 0.5230 0.3109 0.2862 0.3568 0.3917 1.5073 0.3322 0.4036 0.3257 0.7599
AbDiffuser (side chains) 0.4962 0.3371 0.3072 0.3415 0.3768 1.3370 0.3637 0.3689 0.3476 0.8173

Table 4: Detailed RMSD for generated antibodies based on Paired OAS dataset [61]. The top three
results in each column are highlighted as First, Second, Third.

Model Full ↓ Fr ↓ Fr. H ↓ CDR H1↓ CDR H2↓ CDR H3↓ Fr. L ↓ CDR L1↓ CDR L2↓ CDR L3↓
MEAN [43] 0.7792 0.3360 0.3045 0.4569 0.3359 2.9053 0.3645 0.4425 0.2490 0.6862

EGNN (AHo & Cov.) 9.2180 8.7818 8.5527 12.0018 12.5770 10.0308 8.9396 14.2269 9.5391 10.4077
FA-GNN (AHo & Cov.) 3.1800 3.3761 1.8529 0.6446 0.5223 2.0202 4.2721 0.5633 0.5376 3.4047
AbDiffuser 0.3822 0.2186 0.1669 0.3611 0.2737 1.1699 0.2610 0.1937 0.2006 0.6648
AbDiffuser (side chains) 0.4046 0.2686 0.2246 0.3861 0.3115 1.1191 0.3073 0.2242 0.2379 0.7122

AbDiffuser (τ = 0.75) 0.3707 0.2138 0.1615 0.3541 0.2709 1.1210 0.2563 0.1830 0.1946 0.6615
AbDiffuser (s.c., τ = 0.75) 0.3982 0.2729 0.2277 0.3914 0.2917 1.0624 0.3127 0.2492 0.2548 0.7131

AbDiffuser (τ = 0.01) 0.3345 0.2000 0.1463 0.3389 0.2723 0.9556 0.2430 0.1530 0.1792 0.6582
AbDiffuser (s.c. τ = 0.01) 0.6795 0.6168 0.5938 0.8161 0.7113 1.1550 0.6396 0.7938 0.7048 0.8395

Table 5: Detailed RMSD for generated antibodies based on Trastuzumab mutant dataset [55]. The
top three results in each column are highlighted as First, Second, Third.

Here, in Tables 4 and 5 we provide per-region distances between folded and optimized structures of
the generated sequences and the generated structures. As you can see these distances correlate well
with the overall RMSD reported in the main text. As the folded structures are optimized, we also
investigate how the error changes if similarly to folding models we also use Rosetta [2] to optimize
the generated structures in Tables 6 and 7. As can be seen, the optimization slightly reduces the
RMSDs, but the relatively modest change for AbDiffuser-generated structures hints at the fact that
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the generated structures were relatively physically plausible. In Table 5 we see that while the model
that generates the side chains achieves a worse overall RMSD, in most cases it models CDR H3 more
precisely, which is the most important part function-wise. This seeming focus on CDR H3 might
explain why this model achieved a better predicted binding probability, even while modeling the
overall structure slightly worse.

Model Full ↓ Fr ↓ Fr. H ↓ CDR H1↓ CDR H2↓ CDR H3↓ Fr. L ↓ CDR L1↓ CDR L2↓ CDR L3↓
EGNN 9.8129 9.3487 9.2647 13.2206 13.1699 10.4327 9.3722 14.8368 10.1526 10.6565
EGNN (AHo) 10.1364 9.5233 9.3961 13.3611 13.7014 12.4793 9.5918 15.6919 10.8115 11.3710
EGNN (AHo & Cov.) 9.5411 8.8202 8.6761 13.0186 13.3938 12.1843 8.8849 15.4368 10.1352 11.2356

FA-GNN 0.7817 0.4844 0.4228 0.5558 0.6293 2.1533 0.5205 0.7222 0.4617 1.0457
FA-GNN (AHo) 0.7767 0.4116 0.3918 0.6002 0.7031 2.2311 0.4228 0.8372 0.4054 1.0333
FA-GNN (AHo & Cov.) 0.7798 0.5061 0.4541 0.5485 0.5949 1.9846 0.5195 0.7121 0.3914 1.2032

AbDiffuser (uniform prior) 0.8122 0.5528 0.5300 0.7053 0.6184 1.8129 0.5704 0.8326 0.3914 1.0416
AbDiffuser (no projection layer) 10.9194 10.7255 10.5253 13.6499 15.0346 10.9846 10.9083 15.9310 11.6059 11.7446
AbDiffuser (no Cov.) 0.5867 0.3425 0.3206 0.4272 0.4848 1.6261 0.3606 0.4921 0.3296 0.7801
AbDiffuser 0.5068 0.2896 0.2642 0.3282 0.3708 1.4921 0.3110 0.3871 0.2611 0.7334
AbDiffuser (side chains) 0.4463 0.2751 0.2426 0.2764 0.3266 1.2869 0.3025 0.3187 0.2390 0.7533

Table 6: Detailed RMSD for generated antibodies based on Paired OAS dataset [61] after optimization
with Rosetta [2]. The top three results in each column are highlighted as First, Second, Third.

Model Full ↓ Fr ↓ Fr. H ↓ CDR H1↓ CDR H2↓ CDR H3↓ Fr. L ↓ CDR L1↓ CDR L2↓ CDR L3↓
MEAN [43] 0.7412 0.3004 0.2718 0.5395 0.2909 2.7830 0.3261 0.3758 0.2593 0.6849

EGNN (AHo & Cov.) 9.2535 8.8170 8.5701 12.0330 12.7993 10.1256 8.9911 14.4588 9.7059 10.6565
FA-GNN (AHo & Cov.) 2.1631 2.2522 1.1541 0.6734 0.5783 2.0892 2.9101 1.4517 0.5797 2.1591
AbDiffuser 0.3692 0.2017 0.1415 0.3349 0.2474 1.1464 0.2479 0.1743 0.1589 0.6625
AbDiffuser (side chains) 0.4087 0.2755 0.2304 0.3632 0.3044 1.1065 0.3141 0.2957 0.1920 0.7217

AbDiffuser (τ = 0.75) 0.3584 0.1969 0.1358 0.3283 0.2459 1.1003 0.2434 0.1642 0.1513 0.6599
AbDiffuser (s.c., τ = 0.75) 0.3981 0.2747 0.2267 0.3615 0.2795 1.0497 0.3155 0.2939 0.2050 0.7151

AbDiffuser (τ = 0.01) 0.3210 0.1837 0.1202 0.3023 0.2464 0.9288 0.2306 0.1257 0.1285 0.6583
AbDiffuser (s.c. τ = 0.01) 0.6298 0.5661 0.5450 0.7135 0.6025 1.0870 0.5868 0.6878 0.6012 0.8720

Table 7: Detailed RMSD for generated antibodies based on Trastuzumab mutant dataset [55] after
optimization with Rosetta [2]. The top three results in each column are highlighted as First, Second,
Third.

L Wet-Lab Validation of Designs

In our wet-lab experiments, we follow the procedure of Hsiao et al. [29]. As we focus on Trastuzumab
mutants, the experiments need to account for the fact that the part of the HER2 antigen to which
Trastuzumab binds is prone to misfolding in vitro. In the usual experimental procedure for the SPR
measurements of Kd values, the antibody is immobilized and the antigen (in this case HER2) is used
as a ligand. However, for the domain to which Trastuzumab is binding in HER2, taking into account
the problem of misfolding, the standard procedure described by Hsiao et al. [29] is to immobilize the
antigen and treat the antibody as a ligand, making the ’misfolded’ HER2 essentially invisible in the
binding kinetics.

As pointed out by Mason et al. [55], mutating Trastuzumab such that the resulting antibody still binds
to HER2 is quite challenging, as some binders in the dataset are just one edit away from non-binders.
We also check the similarity of our new binders verified in the wet-lab experiments to both the
binder and non-binder sets from the dataset. As can be seen in Table 8 some of the best binders we
discovered are equidistant to both sets.

To further highlight the similarity of the non-binder and the binder sets from Mason et al. [55] we
include the residue frequency (logo) plots for the CDR H3 positions that were varied in Figure 5.

M Implementation and Training Details

As mentioned in the main text, all of the models are evaluated using the same denoising procedure.
They also share the input embedding procedure: we utilize a learned dictionary for each amino acid
type and another learned dictionary for the chain type (light or heavy). These initial embeddings
are summed together to form the input to the actual model. For all models except the APMixer, an
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Generated binder Binder dist. Num. closest binders Non-binder dist. Num. closest non-binders KD↓
SRYGSSGFYQFTY 2 2 2 2 5.35e-08
SRWLASGFYTFAY 1 1 2 2 4.72e-09
SRWSGDGFYQFDY 1 1 2 3 4.12e-09
SRWRGSGFYEFDY 1 1 2 3 2.89e-09
SRWRASGFYAYDY 1 2 3 19 2.00e-09
SRYGGFGFYQFDY 2 3 2 2 1.86e-09
SRYGGSGFYTFDY 2 8 2 2 3.17e-10

Table 8: Edit distances of our generated binders to closest binders and non-binders in the dataset by
Mason et al. [55], together with the number of such closest (non-)binders.

Figure 5: Logo plots for relative amino acid frequencies in the mutated CDR H3 positions for binders
(top) and non-binders (bottom) in the dataset by Mason et al. [55].

additional sinusoidal sequence position embedding is included in the sum. The model also receives
the time step t as an additional input, concatenated with the other inputs. Similar to Hoogeboom et al.
[28], we found this simple time-step conditioning to work well. The input and output of the model
are always processed with our constraint layer from Section 3.4. The amino acid type predictions are
made by computing a vector product with the input amino acid dictionary.

We will cover the model-specific architectural details in the following.

M.1 APMixer Details

We build ab mixer out of blocks as described in Section 3.3, where each block consists of two MLPs,
that are applied consecutively on the columns

X·,j = X·,j +W2ρ(W1LayerNorm(X·,j))for all j ∈ [c]

and on the rows

Xi,· = Xi,· +W4ρ(W3LayerNorm(Xi,·))for all i ∈ [r].

The whole APMixer used 8 such blocks plus an embedding MLP and two readout MLPs, one for
predicting residue atom positions and another for the residue type predictions. Their outputs are
respectively processed using equivariant and invariant frame averaging formulations.

As we noted earlier, each block is wrapped in frame averaging. We choose to process half of the output
equivalently and half invariantly. It is possible to just use the equivariant formulation throughout the
inner blocks, but we found this to slightly improve the performance of the model. Possibly because
this aligns slightly better with having position-invariant sequence features. In this case, we extend the
APMixer block to have a linear layer before the column MLP, to merge the two representations.

We use 2 layer MLPs throughout, with the embedding dimension of h = 1920. The column MLP is
applied on three columns at a time to ensure easier modeling of 3D interactions. Also, to facilitate
easier modeling of multiplicative interactions (e.g. forces) these MLPs use gated activation in the
hidden layer x = x0:h ∗ σ(xh:2h), where x is the output of the linear layer, h is the embedding
dimension (the MLPs hidden dimension is effectively 2× h) and σ is the activation function. We
chose to use the SiLU [25] activation function as it appears to perform the best on geometric tasks,
both on APMixer and the baseline GNN architectures.
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M.2 Baselines

M.2.1 Transformer

For the sequence-only generation, we use a standard transformer encoder[12] as implemented by
PyTorch [65], with 3 blocks, embedding dimension of 2048, and pre-normalization. The transformer
uses the GELU [25] activation function as standard.

M.2.2 EGNN

We use the EGNN [75] as implemented for the equivariant molecule diffusion by Hoogeboom et al.
[28]. We extend it to work with residues that have many atoms by using the formulation proposed by
Huang et al. [31] and also used by Kong et al. [43], which for updating each node (residue) make use
of the distances Zl

ij = Xi −Xj between atoms in each residue:

mij =ϕe

(
hl
i, hj , Z

l
ij(Z

l
ij)

T
)
,
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where Xi is a matrix of a× 3 if we have a atoms per residue.

To improve the model stability, we apply a layer normalization on ht at the beginning of each such
block. We wrap every block in EGNN in our constraint layer Section 3.4. The EGNN has 6 such
blocks and uses an embedding dimension of 576. As standard, we use SiLU activation and, similarly
to AgentNet, we found it slightly beneficial to use a hidden dimension in the MLP of twice the
embedding size. The model uses a readout MLP to make the final embedding which is used to predict
the amino acid type. This layer is also preceded by layer normalization. An embedding MLP is used
for the inputs.

M.2.3 FA GNN

We use the same GNN architecture as used by Puny et al. [68]:

mi,j =ϕe(h
l
i, hj)

mi =
∑
j

mi,j

hl+1
i =ϕh(h

l
i,mi),

which is essentially the same architecture as EGNN, just without the distance-based edge features
and explicit position updates. To process the positions, we wrap each of these GNN blocks using
frame averaging, and for the very first embedding MLP we supply residue atom positions as inputs
together with the other features.

The FA-GNN has 4 of these GNN blocks and uses an embedding dimension of 384. SiLU activation
and the hidden MLP dimension of twice the embedding dimension are used. The FA-GNN uses the
same setup as APMixer with two readout heads for amino acid type prediction and atom position
prediction.

M.3 Training

We use AdamW for training [52] with a weight decay of 0.01 and with a learning rate of 2 · 10−4

for all structure models, while the transformer used a learning rate of 1 · 10−4. We experimented
with weight decay of 1e− 12 and learning rates in the range of 1 · 10−3 to 1 · 10−4 for all models, to
determine the chosen values. We also normalize the gradient norm to unit length during training. All
models use a batch size of 4. This is the maximum batch size that allows training the baseline models
on our 80GB GPU. The APMixer due to the better memory complexity allows for batch sizes up to
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32, but to keep the setup similar, we also used a batch size of 4 for it. For paired OAS we train the
models for 50 epochs, while for HER2 binder generation we train for 600 epochs, for around 1.25M
training steps in both cases. The Paired OAS dataset [61] was split into 1000 test samples and 1000
validation samples. Similarly, the HER2 binder dataset [55] was split to have 1000 test samples and
100 validation samples.

We keep track of the exponential moving average of the model weights, for all models, with a
coefficient of 0.995, and use these weights at test time. No model selection is performed.

During training, we use idealized atom positions as returned by our projection layer (Section 3.4) as
the target. This ensures that the exact target configuration is reachable by the model.

The CDR redesign baselines of RefineGNN [34] and MEAN [43] were trained for the same amount
of steps using the default parameters and early stopping.

All experiments were performed on an 80GB A100 GPU.

M.4 APMixer Classifier

We adapt APMixer for HER2 binder classification (Section 5.2) by including a global readout. This
readout is constructed by applying mean pooling over the frames and residues after each APMixer
block and then applying a layer normalization and a linear layer. All of the linear layer outputs are
summed to obtain the final prediction. This follows a popular graph classification readout used in
GNNs [93].

The classifier is trained for 100 epochs using a batch size of 16. No exponential moving average of
weights is used, and the model with the best validation accuracy is selected. The full HER2 dataset
was split to have 3000 test samples and 1000 validation samples.

N Conditional CDR Redesign

While co-crystal structures usually come quite late in the drug discovery process, performing CDR
structure and sequence redesign for a given, unseen co-crystal structure is a popular benchmark for
deep generative models [53; 43; 44; 34]. Here, we use the data split from Luo et al. [53], derived from
the SAbDab database of antibody-antigen structures [13]. This split ensures that all antibodies similar
to those of the test set (> 50% CDR H3 identity) are removed from the training set. In contrast to the
experimental setup of Luo et al. [53], we report the results for the more difficult task of redesigning
all CDRs at once2, rather than redesigning a single CDR at a time. Following Luo et al. [53], the
results are averaged over 100 samples for each of the 19 test structures. We observed that in this setup
the minimization protocol used by Luo et al. [53] increased the RMSD values (Table 9), therefore,
we report the results without it.

To adapt AbDiffuser to this conditional case, we build a bipartite graph between the antibody CDR
residues and the nearest antigen residues that are at most 10Å away, in terms of Cβ − Cβ distance.
Then we simply replace the initial MLP embedding layer with a one-layer FA-GNN. The rest of the
APMixer architecture remains unchanged. We trained AbDiffuser with a batch size of 8 for 30k steps,
with the rest of hyperparameters staying the same as before.

Table 9 shows that in this conditional setup AbDiffuser outperforms the state-of-the-art diffusion
baseline (DiffAb) in amino acid recovery (AA) by a wide margin. This good performance could be
attributed to the usefulness of AHo numbering, and APMixer being better at modeling sequences than
a GNN. Our ablation experiments on paired OAS generation (Table 1) corroborate this hypothesis.
Although the CDR RMSD results are generally quite comparable between DiffAb and AbDiffuser,
importantly, AbDiffuser performs better in CDR H3, which has the most variability in its structure
and can influence the binding the most. Both methods strongly outperform RosettaAntibodyDesign
(RAbD) [2], the state-of-the-art computational biology antibody design program, in terms of amino
acid recovery.

2We use the checkpoint for this task provided by the original authors.
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CDR H1 CDR H2 CDR H3 CDR L1 CDR L2 CDR L3

Model AA ↑ RMSD ↓ AA ↑ RMSD ↓ AA ↑ RMSD ↓ AA ↑ RMSD ↓ AA ↑ RMSD ↓ AA ↑ RMSD ↓
Rosetta (RAbD)* [2] 22.85% 2.261 25.5% 1.641 22.14% 2.9 34.27% 1.204 26.3% 1.767 20.73% 1.624
DiffAb (Minimized)* [53] 65.75% 1.188 49.31% 1.076 26.78% 3.597 55.67% 1.388 59.32% 1.373 46.47% 1.627

DiffAb (Minimized) [53] 66.37% 1.371 42.82% 1.337 28.27% 3.798 62.91% 1.520 62.59% 1.653 49.38% 1.616
DiffAb [53] 66.37% 0.802 42.82% 0.722 28.27% 3.550 62.91% 1.120 62.59% 1.025 49.38% 1.066

AbDiffuser 79.09% 1.120 72.33% 0.995 36.14% 2.921 85.08% 1.138 85.02% 1.273 75.68% 0.990
AbDiffuser (side chains) 76.30% 1.584 65.72% 1.449 34.10% 3.346 81.44% 1.462 83.22% 1.397 73.15% 1.591

AbDiffuser (τ = 0.75) 79.76% 1.083 72.96% 0.950 36.53% 2.805 85.60% 1.098 85.71% 1.237 76.29% 0.955
AbDiffuser (s.c., τ = 0.75) 76.06% 1.713 66.38% 1.512 34.71% 3.214 81.93% 1.373 83.54% 1.351 73.32% 1.509

AbDiffuser (τ = 0.01) 81.11% 1.075 74.27% 0.946 37.27% 2.795 86.26% 1.115 86.85% 1.238 77.06% 0.966
AbDiffuser (s.c. τ = 0.01) 75.36% 2.463 66.89% 2.010 35.56% 3.124 83.10% 1.525 82.95% 1.623 74.19% 1.502

Table 9: Generating CDR structure and sequence for existing co-crystal structures from SAbDab [13].
All CDRs are generated at once. The amino acid recovery rate (AA) and RMSD are reported for each
individual region. Baseline models from Luo et al. [53] marked by * generated CDRs one at a time.
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