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Abstract

Making good decisions in partially observable and non-deterministic scenarios is
a crucial capability for robots. A Partially Observable Markov Decision Process
(POMDP) is a general framework for the above problem. Despite advances in
POMDP solving, problems with long planning horizons and evolving environments
remain difficult to solve even by the best approximate solvers today. To alleviate
this difficulty, we propose a slightly modified POMDP problem, called a Reference-
Based POMDP, where the objective is to balance between maximizing the expected
total reward and being close to a given reference (stochastic) policy. The optimal
policy of a Reference-Based POMDP can be computed via iterative expectations
using the given reference policy, thereby avoiding exhaustive enumeration of
actions at each belief node of the search tree. We demonstrate theoretically that
the standard POMDP under stochastic policies is related to the Reference-Based
POMDP. To demonstrate the feasibility of exploiting the formulation, we present a
basic algorithm REFSOLVER. Results from experiments on long-horizon navigation
problems indicate that this basic algorithm substantially outperforms POMCP.

1 Introduction

Computing motion strategies that are robust to uncertainty is a fundamental problem in robotics.
A robot often needs to strategically plan in an environment where it only has partial knowledge
about itself and the state of the world due to actuator disturbances, limited knowledge about the
environment, and imperfect sensory information. Such planning problems can generally be framed as
a Partially Observable Markov Decision Process (POMDP) [7, 22], which is a general mathematical
framework for planning in partially observable and non-deterministic scenarios. POMDPs explicitly
model partial observability using a probability distribution over the state space, called a belief, and
compute the best strategy with respect to beliefs. Finding the exact solution to a POMDP problem
is computationally intractable in the worst case [15, 17] for two main reasons. Firstly, the size
of the belief space grows exponentially with respect to the size of the state space. Secondly, the
number of action-observation histories grows exponentially with respect to the planning horizon.
These challenges are known as the curse of dimensionality and the curse of history respectively.
To deal with these challenges, many practical solvers have been proposed in the past few decades
[9]. Sampling-based approximate solvers [12, 21, 29] have made good progress on both curses
by employing particle filters to maintain a belief search tree and judiciously exploring a subset of
histories in this search tree.
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Notwithstanding these advances, some partially observed problems, such as those involving long
planning horizons and progressively evolving environments remain relatively difficult to solve by
even the best approximate POMDP solvers today. In particular, all of the aforementioned solvers
struggle with a planning horizon of more than 15 steps primarily because, to infer the best action,
they rely on exhaustive enumeration of actions at each belief node in the search tree.

To alleviate the above difficulties, and hence further improve POMDP solving capabilities, we propose
the idea of a Reference-Based POMDP. A Reference-Based POMDP is a modification of the standard
POMDP where, in addition to maximising total rewards, an agent’s objective function is penalised
for deviating too far from a given stochastic reference policy. This approach leads to an interesting
interpretation where the agent must trade off between two possibly competing objectives. The agent
should respect the given initial stochastic policy unless deviating substantially from it leads to much
higher rewards.

A key outcome of this formulation is that solving a Reference-Based POMDP does not require
exhaustive enumeration of the actions at each belief node. Rather, optimisation can be performed
analytically because: (i) the space of policies is relaxed to include stochastic policies; and (ii) the
form of the penalty is represented as the KL divergence from the reference policy. Under suitable
transformations, this leads to a linear Bellman backup (Theorem 3.1) where the sampling distribution
is the reference policy itself. As the reference policy is known a priori, the above insight facilitates
algorithms where the actions can be sampled (as opposed to enumerated) at each step which, in turn,
can be efficiently computed using Monte Carlo methods.

This work can be viewed as an extension of a body of literature related to Linearly Solvable Optimal
Control[24, 26, 27, 1, 19, 28, 3] in fully observable environments (see Section 7 for a brief summary)
to partially observable ones. While it is true that a POMDP can be viewed as an MDP in the belief
space [7], extending the aforementioned works to partially observable domains is non-trivial because
of the infinite and continuous nature of the belief space and the difficulty of computing belief updates.
To the authors’ knowledge, the approaches outlined above have not yet been extended to partially
observable domains.

The paper is organised as follows. Section 2 recounts the basic setup of a POMDP. Section 3 in-
troduces the Reference-Based POMDP and outlines the relevant theory. Section 4 demonstrates
that the standard POMDP can be related to the Reference-Based POMDP via an embedding. Sec-
tion 5 presents REFSOLVER a preliminary approximate solver for the Reference-Based POMDP.
Experimental results on long-horizon 2D and 3D navigation problems are presented in Section 6 and
indicate that our solver can be employed to substantially outperform POMCP [21]. Note that the
problems we have presented, are not trivial due to the long planning horizon and the challenges of
partial observability and transition uncertainty. Finally, we outline the relevant literature in Section 7
and summarise the contributions, limitations and future directions of the paper in Section 8.

2 POMDP Preliminaries

In this paper, we focus on an infinite-horizon formulation of the POMDP. Formally, a standard
POMDP is completely specified by a tuple ⟨S,A,O,Z, T , R, γ⟩. Here, S denotes the set of all
possible states of the agent and its environment, A denotes the set of all possible actions the agent
can perform, and O denotes all the possible observations that the agent can perceive. Although our
transformation could be applied to POMDPs with continuous state, action, and observation spaces,
for simplicity, in this paper, we will assume that S, A and O are all discrete.

At each time step, the agent occupies a state s ∈ S and executes an action a ∈ A, after which its
state transitions to a new state s′ ∈ S. The outcome of this execution is non-deterministic, and
this uncertainty is represented in the Markovian transition function T as a conditional probability
function T (s′ | s, a). At the new state s′, the agent perceives an observation o ∈ O. Uncertainty in the
observation perceived – having undertaken action a ∈ A and transitioned to state s′ – is described by
the conditional probability function Z(o | s′, a), referred to as the observation function. The agent’s
action incurs a reward, which is defined by a bounded real-valued function R : S × A → R. The
parameter γ ∈ (0, 1) represents the discount factor.

As the agent does not know its true state, at each time step, the agent maintains a belief about its state.
A belief, denoted as b, is a probability distribution over the state space S. The set of all possible
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beliefs forms a belief space of (|S| − 1)-dimensional simplex, which we denote as B. The belief
the agent maintains is updated via Bayesian inference using the transition and observation models
Z and T , respectively. The exact belief update is completely determined by an action-observation
pair. Formally, if b′ = τ(b, a, o) denotes the agent’s next belief after taking action a and perceiving
observation o, then b′ is defined as:

b′(s′) = ηZ(o | s′, a)
∑
s∈S

T (s′ | s, a) b(s) (1)

where η is a normalising factor. The solution to a POMDP problem is an optimal policy π∗ : B → A
that maximises the value function, defined as:

V ∗(b) = max
a∈A

[
R(b, a) + γ

∑
o∈O

P (o | a, b)V ∗(τ(b, a, o))] (2)

where
R(b, a) :=

∑
s

R(s, a) b(s) (3)

is the expected reward under the belief b. The notation P (o | a, b) is the probability the agent perceives
an observation o ∈ O having performed the action a ∈ A under the belief b, and is defined as

P (o | a, b) :=
∑
s′∈S

Z(o | s′, a)
(∑

s∈S
T (s′ | s, a)b(s)

)
. (4)

Computing the exact solution π∗ and optimal value function V ∗ is intractable [14, 15, 17] in general,
and therefore state-of-the-art solvers approximate solutions via sampling [9].

3 Reference-Based POMDP

We now extend the analytical approach for the Linearly Solvable MDP (see Appendix Section A.1)
to the POMDP. To this end, we define a Reference-Based POMDP, which is specified by the tuple
⟨S,A,O,Z, T , R, γ, Ū⟩. Similar to the standard POMDP, S , A, and O refer to the state, action, and
observation spaces respectively. We denote by Z , T , and R the observation, transition, and reward
functions, respectively, while γ ∈ (0, 1) denotes the discount factor.
Assumption 3.1. A reference belief-to-belief transition probability:

Ū(·, · | b) ∈ ∆(A×O) (5)

is given for all b ∈ B.

This reference transition is assumed by the problem and could be constructed in multiple ways. At
the most abstract the level this could be given in a top-down fashion (e.g. an offline policy that has
been generated for a similar version of a POMDP problem). On the other hand, it could also be
constructed from the ground up. For example, one could take a fully observed policy πFO : S → A
and infer a reference stochastic action π̄(· | b) according to

π̄(a | b) := η
[
α
∑
s∈S

I{πFO(s)=a}b(s) + (1− α) ρ(a | b)
]

(6)

where ρ is some default distribution for sampling actions and the parameter α ∈ (0, 1) indicates the
saturation level of the fully observed policy. The exact choice of fully observed policy depends on
the context. Examples might include: an MDP policy for the fully observed version of the problem, a
policy induced by feasible paths generated by motion planners, a policy induced by all source shortest
path in the case of a navigation problem, and even a policy representing the passive dynamics of
a system at any given state. Regardless of how the reference stochastic action is constructed, in a
ground-up construction, the reference belief-to-belief transition probability will take on the more
specific form:

Ū(a, o | b) := P (o | a, b) π̄(a | b) (7)
where P (o | a, b) is given by (4).

Inspired by Linearly-Solvable MDPs (Section A.1), a Reference-Based POMDP asserts that, for
any belief b ∈ B, we can realise “belief-to-belief” transition probabilities U(·, · | b) ∈ ∆(A×O) of
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our choosing. Note that this is an ideal transition probability which may not actually be realisable
in practice even by a stochastic policy (see Section 3.3 and Section 8 for further commentary). To
prohibit arbitrary transitions, at any belief b ∈ B, we will further restrict our choice of distribution U
to one that satisfies the property

Ū(a, o | b) = 0 =⇒ U(a, o | b) = 0 ∀a ∈ A, o ∈ O.

Denote the class of such distributions by U (b) ⊂ ∆(A × O) which will form our admissible
reference transition probabilities (which can be viewed as admissible controls) from a given belief.
Then, U :=

⋃
b∈B U (b) is the class of all admissible reference transition probabilities. Similar

to (25), we penalise choices of U(·, · | b) that represent large deviations from Ū(·, · | b) using KL
divergence: KL

(
U(·, · | b)

∥∥ Ū(·, · | b)
)
.

Now, the above reference transition probability affects the definition of the reward function too. At
the most abstract level, the reward function R : B ×A → R is parameterised by belief–action pairs.
Hence, the expected immediate cost of taking a stochastic belief-to-belief transition governed by
U(·, · | b) ∈ U (b) is given by

R(b, U) :=
∑
a,o

R(b, a)U(a, o | b) (8)

where again R(b, a) :=
∑

s∈S R(s, a)b(s). The solution to a Reference-Based POMDP problem is
then an optimal stochastic policy π∗ : B → U that maximises:

V∗(b) = sup
U(·,· | b)∈U (b)

(
R(b, U)−KL

(
U(·, · | b) ∥ Ū(·, · | b)

)
+ γ

∑
a,o

U(a, o | b)V∗(τ(b, a, o))). (9)

3.1 Existence and Uniqueness of the Solution

One might ask if the reformulation (9) is satisfied uniquely by some function V : B → R. The
following lemma ensures that there exists a unique (up to ∥ · ∥∞-equivalence) bounded function
V : B → R satisfying the Bellman equation. Its proof is deferred to Appendix A.2.
Lemma 3.1. Consider the Banach space B(B) of bounded functions V : B → R equipped with the
supremum norm ∥ · ∥∞. Let Φ : B(B) → B(B) be a self-mapping defined by the Reference-Based
POMDP backup operator described by equation (9). Then, for γ ∈ (0, 1), the mapping Φ is a
contraction and

∥ΦV1 − ΦV2∥∞ ≤ γ ∥V1 − V2∥∞. (10)

Hence, by the Banach fixed point theorem [8] , the solution to the Bellman equation exists uniquely
in this space whenever γ ∈ (0, 1).

3.2 Transforming the Value Function

Here, we show that under an appropriate transformation, the value function of a Reference-Based
POMDP (9) can also be linearised. Its proof is given in Appendix A.3.

Theorem 3.1. Define the transformation W(b) := eV(b) for any b ∈ B. The value function (9) of the
Reference-Based POMDP ⟨S,A,O,Z, T , R, γ, Ū⟩ is equivalent to

W(b) =
∑
a,o

Ū(a, o | b)eR(b,a)Wγ
(
τ(b, a, o)

)
. (11)

The solution W∗ to equation (11) exists and is unique. And, the optimal stochastic “belief-to-belief”
transition to the Bellman equation (9) is given by

U∗(a, o | b) =
Ū(a, o | b)eR(b,a)W∗γ(τ(b, a, o))

D[W∗γ ](b)
(12)

where D[W∗γ ](b) :=
∑

â,ô Ū(â, ô | b)eR(b,â)W∗γ(τ(b, â, ô)) is a normaliser.
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Intuitively, the solution W∗ represents the desirability of a given belief (or history of action-
observation sequences) where, (12) represents distorting the reference dynamics to higher desirability
scores. Moreover, Theorem 3.1 shows that we can converge to W∗ by iterating the transformed
Reference-Based POMDP backup operator (11). Lemma 3.1 indicates that the speed of convergence
depends on the size of γ with faster convergence as γ tends to 0. Moreover, Theorem 3.1 also implies
that once W∗ is computed, U∗ can be computed exactly via (12).

Unlike the linearly solvable MDP, exactly computing W∗ is still intractable in practice due to the
continuity of the belief space and the cost of belief estimation. However, if we leverage the advances
made by sampling-based POMDP solvers and assume that the belief space is sufficiently represented
by a finite number of beliefs, then this quantity can be approximated. Of course, finding such a set of
beliefs is in itself difficult. Nevertheless, the fact that the optimal value function of a Reference-Based
POMDP is equivalent to (11) implies that the optimal value function of Reference-Based POMDP can
be computed by purely computing expectations under the reference transition probabilities recursively,
which can be approximated efficiently (e.g. via Monte Carlo approximation).

3.3 Recovering the Stochastic Actions

While restricting the agent’s transition probabilities to U (b) limits the agent’s level of control, U∗

as given in (12) is still an ideal transition probability and may therefore not be realisable under a
stochastic action in general. In other words, one cannot guarantee the existence of a stochastic action
π(a | b) such that U(a, o | b) := P (o | a, b)π(a | b) = U∗(a, o | b) for every a ∈ A and o ∈ O.

Nevertheless, we can still find a π(a | b) such that U and U∗ are close in some sense. A suitable way
to formulate the problem is to minimise the KL divergence between U∗ and U . That is, for each
b ∈ B, we minimise ∑

a,o

P (o | a, b)π(a | b) log
[P (o | a, b)π(a | b)

U∗(a, o | b)

]
(13)

over all stochastic actions π(· | b) ∈ ∆(A). Solving the constrained minimisation problem using
Lagrange multipliers yields the following result. See Appendix A.4 for its proof.
Proposition 3.1. The minimiser of (13) is

π∗(a | b) = exp[−Π(a | b)]∑
â∈A exp[−Π(â | b)]

∀a ∈ A (14)

where

Π(a | b) :=
∑
o

P (o | a, b) log
[ P (o | a, b)
U∗(a, o | b)

]
. (15)

4 Relating the Reference-Based POMDP and the Standard POMDP

In A.1, we recount a procedure for embedding the standard MDP ⟨S,A, T , R, γ⟩ inside the refor-
mulated MDP ⟨S, p, ρ, γ⟩. The key advantage of this is to apply the more efficient machinery of the
reformulation to quickly determine good approximate solutions to the standard MDP. Furthermore,
it establishes a theoretical basis to relate the two formulations. Here, we present an analogous
embedding for the POMDP. Proofs are deferred to Section A for conciseness.

Suppose an initial belief b0 ∈ B is given and let Rb0 be the set of all reachable beliefs from
b0. Let B(Rb0) denote the set of all bounded functions from Rb0 to R. Consider the family of
Reference-Based POMDPs with purely belief-dependent rewards ρ ∈ B(Rb0).

{⟨S,A,O,Z, T , ρ, γ, Ū⟩}ρ∈B(Rb0
),Ū∈U (16)

and a standard POMDP of the form
⟨S,A,O,Z, T , R, γ⟩. (17)

For fixed (ρ, Ū) ∈ B(Rb0)× U , their respective Bellman equations are:

V(b) = sup
U(·,· | b)∈U (b)

(
ρ(b)−KL

(
U(·, · | b) ∥ Ū(·, · | b)

)
+ γ

∑
a,o

U(a, o | b)V
(
τ(b, a, o)

))
(18)
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and
V (b) = max

a∈A

[
R(b, a) + γ

∑
o∈O

P (o | a, b)V
(
τ(b, a, o)

)]
(19)

for all b ∈ Rb0 .1

Definition 4.1. Let B(Rb0) be the set of all bounded functions from Rb0 to R. We say that the
pair (ρ, Ū) ∈ B(Rb0)× U is an embedding of the standard POMDP (17) in the Reference-Based
POMDP (16) with purely belief-dependent rewards if, for each â ∈ A and b ∈ B there exists a
U â(·, · | b) ∈ U such that: ∑

a∈A
U â(a, o | b) = P (o | â, b) (20)

and
R(b, â) = ρ(b)−KL(U â(·, · | b) ∥ Ū(·, · | b)). (21)

Proposition 4.1. Suppose ρ ∈ B(Rb0) is such that

ρ(b) = log
[ ∑
â∈A

eR(b,â)
]

(22)

holds where R(b, â) :=
∑

s∈S R(s, â)b(s). Then, if

Ū(a, o | b) := P (o | a, b) eR(b,a)∑
â∈A eR(b,â)

∀b ∈ B (23)

the pair (ρ, Ū) ∈ B(Rb0) × U is an embedding of the standard POMDP in the Reference-Based
POMDP with purely belief-dependent rewards.

5 An Online Planning Algorithm

We have developed a preliminary on-line solver REFSOLVER for a Reference-Based POMDP to
demonstrate some of the advantages of the formulation presented in Section 3. Pseudo code for
an implemented algorithm where the reference policy is constructed using a fully-observed policy
πFO is presented in the Appendix Section A.6 Algorithm 1. Note that although our description of
REFSOLVER is very specific in terms of the reference policy and reference stochastic action, they can
readily be replaced with other types of policies and induced reference stochastic actions.

Similar to many state-of-the-art on-line POMDP solvers (e.g., [21, 29]), REFSOLVER constructs a
search tree of action-observation histories and uses particles to represent the beliefs. The key insight
of REFSOLVER, however, is to exploit the additional information afforded by the fully observed
policy to limit exploring every possible action at each history node. Instead, as each backup of the
transformed value (9) is essentially an expectation under the reference policy, actions are sampled
using the reference policy and the backup is estimated via a straightforward Monte Carlo method.
This allows sparser sampling and simulations to resemble a depth-first search traversing to a pre-
specified depth before rolling out the leaf nodes using the fully observed policy. Hence, rather than
expanding all the actions as POMCP [21], ABT[12] and DESPOT [29] do, REFSOLVER constructs a
deeper tree thereby exploiting more information about the long-term behaviour of the system.

To allow for REFSOLVER to also search forward for actions that are not supported by the fully
observed policy, some additional noise ρ can be added according to (6) so that (1 − α) can be
interpreted as an exploration constant. In our implementation the noise ρ is a uniform distribution
over the actions. The parameter (1− α) can thus be interpreted as REFSOLVER’s belief that the fully
observed policy can be trusted.

6 Experiments

We tested REFSOLVER against the implementation of POMCP [21] in the pomdp_py library [4] in
two different 60× 60 long-horizon grid-world navigation problems. As REFSOLVER is written in
Python, the implementation of POMCP was de-Cythonised for a fair comparison.

1Note that Rb0 is common to both formulations as their observation and transition models are the same.
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We did not compare with DESPOT [29] because the problem scenarios require long horizons and the
planning horizon that DESPOT can perform is much lower than POMCP because of its requirement
to construct a tree of size |A|dKd where d is the depth of the DESPOT (this difficulty has also been
observed in [6]). Given the long horizon nature of the problems, one may question comparison
with solvers specifically designed for long horizon problems (as summarised in [9]). Most, if not
all, of such solvers rely on reducing the effective planning horizon by constructing macro actions
or sub-policies. Since REFSOLVER does not change the overall structure of action and observation
spaces and transition and observation functions, it is trivial to apply most techniques that reduce the
effective planning horizon to Reference-Based POMDP solvers (including REFSOLVER), which in
turn will further improve the performance of REFSOLVER too.

All experiments were performed on a desktop computer with an 8 Core Intel Xeon Silver 4110
Processor and 128GB DDR4 RAM.

6.1 Problem Scenarios and Testing Parameters

G1

G2

S1 S2

(a) Navigation1

G1 G2

S2S1

(b) Navigation2: Initial map

G1 G2

S1 S2

(c) Navigation2: Modified (b) (d) Navigation3: 3D Environment

Figure 1: Illustration of testing scenarios. (a) Navigation1: landmarks (pink), goal states (green), obstacles
(black), danger zones (yellow), initial belief (light blue). (b) and (c) Navigation2: landmarks (pink), goal states
(green), obstacles that are present in both the initial map and the modified environment (black), additional
obstacles that were not known in the initial map (grey), initial belief (blue). The map in (b) represents the
environment used to generate the A* policy. The map in (c) represents the environment used for planning and
execution. Navigation3: 3D navigation scenario with uneven terrain, goal area (red).
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6.1.1 Navigation1: Long Horizon

The environment is a 60 × 60 static gridworld populated with obstacles, danger zones, and land-
marks, as illustrated in Figure 1a. Details of the actions, observations and reward are presented in
Section A.7.1.

POMCP’s rollout policy and REFSOLVER’s fully observed policy are the A* policy for the fully
observed and deterministic version of the problem. POMCP was run with an exploration constant of
300 and maximum depth of 180 – this maximum depth is the upper bound for (tree depth + rollout
steps). For REFSOLVER, the maximum tree depth was 90, the maximum rollout depth was 180 and
α = 0.5. Both methods were executed for a maximum of 180 steps.

6.1.2 Navigation2: Slightly Perturbed Environment

The environment is a 60 × 60 gridworld populated with obstacles and landmarks. The robot is
provided with an initial environment map that was slightly different from the environment used
during execution. Details of the scenario (actions, observations, and reward) are presented in
Section A.7.2.

For testing purposes, we generated 64 different initial maps with randomly placed obstacles and
landmarks. For each initial map, we randomly generate four slight modifications of the initial map
by adding obstacles at random. An illustration of an initial environment map and a corresponding
environment used during execution are illustrated in Figure 1b and 1c.

Both the POMCP rollout policy and REFSOLVER’s fully observed policy are the A* policy for
the fully observed and deterministic version of the robot operating in the initial environment map.
However, the dynamics, observation, and reward that the robot experiences and receives during
execution follow the deformed map, which is different from the initial map.

POMCP was run with an exploration constant of 300 and maximum depth of 60 – this maximum
depth is the upper bound for (tree depth + rollout steps). For REFSOLVER, the maximum tree depth
was 30, the maximum rollout depth was 60 and α = 0.5.

6.1.3 Navigation3: 3D Navigation Environment

Navigation3 is a 3D environment where a drone has to fly over uneven terrain. The drone starts at the
location illustrated in Figure 1d and needs to reach the red goal region, which is located behind the
hill. State and observation spaces are continuous, while actions are discrete. See Appendix Section
A.7.3 for details.

The rollout and fully observed policy recommend the action that minimises the Euclidean distance
between the current state and goal location with no consideration of obstructing terrain. POMCP was
run with an exploration constant of 400 and a maximum depth of 150 (upper bound for tree depth +
rollout depth). For REFSOLVER, the maximum tree depth was 150, the maximum rollout depth was
200, and α = 0.4. Both methods were executed for a maximum of 200 steps.

6.2 Performance Comparison

Figure 2: The red line indicates the short-
est path from the initial to the goal po-
sitions, while the blue line indicates a
trajectory trace of executing the policy
generated by REFSOLVER.

To evaluate the performance on REFSOLVER, we ran each
method on each problem scenario 256 times. For each
scenario, each method was given 30 seconds planning time
per step. The initial policy generation used by POMCP for
rollout and by REFSOLVERfor the 2D experiments took
an average of 45 minutes for each scenario. We only need
to compute this initial policy once for Navigation1 and as
many as the number of initial maps for Navigation2.

For Navigation3, the initial policy is generated on-line
and takes a small fraction of the planning time per step.
The initial policy is derived from a simple shortest path
distance policy that assumes the environment is totally
empty, allowing it to be computed fast. Note that this way
of generating the initial policy substantially alleviates the
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computational cost, especially for complex problems. The quality of such an initial policy is of course
relatively low, as indicated by the red-line in Figure 2. However, our results indicate that REFSOLVER
is able to iteratively deform the initial policy to generate a good strategy for the environment the
robot operates in. Note that the trace of the deformed policy indicates that the agent is aware of the
potential collision danger quite early, even though it requires more than 100 steps lookahead.

Table 1 compares the success rates and the average total discounted reward (with a 95% confidence
interval) achieved by POMCP and REFSOLVER, respectively. To better understand the performance
improvement with respect to the planning time, we also ran Navigation2 with different planning times
per step. The results of 256 runs are presented in Table 2. The results indicate that in all instances
and for all planning times, the basic implementation of REFSOLVER was able to reach the goal with
a significantly greater likelihood and average total discounted reward.

One may be discouraged by the success rate presented. However, all the problem scenarios presented
here have a horizon of over 60 steps, which remains a tremendous challenge for many general
approximate on-line POMDP solvers today, as indicated by the performance of POMCP.

Table 1: POMCP vs REFSOLVER with 30 sec planning time per step
Navigation1 Navigation2 Navigation3

Solver % Succ. Avg Tot
Dis Rw % Succ. Avg Tot

Dis Rw % Succ. Avg Tot
Dis Rw

POMCP 1 −284± 5 11 −181± 13 0 −87± 0
REFSOLVER 31 −201± 24 49 −95± 16 64 −5± 21

Table 2: POMCP vs REFSOLVER in Navigation2 with different planning time per step.
Planning Time Per Step (Seconds)

10 20 30

Solver % Succ. Avg Tot
Dis Rw % Succ. Avg Tot

Disc Rw % Succ. Avg Tot
Disc Rw

POMCP 2 −205± 7 1 −208± 4 11 −181± 13
REFSOLVER 30 −137± 15 36 −128± 15 49 −95± 16

7 Related Work

7.1 MDPs with KL Divergence Minimisation and Reinforcement Learning

The idea of using KL divergence minimisation in fully observable environments goes back to a
series of works on Linearly Solvable MDPs2 [24, 25, 26, 2] who used it to efficiently approximate
solutions to certain classes of (fully-controllable) MDPs. A learning-based algorithm (Z-Learning)
was also proposed for problems where the model was not available [24]. Azar et al. [1] extended the
approach to general MDPs with stochastic policies and introduced Dynamic Policy Programming
which converges asymptotically to the optimal (stochastic) policy of the MDP. The authors also
demonstrated that the formulation could be suitably adapted using basis functions to deal with
large-scale (continuous) state-action problems. A unifying perspective on this approach was then
offered by Rawlik et al. [19] who demonstrated that the stochastic control formulation can be related
to approximate inference control in trajectory optimisation [28] and provided further experimental
validation for a Z-Learning-like algorithm. Finally, we note that the literature on KL divergence
minimisation is closely related to Maximum Entropy RL where some recent theoretical developments
[3] have demonstrated robustness to the model (i.e. dynamics and rewards) in fully observable
domains.

2See Section A.1 for a brief summary of the theory.
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As far as the authors are aware, all of the above papers have no parallel in partially-observable
environments as of yet. As such, this paper can be seen as first step to extending the above results to
such environments.

7.2 Sampling-Based Approximate POMDP Solvers

Methods for finding exact solutions to POMDPs [16] are impractical for realistic robotics problems
due to their computational complexity. In recent decades, sampling-based approximate methods have
significantly scaled up the capabilities of both online and offline POMDP solvers [18, 11, 21, 29, 12]
(see [9] for a comprehensive survey). A major constraint in all state-of-the-art methods is that they
rely on a dynamic programming paradigm which necessitates enumeration of actions at every belief
node of the search tree. As such, existing solvers cannot effectively deal with the curse of history
because they do not have sufficient compuational resources to perform a sufficiently long look-ahead.

To deal with this problem, methods that abstract the problem using macro-actions have been proposed
[23, 5, 13, 10] where the agent only plans with respect to judiciously chosen sequences of actions,
called macro actions, or sub-policies. They reduce the effective planning horizon, but can be sensitive
to the class of macro-actions or sub-policy chosen. In contrast, we propose to alleviate the issue via a
slight reformulation of the POMDP, which allows numerical computation to infer a close to optimal
policy via sparse sampling of both the action and observation spaces. Moreover, existing techniques
that reduce the effective planning horizon can also be applied to Reference-Based POMDPs, which
will further improve its ability to compute good solutions to POMDPs with long planning horizons.

8 Discussion and Further Work

We have introduced the Reference-Based POMDP, which is a modification of the standard POMDP.
This modified formulation enables the problem of computing the optimal policy to be analytically
transformed into a problem of computing expectations, which can be approximated without exhaustive
enumeration of the actions. We showed that, under mild assumptions, the standard POMDP can
be related to a Reference-Based POMDP via an embedding (Proposition 4.1). We also presented
a preliminary solver REFSOLVER which solves a Reference-Based POMDP. Initial performance
comparisons on 2D and 3D navigation problems indicate that this preliminary method is promising
and can be employed to substantially outperform state-of-the-art solvers in long-horizon problems.

By introducing KL minimisation with respect to reference probabilities, Reference-Based POMDPs
are likely to be suitable for problems with dynamically changing POMDP models with long planning
horizons where one needs to deform the policy being followed without making abrupt changes to the
policy. We also see applications of this kind of framework in the context of artificial agents that are
guided by a human to make responsible decisions while also judiciously transgressing guidance in
the case of significant human error.

One limitation of this paper is that the formulation of a Reference-Based POMDP asserts that
arbitrarly “belief-to-belief” transitions can be realised which is a remnant of following the approach
set out in Todorov [24] too closely.3 This assumption can be relaxed by stating the Bellman equation
with respect to stochastic policies over actions in a manner similar to Azar et al. [1] rather than
abstract belief-to-belief transitions. Such an approach yields very similar analytical results and avoids
the need to recover approximate stochastic actions as set out in Section 3.3. We expect to set out
these results in a subsequent paper.

The above limitation is just one of the many possible directions for expanding this work. We hope
this paper opens new avenues to further scale the capability of POMDP solvers.
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A Appendix

A.1 Background on Linearly Solvable MDP

Since the Reference-Based POMDP expands the Linearly Solvable (fully observed) MDPs[24, 25, 26]
to POMDPs, for completeness, here, we summarise Linearly Solvable MDPs.

A standard infinite horizon MDP is specified by tuple ⟨S,A, T , R, γ⟩, where S and A are the state
and action spaces, T (s, a, s′) is the conditional probability function that specifies the probability
the agent arrives at state s′ ∈ S after performing action a ∈ A at state s ∈ S, R is the reward
function, and γ ∈ (0, 1) is the discount factor. The solution to an MDP problem is a an optimal policy
π∗ : S → A that maximises the value function:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(24)

The works in [24, 25, 26] consider a class of MDPs where, the state space S is finite and for any states
s, s′ ∈ S, there exists a one-step (not necessarily time-homogeneous) transition probability p(s′ | s)
representing the passive dynamics of the system. They propose a new formulation of MDPs, called
Linearly Solvable MDPs, to be specified by ⟨S, p, r, γ⟩, where r : S → R is the reward function. A
solution to the Linearly Solvable MDP is a stochastic state-to-state transition probability u(· | s) that
maximises:

v(s) = sup
u(· | s)∈Up(s)

(
r(s)−KL

(
u(· | s) ∥ p(· | s)

)
+ γ

∑
s′∈S

u(s′ | s)v(s′)
)

(25)

where Up(s) is the set of admissible controls. An admissible control u(· | s) is one that prohibits state
transitions that are not feasible under the passive dynamics p(· | s).

Now, suppose w(s) := ev(s) for any s ∈ S, then (25) is equivalent to

w(s) = er(s)
∑
s′∈S

p(s′ | s)wγ(s′). (26)

Moreover, the solution w∗ to the above equation exists and is unique. The optimal stochastic transition
to the equation (25) is given by

u∗(· | s) = p(· | s)w∗γ(·)
D[w∗γ ](s)

. (27)

where D[w∗γ ](s) :=
∑

s′∈S p(s′ | s)w∗γ(s′) is a normaliser. Intuitively, one can view w∗ as the
desirability score, so that (27) represents distorting the passive dynamics to transition dynamics that
favour transitioning to states with higher desirability scores. Of course, w∗ is not known a priori
but it can be determined by iterating the Bellman backup operator given by (26). This computation
essentially reduces to taking expectations under the reference dynamics, which can be computed
faster than searching for the optimal value function in (24) directly.

A standard MDP can be embedded in a linearly solvable MDP. This implies that, for a given standard
MDP problem ⟨S,A, T , R, γ⟩, one can embed it as an instance of a linearly solvable MDP, use
the above efficient machinery to determine the solution to the linearly solvable MDP u∗(· | s), and
then choose the symbolic action a∗ ∈ A such that T (s′ | s, a∗) is as close as possible to u∗(· | s).
Empirical results in [25] indicate that there is a close correspondence between the optimal value of
the embedded standard MDP ⟨S,A, T , R, γ⟩ and the optimal value of the linearly solvable MDP.

A.2 Proof of Lemma 3.1

Step 1. We first need to verify that a maximiser to the supremum in (9) exists. To this end, define
W(b) := eV(b) for any b ∈ B and notice that the terms inside the supremum in the RHS of equation
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(9) can be rewritten as∑
a,o

U(a, o | b)
[
R(b, a)− log

{U(a, o | b)
Ū(a, o | b)

}
+ γ

∑
a,o

V
(
τ(b, a, o)

)]
= −

∑
a,o

U(a, o | b)
[
log

{ U(a, o | b)
Ū(a, o | b)eR(b,a)Wγ(τ(b, a, o))

}]
= −

∑
a,o

U(a, o | b)
[
log

{ U(a, o | b)D[Wγ ](b)

Ū(a, o | b)eR(b,a)Wγ(τ(b, a, o))

}
− log

{
D[Wγ ](b)

}]
= −KL

(
U(·, · | b)

∥∥∥ Ū(·, · | b)eR(b,a)Wγ
(
τ(b, a, o)

)
D[Wγ ](b)]

)
+ log

{
D[Wγ ](b)

}
(28)

where D[Wγ ](b) :=
∑

a,o Ū(a, o | b)eR(b,a)Wγ
(
τ(b, a, o)

)
is a normalising factor. Only the KL

divergence term in the last line above depends on U . We know that the KL divergence is minimised
when its two component distributions are identical. That is, when

U∗(a, o | b) =
Ū(a, o | b)eR(b,a)Wγ

(
τ(b, a, o)

)
D[Wγ ](b)

. (29)

It is clear that U∗ belongs to the space U (b) since Ū(a, o | b) = 0 implies that U∗(a, o | b) = 0 too.
Therefore, we conclude that the supremum is attained and that U∗ is the maximiser.

Step 2. Now, we can essentially repeat the classical argument from Ross [20] (see e.g. Theorem 6.5).
Namely, let Φ : B(B) → B(B) be the Bellman backup operator

ΦV(b) := sup
U∈U (b)

(
R(b, U)−KL(U ∥ Ū) + γ EU

[
V
(
τ, ·, ·)

)])
∀b ∈ B (30)

where, for brevity, we write
KL(U ∥ Ū) := KL

(
U(·, · | b) ∥ Ū(·, · | b)

)
(31)

and
EU

[
V
(
τ, ·, ·)

)]
:=

∑
a,o

U(a, o | b)V
(
τ(b, a, o)

)
. (32)

We want to show that Φ is a contraction. For any b ∈ B and any V1,V2 ∈ B(B),
(ΦV1)(b)− (ΦV2)(b)

= sup
U∈U (b)

(
R(b, U)−KL(U ∥ Ū) + γ EU

[
V1

(
τ, ·, ·)

)])
− sup

Ũ∈U (b)

(
R(b, Ũ)−KL(Ũ ∥ Ū) + γ EŨ

[
V2

(
τ, ·, ·)

)])
≤

(
R(b, U∗)−KL(U∗ ∥ Ū) + γ EU∗

[
V1

(
τ, ·, ·)

)])
−
(
R(b, U∗)−KL(U∗ ∥ Ū) + γ EU∗

[
V2

(
τ, ·, ·)

)])
= γ

∑
a,o

U∗(a, o | b)
[
V1

(
τ(b, a, o)

)
− V2

(
τ(b, a, o)

)]
≤ γ ∥V1 − V2∥∞ (33)

where U∗ is the maximiser of
R(b, U)−KL(U ∥ Ū) + γ EU

[
V1

(
τ, ·, ·)

)]
. (34)

Reversing the roles of V1 and V2 and using the fact that b ∈ B is arbitrary, we conclude that
∥ΦV1 − ΦV2∥∞ ≤ γ ∥V1 − V2∥∞. (35)

Since we assumed that γ ∈ (0, 1), we conclude that Φ is a contraction.
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A.3 Proof of Theorem 3.1

Repeating the argument in Step 1 of A.2, we see that the Bellman equation (9) reduces to

V(b) = log
[
D[wγ ](b)

]
= log

[∑
a,o

Ū(a, o | b)eR(b,a)Wγ
(
τ(b, a, o)

)]
(36)

which, after taking exponents, justifies the equivalence to (11). Given this equivalence and Lemma
3.1, it is clear that (11) has a unique solution. To be more explicit, suppose for a contradiction that
(11) does not have exactly one solution (up to ∥ · ∥-equivalence of solutions). Then by the equivalence
between the two Bellman equations, (9) would either have no solutions or more than one solution
which contradicts the existence and uniqueness guaranteed by Lemma 3.1. Finally, (12) follows from
the form of the maximiser at each Bellman step.

A.4 Proof of Proposition 3.1

For brevity, we will fix a b ∈ B and drop it from our notation. Also write π = π(· | b) and
πa = π(a | b). The Lagrangian for the constrained problem is

L(π, λ) =
∑
a,o

P (o | a)πa log
[P (o | a)πa

U∗(a, o)

]
+ λ

(∑
a

πa − 1
)
. (37)

We require, in addition, that the minimiser π∗ (which exists due to the Weierstrass extreme value
theorem) is such that π∗

a ≥ 0 for each a ∈ A. The first order necessary conditions gives

πa = e−(1+λ) exp[−Π(a)] ∀a ∈ A (38)

and the constraint equation gives

1 =
∑
a

πa = e−(1+λ)
∑
a

exp[−Π(a)]. (39)

Hence the only candidate for the minimiser is π∗ such that

π∗
a =

exp[−Π(a)]∑
â∈A exp[−Π(â)]

∀a ∈ A. (40)

The Hessian of L is positive definite for any λ and π ∈ ∆(A), so we conclude that π∗ is a minimiser.
Finally, that π∗

a ≥ 0 for every a ∈ A is clear from (40).

A.5 Proof of Proposition 4.1

Proof. Fix an â ∈ A and b ∈ B. If we set

πâ(a | b) :=
{
1, a = â

0, otherwise
(41)

and
U â(a, o | b) := P (o | â, b)πâ(a | b) ∈ U (42)

then the constraint (20) is satisfied trivially. Straightforward computations show that the constraint
(21) is satisfied by U â(a, o | b) with (ρ, Ū) as defined in (22) and (23).
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A.6 Algorithm REFSOLVER

Algorithm 1 REFSOLVER

parameters:
⟨S,A, T , R, γ⟩
max-depth
max-rollout-depth
α ▷ expl const = 1− α

require: γ ∈ (0, 1), α ∈ [0, 1)

PRE-PROCESS (OFFLINE)

1: πFO ← GENERATE-FO-POLICY(⟨S,A, T , R, γ⟩)

2: RUNTIME (ONLINE)

3: procedure PLAN-AND-EXECUTE(h)
4: repeat
5: if h = ∅ then
6: s ∼ I
7: else
8: s ∼ B(h)
9: end if

10: SIMULATE(s, h, 0)
11: until TIMEOUT()
12: return OPTIMAL-STOCHASTIC-POLICY(h)
13: end procedure

14: procedure ROLLOUT(s, h, depth)
15: a← πFO(s)
16: if s ∈ G or depth > max-rollout-depth then
17: return R(s, a)
18: end if
19: (s′, o, R) ∼ G (s, a) ▷ generative model
20: return R(s, a) + ROLLOUT(s′, hao, depth +

1)
21: end procedure

22: procedure SIMULATE(s, h, depth)
23: if s ∈ G or depth > max-depth then
24: return exp(ROLLOUT(s, h,max-depth))
25: end if
26: B(h)← B(h) ∪ {s}
27: N(h)← N(h) + 1
28: X ∼ Bernoulli(α)
29: a← πFO(s)I{X=1} + Unif-Act()× I{X=0}
30: (s′, o, R) ∼ G (s, a)
31: N(ha)← N(ha) + 1

32: R̂(ha)← R̂(ha) + R(s,a)−R̂(ha)
N(ha)

33: Ŵ ← Ŵ+ eR̂(ha)SIMULATE(s′,hao,depth+1)−Ŵ(h)
N(h)

34: return Ŵ(h)γ

35: end procedure

36: procedure OPTIMAL-STOCHASTIC-POLICY(h)
37: D ← 0 ▷ Normaliser
38: for a ∈ A and o ∈ O do
39: if hao /∈ T then
40: Û∗(hao) = 0
41: else
42: Û∗(hao)← N(hao)

N(h)
eR̂(ha)Wγ(hao)

43: end if
44: D ← D + Û∗(hao)
45: end for
46: for a ∈ A do
47: Π(a)← N(hao)

N(ha)
log

[
N(hao)D

N(ha)Û∗(hao)

]
48: end for
49: π∗ ← {a : exp[−Π(a)]/DΠ}
50: return RANDOM-SAMPLE(π∗)
51: end procedure

A.7 Details of Experimental Scenarios

A.7.1 Details of Navigation1 Scenario

The robot can move in the four cardinal directions with 0.1 probability of actuator failure. If the
realised movement leads to a collision with an obstacle or the edge of the map, no movement occurs
and the robot remains in its current position. If the robot’s true state is a landmark, the robot receives
a position reading uniformly in the 9× 9 grid around the robot’s true state. Outside the landmarks,
the robot receives no observation. The robot receives a penalty of -100 for entering a danger zone
and a reward of +300 for entering a goal state. In both cases, the problem terminates. Every other
state incurs a reward of -1. The discount parameter was 0.99. The robot’s initial belief was equally
distributed between two initial positions that were uniformly sampled from the southern-most row of
the map.

A.7.2 Details of Navigation2 Scenario

Similar to Navigation1, the robot’s action space consists of moves anywhere in the four cardinal
directions NORTH, SOUTH, EAST, WEST. To simulate noise in the robot’s actuator’s, actions fail
with 0.1 probability, and if this occurs, the robot moves randomly in a direction orthogonal to the
one specified. If the realised movement leads to a collision with an obstacle or the edge of the
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map, no movement occurs and the robot remains in its current position. If the robot’s true state is a
landmark, the robot receives a position reading uniformly in the 9× 9 grid around the robot’s true
state. Otherwise, the robot receives no observation. The robot receives a reward of +600 for being in
a goal state, and -3 for being in any other state. The discount parameter was γ = 0.99. The robot’s
initial belief was equally distributed between two initial positions that were uniformly sampled from
the southern-most row of the map.

A.7.3 Details of Navigation3 Scenario

The state and observation spaces have six dimensions which represent the position (x, y, z) and
orientation (roll, pitch, yaw) of the drone. There are 12 actions that increase or decrease one dimension
by 0.2 units. Action and observation noise is sampled from a multivariate Gaussian distribution with
0 mean and 0.032 standard deviation. If an action results in a collision with the terrain, the robot
receives a -500 penalty, and the world terminates. Reaching the goal area receives a 1000 reward,
and each step incurs a -1 penalty. The drone’s initial configuration is (−4.0,−1.0, 0.0, 0.0, 0.0, 0.0)
and the goal are is the ball with centre (10.4, 3.0, 0.45) and radius 0.25. The start and goal are not in
a direct line and the robot needs to go over the hill near the goal area to reach its destination. The
discount parameter was γ = 0.99. The robot’s initial belief is populated with its exact start position.

A.8 Source Code

We include the source code for REFSOLVER, which is developed on top of pomdp_py as a Supple-
mentary Material. https://github.com/RDLLab/ref_pomdp_neurips23
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