
A Limitations

Transport costs. Our theoretical results hold true for any continuous cost function c(x, y), but our
experimental study uses `2 as it already yields a reasonable performance in many cases. Considering
more semantically meaningful costs for image translation, e.g., perceptual [70], is a promising future
research direction.

Intersecting supports. ET is the nearest neighbor assignment (M3.1). Using ET may be unreasonable
when X = Y and Supp(P) intersects with Supp(Q). For example, if c(x, y) attains minimum over
y 2 Y for a given x 2 X at x = y, e.g., c = `2, then there exists a ET plan satisfying ⇡⇤(y|x) = �x
for all x 2 Supp(P) \ Supp(Q). It does not move the mass of points x in this intersection. We
provide an illustrative toy 2D example in Fig. 10b.

Limited diversity. It is theoretically impossible to preserve input-output similarity better than ET
maps. Still one should understand that in some cases these maps may yield degenerate solutions.
In Fig. 10a, we provide a toy 2D example of an IT map (w = 8) which maps all inputs to nearly
the same point. In Fig. 9a (texture ! chair translation), we see that with the increase of w the IT
map produces less small chairs but more large armchairs. In particular, when w = 8, only armchairs
appear, see Fig. 9a. This is because they are closer (in `2) to textures due to having smaller white
background area.

(a) Limited diversity. The true ET map is degenerate:
it maps the entire P to a single vertex of the triangle Q.

The example shows the learned IT map with high
w = 20 approximating the ET map.

(b) Intersecting supports. The true ET map is the
identity map: it does not move the probability mass of
P. The example shows the learned IT map with high

w = 8 approximating the ET map.
Figure 10: Toy 2D examples showing two (potential) limitations of IT maps.

Unused samples. Doing experiments, we noticed that the model training slows down with the
increase of w. A possible cause of this is that some samples from Q become non-informative for
training (this follows from our Proposition 4). Intuitively, the part of Supp(Q) to which the samples
of P will not be mapped to is not informative for training. We illustrate this effect on toy ’Wi-Fi’
example and plot the histogram of values of f⇤ in Fig. 11. One possible negative of this observation
is that the training of IT maps or, more generally, partial OT maps, may naturally require larger
training datasets.

(a) Surface of f⇤

(trained with w = 1).
(b) Surface of f⇤

(trained with w = 3
2 ).

(c) Surface of f⇤

(trained with w = 3).
(d) Histograms of values

of f⇤(y) for y ⇠ Q.

Figure 11: Illustration the unused samples. In Figures 11a, 11b, 11c, we visualize the surface of the
learned potential f⇤ on the ’Wi-Fi’ example and w 2 {1, 3

2 , 3}. In Figures 11b, 11c, the potential
vanishes on the arcs of Q to which the mass of P is not mapped, i.e., f⇤(y) = 0. In Figure 11d, we

plot the distribution of values of f⇤(y) for y ⇠ Q. For w 2 { 3
2 , 3}, we see large pikes around

f⇤(y) = 0 further demonstrating that the potential equals to zero on a certain part of Q.
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Limited quantitative metrics. In experiments (M5), we use a limited amount of quantitative metrics.
This is because existing unpaired metrics, e.g., FID [32], KID [8], etc., are not suitable for our

setup. They aim to test equalities, such as T ]P = Q, while our learned maps disobey it by the
construction (they capture only a part of Q). Developing quality metrics for partial generative models
is an important future research direction. Meanwhile, for our method, we have provided a toy 2D
analysis (M5.1) and explanatory metrics (M5.2), such as the transport cost (Table 1a).

Inexistent IT maps. The actual IT plans between P,Q may be non-deterministic, while our approach
only learns a deterministic map T . Nevertheless, thanks to our Proposition 3, for every ✏ > 0 there
always exists a 1-to-1 map T✏]P  wQ which provides ✏-sub-optimal cost

R
X c

�
x, T✏(x)

�
dP(x) 

Costw(P,Q) + ✏. Thus, IT cost (12) can be approached arbitrary well with deterministic transport
maps. A potential way to modify our algorithm is to learn stochastic plans is to add random noise z
to generator T (x, z) as input, although this approach may suffer from ignoring z, see [43, M5.1].

Fake solutions and instabilities. Lagrangian objectives such as (15) may potentially have optimal
saddle points (f⇤, T ⇤) in which T ⇤ is not an OT map. Such T ⇤ are called fake solutions [42] and
may be one of the causes of training instabilities. Fake solutions can be removed by considering OT
with strictly convex weak costs functions [43, Appendix H], see Appendix G.2 for examples.

Potential societal impact. Neural OT methods and, more generally, generative models are a
developing research direction. They find applications such as style translation and realistic content
generation. We expect that our method may improve existing applications of generative models and
add new directions of neural OT usage like outlier detection. However, it should be taken into account
that generative models can also be used for negative purposes such as creating fake faces.

B Toy 2D Illustrations of Other Methods

In this section, we demonstrate how the other methods perform in ’Wi-Fi’ and ’Accept’ experiments.
We start with ’Wi-Fi’. Assume that we would like to map P to the closest 2

3 -rd fraction of Q, i.e., we
aim to learn 2 of 3 arcs in Q, (as in Fig. 7c).

In Fig. 12d, we show the discrete partial OT (4) [11] with parameters w0 = m = 1,
w1 = 3

2 , corresponding to IT (12) with w = 3
2 . To obtain the discrete matching, we run

ot.partial.partial_wasserstein2 from POT5. As expected, it matches the input P with 2
3

of Q and can be viewed as the ground truth (coinciding with our Fig. 7c).

First, we show the GAN [27] endowed with additional `2 loss with weight � = 0.5 (in Fig. 12a). Next,
we consider discrete unbalanced OT [14] with the quadratic cost c = `2. In Fig. 12b, we show the
results of the matching obtained by ot.unbalanced with parameters m = 1, reg = 0.1, regm = 1,
numItermax = 200000. Additionally, in Fig. 12c we show the result of neural unbalanced OT
method [66].6 To make their unbalanced setup maximally similar to our IT, we set to zero their
regularization parameters. The rest parameters are default except for �0 = 0.02 (`2 loss parameter),
�2 = 5 (input and target measures’ variation parameter).

We see that GAN+`2 (Fig. 12a) and unbalanced OT (Fig. 12b and 12c) indeed match P with only a
part of the target measure Q. The transported mass is mostly concentrated in the two small arcs of
Q which are closest to P w.r.t. `2 cost. The issue here is that some mass of P spreads over the third
(biggest) arc of Q yielding outliers. This happens because unbalanced OT (GAN can be viewed as its
particular case) is an unconstrained problem: the mass spreading is controlled via soft penalization
(f -divergence loss term). The lack of hard constraints, such as those in partial OT (4) or IT (12),
makes it challenging to strictly control how the mass in unbalanced OT actually spreads.

For completeness, we also show the results of these methods applied to ’Accept’ experiment, see
Fig. 13. Here we tested various hyperparameters for these methods but did not achieve the desired
behaviour, i.e., learning only the text ’Accept’. Moreover, we noted that GAN+`2 for large � yields
undesirable artifacts (Fig. 13a). This is because GAN and `2 losses contradict to each other and still
the models tried to minimize them both. We further discuss in Appendix C below.

5
pythonot.github.io

6
github.com/uhlerlab/unbalanced_ot
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(a) GAN+`2. (b) Discrete unbalanced
OT.

(c) Scalable unbalanced
OT.

(d) Discrete Partial OT
(desired ground truth).

Figure 12: Transport maps learned by various methods in ’Wi-Fi’ experiment (Fig. 7a).

(a) GAN+`2. (b) Discrete unbalanced
OT.

(c) Scalable unbalanced
OT.

(d) Discrete Partial OT
(desired ground truth).

Figure 13: Transport maps learned by various methods in ’Accept’ experiment.

C Comparison with Other Image-to-Image Translation Methods

Recall that ET by design is the best translation between a pair of domains w.r.t. the given dissimilarity
function c(x, y). Our IT maps with the increase of w provide better input-output similarity and
recover ET when w ! 1 (M3.3). A reader may naturally ask: (a) How else can we recover ET maps?
(b) To which extent one can control the input-output similarity in existing translation methods? (c)

Can these methods be used to approximate ET? We discuss these aspects below.

Many translation methods are based on GANs, see [55, 3, 13] for a survey. Their learning objectives
are usually combined of several loss terms:

LTotal(T )
def
= LDom(T ) + � · LSim(T ) + [other terms]. (17)

In (17), the domain loss LDom is usually the vanilla GAN loss involving a discriminator [27] ensuring
that the learned map x 7! T (x) transforms inputs x ⇠ P to the samples from the target data distri-
bution Q. The similarity loss LSim (with � � 0) is usually the identity loss

R
X kx� T (x)k1dP(x).

More generally, it can be an arbitrary unsupervised loss of the form
R
X c

�
x, T (x)

�
dP(x) stimulat-

ing the output sample T (x) to look like the input samples x w.r.t. given dissimilarity function c,
e.g., `1, `2, `p, perceptual, etc. The other terms in (17) involve model-specific terms (e.g., cycle
consistency loss in CycleGAN) which are not related to our study.

When learning a model via optimizing (17), a natural way to get better similarity of x and T (x) in
(17) is to simply increase weight � of the corresponding loss term. This is a straightforward approach
but it has a visible limitation. When � is high, the term � · LSim dominates over the other terms
such as LDom, and the model T simply learns to minimize this loss ignoring the fact that the output
sample should be from the target data distribution Q. In other words, in (17) there is a nasty trade-off

between T (x) belonging to the target data distribution Q and input-output similarity of x and T (x).
The parameter � � 0 controls this realism-similarity trade-off, and we study how it affects the learned
map T below.

We pick CycleGAN [72] as a base model for evaluation since it is known as one of the
principal models to solve the unpaired translation problem. We use c = `1 as the similar-
ity loss as the CycleGAN’s authors originally used in their paper.7 We consider parameter
� 2 [0, 50, 100, 200, 250, 300, 350, 500].

7We also conducted a separate experiment to train CycleGAN with `2 identity loss. However, in this case
CycleGAN’s training turned to be less stable and, importantly, yielded (mostly) worse FID. Surprisingly, we
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Additionally, we perform comparison with a more recent StarGAN-v2 [15] model. By default,
StarGAN-v2 does not use any similarity loss and does not enforce the output to be similar to the
input. Therefore, analogously to CycleGAN, we endow the model with an additional `1 similarity
loss and consider � 2 [0, 1, 10, 50, 100, 200, 500].
We train both models on celeba ! anime (64⇥ 64) and handbags ! shoes (128⇥ 128) translation
with various � and report the qualitative and quantitative results below. In all the cases, we report
both `2 and `1 transport costs and FID on the test samples. Tables 2, 3, 4, 5 show transport costs and
FID of GANs. FID and `2 metrics for our method are given in the main text (Tables 1b, 1a) and `1

cost is given in Table 6 below. For convenience, we visualize (FID,Cost) pairs for our method and
GANs in Fig. 14.
Results and discussion (CycleGAN). Interestingly, we see that for CycleGAN adding small identity
loss � = 50 yields not only decrease of the transport cost (compared to � = 0), but some improvement
of FID as well. Still we see that the transport cost in CycleGAN naturally decreases with the increase
of weight �. Unfortunately, this decrease is accompanied by the decrease of the visual image quality,
see Fig. 15. While for large � the cost for CycleGAN is really small, the model is practically useless

since it poors image quality. For very large �, CycleGAN simply learn the identity map, as expected.
For � providing acceptable visual quality, CycleGAN yields a transport cost which is bigger than
that of standard OT (w = 1). Our result for w = 8 is unachievable for it. Note that in most cases
FID of our IT method is smaller than that of CycleGAN.
Results and discussion (StarGAN-v2). In the celeba!anime experiment, StarGAN-v2 results
are similar to CycleGAN ones. Our IT with w = 2 easily provides smaller transport cost (better
similarity) than StarGAN-v2. In the handbags ! shoes translation, we have encountered surprising
observations. We see that starting from � = 10 the model fails to translate some of the handbags to
shoes, i.e., these handbags remain nearly unchanged. We notice the similar behaviour for vanilla GAN
in ’Accept’ experiment, see Fig. 13a. This explains the low cost for StarGAN-v2 model (� � 10).
Surprisingly to us, for � = 10, FID metric is also low despite the fact that model frequently produces
failures, see the highlighted results in Fig. 16. Note that while FID is a widely used metric, it still
could produce misleading estimations which we observe in the latter case.
Additionally, we provide a large set of randomly generated images for � = 10 to qualitatively show
that the stated issue is indeed notable, see Fig. 17. These failures demonstrate the limited practical
usage of the model. Our IT method does not suffer from this issue which we qualitatively demonstrate
on the same set of images for different weights w, see Fig. 25.

Experiment Cost � = 0 � = 50 � = 100 � = 200 � = 250 � = 300 � = 350 � = 500
celeba ! anime

`1
0.48 0.48 0.39 0.26 0.09 0.09 0.09 0.09

handbag ! shoes 0.42 0.36 0.34 0.31 0.32 0.22 0.16 0.07
celeba ! anime

`2
0.33 0.32 0.24 0.11 0.01 0.02 0.02 0.01

handbag ! shoes 0.51 0.43 0.41 0.35 0.37 0.22 0.14 0.02
Table 2: Test `1 and `2 transport cost of CycleGAN.

Experiment � = 0 � = 50 � = 100 � = 200 � = 250 � = 300 � = 350 � = 500
celeba ! anime 22.9 20.8 35.2 88.8 122.2 123.5 120.0 122.8

handbag ! shoes 27.8 23.4 23.6 37.4 38.5 105.6 144.9 152.9
Table 3: Test FID of CycleGAN.

Experiment Cost � = 0 � = 1 � = 10 � = 50 � = 100 � = 200 � = 500
celeba ! anime

`1
0.672 0.355 0.210 0.076 0.050 0.030 0.029

handbag ! shoes 0.562 0.465 0.244 0.087 0.068 0.054 0.048
celeba ! anime

`2
0.686 0.216 0.094 0.017 0.006 0.002 0.002

handbag ! shoes 0.739 0.584 0.244 0.040 0.023 0.015 0.012
Table 4: Test `1 and `2 transport costs of StarGAN-v2.

Experiment � = 0 � = 1 � = 10 � = 50 � = 100 � = 200 � = 500
celeba ! anime 19.55 22.40 42.30 99.68 123.76 137.8 139.11

handbag ! shoes 25.45 45.13 22.36 131.8 149.8 155.8 158.8
Table 5: Test FID of StarGAN-v2.

observed higher test transport costs (both `2 and `1). Therefore, not to overload the exposition, we decided to
keep only the experiment with CycleGAN trained with `1 identity loss.
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(a) Test `2 transport cost. (b) Test `1 transport cost.
Figure 14: Comparison of test FID and transport costs (`2 and `1) of our IT method and CycleGAN.

Experiment w = 1 w = 2 w = 4 w = 8
celeba ! anime 0.447 0.309 0.275 0.225

handbag ! shoes 0.327 0.328 0.263 0.264
Table 6: Test `1 transport cost of our IT maps (learned with `2 transport cost).

Concluding remarks. Our algorithm with w ! 1 allows us to achieve better similarity without the
decrease of the image quality. At the same time, GANs fail to do this when � ! 1. Why?

We again emphasize that typical GAN objective (17) consists of several loss terms. Each term
stimulates the model to attain certain properties (realism, similarity to the input, etc.). These terms,
in general, contradict each other as they have different minima T . This yields the nasty trade-off

between the loss terms. Our analysis shows that conceptually there is no significant difference
between CycleGAN and a more recent StarGAN-v2 model. More generally, any GAN-based method
inherits realism-similarity tradeoff issue. GANs’ differences are mostly related to the use of other
architectures or additional losses. Therefore, we think that additional comparisons are excessive since
they may not provide any new insights.

In contrast, our method is not a sum of losses. Our objective (15) may look like a direct sum of a
transport cost with an adversarial loss; our method does have a generator (transport maps T ) and a
discriminator (potential f ) which are trained via the saddle-point optimization objective maxf minT .
Yet, this visible similarity to GAN-based methods is deceptive. Our objective maxf minT can
be viewed as a Lagrangian and is atypical for GANs: the generator is in the inner optimization
problem minT while in GANs the objective is minT maxf . In our case, similar to other neural dual
OT methods, the generator is adversarial to the discriminator but not vice versa, as in GANs. Please
consult [43, M4.3], [24] or [20] for further discussion about OT methods.

GANs aim to balance loss terms LDom and LSim. Our optimization objective enforces the constraint
T ]P  wQ via learning the potential f (a.k.a. Lagrange multiplier) and among admissible maps T
searches for the one providing the smallest transport cost. There is no realism-similarity trade-off.
For completeness, we emphasize that when w ! 1, FID in Table 1b does not drop because of the
decrease of the image quality, but because our method covers the less part of Q. FID negatively reacts
to this [48, Fig. 1b].

D Relation and Comparison with Discrete Partial OT Methods

The goal of domain translation is to recover the map x 7! T (x) between two domains P, Q.
We approach this problem by approximating T with a neural network trained on the empirical
samples X = {x1, . . . , xN}, Y = {y1, . . . , yM}, i.e., train datasets. Our method generalizes to new
(previously unseen, test) input samples xnew ⇠ P, i.e, our learned map bT can be applied to new input
samples to generate new target samples bT (xnew).

In contrast, discrete OT methods (including discrete partial OT) perform a matching between the
empirical distributions bPN =

PN
n=1 �xn , bQM =

PM
m=1 �ym . Thus, they do not provide out-of-

sample estimation of the transport plan ⇡(y|xnew) or map T (xnew). The reader may naturally
wonder: why not to interpolate the solutions of discrete OT? For example, a common strategy is
to derive barycentric projections T (x) =

R
Y yd⇡(y|x) of the discrete OT plan ⇡ and then learn a

network T✓(x) ⇡ T (x) to approximate them [63]. Below we study this approach and show that it
does not provide reasonable performance.
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(a) Celeba (female) ! anime (64⇥64). (b) Handbags ! shoes (128⇥128).

Figure 15: Unpaired translation via CycleGAN endowed with `1 identity loss with various weights �.

(a) Celeba (female) ! anime (64⇥64). (b) Handbags! shoes (128⇥128).

Figure 16: Unpaired translation via StarGAN-v2 endowed with `1 identity loss
with various weights �.
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Figure 17: Unpaired translation of handbags to shoes (128⇥128) via StarGAN-v2 endowed with
`1 identity loss (� = 10). Since StarGAN-v2 is a stochastic (one-to-many) approach, we visualize
several generated samples for different noise vectors z. Failures (poorly translated handbags which

remain nearly unchanged) are highlighted with red.

We perform evaluation of the BP approach on celeba!anime translation. We solve the discrete
partial OT (DOT) between the parts of the train data X (11K samples), Y (50K samples).8 We
use ot.partial.partial_wasserstein algorithm with parameters w0 = m = 1 and vary w1 2
{1, 2, 4, 8}, see the notation in (4). This corresponds to our IT (12) with w = w1. Then we regress a
UNet T✓ to recover the barycentric projection T . We also simulate the case of w = 1 by learning the
discrete NNs in the train dataset using NearestNeighbors algorithm from sklearn.neighbors.
We experiment with using MSE or VGG-based perceptual error9 as the loss function for regression.
We visualize the obtained results in Fig. 18 and report average `2 test transport cost, FID in Table 7.

Metrics w = 1 w = 2 w = 4 w = 8 w = 1 w = 1
(perc.)

`2 cost 0.298 0.199 0.184 0.167 0.158 0.165
FID 185.35 137.53 82.67 82.19 82.24 82.45
Table 7: Test `2 cost, FID of the DOT+BP method

trained with `2 or perceptual loss function.

BP methods are known not to work well

in large scale problems such as unpaired
translation because of the averaging effect,
see Figure 3 and large FID values of BP
in Table 1 of [17]. Indeed, one may learn
a barycentric projection network T✓(x) ⇡R
Y yd⇡(y|x) over the discrete OT plan ⇡,

yet it is clear that
R
Y yd⇡(y|x) is a direct weighted average of several images y, i.e., some blurry

average image of poor quality. It is not satisfactory for practical applications.

Figure 19: Test FID, `2 cost
of our IT vs. DOT+BP.

Our qualitative results indeed show that BP approach for small w
leads to the averaging effect. We see that on the train dataset this
effect disappears with the increase of w, see Fig. 18b. It is expected,
since with the increase of weight the conditional distribution of a
plan ⇡(y|x) tends to a degenerate distribution concentrated at the
nearest neighbor NN(x) of x in the train dataset, i.e., ⇡(y|x) ⇡
�NN(x) when w ! 1. This means, that in the limit the barycentric
projection in point x is its nearest neighbor NN(x).

However, the learned network (w = 1) does not generalize well
to unseen test samples and produces images of insufficient quality
which is much worse than for the train samples, see Fig. 18a. Despite
the fact that test `2 cost and FID decrease with the increase of w, see

8We do not use the whole datasets since computing discrete OT between them is computationally infeasible.
9
github.com/iamalexkorotin/WassersteinIterativeNetworks/src/losses.py
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(a) Results on test set. (b) Results on train set.

Figure 18: Unpaired translation with DOT+BP in celeba! anime experiment
visualized on test, train partitions.

Table 7, Fig. 19, generated test images have poor quality for all weights w. Yet, the FID scores as
well as the `2 costs are much bigger than in our method in all the cases.

As the MSE error for regression is known not to work well in image tasks, we also conduct an
experiment using the perceptual error function to learn T✓. Unfortunately, training the neural network
with perceptual error does not lead to meaningful improvements, see the bottom lines of Fig. 18b,
18a, Table 7. This confirms that the origins of DOT+BP method’s poor performance lie not in the
regression part, but in the entire methodology based on barycentric projections.

To conclude, discrete OT methods are not competitors to our work as there is no straightforward and
well-performing way to make out-of-sample DOT estimation in large scale image processing tasks.

E Experimental Details

Pre-processing. For all datasets, we rescale images’ RGB channels to [-1, 1]. As in [40], we rescale
aligned anime face images to 512⇥512. Then we do 256⇥256 crop with the center located 14
pixels above the image center to get the face. Finally, for all datasets except the textures dataset, we
resize the images to the required size (64⇥64 or 128⇥128). We apply random horizontal flipping
augmentation to the comic faces and chairs datasets. Analogously to [42], we rescale describable
textures to minimal border size of 300, do the random resized crop (from 128 to 300 pixels) and
random horizontal, vertical flips. Next, we resize images to the required size (64 ⇥ 64 or 128 ⇥ 128).

Neural networks. In M5.1, we use fully connected networks both for the mapping T✓ and potential
f . In M5.2, we use UNet [60] architecture for the transport map T✓. We use WGAN-QC’s [45]
ResNet [30] discriminator as a potential f . We add an additional final layer x 7! �|x| to f to
make its outputs non-positive.

Optimization. We employ Adam [38] optimizer with the default betas both for T✓ and f . The
learning rate is lr = 10�4. We use the MultiStepLR scheduler which decreases lr by 2 after
[(5+5·w)K, (20+5·w)K, (40+5·w)K, (70+5·w)K] iterations of f where w 2 {1, 2, 4, 8} is a weight
parameter. The batch size is |X| = 256 for toy ’Wi-Fi’, |X| = 4096 for toy Accept, and |X| = 64
for image-to-image translation experiments. The number of inner T✓ iterations is kT = 10. In toy
experiments, we observe convergence in ⇡ 30K total iterations of f for ’Wi-Fi’, in ⇡ 70K for
Accept. In the image-to-image translation, we do ⇡ 70K iterations for 128 ⇥128 datasets, ⇡ 40K
iterations for 64⇥64 datasets. In the experiments with image-to-image translation experiments, we
gradually increase w for 20K first iterations of f . We start from w = 1 and linearly increase it to
the desired w (2, 4 or 8).
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Computational complexity. The complexity of training IT maps depends on the dataset, size of
images and weight w. Convergence time increases with the increase of w: possible reasons for this
are discussed in the unused samples limitation (Appendix A). In general, it takes from 2 (for w = 1)
up to 6 (for w = 8) days on a single Tesla V100 GPU.

Reproducibility. We provide the code for the experiments and will provide the trained models, see
README.md.

F Proofs

Proof of Proposition 1. Since continuous c is defined on a compact set X ⇥ Y , it is uniformly
continuous on X ⇥ Y . This means that there exists a modulus of continuity ! : [0,+1) ! [0,1)
such that for all (x, y), (x0, y0) 2 X ⇥ Y it holds

|c(x, y)� c(x0, y0)|  !(||x� x0||X + ||y � y0||Y),

and function ! is monotone, continuous at 0 with !(0) = 0. In particular, for y = y0 we have
|c(x, y) � c(x0, y)|  !(||x � x0||X ). Thus, for c⇤(x) = miny2Supp(Q) c(x, y), we have |c⇤(x) �
c⇤(x0)|  !

�
||x� x0||X

�
, see [62, Box 1.8]. This means that c⇤ : X ! R is (uniformly) continuous.

Proof of Theorem 1. Since function (x, y) 7! c(x, y) is continuous, there exists a measurable se-
lection T ⇤ : X ! Y from the set-valued map x 7! argminy2Supp(Q) c(x, y), see [2, Theorem
18.19]. This map for all x 2 X satisfies c

�
x, T (x)

�
= min

y2Supp(Q)
c(x, y) = c⇤(x). As a result,

R
X c

�
x, T (x)

�
dP(x) =

R
X c⇤(x)dP(x) and (7) is tight.

Lemma 1. (Distinctness) Let µ, ⌫ 2 M(Y). Then µ  ⌫ holds if and only if for every f 2 C(Y)
satisfying f  0 it holds that

R
Y f(y)dµ(y) �

R
Y f(y)d⌫(y).

Proof of Lemma 1. If µ  ⌫, then the inequality
R
Y f(y)d(µ � ⌫)(y) � 0 for every (measurable)

f  0 follows from the definition of the Lebesgue integral. Below we prove the statement in the
other direction.

Assume the opposite, i.e.,
R
Y f(y)d(µ� ⌫)(y) � 0 for every continuous f  0 but still ⌫ ⇤ µ. The

latter means there exists a measurable A ⇢ Y satisfying µ(A) > ⌫(A). Let ✏ = 1
2

�
µ(A)�⌫(A)

�
> 0.

Consider the negative indicator function fA(y) which equals �1 if y 2 A and 0 when y /2 A. Consider
a variation measure |⌫ � µ| 2 M+(Y). Thanks to [23, Proposition 7.9], the continuous functions
C(Y) are dense in the space L1(|µ� ⌫|). Therefore, there exists a function fA,✏ 2 C(Y) satisfying
R
X |fA(y) � fA,✏(y)|d

��µ � ⌫|(y) < ✏. We define f�
A,✏(y)

def
= min{0, fA,✏(y)}  0. This is a

non-positive continuous function, and for y 2 Y it holds that |fA(y)� fA,✏(y)| � |fA(y)� f�
A,✏(y)|

because fA takes only non-positive values {0,�1}. We derive

Z

Y
f�
A,✏(y)d(µ� ⌫)(y) =

=⌫(A)�µ(A)=�2✏z }| {Z

Y
fA(y)d

�
µ� ⌫

�
(y)+

Z

Y
(f�

A,✏(y)� fA(y))d
�
µ� ⌫

�
(y) 

�2✏+

Z

Y
|f�

A,✏(y)� fA(y)|d
��µ� ⌫

��(y)  �2✏+

Z

Y
|fA,✏(y)� fA(y)|d

��µ� ⌫
��(y) 

�2✏+ ✏ = �✏ < 0,

which is a contradiction to the fact that
R
Y f(y)d(µ� ⌫)(y) � 0 for every continuous f  0. Thus,

µ  ⌫.

Proof of Proposition 2. To begin with, we prove that ⇧w(P,Q) is a weak-* compact set. Pick any
sequence ⇡n 2 ⇧w(P,Q). It is bounded as all ⇡n are probability measures (k⇡nk1=1). Hence by
the Banach-Alaoglu theorem [62, Box 1.2], there exists a subsequence ⇡nk weakly-⇤ converging to
some ⇡ 2 M(X ⇥ Y). It remains to check that ⇡ 2 ⇧w(P,Q). Let (µnk , ⌫nk) denote the marginals
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of ⇡nk and (µ, ⌫) be the marginals of ⇡. Pick any f 2 C(Y) with f  0. Since ⇡nk 2 ⇧w(P,Q), it
holds that 0  ⌫nk  wQ, w

R
Y f(y)dQ(y)

R
Y f(y)d⌫nk(y)0 (Lemma 1). We have

Z

Y
f(y)d⌫(y) =

Z

X⇥Y
f(y)d⇡(x, y) = lim

k!1

Z

X⇥Y
f(y)d⇡nk(x, y) = lim

k!1

Z

Y
f(y)d⌫nk(y).

The latter limit is � w
R
Y f(y)dQ(y) and  0. As this holds for every continuous f  0, we

conclude that 0  ⌫  wQ. By the analogous analysis one may prove that µ = P and ⇡ � 0. Thus,
⇡ 2 ⇧w(P,Q) and ⇧w(P,Q) is a weak-* compact.

The functional ⇡ 7!
R
X⇥Y c(x, y)d⇡(x, y) is continuous in the space M(X ⇥ Y) equipped with

weak-⇤ topology because c : X ⇥Y ! R is continuous. Since ⇧w(P,Q) is a compact set, there exists
⇡⇤ 2 ⇧w(P,Q) attaining the minimum on ⇧w(P,Q). This follows from the Weierstrass extreme
value theorem and ends the proof.

Bibliographical remark. The results showing the existence of minimizers ⇡⇤ in partial OT (4)
already exist, see [10, Lemma 2.2] or [22, M2]. They also provide the existence of minimizers in our
IT problem (12). Yet, the authors study the particular case when P,Q have densities on X ,Y ⇢ RD.
For completeness, we include a separate proof of existence as we do not require the absolute continuity
assumption. The proof is performed via the usual technique based on weak-* compactness in dual
spaces and is analogous to [62, Theorem 1.4] which proves the existence of minimizers for OT
problem (2). Our proof is slightly more technical due to the inequality constraint.

Proof of Proposition 3. Let ⇡⇤2⇧w(P,Q) be an IT plan. Consider the OT problem between P and
⇡⇤
y :

min
⇡2⇧(P,⇡⇤

y)

Z

X⇥Y
c(x, y)d⇡(x, y). (18)

It turns out that ⇡⇤ is a minimizer here. Assume the contrary, i.e., that there exists a more optimal
⇡0 2 ⇧(P,⇡⇤

y) satisfying
Z

X⇥Y
c(x, y)d⇡0(x, y) <

Z

X⇥Y
c(x, y)d⇡⇤(x, y)

�
= Costw(P,Q)

�
. (19)

This plan by the definition of ⇧(P,⇡⇤
y) satisfies ⇡0

x = P and ⇡0
y = ⇡⇤

y  wQ, i.e., ⇡0 2 ⇧w(P,Q).
However, (19) contradicts the fact that ⇡⇤ is an IT plan in (18) as ⇡0 provides smaller cost. Thus, min
in (18) equals Costw(P,Q) in (12).

Thanks to [62, Theorem 1.33], problem (18) has the same minimal value as the inf in the Monge’s
problem

inf
T ]P=⇡⇤

y

Z

X
c
�
x, T (x)

�
dP(x), (20)

i.e., for every ✏ > 0 there exists T✏ : X ! Y satisfying T✏]P = ⇡⇤
y and

R
X c

�
x, T✏(x)

�
dP(x) <

Costw(P,Q) + ✏. It remains to substitute this T✏ to Monge’s IT problem (11) to get an ✏-close
transport cost to Kantorovich’s IT cost (12). As this works for every ✏ > 0, we conclude that min in
(12) is the same as inf in (11).

Proof of Theorem 2. The fact that w 7! Costw(P,Q) is non-increasing follows from the inclusion
⇧w1(P,Q) ⇢ ⇧w2(P,Q) for w1  w2. This inclusion means that for larger values of w, the
minimization in (12) is performed over a larger set of admissible plans. As for convexity, take any IT
plans ⇡w1 2 ⇧w1(P,Q),⇡w2 2 ⇧w2(P,Q) for w1, w2, respectively. For any ↵ 2 [0, 1] consider the
mixture ⇡0 = ↵⇡w1 + (1� ↵)⇡w2 . Note that ⇡0

y = ↵⇡w1
y + (1� ↵)⇡w2

y  ↵w1Q+ (1� ↵)w2Q =�
↵w1 + (1� ↵)w2

�
Q. Therefore, ⇡0 2 ⇧↵w1+(1�↵)w2(P,Q). We derive

Cost↵w1+(1�↵)w2
(P,Q) 

Z

X⇥Y
c(x, y)d⇡0(x, y) =

↵

Z

X⇥Y
c(x, y)d⇡w1(x, y) + (1� ↵)

Z

X⇥Y
c(x, y)d⇡w2(x, y) =

↵Costw1(P,Q) + (1� ↵)Costw2(P,Q), (21)
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which shows the convexity of w 7! Costw(P,Q).

Now we prove that limw!1 Costw(P,Q) = Cost1(P,Q). For every w � 1 and ⇡ 2 ⇧w(P,Q), it
holds that ⇡y  wQ. This means that Supp(⇡y) ⇢ Supp(Q). As a result, we see that ⇧w(P,Q) ⇢
⇧1(P,Q), i.e., Costw(P,Q) � Cost1(P,Q). We already know that w 7! Costw(P,Q) is non-
increasing, so it suffices to show that for every ✏ > 0 there exists w = w(✏) 2 [1,+1) such that
Costw(P,Q)  Cost1(P,Q) + ✏. This will provide that limw!1 Costw(P,Q) = Cost1(P,Q).

Pick any ✏ > 0. Consider the set S def
= {(x, y) 2 X ⇥ Y such that y 2 NN(x)}. It is a compact set.

To see this, we pick any sequence (xn, yn) 2 S . It is contained in compact X ⇥ Y . Therefore, it has
a sub-sequence (xnk , ynk) converging to some (x, y) 2 X ⇥ Y . It remains to check that (x, y) 2 S .
Since Supp(Q) is compact and ynk 2 NN(xnk) ⇢ Supp(Q), we have y 2 Supp(Q) as well. At the
same time, by the continuity of c⇤ (Proposition 1) and c, we have

c(x, y)� c⇤(x) = lim
k!1

{c(xnk , ynk)� c⇤(xnk)} = lim
k!1

0 = 0,

which means that y 2 NN(x) and (x, y) 2 S , i.e., S is compact.

Since (x, y) 7! c(x, y) � c⇤(x) is a continuous function, for each (x, y) 2 S there exists an open
neighborhood Ux ⇥ Vy ⇢ X ⇥ Y of (x, y) such that for all (x0, y0) 2 Ux ⇥ Vy it holds that
c(x0, y0) � c⇤(x0) < ✏ or, equivalently, c(x0, y0) < c⇤(x0) + ✏. Since

S
(x,y)2S Ux ⇥ Vy is an open

coverage of the compact set S , there exists a finite sub-coverage
SN

n=1 Uxn ⇥ Vyn of S . In particular,

X =
SN

n=1 Uxn . For convenience, we simplify the notation and put Un
def
= Uxn and Vn

def
= Vyn .

Now we put U 0
1

def
= U1 and iteratively define U 0

n
def
= Un \ U 0

n�1 for n � 2. By the construction, it
holds that the entire space X is a disjoint union of U 0

n, i.e., X =
FN

n=1 U
0
n. Some of U 0

n may be
empty, so we just remove them from the sequence and for convenience assume that each U 0

n is not
empty. Now consider the measure ⇡ 2 P(X ⇥ Y) which is given by

⇡
def
=

NX

n=1

⇥
P|U 0

n
⇥ Q|Vn

Q(Vn)

⇤
. (22)

Here for µ, ⌫ 2 M+(X ),M+(Y), we use ⇥ to denote their product measure µ⇥ ⌫ 2 M(X ⇥ Y).
In turn, for a measurable A ⇢ X , we use µ|A to denote the restriction of µ to A, i.e., measure
µ0 2 M(X ) satisfying µ0(B) = µ(A\B) for every measurable B ⇢ X . Note that

PN
n=1 P|U 0

n
= P

and
PN

n=1 P(U 0
n) =

PN
n=1 P|U 0

n
(U 0

n) = 1 by the construction of U 0
n. At the same time, for each

n it holds that Q|Vn
Q(Vn)

is a probability measure because of the normalization Q(Vn). Note that this
normalization is necessarily positive because Vn is a neighborhood of a point in Supp(Q). Therefore,
since sets U 0

n are disjoint and cover X , we have ⇡x =
PN

n=1 P|U 0
n
= P. Now let us show that there

exists w such that ⇡y  wQ. It suffices to take w =
PN

n=1
P(U 0

n)
Q(Vn)

. Indeed, in this case for every
measurable A ⇢ Y we have

⇡y(A) =
NX

n=1

P(U 0
n)

Q(A \ Vn)

Q(Vn)


NX

n=1

P(U 0
n)

Q(A)

Q(Vn)
 Q(A)

NX

n=1

P(U 0
n)

Q(Vn)
 wQ(A),

which yields ⇡y  wQ and means that ⇡ 2 ⇧w(P,Q) for our chosen w. Now let us compute the cost
of ⇡:

Z

X⇥Y
c(x, y)d⇡(x, y) =

NX

n=1

Z

U 0
n

⇢
1

Q(Vn)

Z

Vn

c(x, y)dQ|Vn(y)

�
dP|U 0

n
(x) 

NX

n=1

Z

U 0
n

⇢
1

Q(Vn)

Z

Vn

�
c⇤(x) + ✏

�
dQ|Vn(y)

�

| {z }
=c⇤(x)+✏

dP|U 0
n
(x) =

NX

n=1

Z

U 0
n

�
c⇤(x) + ✏

�
dP|U 0

n
(x) =

Z

X

�
c⇤(x) + ✏

�
dP(x) = Cost1(P,Q) + ✏. (23)

To finish the proof it remains to note that this plan is not necessarily a minimizer for (12), i.e.,R
X⇥Y c(x, y)d⇡(x, y) is an upper bound on Costw(P,Q). Therefore, we have Costw(P,Q) 

Cost1(P,Q) + ✏ for our chosen w = w(✏).
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Bibliographical remark. There exist seemingly related but actually different results in the
fundamental OT literature, see [22, Lemma 2.1] or [10, M3]. There the authors study partial OT
problem (4) and study how the partial OT plan and OT cost evolve when the marginals w0P and w1Q
are fixed and the required mass amount to transport changes from 0 to min{w0, w1}. In our study,
the first marginal w0P and the amount of mass to transport m are fixed (w0 = m = 1), and we study
how the OT cost changes when w1 ! 1 in the IT problem.

Proof of Theorem 3. Note that P(X ⇥Y) is (weak-*) compact. This can be derived from the Banach-
Alaoglu theorem analogously to the compactness of ⇧w(P,Q) in the proof of Theorem (2). Therefore,
any sequence in P(X ⇥ Y) has a converging sub-sequence. In our case, for brevity, we assume that
⇡wn 2 ⇧wn(P,Q) itself weakly-* converges to some ⇡⇤ ⇢ P(X ⇥ Y). Since ⇡wn

x = P for all n, we
also have ⇡⇤

x = P. As limn!1 wn = 1, we conclude from Theorem 2 that

Cost1(P,Q) = lim
n!1

Costwn(P,Q) = lim
n!1

Z

X⇥Y
c(x, y)d⇡wn(x, y) =

Z

X⇥Y
c(x, y)d⇡⇤(x, y),

(24)
where the last equality holds since ⇡wn (weakly-*) converges to ⇡⇤. From (24), we see that the
cost of ⇡⇤ is perfect and it remains to check that Supp(⇡⇤

y) ⇢ Supp(Q). Assume the opposite and
pick any y⇤ 2 Supp(⇡⇤

y) such that y⇤ /2 Supp(Q). By the definition of the support, there exists
✏ > 0 and a neighborhood U = {y 2 Y such that ky � y⇤kY < ✏} of y⇤ satisfying ⇡⇤

y(U) > 0 and

U \ Supp(Q) = ;. Let h(y) def
= max{0, ✏� ky � y⇤kY}. From ⇡wn

y  wnQ (for all n), it follows
that Supp(⇡wn

y ) ⇢ Supp(Q). Therefore, ⇡wn
y (U) = 0 for all n. Since ⇡wn converges to ⇡⇤, we have

lim
n!1

Z

Y
h(y)d⇡wn(y) =

Z

Y
h(y)d⇡⇤(y). (25)

The left part is zero because h(y) vanishes outside U and
R
U h(y)d⇡wn(y) = 0 as ⇡wn

y (U) = 0. The
right part equals

R
U h(y)d⇡⇤(y) and is positive as ⇡⇤(U) > 0 and h(y) > 0 for y 2 U . This is a

contradiction. Therefore, Supp(⇡⇤
y) ⇢ Supp(Q). Now we see that ⇡⇤ 2 ⇧1(P,Q) is a perfect plan

as its cost matches the perfect cost.

Proof of Corollary 1. Assume the inverse. Then 9" such that 8w(") 9w � w(") and 9 IT plan
⇡w 2 ⇧w(P,Q) solving (12) such that 8 ET plan ⇡⇤, it holds that W1(⇡w,⇡⇤) � ". This means that
there exists an increasing sequence w1, w2, ..., wn, · · · ! 1 and the corresponding sequence of IT
plans ⇡w1 ,⇡w2 , ...,⇡wn , . . . such that for every ET plan ⇡⇤ it holds that W1(⇡wn ,⇡⇤) � " for all n.
At the same time, from Theorem 3, this sequence of plans must have a sub-sequence {⇡wnk } which is
(weakly-*) converging to some ET plan ⇡⇤: ⇡wnk ! ⇡⇤. Recall that the convergence in W1 coicides
with the weak-⇤ convergence (for compact X ,Y), see [62, Theorem 5.9]. Hence, the sub-sequence
should also converge to ⇡⇤ in W1 but it is not since W1(⇡wn ,⇡⇤) � ". This is a contradiction.

Proof of Theorem 4. Let ⇧(P) ⇢ P(X ⇥ Y) denote the subset of probability measures ⇡ 2
P(X ⇥ Y) satisfying ⇡x = P. Consider a functional I : ⇧(P) ! {0,+1} defined by
I(⇡)

def
= supf0

R
Y f(y)d

�
wQ � ⇡y

�
(y), where the sup is taken over non-positive f 2 C(Y).

From Lemma 1, we have I(⇡) = 0 when ⇡ 2 ⇧w(P,Q) and I(⇡) = +1 otherwise. Indeed, if there
exists a non-positive function satisfying

R
Y f(y)d

�
wQ� ⇡y

�
(y) > 0, then function Cf (for C > 0)

also satisfies this condition and provides C-times bigger value which tends to 1 with C ! 1. We
use I(⇡) incorporate the right constraint ⇡y  wQ in ⇡ 2 ⇧w(P,Q) to the objective and obtain the
equivalent to (12) problem:

min
⇡2⇧w(P,Q)

Z

X⇥Y

c(x, y)d⇡(x, y) = min
⇡2⇧(P)

⇢ Z

X⇥Y

c(x, y)d⇡(x, y) + I(⇡)

�
=

min
⇡2⇧(P)

⇢ Z

X⇥Y

c(x, y)d⇡(x, y) + sup
f0

Z

Y

f(y)d
�
wQ� ⇡y

�
(y)

�
=

min
⇡2⇧(P)

sup
f0

⇢ Z

X⇥Y

c(x, y)d⇡(x, y) +

Z

Y

f(y)d
�
wQ� ⇡y

�
(y)

�
= (26)
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sup
f0

min
⇡2⇧(P)

⇢ Z

X⇥Y

c(x, y)d⇡(x, y) +

Z

Y

f(y)d
�
wQ� ⇡y

�
(y)

�
= (27)

sup
f0

⇢
min
⇡2⇧(P)

� Z

X⇥Y

c(x, y)d⇡(x, y)�
Z

Y

f(y)d⇡y(y)
 
+ w

Z

Y

f(y)dQ(y)

�
=

sup
f0

⇢
min
⇡2⇧(P)

� Z

X⇥Y

c(x, y)d⇡(x, y)�
Z

X⇥Y

f(y)d⇡(x, y)
 
+ w

Z

Y

f(y)dQ(y)

�
= (28)

sup
f0

⇢
min
⇡2⇧(P)

�Z

X

Z

Y

c(x, y)d⇡(y|x) dP(x)| {z }
=d⇡x(x)

�
Z

X

Z

Y

f(y)d⇡(y|x) dP(x)| {z }
=d⇡x(x)

 
+ w

Z

Y

f(y)dQ(y)

�
= (29)

sup
f0

⇢
min
⇡2⇧(P)

�Z

X

Z

Y

�
c(x, y)� f(y)

�
d⇡(y|x)dP(x)

 
+ w

Z

Y

f(y)dQ(y)

�
(30)

In transition from (26) to (27) we use the minimax theorem to swap sup and min [64, Corollary 2].
This is possible because the expression in (26) is a bilinear functional of (⇡, f). Thus, it is convex
in ⇡ and concave in f . At the same time, ⇧(P) is a convex and (weak-*) compact set. The latter
can be derived analogously to the compactness of ⇧w(P,Q) in the proof of Theorem 2. In transition
from (28) to (29), we use the measure disintegration theorem to represent d⇡(x, y) as the marginal
d⇡x(x) = dP(x) and a family of conditional measures d⇡(y|x) on Y . We note that

min
⇡2⇧(P)

Z

X

Z

Y

�
c(x, y)� f(y)

�
d⇡(y|x)dP(x)

 
�
Z

X

min
y2Y

�
c(x, y)� f(y)

�

| {z }
=fc(x)

dP(x). (31)

On the other hand, consider the measurable selection T : X ! Y for the set-valued map x 7!
argminy2Y

�
c(x, y)�f(y)

�
. It exists thanks to [2, Theorem 18.19]. As a result, for the deterministic

plan ⇡T = [id, T ]]P, the minimum in (31) is indeed attained. Therefore, (31) is the equality. We
combine (30) and (31) and obtain

Costw(P,Q) = min
⇡2⇧w(P,Q)

Z

X⇥Y

c(x, y)d⇡(x, y) = sup
f0

⇢Z

X

f c(x)dP(x) + w

Z

Y

f(y)dQ(y)

�
. (32)

It remains to prove that sup in the right part is actually attained at some non-positive f⇤ 2 C(Y).
Let f1, f2, · · · 2 C(Y) be a sequence of non-positive functions for which lim

n!1

� R
X f c

n(x)dP(x) +

w
R
Y fn(y)dQ(y)

 
= Costw(P,Q). For g 2 C(X ), we define the (c,�)-transform g(c,�)(y)

def
=

min
⇥
min
x2X

�
c(x, y)� g(x)

�
, 0
⇤
 0. It yields a (uniformly) continuous non-positive function satisfy-

ing |g(c,�)(y)� g(c,�)(y0)|  !
�
ky � y0kY

�
, where ! is the modulus of continuity of c(x, y). This

statement can be derived analogously to the proof of Proposition 1.

Before going further, let us highlight two important facts which we are going to use below. Consider
any g 2 C(X ) and 0 � h 2 C(Y) satisfying g(x)+h(y)  c(x, y) for all (x, y) 2 X⇥Y . First, from
the definition of (c,�)-transform, one can see that for all (x, y) 2 X ⇥Y it holds that 0 � g(c,�) � h
and

g(x) + h(y)  g(x) + g(c,�)(y)  c(x, y), (33)

i.e., (g, g(c,�)) also satisfies the assumptions of (g, h). Second, from the definition of c-transform, it
holds that hc � g and

g(x) + h(y)  hc(x) + h(y)  c(x, y), (34)

i.e., the pair (hc, h) satisfies the same assumptions as (g, h).

Now we get back to our sequence f1, f2, . . . . For each n and (x, y) 2 X ⇥ Y , we have f c
n(x) +

fn(y)  c(x, y). Next,

f c
n(x) + fn(y)  f c

n(x) + (f c
n)

(c,�)(y) 
�
(f c

n)
(c,�)

�c
(x) + (f c

n)
(c,�)(y)

⇥
 c(x, y)

⇤
, (35)
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where we first used (33) with (g, h) = (f c
n, fn) and then used (34) with (g, h) = (f c

n,
�
f c
n

�(c,�)
). In

particular, we have f c
n 

�
(f c

n)
(c,�)

�c and fn  (f c
n)

(c,�). We sum these inequalities with weights 1
and w, and for all (x, y) 2 X ⇥ Y obtain

f c
n(x) + wfn(y) 

�
(f c

n)
(c,�)

�c
(x) + w(f c

n)
(c,�)(y) = hc

n(x) + whn(y), (36)

where for convenience we denote hn
def
= (f c

n)
(c,�). Integrating (36) with (x, y) ⇠ P⇥Q yields

Z

X
f c
n(x)dP(x) + w

Z

Y
fn(y)dQ(y) 

Z

X
hc
n(x)dP(x) + w

Z

Y
hn(y)dQ(y). (37)

This means that potential hn provides not smaller dual objective value than fn. As a result, sequence
h1, h2 . . . also satisfies lim

n!1

� R
X hc

n(x)dP(x) + w
R
Y hn(y)dQ(y)

 
= Costw(P,Q). Now we

forget about f1, f2, . . . and work with h1, h2, . . . .

All the functions hn are uniformly equicontinuous as they share the same modulus of continuity
! because they are (c,�)-transforms by their definition. Let vn(y)

def
= hn(y) �maxy02Y hn(y0).

This function is also non-positive and uniformly continuous as well. Note that vn provides the same
dual objective value as hn. This follows from the definition of vc = hc + maxy02Y hn(y0). Here
the additive constant vanishes, i.e., vcn(x) + vn(y) = hc

n(x) + hn(y). At the same time, vn are all
uniformly bounded. Indeed, let yn 2 Y be any point where vn(yn) = 0. Then for all y 2 Y it holds
that |vn(y)| = |vn(y)� vn(yn)|  !

�
ky� ynkY

�
 !

�
diam(Y)

�
. Therefore, by the Arzelà–Ascoli

theorem, there exists a subsequence vnk uniformly converging to some f⇤ 2 C(X). As all vnk  0,
it holds that f⇤  0 as well. It remains to check that f⇤ attains the supremum in (32).

To begin with, we prove that vcnk
uniformly converges to (f⇤)c. Denote kvnk � f⇤k1 = ✏k. For all

(x, y) 2 X ⇥ Y , we have

c(x, y)� f⇤(y)� ✏k  c(x, y)� vnk(y)  c(x, y)� f⇤(y) + ✏k (38)

since |vnk(y)� f⇤(y)|  kvnk � f⇤k1 < ✏. We take miny2Y in (38) and obtain (f⇤)c(x)� ✏k 
vcnk

(x)  (f⇤)c(x) + ✏k. As this holds for all x 2 X , we have just proved that kvcnk
� (f⇤)ck1 <

✏k. This means that vcnk
uniformly converges to (f⇤)c as well since limk!1 kvnk � f⇤k1 =

limk!1 ✏k = 0. Thanks to the uniform convergence, we have

Costw(P,Q) = lim
k!1

⇢Z

X
(vnk)

c(x)dP(x) +
Z

Y
vnk(y)dQ(y)

�
=

Z

X
(f⇤)c(x)dP(x) +

Z

Y
f⇤(y)dQ(y). (39)

We conclude that f⇤ is a maximizer of (32) that we seek for.

Bibliographical remark. There exists a duality formula for partial OT (4), see [10, M2] which can be
reduced to duality formula to IT problem (12). However, it is hard to relate the resulting formula with
ours (13). We do not know how to derive one formula from the other. More importantly, it is unclear
how to turn their formula to the computational algorithm. Our formula provides an opportunity to do
this by using the saddle point reformulation of the dual problem which nowadays becomes standard
for neural OT, see [43, 20, 61]. We will give further comments after the next proof. The second part
of the derivation of our formula (existence of a maximizer f⇤) is inspired by the [62, Proposition
1.11] which shows the existence of maximizers for standard OT (2).

Proof of Theorem 5. By the definition of f⇤, we have

Costw(P,Q) =

min
T :X!Y

L(f⇤, T ) = min
T :X!Y

Z

X

�
c
�
x, T (x)

�
� f⇤�T (x)

� 
dP(x) + w

Z

Y
f⇤(y)dQ(y)  (40)

Z

X

�
c
�
x, T ⇤(x)

�
� f⇤�T ⇤(x)

� 
dP(x) + w

Z

Y
f⇤(y)dQ(y) = (41)

Z

X
c
�
x, T ⇤(x)

�
dP(x)�

Z

X
f⇤(y)d

⇥
T ⇤]P

⇤
(y) + w

Z

Y
f⇤(y)dQ(y) =
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Costw(P,Q) +

Z

Y
f⇤(y)d

⇥
wQ� T ⇤]P

⇤
(y)

| {z }
0 (Lemma 1)

 Costw(P,Q). (42)

This means that all the inequalities in (40)-(42) are equalities. Since (40) equals (41), we have
T ⇤ 2 argmin

T :X!Y
L(f⇤, T ).

Bibliographic remark (theoretical part). The idea of the theorem is similar to that of [61, Lemma
4.2], [24, Lemma 3], [43, Lemma 4], [20, Theorem 2] which prove that their respective saddle point
objectives maxf minT L(f, T ) can be used to recover optimal T ⇤ from some optimal saddle points
(f⇤, T ⇤). Our functional (15) differs, and we have the constraint f  0. We again emphasize here
that not for all the saddle points (f⇤, T ⇤) it necessarily holds that T ⇤ is the IT map, see the discussion
in limitations (Appendix A).

Bibliographic remark (algorithmic part). To derive our saddle point optimization problem (15),
we use the c-transform expansion proposed by [53] in the context of Wasserstein GANs and later
explored by [40, 43, 61, 20, 24, 31] in the context of learning OT maps. That is, our resulting
algorithm 1 overlaps with the standard maximin neural OT solver, see, e.g., [24, Algorithm 1]. The
difference is in the constraint f  0 and the additional multiplier w � 1.

Proof of Proposition 4. From the proof of Theorem 5, we see that
R
Y f⇤(y)d

⇥
wQ� T ⇤]P

⇤
(y) = 0.

Recall that f⇤  0. This means that f(y) = 0 for y 2 Supp
�
wQ � T ⇤]P

�
. Indeed, assume

the opposite, i.e., there exists some y 2 Supp
�
wQ � T ⇤]P

�
for which f(y) < 0. In this case,

the same holds for all y0 in a small neighboorhood U of y as f is continuous. At the same time,R
Y f⇤(y)d

⇥
wQ�T ⇤]P

⇤
(y) 

R
U f⇤(y)d

⇥
wQ�T ⇤]P

⇤
(y) < 0 since

⇥
wQ�T ⇤]P

⇤
is a non-negative

measure satisfying
⇥
wQ�T ⇤]P

⇤
(U) > 0 by the definition of the support. This is a contradiction. To

finish the proof it remains to note that Supp(Q) \ Supp(T ⇤]P) ⇢ Supp(wQ� T ⇤]P), i.e., f(y) = 0
for y 2 Supp(Q) \ Supp(T ⇤]P) as well.

Bibliographical remark. Treating functional L(f, T ) in (16) as a Lagrangian, Proposition 4 can be
viewed as a consequence of the complementary slackness in the Karush-Kuhn-Tucker conditions
[37].

G Additional Experimental Illustrations

G.1 Comparison with the Closed-form Solution for ET

In this section, we conduct a Swiss2Ball experiment in 2D demonstrating that for the sufficiently large
parameter w, IT maps become fine approximations of the ground-truth ET map. We define source
measure P as a uniform distribution on a swiss roll centered at (0, 0). Target measure Q is a uniform
distribution on a ball centered at (0, 0) with radius R = 0.5, i.e., Supp(Q) = B(0, 0.5). We note
that the supports of source and target measures are partially overlapping. In the proposed setup, the
solution to ET problem (5) has a closed form: T (x) = x·1x2B((0,0),0.5)+x· R

kxk2
·1x/2B((0,0),0.5), see

Fig. 20f. We provide the learned IT maps for w 2 {1, 3/2, 2, 32}, see Fig. 20b-20e. The qualitative
and quantitative results show that with the increase of w our IT maps become closer and closer to the
ground-truth ET one, see Table 8.

(a) Input, target
measures.

(b) IT map,
w=1.

(c) IT map,
w=3/2.

(d) IT map,
w=2.

(e) IT map,
w=32.

(f) Extremal
transport map.

Figure 20: Incomplete Transport (IT) maps learned with c(x, y) = kx� yk22 transport cost
and ground-truth Extremal Transport (ET) map in ’Swiss2Ball experiment.
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w = 1 w = 3/2 w = 2 w = 32
MSE(T̂ , T ⇤) 0.0136 0.0026 0.0009 7.98e-06

Table 8: MSE(T̂ , T ⇤) between learned IT maps T̂ (w 2 {1, 3/2, 2, 32})
and ground-truth ET map T ⇤.

G.2 Solving Fake Solutions Issue with Weak Kernel Cost

As we discuss in Appendix A, saddle-point neural OT methods (including our IT algorithm) may
suffer from fake solutions issue. As it is proved in [42], this issue can be eliminated by considering
OT with the so-called weak kernel cost functions. In this section, we test the effect of using them in
our IT algorithm. Specifically, we demonstrate the example where IT algorithm with the cost function
c(x, y) = kx� yk2 struggles from fake solutions, while IT with the same cost endowed with weak
kernel regularization, i.e., kernel cost [42, Equation (16)] with parameters ↵ = 1, � = 0.4, resolves
the issue. Following [42], we consider stochastic version of IT map T (x, z) using noise z ⇠ N (0, I)
as an additional input.

We design the Ball2Circle example in 2D, where input P is a uniform distribution on a ball and
target Q � on a ring embracing the ball. The solution of ET problem is an internal circuit of a ring,
see Fig. 21a. We learn IT maps for c(x, y) = kx� yk2, with (� = 0.4) or without (� = 0) kernel
regularization for weights w 2 {1, 2, 32}.

(a) Input, target
measures.

(b) IT map,w=1
(iter=7K)

(c) IT map,
w= 3

2 (iter=8K)
(d) IT map, w=2

(iter=7K)
(e) IT map, w=2

(iter=8K).
(f) IT map,
w=32

Figure 21: Incomplete Transport (IT) maps learned with c(x, y) = kx� yk2 transport cost in
’Ball2Circle’ experiment. We observe that training is highly unstable for w 2 {1, 2}, see the

solutions for nearby iterations of training - (b-c) and (d-e) respectively. Increase of the weight w
helps to improve the stability (f).

(a) Input, target measures
and ET map.

(b) IT map,
w=1.

(c) IT map,
w=2.

(d) IT map,
w=32.

Figure 22: Incomplete transport (IT) maps learned with weak kernel cost in ’Ball2Circle’ experiment
for a fixed noise z. Usage of the kernel regularization + stochastic map T (x, z) helps to overcome

instability issues for weights w 2 {1, 2}.

method / weight w = 1 w = 2 w = 32
w/o kernel regularization - - 0.0022
with kernel regularization 0.1377 0.0730 0.0495

Table 9: MSE(T̂ , T ⇤) between IT maps (w 2 {1, 2, 32}) learned with c(x, y) = kx� yk2
(with and without weak kernel regularization) and the ground-truth ET map. MSE for IT map

learned with kernel regularization is larger (see w = 32) than without the regularization since it
introduces small bias to the optimization.
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Discussion. We observe that without kernel regularization training of IT method is highly unstable
(for w 2 {1, 2}), see Fig. 21b-21d. Interestingly, with the increase of the weight w, the issue
disappears and for w = 32, IT map is close to the ground-truth ET one (Fig. 21f).

The usage of kernel regularization helps to improve stability of the method, see Fig. 22. However,
while MSE between learned and ground-truth ET map drops with the increase of w, for w = 32 it is
bigger than that of learned IT maps without regularization. It is expected, since using regularizations
usually leads to some bias in the solutions.

Thus, the example shows that (a) fake solutions may be a problem, (b) kernel regularization from [42]
may help to deal with them. However, further studying this aspect is out of the scope of the paper.

G.3 Perceptual Cost

In this section, we show that the stated conclusions hold true for the transport costs other than `2. For
this purpose, we perform additional experiments using perceptual transport cost from [24]. We use
the same hyperparameters as in our experiments with `2 cost.

Figure 23: Celeba (female) ! anime (64⇥64 image size, perceptual cost).

Metrics w = 1 w = 2 w = 4 w = 8
Test FID 9.21 12.98 17.24 22.08

Test perceptual cost 0.954 0.794 0.667 0.545
Test `2 cost 0.303 0.209 0.153 0.103

Table 10: Test FID and `2, perceptual transport costs of our IT maps
(learned with perceptual transport cost).

Experimental results. Qualitative results show that that similarity of input images x and the images
T̂ (x) translated by our IT method trained with perceptual cost grows with the increase of the parameter
w, see Figure 23. In 10, we quantitatively verify these observations by showing that both perceptual
and `2 mean transport costs between input and translated images decrease with the increase of w.
Interestingly, we see that IT trained with perceptual cost yields smaller FID than IT method trained
with `2 cost.

G.4 Bigger Weight Parameters

In this section, we present the results of IT method trained with `2 cost and parameters w = 16, 32.
We see that in contrast to CycleGAN which does not translate face images to anime images in case
of big parameters �, our IT method continues to translate faces to anime even for big parameters w.
We quantify the obtained results in Table 11. As expected, mean transport costs are decreasing with
the increase of w, while FID is slightly increasing. We present the qualitative results for additional
weights in Figure 24.
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Metrics
Main results Additional results

w = 1 w = 2 w = 4 w = 8 w = 16 w = 32
Test FID 14.65 20.79 22.18 22.84 24.86 28.28

Test `2 cost 0.297 0.154 0.133 0.094 0.091 0.083

Table 11: Test FID and `2 transport costs of our IT maps.

G.5 Additional Results for `2 Cost

Figure 24: Celeba (female) ! anime (64⇥64).

Figure 25: Handbag ! shoes (128⇥128).
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Figure 26: Textures ! chairs (64⇥64).

Figure 27: Ffhq ! comics (128⇥128).
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