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1 Additional Results18

1.1 Texture Editing19

As illustrated in Fig. 1, with our ISP, the texture of the garment can be easily edited by drawing on20

the UV panels. The figures drawn on the panel of one garment can be directly transferred to others as21

shown by Fig. 1(c), since panels are defined on the same UV space.22
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(a) (b) (c)

Figure 1: Texture editing. (a) A smiling face drawn on the front panel. (b) A flower pattern painted
on both the front and the back panels. (c) A pocket drawn for the left shirt can be transferred to
different garments.

1.2 Garment Reconstruction23

1.2.1 Evaluation Results24

Train CHD (×10−4, ↓) NC (%, ↑) Time (ms, ↓)
UDF - 128 0.714 98.53 690
UDF - 256 0.408 98.93 2784
UDF - 512 0.331 98.43 17362

Ours - 128 0.538 98.80 25
Ours - 256 0.321 99.08 75
Ours - 512 0.267 99.14 262

Test CHD (×10−4, ↓) NC (%, ↑)
UDF - 128 0.734 97.79
UDF - 256 0.403 98.64
UDF - 512 0.324 98.27

Ours - 128 0.583 98.62
Ours - 256 0.362 98.85
Ours - 512 0.304 98.89

Table 1: Comparison of our method to UDF on skirts under the resolutions of 128, 256 and 512.

Train CHD (×10−4, ↓) NC (%, ↑) Time (ms, ↓)
UDF - 128 0.758 98.22 661
UDF - 256 0.430 98.56 2650
UDF - 512 0.342 98.33 17141

Ours - 128 0.545 98.28 25
Ours - 256 0.363 98.59 82
Ours - 512 0.317 98.62 269

Test CHD (×10−4, ↓) NC (%, ↑)
UDF - 128 0.752 97.41
UDF - 256 0.425 98.09
UDF - 512 0.350 97.63

Ours - 128 0.529 98.03
Ours - 256 0.346 98.31
Ours - 512 0.300 98.32

Table 2: Comparison of our method to UDF on trousers under the resolutions of 128, 256 and 512.

In Tabs. 1 and 2 we report the reconstruction results for skirts and trousers on the training and the test25

set. Similar to the results on shirts shown in the main paper, our method achieves better reconstruction26

quality than UDF [1] with lower CHD and higher NC at all resolutions, and needs less time to27

reconstruct a single mesh. Figs. 2 to 4 show the qualitative results reconstructed by our method for28

shirts, skirts and trousers respectively.29

1.2.2 Latent Space Interpolation30

In Figs. 5 to 7, we display the results of interpolation in the latent space of shirts, skirts and trousers31

respectively. We observe a smooth transformation in both the reconstructed sewing patterns and the32

garment meshes, despite the different topology and geometry of the given garments.33

1.2.3 Comparison with AtlasNet34

In Fig. 8, we compare our method with AtlasNet [2] which learns to deform a square patch. AtlasNet35

struggles to learn a mapping function capable of accurately deforming the square patch to produce36

a surface that matches the ground truth, especially in the collar region. In contrast, our method37

leverages the pattern parameterization network IΘ to simplify the training of our mapping function38

AΦ. Specifically, our approach only requires learning the mapping for points within the panels,39

resulting in a reconstruction that is more faithful to the ground truth.40
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Figure 2: Reconstruction samples of shirts.

Figure 3: Reconstruction samples of skirts.

Figure 4: Reconstruction samples of trousers.

(b)

(c)

(a)

Figure 5: Interpolation. We interpolate the latent code from a sleeveless shirt to a long-sleeve jacket.
(a) and (b) show the reconstructed front and back panels, where the colors on them denote the edge
label fields. (c) shows the reconstructed mesh.
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(b)

(c)

(a)

Figure 6: Interpolation. We interpolate the latent code from a short tight skirt to a long loose skirt.
(a) and (b) show the reconstructed front and back panels, where the colors on them denote the edge
label fields. (c) shows the reconstructed mesh.

(b)

(c)

(a)

Figure 7: Interpolation. We interpolate the latent code from a pair of short trousers to a pair of long
trousers. (a) and (b) show the reconstructed front and back panels, where the colors on them denote
the edge label fields. (c) shows the reconstructed mesh.
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GT OursAtlasNet

Figure 8: Comparison with AtlasNet. The meshes in black boxes are the source patches where the
mapping function is applied: a square patch for AtlastNet, a garment panel for our method.

GT w/ ℒ𝑛𝑜𝑟𝑚 w/o ℒ𝑛𝑜𝑟𝑚

Figure 9: Ablation on Lnormal. Train-
ing without it yields flipped triangle
faces (shown in dark grey).

(a)

(b)

Figure 10: Ablation on Lconsist. The skirts reconstructed
by the models trained (a) with Lconsist and (b) without
Lconsist. The latter has a gap between its front and back
panels.

1.2.4 Ablation Study41

To investigate the impact of the loss terms of Eq. (4) in the main paper on reconstruction quality,42

we performed an ablation study. We report the results of reconstructing 300 skirts using models43

trained with and without Lnormal in Tab. 3. We observe that training with Lnormal reduces the CHD44

and increases the NC, thus improving the reconstruction accuracy. In contrast, without Lnormal, the45

model fails to learn the correct parameterization for the garment, resulting in a mesh with inverted46

faces as illustrated in Fig. 9. Fig. 10 shows a comparison of the results obtained by training models47

without and with Lconsist to help stitch the front and back panels. We can notice that without Lconsist,48

a spatial gap exists between the front (in gray) and back (in cyan) surfaces.49

1.3 Garment Draping50

Fig. 11 and Fig. 12(a) present additional comparisons of draping results for our method, DIG [3] and51

DrapeNet [1]. Our results show higher fidelity and fewer artifacts compared to the other methods.52

We also compare our method with SNUG [4], a self-supervised method that relies on mesh templates53

for garment representation and trains one network for each clothing item. In Fig. 12(b), we show the54

qualitative results on the same shirt. Our results are either comparative or visually superior to those55

of SNUG, despite using a single draping network for a whole garment category.56

CHD (×10−4, ↓) NC (%, ↑)
w/o Lnormal 0.324 98.69
w/ Lnormal 0.321 99.08

Table 3: Comparison of the results reconstructed by the models trained w/o and w/ Lnormal.
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Ours

DrapeNet

Figure 11: The comparison of draping results of our method and DrapeNet.

Ours

DIG

Ours

SNUG

(a) (b)

Figure 12: The comparison of draping results for (a) our method vs. DIG, and (b) our method vs.
SNUG.

2 Technical Details57

2.1 Sewing Patterns for Trousers and Skirts58

In Fig. 13, we show the sewing patterns used in our experiments for trousers and skirts.59

2.2 Mesh Triangulation60

In this section, we detail the meshing process of ISP. We first create a square 2D mesh T for Ω as61

shown on the left of Fig. 14. Given the latent code z of a specific garment, for each vertex v ∈ VΩ, we62

compute its signed distance value s and edge label c with (s, c) = IΘ(v, z). The 2D front and back63

panel meshes TPf
and TPb

are constructed by keeping vertices of T with negative signed distance64

(the blue region of the colored gird in Fig. 14) and those that have positive signed distance but belong65

to the edges crossing the 0 iso-level (the gray region of the colored gird in Fig. 14). For the later ones,66
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Figure 13: The sewing patterns for (a) trousers and (b) skirts. The front mesh surfaces are in gray and
the back ones in blue.
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Figure 14: Meshing Process. Starting with a square 2D mesh T, we first extract the front and back
panel meshes TPf

and TPb
using the implicit function IΘ. Then we lift TPf

and TPb
to 3D to get

the surface meshes TSf
and TSb

by querying AΦf
and AΦb

on their vertices respectively.

Triangulation

Before Sewing 

After Sewing 

Merge

and
𝐹𝑠𝑒𝑤

𝐸𝑐
𝑓

𝐸𝑐
𝑏

Figure 15: Sewing process. Left: the boundary vertices belonging to the sewing edges Ef
c and Eb

c

are marked in red. Middle: The triangulation is performed between Ef
c and Eb

c to create new faces
Fsew. Right: The mesh generated by merging the front and back surfaces TSf

and TSb
with Fsew.

we adjust their positions from v to v̂ = v − s(v, z)∇s(v, z) to project them to the zero level set (the67

blue line). Finally, we query AΦf
and AΦb

on each vertex of TPf
and TPb

respectively to lift them68

to 3D, giving us the front and back surfaces TSf
and TSb

as shown on the right of Fig. 14.69

To sew the lifted front and back surfaces TSf
and TSb

, we perform triangulation with the help of70

panel meshes TPf
and TPb

. As illustrated in Fig. 15, we group the boundary vertices of TPf
and71

TPb
whose predicted labels are the same (c, with c > 0) to form the sewing edges Ef

c and Eb
c for the72

front and back panels separately. Then we create faces Fsew between the vertices of Ef
c and Eb

c , and73

use Fsew to merge the meshes of TSf
and TSb

, which gives us the final assembled garment mesh.74
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2.3 Proof of the Differentiability of ISP75

According to the Theorem 1 of [5], for an SDF s and the point x0 lying on the 0 iso-level l =76

{q|s(q, z) = 0,q ∈ Ω}, we have77

∂x0

∂s
= −∇s(x0, z). (1)

For point x lying on the α iso-level, we can have s(x, z) = α, where α is a constant. Let sα = s−α,78

then x lies on the 0 iso-level of sα. Based on Eq. 1, we can have79

∂x

∂sα
= −∇sα(x, z) = −∇s(x, z). (2)

Assume v is a vertex of the mesh TG reconstructed by ISP and x is the point on the UV space that80

satisfies v = AΦ(x, z), then it holds that81

∂v

∂z
=

∂AΦ

∂z
(x, z) +

∂AΦ

∂x

∂x

∂z
(x, z), (3)

=
∂AΦ

∂z
(x, z) +

∂AΦ

∂x

∂x

∂sα

∂sα
∂s

∂s

∂z
(x, z). (4)

Since ∂sα
∂s = 1, we can substitute Eq. 2 into Eq. 4 to derive that82

∂v

∂z
=

∂AΦ

∂z
(x, z)− ∂AΦ

∂x
∇s(x, z)∂s

∂z
(x, z). (5)

2.4 Garment Draping83

(𝜽,𝜷, 𝒛)

Diffused LBS

Single Layer Draping

Figure 16: Single layer draping. The
rest-state garment is first deformed by
the diffused LBS to get the initial shape,
and then refined by the displacement
maps predicted by Ds.

(a) (b) (c)

Figure 17: Layering. (a) We drape a red and an orange
shirts on the body. A third one (yellow) is draped by (b)
Algorithm 1 and (c) by naively applying Dm to it.

Single Layer Draping. In Fig. 16, we illustrate the pipeline for the single layer draping, which84

relies on the diffused LBS of SMPL [6] to get the initial rough estimate of the garment shape and the85

displacement map output by Ds to refine it.86

Multi-Layer Draping. Our layering network Dm can be applied to multiple garments iteratively87

to resolve collisions between them. More specifically, consider K garments [G1, G2, ..., GK ] that88

are already draped individually by single layer draping network Ds. Their subscripts denote their89

draping order, with smaller ones being closer to the body. We can obtain their rest state maps90

[M1
r ,M

2
r , ...,M

K
r ] as described in Sec. 3.2 of the main paper, and apply Algorithm 1 for layering91

them by iterating on garments following their draping order.92

Note that we only train Dm on one pair of garments individually draped by Ds. Therefore, it can only93

resolve the intersections happening at the same layer, which leads to an extra inner loop in Algorithm94

1 that moves all the subsequent garments to the same j-th layer. Otherwise, intersections cannot be95

completely resolved when applying Dm to two garments lying on the different layers as illustrated in96

Fig. 17(c).97
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Algorithm 1: Multi-layer Draping
Require :Function ForceMap(a, b) that computes the force map for a by taking b as the

underlying layer; Function PositionMap(a) that computes the 2D position map of a;
Layering network Dm.

Input :An ordered set of garments [G1, G2, ..., GK ]; Rest state maps for each garemnts
[M1

r ,M
2
r , ...,M

K
r ].

Output :Layered garments {G̃1, G̃2, ..., G̃K} without intersections.

1 for i← 1 to K do
2 G̃i ← Gi;
3 for j ← i+ 1 to K do
4 M j

f ← ForceMap(Gj , G̃i) ; /* Eq. (9) in the main paper */
5 M j

d ← PositionMap(Gj);
6 Update vertex positions of Gj by Dm(M j

r ,M
j
d ,M

j
f ) ;

Figure 18: Segmentation masks obtained from [7]. Jackets are marked in gray, shirts in purple, skirts
in dark purple, trousers in red, and body parts in other colors.

2.5 Recovering Multi-Layered Garments from Images98

In Fig. 18, we show the segmentation masks used for the optimization in Eq. (11) in the main paper.99

The optimization is performed from the outer garment to the inner one, i.e., jacket (if detected)→100

shirt→ trousers (or skirt). More specifically, for the first example shown in Fig. 18, we have the101

detected segmentation mask S1, S2 and S3 for the jacket, the shirt and the trousers respectively. We102

first initialize a latent code z1 for the jacket and perform the following optimization to recover its103

mesh104

z∗1 = argmin
z1

LIoU(R(G(B,Θ, z1)⊕M(B,Θ)),S1) , (6)
105

G(B,Θ, z1) = D(B,Θ, z1,TG(z1)) , (7)

Note that the rendered mask is obtained by setting the colors of the jacket and the body mesh vertices106

to white and black respectively. Then we fix z1 and initialize a new latent code z2 for the shirt and107

perform108

z∗2 = argmin
z2

LIoU(R(G(B,Θ, z1:2)⊕M(B,Θ)),S2) , (8)

G(B,Θ, z1:2) = D(B,Θ, z1,TG(z1))⊕D(B,Θ, z2,TG(z2)), (9)

to recover the mesh of the shirt. The optimization for the trousers is similar: fixing z1 and z2;109

initializing the latent code z3 for the trousers; performing110

z∗3 = argmin
z3

LIoU(R(G(B,Θ, z1:3)⊕M(B,Θ)),S3) , (10)

G(B,Θ, z1:3) = D(B,Θ, z1,TG(z1))⊕D(B,Θ, z2,TG(z2))⊕D(B,Θ, z3,TG(z3)). (11)

2.6 Loss Terms, Network Architectures and Training111

Loss Terms. The Chamfer distance loss LCHD of Eq. (4) in the main paper is formulated as112

LCHD =
∑
x∈P

min
X∈S
||AΦ(x, z)−X||22 +

∑
X∈S

min
x∈P
||AΦ(x, z),X||22, (12)
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Network IΘ AΦ w Ds Dm

Learning Rate 10−4 10−4 10−4 5× 10−5 10−4

Batch Size 50 50 6000 30 6
Iterations 70000 70000 2000 20000 30000

Table 4: Training hyperparameters.

Loss LI LA LDm

λCE λreg λn λc λg λr ϵ

Value 0.01 0.001 0.01 1 0.5 1 0.005

Table 5: Training loss hyperparameters for LI , LA and LDm .

where P is the panel and S is the ground truth surface mesh.113

The normal consistency loss Lnormal of Eq. (4) in the main paper is formulated as114

Lnormal =
∑

x∈FcP

(1− nf (AΦ(x, z)) · nX∗) +
∑

X∈FcS

(1− nf (AΦ(x
∗, z)) · nX), (13)

115
X∗ = argmin

X∈FcS

||X−AΦ(x, z)||2, x∗ = argmin
x∈FcP

||X−AΦ(x, z)||2 (14)

where FcP and FcS are the face centers of the panel mesh and the surface mesh, and nX represents116

the normal of X. nf (·) is the function that computes the normal for the face that AΦ(x, z) belongs117

to.118

Network Architectures. For each garment category, i.e. shirts, skirts, and trousers, we train one119

separate set of networks {IΘ,AΦ,Ds}. Dm is shared by all garment categories. Our models are120

implemented as the following.121

• Pattern parameterization network IΘ: We use two separate networks IΘf
and IΘb

to learn122

the pattern parameterization for the front and back panels. Each of them is implemented as123

an MLP with Softplus activations.124

• UV parameterization network AΦ: We use two separate networks AΦf
and AΦb

to learn125

the UV parameterization for the front and back surfaces. Both of them have the same126

architecture, which is a 7-layer MLP with a skip connection from the input layer to the127

middle and Softplus activations.128

• Latent code z: The dimension is 32.129

• Diffuse skinning weight model w: A 9-layer MLP with leaky ReLU activations and an extra130

Softmax layer at the end to normalize the output.131

• Displacement network Ds: A 10-layer MLP with a skip connection from the input layer to132

the middle and leaky ReLU activations.133

• Layering network Dm: A U-Net with 4 convolution blocks and 4 deconvolution blocks.134

Training. We use the Adam [8] optimizer for training our networks. The batch sizes, the learning135

rates and the numbers of iterations for training are summarized in Table. 4. The hyperparameters of136

the training losses are summarized in Table. 5. IΘ, AΦ, w and Dm are trained with a TESLA V100137

GPU, while Ds is trained with 3 GPUs. During the training of Dm, we randomly select two garments138

as the outer and inner layers, and let the model learn to resolve intersections between them.139

3 Extension to Sewing Patterns with More Panels140

In our experiments, each garment’s sewing pattern consists of two panels, the front and the back.141

However, our ISP can be extended to patterns with any number of panels. For example, we can train142
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(a) (b)

Figure 19: The 6-panel sewing pattern. (a) The 3D mesh surface for a shirt. The corresponding
surface for each panel is denoted in different colors. (b) The six 2D panels for the front, the back, the
right front/back sleeves and the left front/back sleeves.

Figure 20: Reconstruction with 6 panels. For both the left and right examples, we show the
reconstructed panels on the top and the reconstructed surfaces and the sewed meshes at the bottom.
Colors on panels denote edge labels predicted by IΘ.

IΘ and AΦ on a database of sewing patterns with six panels as shown in Figure 19, using the same143

training protocol described in the main paper. After training, we can use them to reconstruct the144

panels and surfaces and produce the sewed mesh as illustrated in Fig. 20. Adding more panels does145

not result in better reconstructions. For this reason and for the sake of simplicity, we use a model146

with 2 panels as our default setting.147

4 Failure Cases148

Figure 21: Draping increasingly many shirts: from 1 (left) to 7 (right).

Fig. 21 presents draping results as the number of shirts increases. We observe that the model produces149

unrealistic deformation when the number of shirts is greater than four. This behavior occurs because150

our multi-layer draping model Dm is only trained on garments obtained by single layer draping as151

described in Section 3.2 of the main paper. In this scenario, the garments are relatively close to152

the body. When applied to cases with more shirts (typically over four), the model may generate153

unpredictable results with the shirts moving far away from the body. However, we note that this issue154

can be resolved by finetuning the model progressively on layered garments. We also consider that155

wearing more than four shirts is not a common scenario.156
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