
Dynamics Generalisation in Reinforcement Learning
via Adaptive Context-Aware Policies

Michael Beukman1,2∗ Devon Jarvis1,3
Richard Klein1 Steven James1 Benjamin Rosman1

1University of the Witwatersrand 2University of Oxford 3University College London

Abstract

While reinforcement learning has achieved remarkable successes in several do-
mains, its real-world application is limited due to many methods failing to gener-
alise to unfamiliar conditions. In this work, we consider the problem of generalising
to new transition dynamics, corresponding to cases in which the environment’s
response to the agent’s actions differs. For example, the gravitational force exerted
on a robot depends on its mass and changes the robot’s mobility. Consequently,
in such cases, it is necessary to condition an agent’s actions on extrinsic state
information and pertinent contextual information reflecting how the environment
responds. While the need for context-sensitive policies has been established, the
manner in which context is incorporated architecturally has received less attention.
Thus, in this work, we present an investigation into how context information should
be incorporated into behaviour learning to improve generalisation. To this end, we
introduce a neural network architecture, the Decision Adapter, which generates
the weights of an adapter module and conditions the behaviour of an agent on the
context information. We show that the Decision Adapter is a useful generalisation
of a previously proposed architecture and empirically demonstrate that it results in
superior generalisation performance compared to previous approaches in several
environments. Beyond this, the Decision Adapter is more robust to irrelevant
distractor variables than several alternative methods.

1 Introduction

Reinforcement learning (RL) is a powerful tool, and has displayed recent success in several settings [1–
4]. However, despite its potential, RL faces a significant challenge: generalisation. Current agents
and algorithms struggle to perform well beyond the narrow settings in which they were trained [5–7],
which is a major limitation that hinders the practical application of RL. For RL algorithms to be
effective in real-world scenarios, they must be capable of adapting to changes in the environment and
performing well in settings that are different, but related, to those they trained on [7].

To illustrate this point, consider a legged robot trained to walk on a tiled floor. While the agent would
perform well in these conditions, it will likely struggle in other reasonable settings, such as walking
on asphalt or when carrying cargo. When walking on another surface, the friction characteristics
would differ from what the robot trained on, which may cause it to slip. When carrying additional
weight, the robot is heavier, with a potentially different center of mass. This may mean that the robot
must exert more force to lift its legs or be more careful to prevent falling over. This limitation is far
from ideal; we want our agents to excel in tasks with minor differences in dynamics (the effect of the
agent’s actions) without requiring additional training.

∗Correspondence to mbeukman@robots.ox.ac.uk. Work done while at the University of the Witwatersrand,
now at the University of Oxford.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Several methods have been proposed to address this problem, including training a single agent in
various settings in the hope that it learns a generalisable and robust behaviour [3, 8–11]. However,
this approach is not without its drawbacks, as it fails when variations are too large for a single
behaviour to perform well in all settings [12, 13]. For example, using the same behaviour when
walking unencumbered and under load may lead to suboptimal performance in one or both cases.

This observation has led to other methods that instead use contextual information to choose actions,
allowing the agent to adapt its behaviour to the setting it is in. For instance, if the agent knows when
it is walking unencumbered vs. carrying something heavy, it can perform slightly differently in each
case [14]. The context differs conceptually from the state information, which generally includes data
that the robot observes using its sensors, such as its joint angles, acceleration, and camera views. The
crucial distinction between context and state is that context changes at a longer timescale compared
to state; for instance, the floor friction and additional mass remain the same for a long time, whereas
the robot’s joint angles change after every action [15]. Currently, the predominant approach is to
use context as part of the state information, ignoring the conceptual difference between these two as-
pects [16–18]. However, this may lead to the agent confounding the context and state, and thus exhibit
worse generalisation [15]. This problem can be exacerbated in real-world settings, where identifying
which variables affect the dynamics may be challenging [18]. This may lead to several irrelevant vari-
ables being added to the context, further expanding the state space and making learning more difficult.

To address this problem, we introduce an approach to incorporating context into RL that leads to
improved generalisation performance. Our method separates the context and state, allowing the agent
to decide how to process the state information based on the context, thus adapting its behaviour
to the setting it is in. Our experimental results demonstrate the effectiveness of our approach in
improving generalisation compared to other methods. We show that our approach outperforms (1)
not incorporating context information at all; (2) simply concatenating context and state; and (3)
competitive baselines. We also demonstrate that our approach is more robust to irrelevant distractor
variables than the concatenation-based approach across multiple domains. We further provide a
theoretical characterisation of problems where incorporating context is necessary and empirically
demonstrate that a context-unaware method performs poorly.1

2 Background

Reinforcement learning problems are frequently modelled using a Markov Decision Process
(MDP) [19, 20]. An MDP is defined by a tuple ⟨S,A, T ,R, γ⟩, where S is the set of states, A
is the set of actions. T : S ×A×S → [0, 1] is the transition function, where T (s′|s, a) specifies the
probability of ending up in a certain state s′ after starting in another state s and performing a specific
action a. R : S ×A×S → R is the reward function, where R(st, at, st+1) = Rt+1 specifies the re-
ward obtained from executing action at in a state st and γ ∈ [0, 1] is the environment discount factor,
specifying how short-term and long-term rewards should be weighted. The goal in reinforcement
learning is to find a policy π : S → A that maximises the return Gt =

∑∞
k=0 γ

kRt+k+1 [21].

We consider the Contextual Markov Decision Process (CMDP) [15] formalism, which is defined
by a tuple ⟨C,S,A,M′, γ⟩, where C is the context space, S and A are the state and action spaces
respectively, and M′ is a function that maps a context c ∈ C to an MDP M = ⟨S,A, T c,Rc, γ⟩. A
CMDP thus defines a family of MDPs, that all share an action and state space, but the transition (T c)
and reward (Rc) functions differ depending on the context. Our goal is to train on a particular set of
contexts, such that we can generalise well to another set of evaluation contexts. We focus solely on
generalising over changing dynamics and therefore fix the reward function, i.e., Rc = R,∀c ∈ C.

3 Related Work

Generalisation in RL is a widely studied problem, with one broad class of approaches focusing on
robustness. Here, a single policy is trained to be robust to changes that may occur during testing,
i.e., to perform well without failing catastrophically [3, 6, 8, 22–29]. Many of these approaches are
successful in this goal and can generalise well when faced with small perturbations. However, using
one policy for multiple environments (or contexts) may lead to this policy being conservative, as it
cannot exploit the specifics of the current environment [12]. Furthermore, these policies are limited

1We publicly release code at https://github.com/Michael-Beukman/DecisionAdapter.

2

https://github.com/Michael-Beukman/DecisionAdapter

to performing the same action when faced with the same state, regardless of the setting. This may be
suboptimal, especially when the gap between the different settings widens [13, 30].

This observation motivates the next class of methods, context-adaptive approaches. These techniques
often use a version of the CMDP [15] formalism, and use the context to inform the agent’s choice
of action. This allows agents to exhibit different behaviours in different settings, which may be
necessary to achieve optimality or generalisation when faced with large variations [13]. There are
several ways to obtain this context, such as assuming the ground truth context [13], using supervised
learning to approximate it during evaluation [14, 31], or learning some unsupervised representation of
the problem and inferring a latent context from a sequence of environment observations [18, 32–34].

Despite the progress in inferring context, how best to incorporate context has received less attention.
The most prevalent approach is to simply concatenate the context to the state, and use this directly
as input to the policy [16–18, 35–38], which is trained using methods such as Soft Actor-Critic [39]
or Proximal Policy Optimisation [40]. This ignores the conceptual difference between the state and
context, and may lead to worse generalisation [15]. This approach may also be limited when there are
many more context features compared to state features [41]. While concatenation is the most common,
some other approaches have also been proposed. For instance, Biedenkapp et al. [41] learn separate
representations for context and state, and then concatenate the representations near the end of the
network. They also use another baseline that concatenates a static embedding of the context features to
the state. Both of these techniques generalise better than the concatenation approach. Another method,
FLAP [42], aims to improve generalisation by learning a shared representation across tasks, which is
then processed by a task-specific adapter in the form of a linear layer. Given state s, the policy network
outputs features ϕ(s) ∈ Rd, which are shared across tasks. The final action is chosen according to
Wiϕ(s) + bi, with a unique weight matrix Wi and bias vector bi which are learned separately for
each task. Concurrently, a supervised learning model is trained to map between transition tuples
(st, at, rt+1, st+1) and these learned weights. At test time, this supervised model generates the
weights, while the policy network remains fixed. FLAP generalises better to out-of-distribution tasks
compared to other meta-learning approaches [36, 43, 44]. However, this approach requires a separate
head for each task, which may scale poorly if we have many tasks or see each task only a few times.

One promising approach that has been used in other fields is Feature-wise Linear Modulation
(FiLM) [45, 46]. In this method, features in one modality (e.g., natural language text) linearly
modulate the neural-network features obtained from another modality (e.g., visual images). An
example of this would be processing a visual scene, modulated by different natural language questions
which would lead to a different final answer. In RL, Benjamins et al. [13] introduce cGate,2 which
follows a similar procedure to FiLM; in particular, the neural network policy receives the state as
input and outputs an action. Before the final layer, however, the context is first transformed by a
separate network, and then used to modulate the state-based features. This approach showed promise,
but restricted the context features’ effect on the state-based features to be linear.

Another research area that has garnered more attention recently is learning general foundation models
for control [48–50]. Inspired by recent work in fields such as natural language processing [51] and
computer vision [52], these models aim to provide a general foundation that can be easily fine-tuned
for particular tasks of interest. For instance, Gupta et al. [53] learns a general controller for several
different robot morphologies. The robot’s configuration is encoded and passed to a transformer [54],
allowing one model to control a wide variety of morphologies. While these works directly train
policies, Schubert et al. [55] instead train a dynamics model, and use a standard planning technique—
model-predictive control [56–58]—to choose actions. They find that this approach achieves better
zero-shot generalisation compared to directly learning a policy. On a different note, Sun et al. [59]
pre-train a foundation model that predicts observations and actions. Then, during fine-tuning, they
train a policy to perform a particular task using the pre-trained representations, which enables the use
of either imitation learning or reinforcement learning in the downstream fine-tuning stage.

Finally, much work in meta-reinforcement learning [60] relates to the problem of generalisation.
Meta-learning approaches generally aim to use multiple tasks during training to learn how to learn;
this knowledge can then be used during testing to rapidly adapt to a new task [43, 60–67]. In this
problem setting, Beck et al. [68] use a recurrent model to encode the current task, and generate the
weights of the agent policy based on the task encoding. Sarafian et al. [69] take a similar approach, but

2Benjamins et al. [13] introduced the cGate method, and then published a revised version of the paper—not
containing cGate—under the same name. We therefore cite both versions [13, 47].

3

instead generate the weights using the environment state, and processing the encoded context using
the generated network. Another approach, MAML [44] aims to learn the weights of a neural network
such that, for any new task, performing only a few gradient updates would lead to a high-performing
task-specific network. While meta-learning can lead to highly adaptable agents, many methods
require multiple episodes of experience in the target domain [36, 44], and may therefore be less
well-suited to the zero-shot setting we consider [7].

4 Theoretical Intuitions

Now, while only a context-conditioned policy is guaranteed to be optimal on a general CMDP [47],
in many cases simply training an unaware policy on a large number of diverse environments can
lead to impressive empirical generalisation [5]. In this section, we characterise and unify these
two observations. In particular, for a specific problem setting—where the context defines the target
location an agent must travel to—we find that:

(i) For some context sets, an unaware policy will perform arbitrarily poorly on average, due to
it being forced to take the same action in the same state, regardless of context.

(ii) However, for other context sets—where the different contexts are similar enough—an
unaware policy can perform well on average, as it can simultaneously solve each task.

We defer the formal statement of this theorem and its proof to Appendix A, but here we briefly provide
some intuition. Overall, our results rely on the fact that a context-unaware agent must perform the
same action in the same state, regardless of context. Therefore, in a setting where we have different
goals (indicated by the context), and making progress on one goal leads to making negative progress
on another, a context-unaware agent cannot simultaneously perform well on both of these contexts.
By contrast, if the goals are aligned in the sense that making progress on one leads to progress on
another, a context-unaware agent can perform well on average. A context-aware agent, however, can
always choose the correct action in either scenario.

c1c2

c3 c4

(a) Non-overlapping

c1
c3

c2

c4

(b) Overlapping

Figure 1: An illustration of the two cases discussed above, with the agent’s start state being the origin.
The agent will receive a reward if it enters the circle corresponding to the current context and zero
reward otherwise. In (a) there is no overlap between the goals, so an unaware policy (red) must visit
each goal in sequence, whereas a context-aware policy (green) can go directly to the correct goal. In
(b), the goals overlap, so an unaware policy can go directly to the joint intersection point of the goals,
leading to only a slightly suboptimal value function compared to the optimal context-aware policy.

Fig. 1 visually illustrates these two cases and summarises the implications. In Fig. 1a, if there is no
overlap between goals, an unaware policy is forced to visit each one in sequence. This is because
it must perform the same action in the same state, regardless of the context, meaning that it cannot
always travel to the correct goal. This policy will therefore have a low value function compared to
the optimal context-aware policy. By contrast, in Fig. 1b, a single unaware policy can directly go to
the intersection of all the goals, leading to only slightly less return than the optimal context-aware

4

policy. While the formal result in Appendix A merely shows the existence of some problems with
these properties, we believe the concept generalises to more complex settings. In particular, if the
problem exhibits some structure where the same policy can simultaneously make progress on each
context, an unaware model can perform well. However, if making progress on one goal leads to the
agent moving away from another, a context-unaware policy can at best perform arbitrarily worse than
a context-aware one, and incorporating context is crucial. We empirically substantiate these findings
in Section 7 and formally consider this example in Appendix A. Finally, see Appendix B for more
details about how these theoretical results connect back to our empirical observations.

5 The Decision Adapter

An adapter is a (usually small) neural network with the same input and output dimensions. This
network can be inserted between the layers of an existing primary network to change its behaviour
in some way. These modules have seen much use in natural language processing (NLP) [70–74] and
computer vision, usually for parameter-efficient adaptation [75–81]. In these settings, one adapter
is usually trained per task, and the base model remains constant across tasks. Our method is inspired
by the use of adapters in these fields, with a few core differences.

First, since our aim is zero-shot generalisation, having a separate adapter module for each task
(corresponding to context in our case) provides no clear means for generalisation. Relatedly, since
tasks are generally discrete in NLP, but we allow for continuous contexts, this approach would be
problematic. Furthermore, the number of learnable parameters increases with the number of training
contexts, presenting a computational limitation to the scalability. To circumvent these problems,
we use a hypernetwork [82] to generate the weights of the adapter module based on the context.
This allows the agent to modify its behaviour for each context by having a shared feature-extractor
network which is modulated by the context-aware adapter. Moreover, since the hypernetwork is
shared, experience gained in one context could transfer to another [72]. Second, instead of having
separate pre-training and adaptation phases as is common in NLP [76], we do not alter the standard RL
training procedure at all. We change only the architecture and train normally—allowing for the easy
integration of our approach into standard RL libraries. Finally, our method is agnostic to the exact
RL algorithm and can be applied to most off-the-shelf algorithms without much additional effort.

Algorithm 1 Decision Adapter—Changes to the stan-
dard forward pass in blue.

1: procedure ADAPTERFORWARD(s ∈ S, c ∈ C)
2: x1 = s
3: for i ∈ {1, 2, . . . , n} do
4: if Ai ̸= null then
5: θiA = Hi(c) // Generate Weights
6: x′

i = Ai(xi|θiA) // Forward Pass
7: xi = xi + x′

i // Skip connection
8: end if
9: xi+1 = Li(xi)

10: end for
11: return xn+1

12: end procedure

Adapter

s
s

a

c

Hypernetwork

Generated Weights

Figure 2: An illustration of our network architecture, the Decision Adapter, alongside pseudocode for
the forward pass. The bottom network is the hypernetwork, which generates the magenta weights for
the top, primary, network. The light grey nodes in the top network are added by the adapter.

To formally describe our approach (illustrated in Fig. 2), suppose we have a state s ∈ S, context
c ∈ C, and a standard n-layer fully-connected neural network architecture that predicts our action a.
Here xi+1 = Li(xi) = σi(Wixi+bi), x1 = s and xn+1 = a. We add an adapter module Ai between
layers Li−1 and Li. This adapter module is a multilayer neural network Ai : Rdi → Rdi consisting
of parameters θiA ∈ RPi .3 These parameters are generated by the corresponding context-conditioned

3di is the output dimension of layer Li−1 and Pi is the number of parameters in the adapter.

5

hypernetwork Hi : C → RPi (line 5 in Algorithm 1) and reshaped to form multiple weight matrices.
Then, before we process xi using layer Li, we pass xi through the adapter module Ai (line 6) defined
by the generated weights and biases to obtain x′

i = Ai(xi|θiA). Furthermore, akin to the application
of adapters in other fields [75, 76], we add a skip connection, by setting xi = xi + x′

i (line 7). This
updated xi is then the input to layer Li (line 9). Additionally, we could have multiple adapter modules
in the primary network, with at most one module between any two consecutive layers (lines 3 and 4).

Finally, we note that the Decision Adapter model can learn to implement the same function as
cGate [13], but is theoretically more powerful. While cGate uses a linear elementwise product
between the context and state features, our model uses a hypernetwork to generate the weights of a
nonlinear adapter module. Our hypernetwork is general enough to be able to recover this elementwise
product, but is not constrained to do so. See Appendix C for a more formal treatment of this point.

6 Experimental Setup

6.1 Metrics

Our evaluation strategy is as follows: We take the trained model, and compute the av-
erage of the total episode reward over n = 5 episodes on each evaluation context c to
obtain a collection of contexts C and corresponding rewards R. We then calculate the
Average Evaluation Reward (AER) : AER = 1

cmax−cmin

∫ cmax

cmin
R(c)dc, where cmin and cmax

are the minimum and maximum context values in C respectively, and R(c) is the reward obtained on
context c. This metric is high when the agent performs well across a wide range of contexts, and thus
corresponds to generalisation performance. However, since we generally have Ctrain ⊂ Cevaluation,
this metric also incorporates how well the agent performs on the training contexts.4 Despite this, it
is still a useful metric for generalisation, as our training context set typically contains only a handful
of contexts, with most of the evaluation contexts being unseen.

6.2 Baselines

We use Soft-Actor-Critic [39] for all methods, to isolate and fairly compare the network architectures.
We aim to have an equal number of learnable parameters for each method and adjust the number of
hidden nodes to achieve this. We use the following baselines, with more details in Appendix D:

Unaware This model simply ignores the contextual information and just uses the state. This approach
allows us to evaluate how well a method that does not incorporate context performs.

Concat This method forms a new, augmented state space S ′ = S × C, and then gives the model
the concatenation [s; c] of the state and context [16–18, 37]. This baseline allows us to
compare our method to the current standard approach of using contextual information.

cGate cGate [13] learns separate state (ϕ(s)) and context (g(c)) encoders, and predicts the action
a = f(ϕ(s)⊙ g(c)), where f is the learned policy and ⊙ is the elementwise product.

FLAP FLAP [42] learns a shared state representation across tasks, which is then processed by
a task-specific linear layer that is generated by conditioning on the context.

Our Adapter configuration is more fully described in Appendix D.3, and Appendix E contains ablation
experiments comparing the performance of different hyperparameter settings.

6.3 Environments

6.3.1 ODE

This environment is described by an ordinary differential equation (ODE), parametrised by n variables
making up the context. The dynamics equation is xt+1 = xt+ẋtdt, with ẋ = c0a+c1a

2+c2a
3+. . . ,

truncated at some cn−1. The episode terminates after 200 timesteps, with the reward function:

4The AER can be computed over only the unseen evaluation contexts, but we include the training contexts to
obtain a more general measure of performance. However, the difference between the two versions is minor, see
Appendix F.4.

6

Rt =

{
1 if |x| < 0.05 1

2 if |x| < 0.1 1
3 if |x| < 0.2

1
4 if |x| < 0.5 1

20 if |x| < 2 0 otherwise

This incentivises the agent to give control a to keep the state close to x = 0. The context in this
environment is c = [c0, . . . , cn−1] ∈ Rn. The action space is two-dimensional, continuous and
bounded, i.e., a0, a1 ∈ [−1, 1]. The action is interpreted as a complex number, a = a0 + a1i, to
allow the dynamics equation to be solvable, even in normally unsolvable cases such as ẋ = a2. Here,
restricting a to R would result in ẋ ≥ 0 and an unsolvable system for initial conditions x0 > 0. We
keep only the real part of the updated state and clip it to always fall between −20 and 20.

The ODE acts as a conceptually simple environment where we can arbitrarily scale both the number
(i.e., n) and magnitude (i.e., |ci|) of the contexts and precisely measure the effects. Furthermore,
since many dynamical systems can be modelled using differential equations [83–85], the ODE can
be considered a distilled version of these. Finally, context is necessary to perform well in this
environment, making it a good benchmark. See Appendix D for more details.

6.3.2 CartPole

CartPole [86] is a task where an agent must control the movement of a cart to balance a pole vertically
placed upon it. The observation space is a 4-dimensional real vector containing the cart’s position x
and velocity ẋ, as well as the pole’s angle θ and angular velocity θ̇. We use a continuous action space
where a ∈ [−1, 1] corresponds to the force applied to the cart (where negative values push the cart
to the left and positive values to the right). The reward function is +1 for each step that the pole is
upright. An episode terminates when the pole is tilted too far off-center, the cart’s position is outside
the allowable bounds or the number of timesteps is greater than 500. We follow prior work and
consider the variables Gravity, Cart Mass, Pole Length, Pole Mass and Force Magnitude
collectively as the context [13], even if only a subset of variables change. Here, we change only the
pole length and evaluate how susceptible each model is to distractor variables. In particular, during
training, we also add k additional dimensions to the context, each with a constant value of 1. Then,
during evaluation, we set these values to 0. This may occur during a real-world example, where
accurately identifying or inferring the pertinent context variables may be challenging [18, 87], and
lead to several irrelevant variables. Overall, this means that the context is represented as a 5 + k-
dimensional vector. This environment is useful as it (1) is a simple setting with models that can be
trained quickly, and (2) still has desirable aspects, namely a way to perturb some underlying variables
to change the dynamics of the environment. Furthermore, prior work has shown that even standard,
unaware RL algorithms can generalise well in this environment [88] (in the absence of distractor
context variables), which allows us to investigate the benefits of context and detriment of distractors.

6.3.3 Mujoco Ant

As a more complex and high-dimensional problem, we consider Ant from the Mujoco suite of
environments [89, 90]. Here, the task is to control a 4-legged robot such that it walks. The observation
space consists of the robot’s joint angles and velocities, as well as contact forces and torques applied
to each link, totalling 111 dimensions. The action space A = [−1, 1]8 represents the torque applied
to each of the 8 joints. Furthermore, each episode is terminated after 1000 timesteps, with a positive
reward for not having fallen over at each step and moving forward. The reward function also penalises
large control forces. Here, the mass is the context variable, which is 5 by default. We train on the set
{5, 35, 75} and evaluate on 200 evenly spaced points between 0.5 and 100.

7 Results

7.1 Generalisation Performance

In this section, we consider the ODE environment, with a training context set of {−5,−1, 1, 5} and
300k training timesteps. To measure generalisation, we use an evaluation context range consisting
of 201 equally spaced points between −10 and 10 (inclusive). In the left pane of Fig. 3, we plot
the average performance across the entire evaluation range (as discussed in Section 6.1) at different
points during training.

7

Firstly, we can see that the Unaware model fails to generalise well, since the optimal actions in
the same state for two different contexts may be completely different. This result substantiates our
theoretical analysis in Section 4, highlighting the importance of using context in this domain. Concat,
cGate and FLAP perform reasonably well, but our Decision Adapter outperforms all methods
and converges rapidly. In Appendix F, we plot separate subsets of the evaluation range: Train,
Interpolation and Extrapolation, corresponding to the contexts in the training set, the contexts
within the region [−5, 5] and the contexts outside the convex hull of the training contexts, containing
c ∈ [−10,−5) ∪ (5, 10], respectively. There we find that most methods, with the exception of the
Unaware model, perform well on the training contexts, and the Adapter outperforms all methods
when extrapolating. These results also extend to the multidimensional context case, shown in Fig. 3
(right). We train on the context set given by {1, 0,−1}2 ∪ {5, 0,−5}2, with the context (0, 0) being
omitted due to it being unsolvable.5 The evaluation range consists of the cartesian product A2, where
A contains 21 equally-spaced points between −10 and 10. The Adapter outperforms all methods,
with the Concat model coming second. FLAP and the Unaware models struggle in this case.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

AE
R

1D Context

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

2D Context

Training Time (Steps)

Unaware Concat Adapter cGate FLAP Optimal

Figure 3: The average reward over the evaluation range at various points during training for the ODE
domain. Mean performance is shown, with standard deviation (across 16 seeds) shaded. The left pane
shows the one-dimensional context results, while the right pane shows the two-dimensional results.

7.2 Robustness to Distractors

For this and the next section, we consider the Concat and cGate models as baselines. The reasons
for this are that (1) the Concat model performed comparably to or better than the other baselines in
the previous sections, making it a representative example of the context-aware approaches; and (2)
the Concat model is currently a very prevalent way of incorporating context [16–18, 35–38]; and (3)
cGate is the closest approach to our work in the current literature.

The results for CartPole are shown in Fig. 4. When there are no distractor variables, the Adapter,
Concat and cGate models perform comparably. In this case, each architecture achieves near the
maximum possible reward for the domain. Further, we see little effect after adding just one con-
founding context variable. However, as we add additional distractor variables, the Concat and cGate
models’ performances drop significantly, whereas the Adapter’s performance remains relatively
stable. Strikingly, the Adapter architecture trained with 100 distractor context variables is still able to
perform well on this domain and significantly outperforms the Concat model with significantly fewer
(just 20) distractor variables. This demonstrates that, given only useful context, concatenating state
and context is a reasonable approach in some environments. However, this is a strong assumption
in many practical cases where we may be uncertain about which context variables are necessary. In
such cases, the consequences of ignoring the conceptual differences between state and context are
catastrophic and it is necessary to use the Adapter architecture. We find a similar result in the ODE,
which we show in Appendix F.5.

As an extension to the previous experiment, here we consider using non-fixed distractor variables, i.e.,
sampling them from Gaussian distribution with different means. The intuition behind this experiment
is similar to before, but allows for small variations within training and testing. In particular, we use
σ = 0.2 and a mean of either 0 or 1. In this experiment, a new distractor context is sampled at the
start of every episode. During training this is sampled from N (1, 0.2) and during evaluation we

5Here, for a set S, S2 = S × S = {(a, b)|a, b ∈ S} denotes the cartesian product of S with itself.

8

0 2 4 6 8

100
200
300
400
500

AE
R

Concat

0 2 4 6 8

Adapter

0 2 4 6 8
1e5

cGate

Training Time (Steps)

Number of distractor dimensions
0 1 20 100 Optimal Reward

Figure 4: Showing the sensitivity of the (left) Concat, (middle) Adapter and (right) cGate models to
distractor context variables in CartPole. The mean and standard deviation over 16 seeds are shown.

sample from N (0, 0.2). In CartPole, the results in Fig. 5 show that the Adapter is still more robust
to changing distractor variables compared to either Concat or cGate. See Appendix F.6 for more
details, results on the ODE domain, and additional experiments when the mean of the Gaussian does
not change between training and testing.

0 1 2 3

100
200
300
400
500

AE
R

Concat

0 1 2 3

Adapter

0 1 2 3
1e5

cGate

Training Time (Steps)

Number of distractor dimensions
0 1 20 100 Optimal Reward

Figure 5: The sensitivity of Concat, Adapter and cGate to distractor context variables—sampled
from a Gaussian distribution—in CartPole. We show the mean and standard deviation over 16 seeds.

7.3 High-Dimensional Control

We next consider a more complex and challenging continuous-control environment, that of the
Mujoco Ant. We run the same experiment as in CartPole, where we add distractor variables, with no
effect on the dynamics, and different values between training and testing. These results are shown in
Fig. 6. Overall, we observe a similar result to that of CartPole—the Concat and cGate models are
significantly less robust to having irrelevant distractor variables. By contrast, the Adapter consistently
performs well regardless of how many distractor dimensions are added.

8 Limitations

While our Adapter model performs well empirically, it does have some limitations, which we sum-
marise here and expand on in Appendix G. First, we find that using an incorrect and noisy context
(Appendix G.1) generally resulted in the Adapter model performing worse, particularly as we in-
creased the level of noise. However, the Adapter model still performs comparably to the Concat model
in this case. Second, we generally normalise the contexts before we pass them to the models, relative
to the maximum context encountered during training. While our Adapter performs well when the con-
text normalisation is incorrect by a factor of 2 or 3, its performance does suffer when the normalisation
value is orders of magnitudes too small, leading to very large contexts being input into the model (see
Appendix G.2 for further discussion). Third, when training on a context range that is too narrow (see
Appendix G.3) or does not exhibit sufficient variation, our model is susceptible to overfitting, which

9

0.0 0.2 0.4 0.6 0.8 1.0
2000

0

2000

4000

AE
R

Concat

0.0 0.2 0.4 0.6 0.8 1.0

Adapter

0.0 0.2 0.4 0.6 0.8 1.0
1e6

cGate

Training Time (Steps)

Number of distractor dimensions
0 1 20 100

Figure 6: Showing the sensitivity of the (left) Concat, (middle) Adapter and (right) cGate models to
distractor context variables in Ant. The mean and standard deviation over 16 seeds are shown.

leads to worse generalisation. Even if our model does not overfit, an overly narrow context range
would also lead to poor generalisation. Thus, ensuring that agents are trained in sufficiently diverse
environments is still important. Fourth, while we assumed access to the ground-truth context, it may
not always be available in practice [31]. Therefore, integrating the Decision Adapter into existing
context inference methods [18, 33] is a promising avenue for future work. A final limitation of our
Adapter is its longer wall-clock training time compared to other methods (given the same training
timesteps and a similar number of parameters). This is likely caused by the hypernetwork that we
use. However, we did not utilise strategies such as caching the generated weights for a particular
context (which would be possible since context remains constant for an episode), or more effectively
batching the forward passes through the Adapter which could ameliorate this issue in practice.

Beyond addressing these limitations, there are several logical directions for future work. First, we
only consider state and context features to be numerical vectors; therefore, extending our approach
to different modalities—for instance, image observations and natural language context—would be
a natural extension. In principle, our Adapter model could be directly applied in this setting without
any fundamental modifications. One option would be to explore adding the hypernetwork directly
into the modality-specific model (e.g., a convolutional neural network in the case of images), and the
alternative would be to integrate the adapter module in the final (fully-connected) layers of the RL
policy. Second, while we focused on the problem of zero-shot generalisation, our approach may also
be suitable for efficient few-shot learning. In particular, adapters in NLP are often added to a large
pre-trained model and then fine-tuned while freezing the primary model [76]. Using the Decision
Adapter in this paradigm is a promising direction for future work, especially in cases where the
difference between training and testing is so large that we cannot expect effective zero-shot generali-
sation. Combining our work with fine-tuning-based [91–93] or meta-learning [36, 60, 68, 69, 94–96]
approaches, which generally focus more on this case, could likewise be promising.

9 Conclusion

In this work, we consider the problem of generalising to new transition dynamics. We first illustrate
that for some classes of problems, a context-unaware policy cannot perform well over the entire
problem space—necessitating the use of context. We next turned our attention to how context should
best be incorporated, introducing the Decision Adapter—a method that generates the weights of an
adapter module based on the context. When context is necessary, our Decision Adapter outperforms
all of our baselines, including the prevalent Concat model. Next, when there are some irrelevant
context variables that change between training and testing, the Concat and cGate models fail to
generalise, whereas our Decision Adapter performs well. This result holds in several domains,
including the more complex Ant. Furthermore, our Adapter is theoretically more powerful and
empirically more effective than cGate, showing that our hypernetwork-based perspective is useful
when dealing with context. Ultimately, we find that the Decision Adapter is a natural, and robust,
approach to reliably incorporate context into RL, in a factored way. This appears to be of particular
benefit when there are several irrelevant context variables, for instance, in real-world settings [97].

10

Acknowledgements

Computations were performed using High Performance Computing infrastructure provided by the
Mathematical Sciences Support unit at the University of the Witwatersrand. M.B. is supported by the
Rhodes Trust. D.J. is a Google PhD Fellow and Commonwealth Scholar. B.R. is a CIFAR Azrieli
Global Scholar in the Learning in Machines & Brains program.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[3] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv preprint arXiv:1910.07113, 2019.

[4] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojtek Czarnecki,
Andrew Dudzik, Aja Huang, Petko Georgiev, et al. AlphaStar: Mastering the Real-Time Strategy
Game StarCraft II. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-
game-starcraft-ii/, 2019.

[5] Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in continuous
reinforcement learning. CoRR, abs/1806.07937, 2018. URL http://arxiv.org/abs/1806.07937.

[6] Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning,
pages 1282–1289. PMLR, 2019. URL http://proceedings.mlr.press/v97/cobbe19a.html.

[7] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot generalisation
in deep reinforcement learning. J. Artif. Intell. Res., 76:201–264, 2023. doi: 10.1613/jair.1.14174. URL
https://doi.org/10.1613/jair.1.14174.

[8] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning, pages 2817–2826.
PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/pinto17a.html.

[9] Mohammed Amin Abdullah, Hang Ren, Haitham Bou-Ammar, Vladimir Milenkovic, Rui Luo, Mingtian
Zhang, and Jun Wang. Wasserstein robust reinforcement learning. CoRR, abs/1907.13196, 2019. URL
http://arxiv.org/abs/1907.13196.

[10] Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg, Yuanyuan
Shi, Jackie Kay, Todd Hester, Timothy A. Mann, and Martin A. Riedmiller. Robust reinforcement
learning for continuous control with model misspecification. In 8th International Conference on Learning
Representations. OpenReview.net, 2020. URL https://openreview.net/forum?id=HJgC60EtwB.

[11] Gilbert Feng, Hongbo Zhang, Zhongyu Li, Xue Bin Peng, Bhuvan Basireddy, Linzhu Yue, Zhitao Song,
Lizhi Yang, Yunhui Liu, Koushil Sreenath, and Sergey Levine. Genloco: Generalized locomotion
controllers for quadrupedal robots. In Conference on Robot Learning, pages 1893–1903. PMLR, 2022.

[12] Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. In
7th International Conference on Learning Representations. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=ryl8-3AcFX.

[13] Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, André Biedenkapp, Bodo Rosen-
hahn, Frank Hutter, and Marius Lindauer. Contextualize me - the case for context in reinforcement
learning. CoRR, abs/2202.04500, 2022. URL https://arxiv.org/abs/2202.04500v1.

[14] Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. In Robotics: Science and Systems XIII, 2017. doi: 10.15607/
RSS.2017.XIII.048. URL http://www.roboticsproceedings.org/rss13/p48.html.

11

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
http://arxiv.org/abs/1806.07937
http://proceedings.mlr.press/v97/cobbe19a.html
https://doi.org/10.1613/jair.1.14174
https://proceedings.mlr.press/v70/pinto17a.html
http://arxiv.org/abs/1907.13196
https://openreview.net/forum?id=HJgC60EtwB
https://openreview.net/forum?id=ryl8-3AcFX
https://openreview.net/forum?id=ryl8-3AcFX
https://arxiv.org/abs/2202.04500v1
http://www.roboticsproceedings.org/rss13/p48.html

[15] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. CoRR,
abs/1502.02259, 2015. URL http://arxiv.org/abs/1502.02259.

[16] Philip J. Ball, Cong Lu, Jack Parker-Holder, and Stephen J. Roberts. Augmented world mod-
els facilitate zero-shot dynamics generalization from a single offline environment. In Proceedings
of the 38th International Conference on Machine Learning, pages 619–629. PMLR, 2021. URL
http://proceedings.mlr.press/v139/ball21a.html.

[17] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-based
representations. In Proceedings of the 38th International Conference on Machine Learning, volume 139,
pages 9767–9779. PMLR, 2021. URL http://proceedings.mlr.press/v139/sodhani21a.html.

[18] Shagun Sodhani, Franziska Meier, Joelle Pineau, and Amy Zhang. Block contextual MDPs for continual
learning. In Learning for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford
University, Stanford, CA, USA, pages 608–623. PMLR, 2022. URL https://proceedings.mlr.press/
v168/sodhani22a.html.

[19] Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957. ISSN
0022-2518.

[20] Martin L Puterman and Eugene A Feinberg. Markov decision processes: discrete stochastic dynamic
programming. SIAM review, 38(4):689, 1996.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[22] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from simulation to the real world. In International Con-
ference on Intelligent Robots and Systems, pages 23–30. IEEE, 2017. doi: 10.1109/IROS.2017.8202133.
URL https://doi.org/10.1109/IROS.2017.8202133.

[23] Fereshteh Sadeghi and Sergey Levine. CAD2RL: real single-image flight without a single real image.
In Robotics: Science and Systems XIII, 2017. doi: 10.15607/RSS.2017.XIII.034. URL http://
www.roboticsproceedings.org/rss13/p34.html.

[24] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In International Conference on Robotics and Automa-
tion, pages 1–8. IEEE, 2018. doi: 10.1109/ICRA.2018.8460528. URL https://doi.org/10.1109/
ICRA.2018.8460528.

[25] Jan Matas, Stephen James, and Andrew J. Davison. Sim-to-real reinforcement learning for deformable
object manipulation. In Conference on Robot Learning, pages 734–743. PMLR, 2018. URL http:
//proceedings.mlr.press/v87/matas18a.html.

[26] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew, Jakub Pachocki,
Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin,
Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipulation. Int.
J. Robotics Res., 39(1), 2020. doi: 10.1177/0278364919887447. URL https://doi.org/10.1177/
0278364919887447.

[27] Alejandro Escontrela, George Yu, Peng Xu, Atil Iscen, and Jie Tan. Zero-shot terrain generalization for
visual locomotion policies. CoRR, abs/2011.05513, 2020. URL https://arxiv.org/abs/2011.05513.

[28] Zac Wellmer and James T. Kwok. Dropout’s dream land: Generalization from learned simulators to reality.
In Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference,
ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part I, volume 12975 of Lecture
Notes in Computer Science, pages 255–270. Springer, 2021. doi: 10.1007/978-3-030-86486-6_16. URL
https://doi.org/10.1007/978-3-030-86486-6_16.

[29] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey. In Symposium Series on Computational Intelligence, pages
737–744. IEEE, 2020. doi: 10.1109/SSCI47803.2020.9308468. URL https://doi.org/10.1109/
SSCI47803.2020.9308468.

[30] Samuel Kessler, Jack Parker-Holder, Philip J. Ball, Stefan Zohren, and Stephen J. Roberts. Same
state, different task: Continual reinforcement learning without interference. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 7143–7151. AAAI Press, 2022. URL https://
ojs.aaai.org/index.php/AAAI/article/view/20674.

12

http://arxiv.org/abs/1502.02259
http://proceedings.mlr.press/v139/ball21a.html
http://proceedings.mlr.press/v139/sodhani21a.html
https://proceedings.mlr.press/v168/sodhani22a.html
https://proceedings.mlr.press/v168/sodhani22a.html
https://doi.org/10.1109/IROS.2017.8202133
http://www.roboticsproceedings.org/rss13/p34.html
http://www.roboticsproceedings.org/rss13/p34.html
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/ICRA.2018.8460528
http://proceedings.mlr.press/v87/matas18a.html
http://proceedings.mlr.press/v87/matas18a.html
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://arxiv.org/abs/2011.05513
https://doi.org/10.1007/978-3-030-86486-6_16
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1109/SSCI47803.2020.9308468
https://ojs.aaai.org/index.php/AAAI/article/view/20674
https://ojs.aaai.org/index.php/AAAI/article/view/20674

[31] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. RMA: rapid motor adaptation for legged
robots. In Robotics: Science and Systems XVII, 2021. doi: 10.15607/RSS.2021.XVII.011. URL
https://doi.org/10.15607/RSS.2021.XVII.011.

[32] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin A. Riedmiller,
Raia Hadsell, and Peter W. Battaglia. Graph networks as learnable physics engines for inference and
control. In Proceedings of the 35th International Conference on Machine Learning, pages 4467–4476.
PMLR, 2018. URL http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html.

[33] Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dy-
namics model for generalization in model-based reinforcement learning. In Proceedings of the
37th International Conference on Machine Learning, pages 5757–5766. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/lee20g.html.

[34] Younggyo Seo, Kimin Lee, Ignasi Clavera Gilaberte, Thanard Kurutach, Jinwoo Shin, and Pieter Abbeel.
Trajectory-wise multiple choice learning for dynamics generalization in reinforcement learning. In
Advances in Neural Information Processing Systems, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/9739efc4f01292e764c86caa59af353e-Abstract.html.

[35] Seyed Kamyar Seyed Ghasemipour, Shixiang Gu, and Richard S. Zemel. Smile: Scalable meta inverse
reinforcement learning through context-conditional policies. In Advances in Neural Information Process-
ing Systems, pages 7879–7889, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
2b8f621e9244cea5007bac8f5d50e476-Abstract.html.

[36] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In Proceedings of the 36th International Confer-
ence on Machine Learning, pages 5331–5340. PMLR, 2019. URL http://proceedings.mlr.press/
v97/rakelly19a.html.

[37] Hamid Eghbal-zadeh, Florian Henkel, and Gerhard Widmer. Context-adaptive reinforcement learning
using unsupervised learning of context variables. In NeurIPS 2020 Workshop on Pre-registration in
Machine Learning, pages 236–254. PMLR, 11 Dec 2021. URL https://proceedings.mlr.press/
v148/eghbal-zadeh21a.html.

[38] Yao Mu, Yuzheng Zhuang, Fei Ni, Bin Wang, Jianyu Chen, Jianye Hao, and Ping Luo. De-
composed mutual information optimization for generalized context in meta-reinforcement learning.
CoRR, abs/2210.04209, 2022. doi: 10.48550/arXiv.2210.04209. URL https://doi.org/10.48550/
arXiv.2210.04209.

[39] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, pages 1856–1865. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/haarnoja18b.html.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

[41] André Biedenkapp, David Speck, Silvan Sievers, Frank Hutter, Marius Lindauer, and Jendrik Seipp.
Learning domain-independent policies for open list selection. 2022.

[42] Matt Peng, Banghua Zhu, and Jiantao Jiao. Linear representation meta-reinforcement learning for instant
adaptation. CoRR, abs/2101.04750, 2021. URL https://arxiv.org/abs/2101.04750.

[43] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779, 2016. URL http:
//arxiv.org/abs/1611.02779.

[44] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017. URL http://proceedings.mlr.press/v70/finn17a.html.

[45] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 3942–3951. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16528.

[46] Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 2018. doi: 10.23915/distill.00011.
https://distill.pub/2018/feature-wise-transformations.

13

https://doi.org/10.15607/RSS.2021.XVII.011
http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html
http://proceedings.mlr.press/v119/lee20g.html
http://proceedings.mlr.press/v119/lee20g.html
https://proceedings.neurips.cc/paper/2020/hash/9739efc4f01292e764c86caa59af353e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9739efc4f01292e764c86caa59af353e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ 2b8f621e9244cea5007bac8f5d50e476-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ 2b8f621e9244cea5007bac8f5d50e476-Abstract.html
http://proceedings.mlr.press/v97/rakelly19a.html
http://proceedings.mlr.press/v97/rakelly19a.html
https://proceedings.mlr.press/v148/eghbal-zadeh21a.html
https://proceedings.mlr.press/v148/eghbal-zadeh21a.html
https://doi.org/10.48550/arXiv.2210.04209
https://doi.org/10.48550/arXiv.2210.04209
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2101.04750
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1611.02779
http://proceedings.mlr.press/v70/finn17a.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/ 16528
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/ 16528

[47] Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebastian Döhler, André
Biedenkapp, Bodo Rosenhahn, Frank Hutter, and Marius Lindauer. Contextualize me – the case for
context in reinforcement learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=Y42xVBQusn.

[48] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov, Gabriel
Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake
Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar
Bordbar, and Nando de Freitas. A generalist agent. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856. URL https://openreview.net/forum?id=1ikK0kHjvj. Featured Certification,
Outstanding Certification.

[49] Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foundation
models for decision making: Problems, methods, and opportunities. CoRR, abs/2303.04129, 2023. doi:
10.48550/arXiv.2303.04129. URL https://doi.org/10.48550/arXiv.2303.04129.

[50] Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauzá,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving foundation
agent for robotic manipulation. CoRR, abs/2306.11706, 2023. doi: 10.48550/arXiv.2306.11706. URL
https://doi.org/10.48550/arXiv.2306.11706.

[51] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang
He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, and
Lichao Sun. A comprehensive survey on pretrained foundation models: A history from BERT to chatgpt.
CoRR, abs/2302.09419, 2023. doi: 10.48550/arXiv.2302.09419. URL https://doi.org/10.48550/
arXiv.2302.09419.

[52] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. FLAVA: A foundational language and vision alignment model. In
Conference on Computer Vision and Pattern Recognition, pages 15617–15629. IEEE, 2022. doi: 10.1109/
CVPR52688.2022.01519. URL https://doi.org/10.1109/CVPR52688.2022.01519.

[53] Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal controllers
with transformers. In The Tenth International Conference on Learning Representations. OpenReview.net,
2022. URL https://openreview.net/forum?id=Opmqtk_GvYL.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[55] Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin A. Riedmiller,
Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, and Nicolas Heess. A generalist
dynamics model for control. CoRR, abs/2305.10912, 2023. doi: 10.48550/arXiv.2305.10912. URL
https://doi.org/10.48550/arXiv.2305.10912.

[56] J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control: Applications
to industrial processes. Autom., 14(5):413–428, 1978. doi: 10.1016/0005-1098(78)90001-8. URL
https://doi.org/10.1016/0005-1098(78)90001-8.

[57] Carlos E. Garcia, David M. Prett, and Manfred Morari. Model predictive control: Theory and practice - A
survey. Autom., 25(3):335–348, 1989. doi: 10.1016/0005-1098(89)90002-2. URL https://doi.org/
10.1016/0005-1098(89)90002-2.

[58] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on model predictive control: An
engineering perspective. The International Journal of Advanced Manufacturing Technology, 117(5-6):
1327–1349, 2021.

[59] Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish Kapoor.
SMART: self-supervised multi-task pretraining with control transformers. In The Eleventh International
Conference on Learning Representations. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=9piH3Hg8QEf.

[60] Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa M. Zintgraf, Chelsea Finn, and
Shimon Whiteson. A survey of meta-reinforcement learning. CoRR, abs/2301.08028, 2023. doi:
10.48550/arXiv.2301.08028. URL https://doi.org/10.48550/arXiv.2301.08028.

14

https://openreview.net/forum?id=Y42xVBQusn
https://openreview.net/forum?id=1ikK0kHjvj
https://doi.org/10.48550/arXiv.2303.04129
https://doi.org/10.48550/arXiv.2306.11706
https://doi.org/10.48550/arXiv.2302.09419
https://doi.org/10.48550/arXiv.2302.09419
https://doi.org/10.1109/CVPR52688.2022.01519
https://openreview.net/forum?id=Opmqtk_GvYL
https://proceedings.neurips.cc/paper/2017/hash/ 3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ 3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/arXiv.2305.10912
https://doi.org/10.1016/0005-1098(78)90001-8
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/0005-1098(89)90002-2
https://openreview.net/pdf?id=9piH3Hg8QEf
https://openreview.net/pdf?id=9piH3Hg8QEf
https://doi.org/10.48550/arXiv.2301.08028

[61] Learning to Learn. Springer, 1998. ISBN 978-1-4613-7527-2. doi: 10.1007/978-1-4615-5529-2. URL
https://doi.org/10.1007/978-1-4615-5529-2.

[62] Jonathan Baxter. Theoretical models of learning to learn. In Learning to Learn, pages 71–94. Springer,
1998. doi: 10.1007/978-1-4615-5529-2_4. URL https://doi.org/10.1007/978-1-4615-5529-
2_4.

[63] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In 6th International Conference on Learning Representations. OpenReview.net, 2018. URL
https://openreview.net/forum?id=B1DmUzWAW.

[64] Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In Proceedings of the 36th International Conference on Machine Learning,
pages 7693–7702. PMLR, 2019. URL http://proceedings.mlr.press/v97/zintgraf19a.html.

[65] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In 7th International Conference on Learning Representations. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HyztsoC5Y7.

[66] Haozhe Wang, Jiale Zhou, and Xuming He. Learning context-aware task reasoning for efficient meta
reinforcement learning. In Proceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems, pages 1440–1448. International Foundation for Autonomous Agents and Multiagent
Systems, 2020. URL https://dl.acm.org/doi/abs/10.5555/3398761.3398927.

[67] Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, and Marcus Liwicki. Sharing to learn and learning to
share - fitting together meta-learning, multi-task learning, and transfer learning: A meta review. CoRR,
abs/2111.12146, 2021. URL https://arxiv.org/abs/2111.12146.

[68] Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, and Shimon Whiteson. Hypernetworks in meta-
reinforcement learning. In Conference on Robot Learning, pages 1478–1487. PMLR, 2022. URL
https://proceedings.mlr.press/v205/beck23a.html.

[69] Elad Sarafian, Shai Keynan, and Sarit Kraus. Recomposing the reinforcement learning building blocks
with hypernetworks. In Proceedings of the 38th International Conference on Machine Learning, pages
9301–9312. PMLR, 2021. URL http://proceedings.mlr.press/v139/sarafian21a.html.

[70] Qinyuan Ye and Xiang Ren. Learning to generate task-specific adapters from task description. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, pages 646–
653. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-short.82. URL
https://doi.org/10.18653/v1/2021.acl-short.82.

[71] Jonathan Pilault, Amine El hattami, and Christopher Pal. Conditionally adaptive multi-task learning:
Improving transfer learning in NLP using fewer parameters & less data. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=de11dbHzAMF.

[72] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-efficient
multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics, pages 565–576. Association for Computa-
tional Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.47. URL https://doi.org/10.18653/v1/
2021.acl-long.47.

[73] Hamish Ivison and Matthew E. Peters. Hyperdecoders: Instance-specific decoders for multi-task NLP. In
Findings of the Association for Computational Linguistics, pages 1715–1730. Association for Computa-
tional Linguistics, 2022. URL https://aclanthology.org/2022.findings-emnlp.124.

[74] Haoxiang Shi, Rongsheng Zhang, Jiaan Wang, Cen Wang, Yinhe Zheng, and Tetsuya Sakai. Layerconnect:
Hypernetwork-assisted inter-layer connector to enhance parameter efficiency. In Proceedings of the 29th
International Conference on Computational Linguistics, pages 3120–3126. International Committee on
Computational Linguistics, 2022. URL https://aclanthology.org/2022.coling-1.276.

[75] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual
domains with residual adapters. In Advances in Neural Information Processing Sys-
tems, pages 506–516, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html.

15

https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-1-4615-5529-2_4
https://doi.org/10.1007/978-1-4615-5529-2_4
https://openreview.net/forum?id=B1DmUzWAW
http://proceedings.mlr.press/v97/zintgraf19a.html
https://openreview.net/forum?id=HyztsoC5Y7
https://dl.acm.org/doi/abs/10.5555/3398761.3398927
https://arxiv.org/abs/2111.12146
https://proceedings.mlr.press/v205/beck23a.html
http://proceedings.mlr.press/v139/sarafian21a.html
https://doi.org/10.18653/v1/2021.acl-short.82
https://openreview.net/forum?id=de11dbHzAMF
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://aclanthology.org/2022.findings-emnlp.124
https://aclanthology.org/2022.coling-1.276
https://proceedings.neurips.cc/paper/2017/hash/ e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html

[76] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on Machine Learning, pages 2790–2799. PMLR, 09–15
Jun 2019. URL https://proceedings.mlr.press/v97/houlsby19a.html.

[77] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
46–54. Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-demos.7. URL
https://doi.org/10.18653/v1/2020.emnlp-demos.7.

[78] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 7654–7673, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.617. URL
https://aclanthology.org/2020.emnlp-main.617.

[79] Hang Le, Juan Miguel Pino, Changhan Wang, Jiatao Gu, Didier Schwab, and Laurent Besacier.
Lightweight adapter tuning for multilingual speech translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics, pages 817–824. Association for Computa-
tional Linguistics, 2021. doi: 10.18653/v1/2021.acl-short.103. URL https://doi.org/10.18653/v1/
2021.acl-short.103.

[80] Chin-Lun Fu, Zih-Ching Chen, Yun-Ru Lee, and Hung-yi Lee. Adapterbias: Parameter-efficient token-
dependent representation shift for adapters in NLP tasks. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 2608–2621. Association for Computational Linguistics, 2022.
doi: 10.18653/v1/2022.findings-naacl.199. URL https://doi.org/10.18653/v1/2022.findings-
naacl.199.

[81] Bethan Thomas, Samuel Kessler, and Salah Karout. Efficient adapter transfer of self-supervised speech
models for automatic speech recognition. In International Conference on Acoustics, Speech and Signal
Processing, pages 7102–7106. IEEE, 2022. doi: 10.1109/ICASSP43922.2022.9746223. URL https:
//doi.org/10.1109/ICASSP43922.2022.9746223.

[82] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In 5th International Conference on Learning
Representations. OpenReview.net, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

[83] Andrew William Moore. Efficient memory-based learning for robot control. Technical report, University
of Cambridge, Computer Laboratory, 1990.

[84] Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in Neural Information Processing Systems, pages 1038–1044. MIT
Press, 1995. URL http://papers.nips.cc/paper/1109-generalization-in-reinforcement-
learning-successful-examples-using-sparse-coarse-coding.

[85] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/abs/
1606.01540.

[86] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst. Man Cybern., 13(5):834–846, 1983. doi:
10.1109/TSMC.1983.6313077. URL https://doi.org/10.1109/TSMC.1983.6313077.

[87] Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Learning robust state abstrac-
tions for hidden-parameter block mdps. In 9th International Conference on Learning Representations.
OpenReview.net, 2021. URL https://openreview.net/forum?id=fmOOI2a3tQP.

[88] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song. Assessing
generalization in deep reinforcement learning. CoRR, abs/1810.12282, 2018. URL http://arxiv.org/
abs/1810.12282.

[89] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109. URL https://doi.org/10.1109/IROS.2012.6386109.

[90] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In 4th International Conference on Learning
Representations, 2016. URL http://arxiv.org/abs/1506.02438.

16

https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://aclanthology.org/2020.emnlp-main.617
https://doi.org/10.18653/v1/2021.acl-short.103
https://doi.org/10.18653/v1/2021.acl-short.103
https://doi.org/10.18653/v1/2022.findings-naacl.199
https://doi.org/10.18653/v1/2022.findings-naacl.199
https://doi.org/10.1109/ICASSP43922.2022.9746223
https://doi.org/10.1109/ICASSP43922.2022.9746223
https://openreview.net/forum?id=rkpACe1lx
http://papers.nips.cc/paper/1109-generalization-in- reinforcement-learning-successful-examples-using-sparse- coarse-coding
http://papers.nips.cc/paper/1109-generalization-in- reinforcement-learning-successful-examples-using-sparse- coarse-coding
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1109/TSMC.1983.6313077
https://openreview.net/forum?id=fmOOI2a3tQP
http://arxiv.org/abs/1810.12282
http://arxiv.org/abs/1810.12282
https://doi.org/10.1109/IROS.2012.6386109
http://arxiv.org/abs/1506.02438

[91] Ryan Julian, Benjamin Swanson, Gaurav S. Sukhatme, Sergey Levine, Chelsea Finn, and Karol Hausman.
Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning. In Conference
on Robot Learning, pages 2120–2136. PMLR, 2020. URL https://proceedings.mlr.press/v155/
julian21a.html.

[92] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals. In Robotics: Science and Systems XVI,
2020. doi: 10.15607/RSS.2020.XVI.064. URL https://doi.org/10.15607/RSS.2020.XVI.064.

[93] Laura M. Smith, J. Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey Levine. Legged robots
that keep on learning: Fine-tuning locomotion policies in the real world. In International Conference
on Robotics and Automation, pages 1593–1599. IEEE, 2022. doi: 10.1109/ICRA46639.2022.9812166.
URL https://doi.org/10.1109/ICRA46639.2022.9812166.

[94] Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, and Sergey Levine. Generalizing skills with semi-
supervised reinforcement learning. In 5th International Conference on Learning Representations. Open-
Review.net, 2017. URL https://openreview.net/forum?id=ryHlUtqge.

[95] Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep RL via meta-learning.
In 8th International Conference on Learning Representations. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=Hkl9JlBYvr.

[96] Luisa M. Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and Shimon
Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning. In Proceedings
of the 38th International Conference on Machine Learning, pages 12991–13001. PMLR, 2021. URL
http://proceedings.mlr.press/v139/zintgraf21a.html.

[97] Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies
for multi-robot transfer learning. In Advances in Neural Information Processing Sys-
tems, pages 9355–9366, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
b8cfbf77a3d250a4523ba67a65a7d031-Abstract.html.

[98] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/
papers/v23/21-1342.html.

[99] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[100] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. CoRR, abs/2103.10427, 2021. URL https://arxiv.org/
abs/2103.10427.

[101] Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam De-
vlin, and Katja Hofmann. Generalization in reinforcement learning with selective noise in-
jection and information bottleneck. In Advances in Neural Information Processing Sys-
tems, pages 13956–13968, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
e2ccf95a7f2e1878fcafc8376649b6e8-Abstract.html.

[102] Xingyu Lu, Kimin Lee, Pieter Abbeel, and Stas Tiomkin. Dynamics generalization via information
bottleneck in deep reinforcement learning. CoRR, abs/2008.00614, 2020. URL https://arxiv.org/
abs/2008.00614.

[103] Ben Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Robust predictable control. In
Advances in Neural Information Processing Systems, pages 27813–27825, 2021. URL
https://proceedings.neurips.cc/paper/2021/hash/e9f85782949743dcc42079e629332b5f-
Abstract.html.

17

https://proceedings.mlr.press/v155/julian21a.html
https://proceedings.mlr.press/v155/julian21a.html
https://doi.org/10.15607/RSS.2020.XVI.064
https://doi.org/10.1109/ICRA46639.2022.9812166
https://openreview.net/forum?id=ryHlUtqge
https://openreview.net/forum?id=Hkl9JlBYvr
https://openreview.net/forum?id=Hkl9JlBYvr
http://proceedings.mlr.press/v139/zintgraf21a.html
https://proceedings.neurips.cc/paper/2018/hash/ b8cfbf77a3d250a4523ba67a65a7d031-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ b8cfbf77a3d250a4523ba67a65a7d031-Abstract.html
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
https://proceedings.neurips.cc/paper/2019/hash/ bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/2103.10427
https://arxiv.org/abs/2103.10427
https://proceedings.neurips.cc/paper/2019/hash/ e2ccf95a7f2e1878fcafc8376649b6e8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ e2ccf95a7f2e1878fcafc8376649b6e8-Abstract.html
https://arxiv.org/abs/2008.00614
https://arxiv.org/abs/2008.00614
https://proceedings.neurips.cc/paper/2021/hash/ e9f85782949743dcc42079e629332b5f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ e9f85782949743dcc42079e629332b5f-Abstract.html

Appendix

A Formalising the Theoretical Foundations

In this section, we more formally consider our theoretical results from Section 4. We first define
our problem formulation in Assumption A.1, then state the theorem in Theorem A.5. Finally, we
prove the theorem at the end of this section.

Assumption A.1. (Problem Formulation): Suppose we have a CMDP where S,A ⊆ Rd and γ ∈
(0, 1). The context c ∈ Rd defines a goal location, with a reward function Rc(s, a, s

′) = 1 if ||s′ −
c|| < τ̄ and 0 otherwise. The episode terminates when the reward obtained is 1. Suppose further that
τ̄ = τD, with D ∈ R+ being the distance the agent travels in a single step and τ ∈ Z+ being the num-
ber of steps it takes the agent to traverse a distance of τ̄ . Here τ and D are kept fixed across contexts.

Definition A.2. (Context Averaged Value Function): Denote V̄ π
C (s) = Ec∼C [V

π
c (s)], i.e., the

expected value of the value function of policy π in state s, over all contexts in the set C. Similarly
V̄ ∗
C (s) = Ec∼C [V

∗
c (s)] is the average of the value functions of the optimal policies on each context.

Definition A.3. (Value Function Optimality Ratio): Let 0 ≤ απ
C(s) =

V̄ π
C (s)

V̄ ∗
C (s)

≤ 1 denote how
close the average value function of policy π is to the optimal context-specific value function. We use
the optimality ratio instead of the optimality gap [47] because the optimality gap depends heavily on
the reward scale of the environment, whereas the optimality ratio depends only on the ratios.

Definition A.4. (Minimum Inter-context Distance): Let dmin = minci ̸=cj∈C⌈ ||ci−cj ||
D ⌉ be the

minimum number of steps required to travel between any two context centers.

Theorem A.5. Then, in this problem space, we have the following:

(i) For some set of contexts Cfar with cardinality N , and some state s, all deterministic unaware
policies π will have:

απ
Cfar

(s) =
V̄ π
Cfar

(s)

V̄ ∗
Cfar

(s)
≤ 1

N

1− γNdmin

1− γdmin
(1)

Additionally:

lim
dmin→∞

απ
Cfar

(s) → 1

N
(2)

i.e., as the contexts within Cfar move further away from each other the agent’s performance
scales inversely with the number of contexts.

(ii) For some set, Cclose and all states s, at least one deterministic unaware policy πg will have:

V̄
πg

Cclose
(s)

V̄ ∗
Cclose

(s)
> γτ (3)

regardless of the number of contexts in Cclose.

Proof. (i) Consider a set of contexts Cfar such that for all ci, cj ∈ Cfar, i ̸= j, ||ci − cj || > 4τ̄ .
Consider the state s = 1

N

∑N
i=1 ci, i.e., in the middle of all contexts. Now, suppose the optimal policy

per context would require only β steps to reach the appropriate goal. An unaware policy that reaches
every goal, by contrast, must travel to each context in sequence. If this policy visits c1, c2, . . . , cN , in
order, then the value functions for each context would be:

• V π
c1(s) = γβ · 1 = V ∗

c1(s)

• V π
c2(s) = γβ+⌈ ||c1−c2||

D ⌉

• V π
c3(s) = γβ+⌈ ||c1−c2||

D ⌉+⌈ ||c2−c3||
D ⌉,

18

and so on. Let dmin be the number of steps required to move between the two closest distinct contexts
in Cfar. Thus, dmin ≥ 4τ̄−τ̄−τ̄

D = 2τ .6 Then, V π
ci (s) ≤ γβ+(i−1)dmin . Now,

V̄ π
Cfar

(s) = Ec∼Cfar
[V π

c (s)]

=
1

N

N∑
i=1

V π
ci (s)

≤ 1

N

N∑
i=1

γβ+(i−1)dmin

= γβ 1

N

N∑
i=1

γ(i−1)dmin

= γβ 1

N

1− γNdmin

1− γdmin

= V̄ ∗
Cfar

(s)
1

N

1− γNdmin

1− γdmin

Hence, α =
V̄ π
Cfar

(s)

V̄ ∗
Cfar

(s)
≤ 1

N
1−γNdmin

1−γdmin
. Finally, as dmin → ∞, γdmin → 0 and γNdmin → 0. Hence,

limN→∞ α = 1
N .

(ii) Consider a set of contexts Cclose such that for all ci, cj ∈ Cclose, ||ci−cj || < τ̄ . Then, consider an
unaware policy that always travels to the joint intersection point of these contexts. This intersection
point is at most τ̄ away from the closest context to the agent, therefore the agent will perform at most
τ unnecessary steps compared to the optimal policy. Hence, its value function has a lower bound of
V ∗
ci(s)γ

τ , and we have
V ∗
ci(s) ≥ V π

ci (s) ≥ V ∗
ci(s)γ

τ

Therefore,

V̄ π
Cclose

(s) = Ec∼Cclose
[V π

c (s)]

≥ Ec∼Cclose
[V ∗

c (s)γ
τ]

= γτEc∼Cclose
[V ∗

c (s)]

= γτ V̄ ∗
Cclose

(s)

And we have:
V̄ π
Cclose

(s)

V̄ ∗
Cclose

(s)
≥ γτ

B Linking Theory and Practice

The formulation in Assumption A.1 has consistent dynamics and context-dependent rewards (as
the context defines the goal location, and the transition dynamics do not depend on the context). This
is in contrast to the problem we aim to study, which has consistent rewards, but context-dependent
dynamics; however, we can show that for the environment considered in Appendix A, these two
are equivalent.

We can obtain the context-dependent dynamics formulation under the assumptions in Section 2, i.e.,
that only the transition dynamics change, as follows. Suppose the context defines a rotation matrix
Ci ∈ Rd×d, with dynamics equation T (s, a) = s′ = s+Cia and initial state s0 = 0. Here the goal is
a fixed location g ∈ Rd. The episode would terminate with a reward of 1 if ||s′−g|| < τ̄ . We can then
perform a coordinate transform to obtain C−1

i s′ = C−1
i s+ a. The goal would then depend on the

context gci = C−1
i g and the effect of an action in this new space would be consistent across contexts.

6This is because, while the centers of the circles ci and cj are further than 4τ̄ apart, their closest edges are
only at least 2τ̄ apart.

19

In essence, we change the reference frame to be that of the agent, leading to separate goal locations
for each context, but consistent dynamics—corresponding to the problem in Assumption A.1.

In the remainder of this section, we link our theoretical and empirical results, showing that the ODE
(for some context distributions) is an example of a non-overlapping environment, while in CartPole,
an unaware policy can perform well.

B.1 ODE

Here we show that, in the ODE domain, the Unaware model can either perform well or poorly,
depending on the context set it is evaluated on. In particular, we train models on context sets CA

train =
{1, 5} and CB

train = {−5,−1, 1, 5} and evaluate on CA
test = [0, 10] and CB

test = [−10, 10]. These
results are shown in Fig. 7. When only considering the positive contexts (left), the Unaware model
performs only slightly worse than the Concat model. This corresponds to case (ii) in Theorem A.5,
where the contexts are similar enough for a single policy to perform well. However, when considering
both positive and negative contexts (right), the Unaware model fails completely, and performs much
worse than the context-aware ones. This is because, in the ODE domain, positive and negative
contexts cannot be solved using the same action. This corresponds to case (i) in Theorem A.5, where
making progress on one context results in negative progress on another.

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

AE
R

Positive

0.0 0.2 0.4 0.6 0.8 1.0
1e6

Positive and Negative

Training Time (Steps)

Unaware Concat Adapter

Figure 7: Here we show results in the ODE domain. On the left, we train on {1, 5} and evaluate on
[0, 10]. On the right, we consider both negative and positive contexts, training on {−5,−1, 1, 5} and
evaluating on [−10, 10]. The Unaware model performs much better when only considering positive
contexts, even though the context-aware models still outperform it.

B.2 CartPole

We now investigate CartPole. In particular, we vary only the pole length, and consider the training con-
texts as {1, 4, 6}, with the evaluation contexts being 301 equally-spaced points between 0.1 and 10.

These results are shown in Fig. 8. While the Unaware model can achieve comparable generalisation
performance to the context-informed models, it takes significantly longer to do so. In particular, to
obtain an average reward above 400, the Unaware model must train for more than 600k steps, whereas
cGate, Concat and our Adapter reach this threshold before 100k steps. This shows that, while context
is not necessary in this domain, incorporating it may be beneficial and can lead to much more sample-
efficient generalisation compared to the Unaware model. This is particularly relevant when training
on multiple training contexts, which seems to cause interference for the Unaware model. The context-
aware approaches, however, are not as susceptible to this problem, as they are able to distinguish
experience from different contexts. Furthermore, most of the context-aware models perform similarly
in this case. In particular, our Adapter, Concat and cGate converge rapidly, while FLAP converges
slightly slower, but achieves comparable generalisation performance at the end of training.

20

0 2 4 6 8
Training Time (Steps) 1e5

100

200

300

400

500

AE
R

Unaware Concat Adapter cGate FLAP

Figure 8: Showing the average evaluation reward as we increase training time for CartPole. Mean
performance over seeds is shown and standard deviation is shaded.

0 20 40 60 80 100
Mass

0

50

100

150

200

250

Di
st

an
ce

 Tr
av

el
le

d

Unaware Concat Adapter

Figure 9: Mass vs. Distance Travelled (proportional to reward), at the end of training for the Ant
domain. Red lines are the training contexts. Mean performance is shown, with standard deviation
over 16 seeds shaded.

B.3 Ant

Here we consider the Ant domain, and vary the mass, without any distractor variables. As seen in
Fig. 9, the Unaware model performs worse than the context-aware ones. This performance gap is due
to the Unaware model being unable to simultaneously perform well on light and heavy masses, as
seen in Fig. 9. In contrast, by utilising context, the agent can perform well in both settings despite
their significant differences.

C cGate as a Special Case of the Decision Adapter

As discussed in Section 5, here we show that our architecture is, in fact, a generalisation of another
network architecture introduced by prior work. Benjamins et al. [13] introduce cGate, which obtains
an action as follows. It first calculates ϕ(s) ∈ Rd using the state encoder ϕ and g(c) ∈ Rd using the

21

context encoder g. Then, it calculates features h = cGate(s, c) = ϕ(s) ⊙ g(c), with ⊙ being the
elementwise product. The action is obtained as a = f(h), where f : Rd → A is the learned policy.
Here, both the state encoder ϕ and the context encoder g correspond to neural networks that each
output a d-dimensional vector.

This approach is a specific instantiation of our general adapter architecture, where we have one
adapter module A = Ai. In particular, the state encoder ϕ corresponds to the partial neural network
before our adapter module, i.e., layers L1, L2, . . . , Li−1. The policy f corresponds to the layers after
our adapter module, Li, Li+1, . . . , Ln. Thus, we have that ϕ(s) = Li−1(xi−1) and f(h) = Ln(xn).
If we define our adapter network A(ϕ(s)|c) = ϕ(s)⊙ g(c), we can recover the same result as cGate.
This would be possible if we let our adapter consist of one layer without a nonlinearity or a bias
vector, with its weight matrix being set to W = H(c) = diag(g(c)). This would result in

A(ϕ(s)|c) = Wϕ(s) = diag(g(c))ϕ(s) = g(c)⊙ ϕ(s) = cGate(s, c),

where we have used the fact that, for two vectors a, b ∈ Rd, the matrix multiplication diag(a)b is the
same as the elementwise product a⊙ b. This output vector is then passed to the policy network f .
Our approach, however, is strictly more powerful than a single elementwise product, as our adapter
can be an entire nonlinear neural network.

D Experimental Details

D.1 Environments

This section contains more details about the experimental setup of our environments.

D.1.1 Context Normalisation

Before we pass the ground truth context to the models, we first normalise them to a range between 0
and 1. In particular, for each context dimension i, we calculate the context to be given to the agents
cnorm,i as

cnorm,i =
ci

maxi
,

where maxi is the largest value for dimension i in the training context set. This results in the largest
training contexts having values of 1.0. During evaluation, we perform the same normalisation, so
contexts outside the convex hull of the training set will potentially result in values larger than 1.0.

D.1.2 ODE

During training, for each context, we cycle between starting states, with each episode taking a new
starting state from the set {1.0, 0.5,−0.5,−1.0}. Thus, the agent trains on the first context for 4
episodes, each with a different initial state. Then it goes on to the second context, and so on. When we
reach the end of the context list, we simply start at the first context again. We do this to ensure training
is comparable for each method, and that there is sufficient diversity in the initial state distribution.
During evaluation, we fix the starting state at x0 = 1.0 to isolate the effect of context.

D.1.3 CartPole

Table 1 illustrates the context variables we use in CartPole. While we consider all five variables as
the context, we varied only the pole length for our experiments. The value for each state variable at
the start of the episode is randomly sampled from the interval [−0.05, 0.05].

Table 1: The five context variables and their default values.
Name Symbol Default Value

Gravity g 9.80
Cart Mass mc 1.00
Pole Mass mp 0.10
Pole Length l 0.50
Force Magnitude F̃ 10.00

22

D.2 Hyperparameters

We use ReLU for all activation functions. We also aim to have an equal number of learnable parameters
for each method and adjust the number of hidden nodes to achieve this.

We use Soft-Actor-Critic [39, SAC] for all methods, to isolate and fairly compare the network
architectures. We use the high-performing and standard implementation of SAC from the CleanRL
library [98] with neural networks being written in PyTorch [99]. We use the default hyperparameters,
which are listed in Table 2. SAC learns both an actor and a critic. The actor takes as input the
state and outputs µ and log(σ), which are used to construct the probability distribution over actions
N (µ, σ) which is sampled from to obtain an action. The critic receives the performed action a as
well as the state s, and outputs a single number, representing the approximate action-value q̂(s, a).
Fig. 10 illustrates each baseline.

Table 2: The default hyperparameters we use in the CleanRL implementation.
Name Value

Buffer Size 1 000 000
γ 0.99
τ 0.005
Batch Size 256
Exploration Noise 0.1
First Learning Timestep 5000
Policy Learning Rate 0.0003
Critic Learning Rate 0.001
Policy Update Frequency 2
Target Network Update Frequency 1
Noise Clip 0.5
Automatically Tune Entropy Yes

D.3 Adapter Configuration and Design Decisions

Now, our method provides a great degree of flexibility in terms of configuration, and we must make
multiple design decisions to obtain a usable instantiation of the Decision Adapter. In this section,
we briefly detail the default settings we use and justify why these are reasonable. We empirically
investigate the merits of these choices and compare them against alternative options in Appendix E.

D.3.1 Bottleneck Architecture

We use a bottleneck architecture in our generated adapter modules, as described by Houlsby et al.
[76]. In essence, we have a down-projection layer that transforms features from di-dimensional to
p-dimensional, with p < di. Then, the second layer up-projects this back to a di-dimensional vector.

The bottleneck architecture is beneficial for two reasons. Firstly, it reduces the number of required
parameters in our adapter model. For instance, if we have two layers in this bottleneck architecture,
the number of parameters would differ substantially compared to one layer that transforms the
di-dimensional features to di dimensions. In the first case, the number of parameters would be on
the order of O(di × p + p × di), corresponding to a di × p matrix for the down-projection and a
p× di matrix for the up-projection.7 If we only have one layer, then we have a single di × di matrix.
Thus, the bottleneck requires O(pdi) parameters, whereas the single layer requires O(d2i). If we, for
example, have di = 256 and p = 32, the bottleneck architecture has four times fewer parameters
than the single layer. This, in turn, makes it easier for the adapter hypernetwork to generate useful
weights.

Secondly, the bottleneck architecture imparts a low-rank inductive bias on the adapter, which may
prevent it from overfitting [100]. This idea is related to prior work that has shown that, counterintu-
itively, reducing the capacity of the agent’s neural network can improve generalisation and reduce

7The bias vectors correspond to an additional p+ di parameters, but we omit this term as it is dominated by
the number of parameters in the weight matrices.

23

s

s

a

σ

(a) The Unaware Model

s

c

s a

σ

(b) The Concatenate Model

s

s

c

⊙

σ

a

(c) The cGate Model, with ⊙ indicating an
elementwise product

s

s

c

· a

σ

(d) The FLAP Model, with · indicat-
ing a dot product

Figure 10: Illustrating the architectures of each of our baselines. Here we consider the actor’s
architecture, with two separate output heads, one predicting the mean action a and the other predicting
the log of the standard deviation (denoted as σ in this figure). In each plot, the blue nodes represent
the state inputs whereas the green one represents the context. In general, for the bottom row, the
network architectures for the context and state encoders are not necessarily the same.

overfitting [101–103]. Although our approach does not incorporate information-bottleneck losses
like these methods, the observed benefits of reduced capacity provide additional intuition for utilising
the bottleneck architecture. Finally, despite any possible information loss due to the bottleneck layer,
the skip connection allows the network to retain any important information from the input.

D.4 Compute

For compute, we used an internal cluster consisting of nodes with NVIDIA RTX 3090 GPUs. For a
single experiment and a single method, the runs took between 1 and 3 days to complete all seeds.

E Adapter Ablations

Here we experimentally justify some of the adapter-specific design decisions we made for our
empirical results. The experiments in this section also give us insight into how robust the Decision
Adapter is to changing its configuration options. We investigate the effects of the following factors,
with our conclusions listed in bold.

• The network architecture of the Adapter module. We find that Most adapter architectures
perform well. This result is expanded upon in Appendix E.1.

• Whether the hypernetwork uses chunking. Hypernetwork chunking outperforms non-
chunking methods while using significantly fewer parameters (Appendix E.2).

• Using a skip connection. The Decision Adapter can perform well with or without a skip
connection (Appendix E.3).

24

• The location of the adapter module in the main network. Most locations lead to high
performance, except if the adapter is at the very start or very end of the network
(Appendix E.4).

• Having an activation function before the adapter. Not having an activation function before
the adapter in the actor model outperforms the alternatives (Appendix E.5).

For this entire section, we consider the ODE environment and follow the same procedure as in
Section 7.1. We use the ODE due to its fast training, and the fact that context is necessary, which
enables us to determine if a particular design choice of the Adapter results in poor use of the context.

E.1 Adapter Architecture

Here we examine the effects of changing the Adapter module’s network architecture. We are interested
in how the architecture impacts performance for two reasons. First, we wish to empirically justify
our bottleneck architecture. Second, we wish to show that the Adapter performs well with a wide
variety of network architectures, and is not particularly sensitive to this choice.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Time (Steps) 1e5

0

50

100

150

200

AE
R

Adapter Architecture
[] [8] [16] [32] [64] [256] [32, 32]

Figure 11: Evaluating the effect of different adapter architectures. Mean performance is shown, with
standard deviation shaded.

As discussed in Appendix D.3, we use a bottleneck architecture of size 32. Thus, the 256-dimensional
features are transformed into 32-dimensional features and then projected back to 256 dimensions.
We denote this architecture as [32], since the adapter has a single hidden layer of 32 neurons. Fig. 11
illustrates the performance for various other adapter architectures. Most methods perform comparably,
but using 8 hidden nodes or not having any hidden layers performs slightly worse than the base
architecture. A large hidden layer of 256 nodes also does not outperform our bottleneck architecture.
Finally, there is no particular benefit to having multiple layers in the adapter module.

E.2 Hypernetwork Chunking

Next, we compare our default architecture choice, which uses hypernetwork chunking, against
non-chunking settings. We do this because hypernetwork chunking allows us to have significantly
fewer learnable parameters (resulting in faster training) compared to the alternative of predicting the
entire weight vector in one forward pass. Thus, if our approach performs comparably or better than
non-chunking settings, then the chunking architecture is justified.

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Time (Steps) 1e5

0

25

50

75

100

125

150

175

200

AE
R

Hypernetwork Architecture
Base [] [100,100] [100,100,100] Chunked [66, 66]

Figure 12: Comparing hypernetwork chunking (Base) compared to various non-chunking configura-
tions as well as using larger chunks (Chunked[66, 66]). Mean performance is shown, with standard
deviation shaded. Here, the values in the brackets represent the number of hidden nodes per layer,
with [] corresponding to a hypernetwork that has no hidden layers.

We consider a non-chunking hypernetwork architecture of no hidden layers, as well as 2 and 3 hidden
layers of size 100, respectively. Our final option is a chunked hypernetwork, with chunks of size
660, and two hidden layers of size 66 each (this is roughly twice as large as our default configuration
option discussed in Appendix D.3). These results are shown in Fig. 12. We find that both chunking
configurations perform the best. The non-chunking approaches perform slightly worse, particularly if
the hypernetwork has no hidden layers.

These non-chunking configurations also have significantly more learnable parameters than the default.
For instance, the base setting results in the actor’s hypernetwork having around 16k parameters,
whereas the [100, 100], non-chunking setting corresponds to roughly 1.7M parameters. In summary,
by using hypernetwork chunking, we can obtain high performance while using a very small number
of learnable parameters.

E.3 Skip Connection

Here we investigate whether a skip connection is beneficial or not. As mentioned in Section 5,
the skip connection sets the updated x as x = A(x) + x, whereas if we remove it, the function
becomes just x = A(x). In Fig. 13, we can see that using a skip connection performs similarly to the
alternative. This shows that the Decision Adapter is robust to this parameter, and can perform well
with or without a skip connection.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Time (Steps) 1e5

0

25

50

75

100

125

150

175

200

AE
R

Skip Connection No Skip Connection

Figure 13: Evaluating the effect of using a skip connection. Mean performance is shown, with
standard deviation shaded.

26

a

s

s

A B C D

Figure 14: Showing the base network architecture, with letters indicating adapter positions. For
instance, an adapter placed at location (D) receives the action as input and returns a modified one.

E.4 Adapter Location

We next examine the effects of changing the location of the adapter module in our network, and what
happens if we have multiple modules. This information would be useful when using our method in
practice, and deciding where and how many modules to place. There are generally many options
regarding the location, as an adapter module can be placed between any two layers of the primary
network.

As described in Section 5, our actor network consists of a “trunk”, containing one hidden layer, which
maps the state to a 256-dimensional feature vector, and a one-layer action head, directly mapping the
trunk features to an action. Here we consider the following locations for the adapter in both the actor
and critic networks:

Base The standard adapter used in the rest of this chapter, which is placed before the action head’s
layer. In the critic, the adapter is placed before the last layer. This corresponds to location
(C) in Fig. 14.

BaseF Placing the adapter in the actor network before the final layer of the trunk, leaving the critic
unchanged (location B).

Start The adapter here is at the start of both networks, i.e., the adapter module receives the state as
input (location A).

End Here, we place the adapter at the very end. Thus, the adapter takes in the predicted action and
outputs a modified one. The critic’s adapter is also placed at the end. This corresponds to
location (D) in Fig. 14.

AllF Three adapter modules, one at the start of the trunk, one before and one after its final layer. The
critic also has three adapters, one at the start, one before the last layer and one after the last
layer. The actor has adapters in locations (A), (B) and (C).

In all cases, to ensure comparability against the base model, there is no activation function after the
trunk in the actor model. These results are illustrated in Fig. 15. Overall, the base model performs the
best. The adapter in the trunk performs slightly worse and the performance is quite poor if we put the
adapter modules at the start of the networks. If we have three adapter modules, the performance is
similar to only having one before the final layer. Finally, when adapting only the final action, the
performance is also poor. Overall, the performance is low if we have the adapter only at the very

27

start or end of the network. Within a range of locations in the “middle” of the network, however, the
performance is high and only slightly worse than the default setting.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Time (Steps) 1e5

0

25

50

75

100

125

150

175

200

AE
R

Base BaseF Start End AllF

Figure 15: Evaluating the effect of the adapter module’s location. Mean performance is shown, with
standard deviation shaded.

E.5 Activation Function Before Adapter

Our final ablation considers the benefits of not having an activation function before the adapter
module inside the actor network. We perform this experiment to determine if our choice of not having
an activation function before the adapter in the actor is justified, and if it is necessary to do the same
for the critic.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Time (Steps) 1e5

0

25

50

75

100

125

150

175

200

AE
R

No Activation No Activation (Critic) Activation Only log() Activation

Figure 16: Comparing the effect of having an activation function before the adapter vs. not. The blue,
green and red lines alter the actor’s architecture, whereas orange changes the critic. Blue corresponds
to the base choice outlined in Appendix D.3. Mean performance is shown, with standard deviation
shaded.

Here we consider four options: (1) not having an activation function after the trunk; (2) having one;
(3) having an activation function after the trunk, but only for the standard deviation head; and (4)
not having an activation before the adapter in the critic. Option (1) corresponds to the default choice.
These results are shown in Fig. 16. Not having an activation function outperforms having one, and
having an activation for only the standard deviation head is similar to not having one. Thus, not
having an activation function before the adapter inside the critic network performs as well as the base
option, which has this activation. Overall, this result justifies our design choice by showing that it
performs comparably to or better than the alternatives.

28

F Additional Results

This section contains some additional results that we refer to in the main text.

F.1 Single Dimension Interpolation, Train & Extrapolation

See Fig. 17 for the performance of each model on the ODE on the particular context sets, Interpolation,
Training and Extrapolation. These plots therefore correspond to subsets of the evaluation range in the
left pane of Fig. 3.

0 1 2 3 4 5

0

50

100

150

200

AE
R

Train

0 1 2 3 4 5
Training Time (Steps)

Interpolation

0 1 2 3 4 5
1e5

Extrapolation

Unaware Concat Adapter cGate FLAP

Figure 17: Showing the performance of each method in three different evaluation regimes, (left) the
training contexts, (center) interpolation and (right) extrapolation. Mean performance is shown, with
standard deviation shaded.

F.2 Multiple Dimension Heatmaps

Fig. 18 illustrates the granular performance of each method in the ODE domain, corresponding to
the right pane of Fig. 3. Our Decision Adapter outperforms all baselines and, as can be seen in
Figs. 18a and 18b, generalises further away from the training contexts than the Concat model. In
particular, these heatmaps show that both models perform well on the training contexts (the blue
squares). However, the Adapter generalises much better, especially to contexts far outside the training
range. For example, when |c1| ∈ [8, 10] (corresponding to the far left and far right of the heatmaps),
the Adapter’s rewards are higher than the Concat model’s. The Adapter obtains between 50 and 150
more reward than the Concat model – which is a substantial difference, as the maximum reward in
this environment is 200. This region of context-space is far outside of the convex hull of the training
range, which contains values of |c1| only up to 5.0. Closer to the training range; for instance, around
the boundary of the green square, the Adapter still outperforms the Concat model, but the difference
is less pronounced.

FLAP and cGate perform poorly, even though they obtain near-perfect rewards on the training
contexts. There may be several reasons for this. First, here we train on 16 relatively sparsely
distributed contexts, with 300k steps in total, resulting in fewer episodes in each context compared to
Section 7.1. Second, with two dimensions, the interpolation range makes up a smaller proportion
of the evaluation range compared to the one-dimensional case. This is because, in one dimension,
the range [−5, 5] makes up half of the [−10, 10] evaluation range. In two dimensions, however,
the interpolation range makes up only a quarter of the evaluation set. Thus, the overall average
performance in Fig. 3 is more skewed towards extrapolation. This, coupled with the fact that
both cGate and FLAP perform poorly on extrapolation (Fig. 17, right), may explain why they
underperform in this case. Lastly, it is generally easier to generalise in the one-dimensional ODE, as
the optimal action depends mainly on the signs of the context and state variables. By contrast, the
multidimensional case is more difficult, as the dynamics equation includes a nonlinear action term.
This is also why, for instance, our Decision Adapter performs worse in this case (around 160 overall
evaluation reward) compared to the one-dimensional ODE (around 190).

29

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 avg
c1

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

av
g

c 0

22 29 53 92 104 89 66 40 45 149 144 116 28 41 51 42 76 74 37 15 7 63

18 26 61 101 116 106 84 64 54 143 178 104 31 21 55 77 98 90 35 10 8 70

50 39 69 118 140 119 117 78 59 157 187 56 22 26 70 102 131 102 42 14 11 81

53 38 69 142 179 174 129 103 74 142 198 28 15 46 98 130 167 128 57 20 36 96

42 61 79 153 192 198 157 110 83 143 198 28 26 81 114 189 185 133 82 62 38 112

35 66 78 146 179 199 187 113 85 131 199 18 45 85 174 199 177 132 93 49 32 115

52 76 69 134 165 196 195 138 123 114 189 47 79 111 192 190 144 85 62 47 42 117

35 48 85 141 162 175 169 139 158 133 190 77 134 150 177 166 128 111 100 70 56 124

29 52 76 127 149 146 148 137 166 141 190 98 140 149 168 172 169 155 116 87 39 126

32 46 79 151 184 194 162 137 142 199 191 199 115 147 178 195 177 148 108 60 23 137

18 43 70 138 190 199 183 152 188 199 10 199 140 133 179 199 180 145 117 64 59 134

33 38 74 154 177 197 192 136 133 199 191 199 165 160 184 199 155 155 98 48 44 140

17 52 75 153 180 185 166 139 172 147 196 162 179 158 179 180 149 121 91 57 44 133

10 27 58 144 166 179 181 115 119 75 197 76 166 160 166 182 125 100 95 65 52 117

22 33 64 144 180 198 187 111 102 83 198 30 157 144 196 190 149 99 61 49 35 116

14 12 44 162 196 199 186 109 111 113 199 29 109 156 192 199 166 129 78 54 39 119

21 27 59 176 197 199 142 100 38 132 199 16 68 128 172 199 185 113 88 54 26 111

8 17 81 178 192 161 124 90 33 120 192 19 33 106 143 184 180 105 71 50 30 101

8 38 73 165 163 119 102 78 41 123 198 102 50 93 141 155 183 110 87 47 32 100

53 25 95 135 137 102 87 34 65 136 153 121 42 86 123 127 164 136 88 56 20 95

30 36 78 118 115 77 75 20 67 137 150 131 29 79 103 119 149 118 83 49 42 86

29 39 71 142 165 162 145 102 98 139 178 88 84 108 145 162 154 119 80 49 34 109

Average = 109.0

(a) Concat

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 avg
c1

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

av
g

c 0

147 186 171 171 138 118 114 88 106 167 186 179 85 76 87 110 126 144 127 129 108 132

152 188 177 174 180 130 103 97 102 185 192 178 84 82 93 127 158 165 135 126 126 141

145 174 183 185 183 169 112 94 94 187 198 144 86 82 109 147 183 176 140 136 123 145

143 192 185 186 187 187 160 84 64 180 198 112 86 91 139 175 197 195 163 137 124 152

148 182 185 186 187 187 180 104 82 186 198 99 76 121 173 198 199 197 165 137 133 158

151 180 186 186 187 187 187 140 90 175 198 99 75 141 199 199 199 197 174 163 137 164

158 183 186 196 187 187 187 161 123 167 198 103 145 163 198 199 198 186 178 170 128 171

148 183 190 185 192 187 187 162 191 139 197 118 193 177 182 184 186 182 165 147 126 172

158 180 189 192 199 199 198 187 198 133 195 163 198 190 199 198 182 177 162 131 112 178

147 174 182 184 199 199 199 186 197 199 191 199 198 178 199 199 192 187 146 152 119 182

144 161 177 177 192 193 199 175 198 199 10 199 197 174 196 199 193 180 171 134 135 172

131 159 172 198 199 199 198 175 196 199 191 199 191 168 199 199 194 187 165 147 130 181

136 180 186 185 185 182 162 166 198 150 195 123 198 168 184 182 190 197 177 160 133 173

122 148 176 170 164 175 186 168 189 111 197 45 131 129 170 183 172 164 146 136 107 152

130 148 167 179 198 199 198 166 126 137 198 27 114 157 198 199 198 191 160 141 105 159

131 141 188 198 199 199 192 129 100 150 198 17 77 158 199 199 199 198 191 149 111 158

127 154 177 198 199 199 183 113 110 150 198 27 45 112 186 199 198 198 198 170 120 155

133 167 184 197 187 177 140 89 122 198 198 62 47 87 171 191 195 194 194 168 140 154

143 161 184 181 175 163 126 89 140 198 198 173 54 56 122 188 187 194 181 170 141 154

130 159 172 171 161 143 112 99 149 192 198 188 53 57 103 141 183 180 170 170 143 146

132 141 164 158 150 128 72 118 130 189 195 182 68 70 78 123 158 172 157 155 153 138

141 169 180 184 183 177 162 133 138 171 187 126 114 126 161 178 185 184 165 149 126 159

Average = 159.0

(b) Adapter

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 avg
c1

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

av
g

c 0

7 14 18 22 19 37 36 49 56 88 108 88 53 40 15 15 17 32 28 25 16 37

5 12 15 70 68 28 45 39 59 102 130 104 53 51 25 22 45 28 39 35 31 48

16 20 43 59 70 56 45 50 81 134 140 104 57 25 43 42 61 39 43 52 36 58

21 29 42 65 101 92 59 57 76 146 184 112 51 29 75 88 101 97 39 49 25 73

25 20 36 67 108 136 78 58 95 186 198 96 45 51 102 148 115 84 40 35 44 84

19 25 49 65 112 153 84 54 110 193 198 62 62 73 111 198 98 61 45 65 67 91

21 38 27 48 113 144 92 105 102 199 197 71 63 90 112 164 81 44 76 67 42 90

26 35 48 53 91 114 98 140 162 172 196 64 114 172 125 105 93 78 50 59 59 98

11 33 27 60 102 118 100 140 178 127 195 89 197 127 137 142 98 77 85 66 63 103

13 25 51 83 140 150 99 143 190 199 188 199 166 130 123 167 155 89 102 69 74 122

24 14 20 62 147 139 137 129 187 199 10 199 182 128 152 198 162 114 100 41 51 114

12 21 46 66 158 144 122 137 159 199 188 199 136 127 159 188 130 113 105 55 43 119

8 8 50 96 137 128 104 147 195 150 195 168 198 128 179 169 108 133 90 75 58 120

8 16 34 79 130 127 108 154 161 151 196 86 191 149 139 168 131 124 76 62 55 112

22 17 23 56 107 135 108 109 94 159 197 77 103 121 143 182 172 121 60 76 53 102

6 9 33 51 132 184 90 72 95 184 198 74 70 88 151 199 133 83 69 57 51 97

20 9 13 63 137 146 75 53 78 180 198 55 44 51 139 172 149 105 72 65 41 89

4 9 29 63 75 103 44 52 66 168 174 66 38 45 122 121 132 100 63 58 53 75

9 12 14 37 49 59 49 35 85 124 130 99 21 36 60 89 86 68 74 39 54 59

6 27 14 34 36 43 45 42 69 90 84 93 26 27 42 53 74 70 58 33 28 47

7 11 35 36 27 43 42 34 53 82 72 72 22 29 30 59 50 55 44 44 48 43

14 19 32 59 98 109 79 86 112 154 161 104 90 82 104 128 104 82 65 54 47 85

Average = 85.0

(c) cGate

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 avg
c1

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

av
g

c 0

10 6 5 6 15 11 13 22 9 54 68 104 44 24 22 41 21 19 33 11 17 26

10 21 15 7 19 22 17 18 14 77 101 118 27 27 25 22 19 25 18 27 25 31

10 25 17 16 48 24 17 17 31 107 111 126 19 25 46 27 26 43 30 7 12 37

11 23 37 29 73 41 30 28 37 99 124 129 22 13 32 51 49 55 9 16 29 45

9 5 30 57 102 108 73 27 24 65 185 135 9 16 45 119 97 31 36 34 17 58

27 31 19 42 72 184 68 45 47 61 197 151 21 38 109 179 100 17 14 24 15 70

28 27 17 50 56 77 62 61 69 69 197 122 59 66 75 130 55 31 40 24 16 63

24 26 29 53 43 40 63 125 96 76 196 66 121 77 49 46 52 38 44 20 16 62

26 51 53 80 72 35 48 82 157 94 194 112 170 96 48 53 79 54 30 29 33 76

13 12 35 81 101 107 80 36 90 197 190 199 117 98 64 124 87 38 23 11 25 82

16 29 40 66 124 188 114 79 137 197 10 199 135 75 142 195 84 49 47 21 27 94

23 43 33 58 98 137 59 67 102 197 190 199 105 57 75 106 45 41 10 46 38 82

24 36 28 50 80 87 33 48 169 118 195 105 138 63 54 64 88 36 16 41 29 72

25 24 37 56 53 59 60 95 117 83 196 107 137 87 53 60 47 57 15 31 39 68

36 24 44 51 45 122 116 85 51 71 197 158 55 50 73 107 48 36 16 29 28 69

27 23 27 38 108 179 62 44 48 86 197 147 33 43 63 173 68 18 14 28 32 69

15 23 26 94 129 109 57 23 43 77 198 136 33 7 30 120 101 51 39 13 8 63

9 31 44 70 83 41 36 29 64 103 163 156 36 19 36 95 80 36 14 25 20 57

19 38 42 48 75 44 30 59 63 106 124 132 26 9 24 43 58 54 14 15 7 49

14 24 32 25 26 27 37 51 41 111 114 104 31 24 21 29 37 56 29 5 5 40

11 11 22 28 28 24 38 30 46 110 86 92 44 27 20 24 13 45 44 10 10 36

18 25 30 48 69 79 53 51 69 103 154 133 66 45 53 86 60 40 25 22 21 60

Average = 60.0

(d) FLAP

Figure 18: Multidimensional contexts in the ODE domain for (a) Concat, (b) Adapter, (c) cGate
and (d) FLAP. Heatmap Performance for (a) cGate and (b) FLAP. Each cell represents the reward
obtained when evaluated in the corresponding context, averaged over 16 seeds. The blue squares
indicate the specific training contexts, whereas the green square represents the convex hull of training
contexts. For the heatmaps, the last rows and columns, labelled avg, represent the average reward
over the particular column or row, respectively.

F.3 Additional Baselines

We consider two ablations as additional baselines. The first, called AdapterNoHnet, is based on our
adapter module, but there is no hypernetwork involved. The adapter’s architecture and location are
the same, but it is now a single MLP that takes in the concatenation of the state-based features and
the raw context (as the model has to be context-conditioned, and must also process the state-based
features). The second baseline, termed cGateEveryLayer, uses the same elementwise operation as
cGate, but this happens at every hidden layer except at only one. Fig. 19 illustrate these results on
the 1D and 2D ODE domains respectively, with the Adapter, Concat and cGate models there for
reference. Overall, cGateEveryLayer does not outperform cGate, and AdapterNoHnet performs
much worse than our hypernetwork-based adapter.

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200
1D Context

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

2D Context

AE
R

Training Time (Steps)

Concat Adapter cGate cGateEveryLayer AdapterNoHnet Optimal

Figure 19: The performance on the 1D and 2D ODE domains (i.e., similar to Fig. 3) of the additional
baselines. The mean and standard deviation over 16 seeds are shown.

F.4 AER Metric

Fig. 20 illustrates the difference between using the AER metric as defined in Section 6.1 (correspond-
ing to Fig. 20a) and only considering the testing contexts (corresponding to Fig. 20b). Overall, the
performance of each model is very similar; this is because the training contexts make up a small
proportion of the entire evaluation range.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

AE
R

1D Context

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

2D Context

Training Time (Steps)

Unaware Concat Adapter cGate FLAP Optimal

(a) Training and Testing Contexts

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200
AE

R
On

ly
 Te

st
1D Context

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

2D Context

Training Time (Steps)

Unaware Concat Adapter cGate FLAP Optimal

(b) Only Testing Contexts.

Figure 20: Comparing (a) averaging performance over all contexts and (b) restricting the AER metric
to only unseen testing contexts.

F.5 Distractors

The ODE domain displays similar distractor results to our other environments (see Section 7.2). In
particular, Fig. 21 shows that the Adapter is robust to adding more irrelevant distractor variables,
whereas Concat and cGate are not.

0 1 2 3
0

50

100

150

200

AE
R

Concat

0 1 2 3

Adapter

0 1 2 3
1e5

cGate

Training Time (Steps)

Number of distractor dimensions
0 1 20 100

Figure 21: Showing the sensitivity of the (left) Concat, (middle) Adapter and (right) cGate models
to fixed distractor context variables on the ODE. The mean and standard deviation over 16 seeds are
shown.

F.6 Gaussian Distractor Experiments

This section expands upon the results in Section 7.2 and contains additional results where the distractor
variables are not fixed.

31

F.6.1 Difference between training and testing

Fig. 5 contains the results on CartPole, and the ODE results are shown in Fig. 22. For both domains,
the conclusion is similar in that the Adapter is still more robust to changing distractor variables
compared to either Concat or cGate.

0 1 2 3
0

50

100

150

200

AE
R

Concat

0 1 2 3

Adapter

0 1 2 3
1e5

cGate

Training Time (Steps)

Number of distractor dimensions
0 1 20 100

Figure 22: The Gaussian distractor variable results. This corresponds to using a mean of 1 during
training and a mean of 0 during testing. We use a consistent σ = 0.2. These results are for the ODE
domain, showing the mean and standard over 16 seeds.

F.6.2 Keeping the training and testing distractor distributions the same

Next, we consider a similar case, but the means of the Gaussians are the same across training
and testing. Overall, the results for the ODE and CartPole (with a mean of 0 during both training
and testing) are shown in Fig. 23. For the ODE, while the Adapter is insensitive to adding more
distractor dimensions, both cGate and the Concat perform worse as we add more irrelevant distractor
dimensions to the context. However, the difference is much less pronounced than in the case where
the means are different between training and testing. Surprisingly, in the ODE, cGate performs
slightly better with 20 distractor variables than with 0. These variables may effectively act as an
additional, noisy, bias term that the model can utilise. For CartPole, the Concat and cGate models
perform much worse with 100 distractor dimensions compared to none. The Adapter displays some
noise, indicating that some seeds performed poorly while others performed well. This is similar to
the results we observed in Appendix G.1—too much noise leads to unstable training.

Finally, we consider using a mean of 1 during both training and testing in Fig. 24. For the ODE, each
model performs similarly regardless of the number of distractor variables. In CartPole there is not a

0

100

200

OD
E

Concat Adapter cGate

0 1 2 3
0

200

400

Ca
rtP

ol
e

0 1 2 3 0 1 2 3
1e5

Training Time (Steps)

AE
R

Number of distractor dimensions
0 1 20 100 Optimal Reward

Figure 23: The Gaussian distractor variable results, using a consistent mean of 0 during training and
testing, with σ = 0.2. These results are for the (top) ODE and (bottom) CartPole domains, showing
the mean and standard over 16 seeds.

32

0

100

200

OD
E

Concat Adapter cGate

0 1 2 3

200

400

Ca
rtP

ol
e

0 1 2 3 0 1 2 3
1e5

Training Time (Steps)

AE
R

Number of distractor dimensions
0 1 20 100 Optimal Reward

Figure 24: The Gaussian distractor variable results, using a consistent mean of 1 during training and
testing, with σ = 0.2. These results are for the (top) ODE and (bottom) CartPole domains, showing
the mean and standard over 16 seeds.

large difference between the various models when the mean of the distractor variables is 1 during
both training and testing.

F.6.3 Summary

Overall, The Adapter is significantly less susceptible to overfitting to irrelevant distractors compared
to the Concat model and cGate. However, if these distractors remain the same during training and
testing (which may not be particularly likely), it matters less whether the model overfits or not, and
all models are less affected by adding more distractors.

G Limitations

This section expands upon the limitations of our approach, outlined in Section 8.

G.1 Noisy Contexts

Now, while we use the ground truth context to isolate the effect of the network architecture on
generalisation performance, this is not always available [12, 18]. A common approach is to learn
a context encoder that uses experience in the environment to infer an approximation to the context,
which is then used to act [18, 87]. This encoded context, however, may not always be entirely
accurate. Thus, in this experiment, we examine how sensitive each context-aware model is to
receiving noisy contexts during evaluation. We consider two cases; the first is where the models
received the uncorrupted context during training, and the second is where the models also encountered
noise during training. The first case could reasonably occur in reality, since we may have access to
the ground truth context during training, but not evaluation [14]. The second case, where we train
with noise, could correspond to training the RL policy alongside the context encoder, leading to
some noise during training. This case additionally allows us to examine whether training with noise
increases the models’ robustness to context noise during evaluation.

We take the models trained during the primary CartPole experiments, in Appendix B.2, where we
varied the pole length. We use the model checkpoints that were trained for 600k timesteps, as both
the Concat and Adapter models did not improve much by training for longer than this (see Fig. 8).
The noise we add here, corresponding to normally distributed noise with varying standard deviations,
was added to each context dimension instead of just the one representing pole length. We experiment
with a standard deviation σ ∈ {0, 0.05, 0.1, 0.2, 0.5, 1}. The noise was added after normalising the
contexts such that the largest training context had a value of 1.0. Thus, a standard deviation of
1.0 represents a substantial amount of noise. In addition to the models trained without noise, we

33

additionally train models that encountered noise during training. In particular, we consider standard
deviations σ ∈ {0.1, 0.5}, and change no other aspect of training.

The results are illustrated in Fig. 25. The left pane shows the performance of the models trained
without noise. Overall, these results show that the Concat model is more susceptible to noisy contexts
than our Adapter, bolstering the argument that treating context as a state dimension is not ideal [13].
Both models, however, generalise worse as the context becomes more inaccurate. This is in contrast
to the Unaware model, which performs equally well regardless of the level of context noise. The
Adapter still outperforms the Unaware model until the noise level reaches around σ = 0.5. This noise
level, however, is very large, and σ = 0.5 corresponds to a pole length of 3 meters. The default pole
length is 0.5 meters, and the largest training length is 6 meters.

When training with a small amount of noise (Fig. 25, middle) both models perform similarly to
training without noise. However, when training with a large amount of noise, corresponding to the
right pane of Fig. 25, the Concat model becomes more robust to noisy contexts, but the Adapter
performs worse. In particular, the Adapter model exhibits a large amount of variation across seeds,
indicating that some seeds performed badly. On average, the Adapter performs similarly to the
Unaware model until the level of context noise increases beyond the training noise of σ = 0.5.

0.0 0.5 1.0
200

300

400

500

AE
R

Train Without Noise

0.0 0.5 1.0
Level of Context Noise During Evaluation ()

Train With = 0.1

0.0 0.5 1.0

Train With = 0.5

Unaware Concat Adapter

Figure 25: Comparing the average evaluation reward (after 600k steps) as a function of the standard
deviation σ of the Gaussian noise added to the context during evaluation. In the left pane, the models
trained without noise are shown. The middle pane corresponds to training with σ = 0.1 and the
right pane shows the results when training with σ = 0.5. Mean performance is shown, with standard
deviation over 16 seeds shaded.

G.2 Suboptimal Context Normalisations

G.2.1 ODE

As discussed in the main text, we first normalise the context before passing it to the agents. This
is generally done by using the largest absolute value encountered during training. For instance, for
the one-dimensional ODE experiment, we used cnorm = c−0

5 as the normalisation function. Here
we determine how sensitive the Decision Adapter is to changes in this procedure. This is useful as
we may often need to choose the normalisation factor without knowing exactly which variations we
will encounter during evaluation. To do this, we run four additional experiments, with normalisation
values of 0.1, 1.0, 2.0 and 15.0, respectively. We train the agents for only 300k steps, as after training
for this number of steps, most models performed similarly to their final performance. The results
are shown in Fig. 26, and we can see that the Concat and Adapter models are both robust to the
normalisation value. Our Decision Adapter loses less performance than the Concat model as we
change the normalisation value. Despite losing some performance as the context normalisation value
increases, both context-aware models still outperform the Unaware model.

G.2.2 CartPole

We now consider a similar setup in CartPole. In particular, we train on a Pole Mass of 0.1. We choose
this variable as some of our experiments showed that the Unaware model generalises equally well
regardless of the training contexts. We consider two scenarios: In the first, we normalise with respect
to the Small setting (i.e. cnorm = c

0.01). Thus, during training, the normalised context had a value

34

0 2 4 6 8 10 12 14
Context Normalisation

40

60

80

100

120

140

160

180

200

AE
R

Unaware Concat Adapter

Figure 26: Showing the overall performance (y-axis) of each context-aware model after 300k steps
as we change the context normalisation value (x-axis). Mean performance is shown, with standard
deviation shaded.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

AE
R

Normalisation = 0.01

0.0 0.2 0.4 0.6 0.8 1.0
1e5

Normalisation = 1

Training Time (Steps)

Unaware Concat Adapter Optimal

Figure 27: Performance when evaluating on changing Pole Mass when normalising with respect to
(left) Mass = 0.01 and (right) Mass = 1.0. In both plots, the models trained on Mass = 0.01. Mean
performance is shown, with standard deviation shaded.

of 1.0; during evaluation, it was nearly always larger than 1.0. In the second case, we normalise
with respect to the X-Large setting (corresponding to cnorm = c

1). We trained on the Small pole
length for both settings. Fig. 27 shows the results for this experiment. When normalising with
respect to the Small setting, the Concat model fails to generalise at all, and the Adapter performs
worse than Unaware. When changing the normalisation, however, the context-aware models perform
significantly better.

G.2.3 Summary

Thus, the Decision Adapter is relatively robust to small changes in context normalisations. However,
when encountering evaluation contexts that are 100 times larger than during training, appropriate

35

normalisation is crucial and can make a drastic difference – even when training on the exact same
contexts. As seen in the ODE, having a normalisation value that is slightly too large does not cause
significant performance penalties. Thus, normalising the contexts with a larger value than expected
during training is a good heuristic.

G.3 Narrow Context Range

We next consider the effect of changing the set of training contexts. Here we aim to briefly illustrate
that the training context range can have a large effect on the performance of the agents. In particular,
we consider the ODE domain and 8 separate sets of training contexts. In all of these cases, we keep
the normalisation consistent at cnorm = c

5 to ensure comparability. The results when training on
each context set are shown in Fig. 28. Overall, when we have a single positive and negative training
context, performance is poor when this context is very small (a), and increases as it becomes larger (d
and f). When we have multiple contexts, but insufficient variation (b, c, e), then performance is also
suboptimal. For instance, in (b), the training contexts cover only the small region [−1, 1]. In (c), the
training set of contexts does not contain any negative contexts, leading to poor generalisation. Finally,
if contexts are varied, but spread out too far (g), the performance also suffers.

(a): {±0.1}0

50

100

150

200

(b): {±0.1, ± 1.0} (c): {1, 5} (d): {±5}

0 1 2 3
(e): {±4, ± 5}

0

50

100

150

200

0 1 2 3
(f): {±7.5}

0 1 2 3
(g): {±0.1, ± 7.5}

0 1 2 3
(h): {±1, ± 5} 1e5

Training Time (Steps)

AE
R

Concat Adapter

Figure 28: Here we examine the performance when training on different sets of contexts. The text
beneath each plot indicates the training context set, with ±c indicating that both c and −c are in the
context set. For instance, in (a), the models were trained on a context set of Ctrain = {−0.1, 0.1}.
Mean performance is shown, with standard deviation shaded.

G.3.1 Overfitting

Another potential issue we may encounter is overfitting, which can occur when the training range is
not diverse enough. To illustrate this problem, we conduct an experiment in the multidimensional
ODE setting using the following set of training contexts:

{(1, 1), (1,−1), (1, 0), (−1, 1), (−1,−1), (−1, 0), (0, 1), (0,−1)}

The results, presented in Fig. 29, demonstrate that the Decision Adapter performs well initially but
its generalisation performance suffers as training progresses. Specifically, as shown in Fig. 29b
and Fig. 29c, our model exhibits worse extrapolation performance due to overfitting on the narrow
training contexts.

36

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Time (Steps) 1e5

0

20

40

60

80

100

120

140

AE
R

Unaware Concat Adapter

(a)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 avg
c1

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

av
g

c 0

60 64 79 95 95 114 135 110 117 114 120 133 132 111 109 93 108 109 108 113 111 106

59 63 55 70 99 124 120 135 132 123 119 123 130 112 110 108 106 113 132 127 126 109

69 70 58 81 93 121 128 157 142 135 129 127 127 122 124 115 112 117 125 132 129 115

88 82 52 52 72 111 110 153 139 126 128 134 140 138 115 118 123 144 142 136 123 116

93 91 73 76 76 87 115 142 141 134 130 138 140 139 118 142 137 121 116 127 130 117

88 98 89 77 90 120 142 147 146 151 140 150 151 142 138 131 127 128 121 119 115 124

75 82 80 92 95 124 136 159 151 138 167 173 176 171 150 146 128 130 121 116 122 130

81 83 85 72 78 105 148 161 156 158 170 169 172 168 150 146 122 126 118 101 99 127

56 60 65 71 105 88 110 160 158 172 159 158 166 165 164 122 104 125 131 124 119 123

82 80 86 72 77 98 134 119 139 160 119 135 158 167 164 131 130 127 127 109 94 119

83 84 85 86 91 107 120 167 159 110 10 119 159 172 172 147 127 117 92 54 32 109

82 85 82 90 83 92 102 97 143 160 119 135 160 162 165 156 142 116 110 79 54 115

65 86 84 89 82 98 138 182 180 173 160 158 166 172 174 167 151 133 114 107 68 131

59 72 77 100 105 140 175 179 178 176 173 171 172 169 170 170 154 128 99 98 84 136

80 87 92 89 102 152 173 176 180 176 174 178 176 172 173 172 167 129 102 92 82 139

81 93 89 97 137 155 165 170 175 180 177 168 176 170 171 170 169 134 105 101 80 141

83 88 81 123 144 155 168 164 176 167 153 138 174 173 168 166 138 122 115 90 85 137

76 80 117 122 138 159 156 160 143 141 153 131 155 158 149 143 135 130 105 77 70 128

86 107 126 132 139 157 153 157 134 133 146 131 130 152 142 140 123 107 100 82 72 126

102 119 124 130 131 137 144 130 132 132 134 125 126 115 136 133 118 101 93 99 74 121

109 119 118 126 134 136 151 120 113 128 131 129 106 95 129 128 105 91 94 97 99 117

79 85 86 92 103 123 139 150 149 147 139 144 152 150 147 140 130 121 113 104 94 123

Average = 123.0

(b) 50k steps

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 avg
c1

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

av
g

c 0

55 39 46 35 37 53 49 51 52 63 65 75 77 98 67 54 54 51 51 53 56 56

54 53 34 33 36 44 46 51 48 65 66 61 80 96 69 54 57 52 54 56 56 55

47 54 51 44 36 41 44 62 56 69 67 62 86 97 72 70 54 54 57 77 61 60

41 43 55 47 35 38 51 36 65 72 70 90 106 99 91 82 56 56 43 60 57 62

42 43 42 49 48 39 40 64 73 79 76 93 111 107 83 80 58 43 83 81 64 67

34 35 40 37 48 46 39 63 87 85 112 92 113 115 96 77 54 62 92 75 75 70

33 30 33 35 40 55 55 45 100 119 137 118 124 124 87 84 104 111 92 71 72 79

23 26 24 24 30 22 47 56 107 150 141 144 137 115 106 110 111 76 71 77 72 79

21 19 24 20 24 32 16 56 117 173 160 157 147 119 111 92 73 74 74 75 72 79

20 15 15 20 24 20 20 38 128 160 120 136 160 99 90 89 72 69 68 71 37 70

8 8 8 9 16 10 14 49 121 120 10 120 160 128 94 94 70 60 61 53 47 60

9 8 8 10 10 31 37 73 113 160 120 136 160 124 97 80 81 69 65 57 56 72

10 10 10 10 29 38 46 69 153 153 160 151 166 131 115 101 81 71 71 60 50 80

10 10 10 30 36 45 65 98 108 115 130 138 136 117 104 101 79 73 74 72 71 77

10 31 31 31 45 57 80 103 83 75 110 109 112 99 96 86 85 73 73 73 72 73

31 31 31 56 59 58 100 89 57 56 75 70 96 75 70 75 73 55 35 34 29 60

36 46 54 58 58 59 52 60 59 55 76 47 75 100 48 44 40 58 57 55 50 57

48 59 61 60 43 53 59 59 61 75 70 50 76 60 51 43 38 58 58 53 51 56

60 61 49 62 33 57 52 59 62 75 70 47 70 76 43 44 37 47 62 53 53 56

46 47 62 49 36 52 52 59 59 69 70 31 70 46 60 47 42 41 52 56 54 52

41 54 31 36 52 52 51 57 76 70 71 46 48 58 77 42 40 36 41 53 48 51

32 34 34 36 37 43 48 62 85 98 94 94 110 99 82 74 65 61 64 63 57 65

Average = 65.0

(c) 300k steps

Figure 29: Showing (a) the overall performance over time on the entire evaluation range. In (b)
and (c) we show the performance of the Adapter at two points in training. In (a), we plot mean
performance and shade the standard deviation; for (b) and (c), we show only the mean over the seeds.

37

	Introduction
	Background
	Related Work
	Theoretical Intuitions
	The Decision Adapter
	Experimental Setup
	Metrics
	Baselines
	Environments
	ODE
	CartPole
	Mujoco Ant

	Results
	Generalisation Performance
	Robustness to Distractors
	High-Dimensional Control

	Limitations
	Conclusion
	Formalising the Theoretical Foundations
	Linking Theory and Practice
	ODE
	CartPole
	Ant

	cGate as a Special Case of the Decision Adapter
	Experimental Details
	Environments
	Context Normalisation
	ODE
	CartPole

	Hyperparameters
	Adapter Configuration and Design Decisions
	Bottleneck Architecture

	Compute

	Adapter Ablations
	Adapter Architecture
	Hypernetwork Chunking
	Skip Connection
	Adapter Location
	Activation Function Before Adapter

	Additional Results
	Single Dimension Interpolation, Train & Extrapolation
	Multiple Dimension Heatmaps
	Additional Baselines
	AER Metric
	Distractors
	Gaussian Distractor Experiments
	Difference between training and testing
	Keeping the training and testing distractor distributions the same
	Summary

	Limitations
	Noisy Contexts
	Suboptimal Context Normalisations
	ODE
	CartPole
	Summary

	Narrow Context Range
	Overfitting

