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Abstract

We explore the matrix sensing problem from near-isotropic linear measurements,
distributed across a network of agents modeled as an undirected graph, with no
server. We provide the first study of statistical, computational/communication
guarantees for a decentralized gradient algorithm that solves the (nonconvex)
Burer-Monteiro type decomposition associated to the low-rank matrix estimation.
With small random initialization, the algorithm displays an approximate two-phase
convergence: (i) a spectral phase that aligns the iterates’ column space with
the underlying low-rank matrix, mimicking centralized spectral initialization (not
directly implementable over networks); and (ii) a local refinement phase that diverts
the iterates from certain degenerate saddle points, while ensuring swift convergence
to the underlying low-rank matrix. Central to our analysis is a novel “in-network”
Restricted Isometry Property which accommodates for the decentralized nature
of the optimization, revealing an intriguing interplay between sample complexity,
network connectivity & topology, and communication complexity.

1 Introduction

Matrix sensing–the estimation of a low-rank matrix from a set of linear measurements–finds applica-
tions in diverse fields such as image reconstruction (e.g., [48, 29]), object detection (e.g., [33, 52])
and array processing (e.g., [21]), to name a few. It also serves as a benchmark for determining the
statistical and computational guarantees achievable in deep learning theory, since it retains many of
the key phenomena in deep learning while being simpler to analyze. Despite significant progress in
understanding the convergence and generalization properties of various solution methods for training
such learning models, a majority of these advances focus on a centralized paradigm, aggregating
data at a central location with vast computing resources–good tutorials on the topic include [7, 4].
This centralized approach, however, is increasingly unsuitable for modern applications due to server
bottlenecks, inefficient communication, and power usage. Therefore, the development of statistical
learning methods for massively decentralized networks without servers is timely and crucial.

This paper tackles the matrix sensing problem from data distributed over networks. We contemplate a
network of m agents modeled as an undirected graph with no servers, where agents can communicate
with their immediate neighbors–these architectures are also known as mesh networks. The collective
objective is to estimate a ground-truth matrix Z̄

?
2 Rd⇥d, based on N = m · n total observations

y1, . . . , yN , equally split into n-sized, disjoint datasets D1,D2, . . . ,Dm. Each agent’s signal model
is thus given by

yj =
⌦
Aj , Z̄

?
↵
:= trace(Aj Z̄

?), for j 2 Di. (1)

Here, Aj 2 Rd⇥d, with j 2 Di, are the known symmetric measurement matrices to agent i; Z̄? is
assumed symmetric, positive semidefinite, and low-rank, i.e., r? := rank(Z̄?) << d.
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To minimize communication overhead and avoid the need for d⇥ d matrix transmission, we employ
the Burer-Monteiro-type decomposition of the estimate Z̄ of Z̄?, that is, Z̄ = Ū Ū

>, with Ū 2 Rd⇥r,
and seek to minimize the squared loss F (Ū), defined as

min
Ū2Rd⇥r

F (Ū) :=
1

m

mX

i=1

1

4n

X

j2Di

�
yj �

⌦
Aj , Ū Ū

>↵�2
,

| {z }
:=fi(Ū)

(2)

where fi(Ū) is the loss function of agent i. Ideally, the number r of columns of Ū should be
set to r

?. However, r? might not be known in advance. In this study, we consider the so-called
over-parameterized regime where r�r

?.

The formulation (2) poses multiple challenges. Firstly, F is nonconvex, lacks global smoothness
(i.e., global Lipschitz continuity of rF ), and is not entirely known to the agents. Secondly, the
over-parameterized regime may intuitively suggest a risk of overfitting. However, recent studies (e.g.,
[34, 20]) have compellingly revealed that when centralized Gradient Descent (GD) is applied to (2)
with a small random initialization, it induces an implicit bias towards simpler solutions with favorable
generalization properties. This bias–often referred to as the simplicity bias or the incremental learning
behavior of GD(/Stochastic Gradient Descent)–assists in the exact or approximate recovery of the
ground truth Z̄

?. Interestingly, this phenomenon serves as a hidden mechanism in various other
(deep) learning tasks that mitigates overfitting in highly over-parameterized models (e.g., [13, 30, 31]).
However, the direct implementation of GD in mesh networks is not feasible due to the lack of access
to rF by the agents or of a server collecting agents’ gradients rfi.

The goal of this paper is to uncover the possible simplicity bias of a decentralized instance of GD,
solving the matrix sensing problem (2) over mesh networks. To the best of our knowledge, this study
is unique in the realm of decentralized optimization, establishing the first sample, convergence rate,
and generalization guarantees of a decentralized gradient-based algorithm tailored for matrix sensing
over mesh networks. We delve into the relevant existing literature in the subsequent section.

1.1 Related works

The literature offers numerous decentralized algorithms which could in principle be used to tackle
the matrix sensing problem, directly or indirectly. However, the accompanying statistical and
computational guarantees fall short, being either non-existent or inadequate, as we elaborate next.

• Off-the-shelf decentralized algorithms for nonconvex problems: The matrix sensing problem (2)
naturally invites the application of decentralized algorithms specifically designed for nonconvex losses
in the form F = (1/m)

P
m

i=1 fi (summation of agent functions). Noteworthy examples of such
algorithms include (i) decentralizations of the GD that merge local gradient updates with (push-sum)
consensus algorithms [47, 2, 37], (ii) decentralized first-order methods employing gradient tracking
strategies [8, 32, 42, 17], and (iii) decentralized algorithms grounded on primal-dual decomposition
or penalization of lifted reformulations incorporating explicitly consensus constraints [15, 14, 50].
However, despite their initial appeal, when applied to (2), these algorithms either lack of any
convergence guarantee–the requirement that F is globally smooth [47, 2, 37, 8, 32, 42, 15, 14, 50]
and has a (uniformly) bounded gradient [47, 2, 37, 8, 42] is not met by the matrix sensing loss in
(2)–or they converge at sublinear rate to some critical points of F (which may not be the global
minimizers), whose generalization properties remain unexplored and obscure [17].

• Ad-hoc decentralized algorithms for some matrix recovery problems: This line of works
comprises decentralized schemes designed specifically for the structured matrix-related optimization
problem under consideration. Relevant examples are briefly highligthed next.
(i) Dictionary learning & matrix factorization problems [5, 51, 49]: In [5], convergence of a
decentralized gradient tracking method for certain dictionary learning problems is established; a
similar problem class is further investigated in [51], where generalization properties of a penalized
consensus algorithm are studied, albeit without a convergence rate analysis. Despite their differences,
these studies share a common premise of a full observation model, leading to a loss in the form of
F (Ū V̄

>) = kY � Ū V̄
>
k
2. Here, Y = Z̄

? + N is the data matrix with N denoting noise. This
full observation model contrasts with the matrix sensing model in (2), which is based on partial
(noiseless) measurements. Lastly, [49] proposes a distributed Frank-Wolfe algorithm to address a
low-rank matrix factorization problem, formulated as a trace (nuclear) norm convex minimization

2



problem (the nonconvex rank constraint is substituted by a nuclear norm constraint).
(ii) Distributed spectral methods [45, 19, 11, 12, 10, 44, 43]: Spectral methods have been
established as effective strategies for obtaining reliable estimates of leading eigenvectors of a specified
data matrix, as well as for providing a promising “warm start” for numerous iterative nonconvex
matrix factorization algorithms [4, 7]. Recent developments [19, 11, 12, 10, 44, 43] have successfully
extended spectral methods–particularly principal component analysis–to decentralized contexts,
achieving linear convergence rates, communications per iteration on the order of O(dr), and precise
recovery up to a desired accuracy. A good tutorial on this subject can be found in [45]. These
methods, in principle, can tackle the decentralized matrix sensing problem as formulated in this work
through the estimation of the leading eigenspace of the surrogate matrix Y =

P
m

i=1

P
j2Di

yjAj ,
where

P
j2Di

yjAj is held by agent i. In fact, under suitable RIP on the linear mapping associated
with Y , one has (1/N)

P
m

i=1

P
j2Di

yjAj ⇡ Z̄
? [34]. While such an approach can yield valuable

insights about the ground truth Z̄
?, exact recovery of Z̄? to arbitrary precision cannot be guaranteed

[38]. This limitation starkly contrasts with the robust guarantees attainable by the gradient algorithm
applied to the centralized matrix sensing problem with small random initialization (e.g., [34, 20]).

• Generic saddle-escaping decentralized algorithms: Under a sufficiently small RIP constant of the
linear mapping associated with the signal model (1), the matrix sensing loss in (2) is shown to have no
spurious local minima and all strict saddle points [1, 22]. Consequently, the task becomes escaping
strict saddle points and computing second-order critical points. In the distributed optimization context,
recent works studied the escape properties of several decentralized algorithms. Early works showed
that certain decentralized schemes–the deterministic DGD [6, 18], the subgradient-flow [36], gradient-
tracking algorithms [6], and primal-dual based methods [16, 24]–with random initialization, converge
asymptotically towards a second-order critical point of a smooth function (subject to mild regularity
conditions), with high probability. However, this near-certain convergence does not necessarily imply
fast convergence. There exist non-pathological functions for which randomly initialized GD requires
exponential time (in the ambient dimension) to escape saddle points [9]. It remains uncertain whether
the inherent structure of the matrix sensing problem could yield superior convergence guarantees.
Subsequent research has investigated the impact of decaying, additive noise perturbation on the
agents’ gradients of (stochastic) DGD in the Adapt-then-Combine (ATC) form [40, 39, 41]. While
convergence to approximately second-order stationary points is assured within a polynomial number
of iterations, the prerequisite that the loss has a globally Lipschitz gradient and Hessian matrix is not
met by the matrix sensing loss in (2). This leaves decentralized saddle-escaping methods bereft of
convergence rate and generalization guarantees when applied to (2).

1.2 Major contributions

We establish the first convergence rate and generalization guarantees of a decentralized gradient
algorithm solving the matrix sensing problem via (2) over mesh networks. We borrow the following
decentralized gradient descent [25],[46]: for each agent i = 1, . . . ,m,

Ū
t+1
i

=
mX

j=1

wijŪ
t+1/2
j

and Ū
t+1/2
i

=
mX

j=1

wijŪ
t

j
� ↵rfi

0

@
mX

j=1

wijŪ
t

j

1

A , (3)

Here, Ū t

i
is an estimate at iteration t of the optimization, common matrix Ū in (2) held by agent

i; ↵ 2 (0, 1] is the stepsize; and wij’s are appropriately chosen nonnegative weights. We have
wii > 0, i = 1, . . . ,m, and wij > 0 if agents i and j, i 6= j, can communicate; otherwise wij = 0.
The algorithm employs two communication steps/iteration, aiming to enforce an agreement on both
iterates Ū t

i
and local gradients rfi. One could reduce the communication steps to one per iteration

via a suitable variable change, resulting in the DGD-ATC form [46]. However, for the sake of clarity
and ease of analysis, we opt to keep the form in (3), without any loss of generality.

• Guarantees: Our study presents a thorough statistical and convergence analysis of (3), yielding
the following key insights. (i) Convergence to low-rank solutions: We demonstrate that, regardless
the degree of overparametrization r, the iterates generated by (3) from a small random initialization
converge towards low-rank solutions. We also provide an estimate of the worst-case iteration
complexity. Improving results of the GD in a centralized setting (e.g., [34]), we specify an entire
interval for algorithm termination, within which the generalization error is guaranteed to remain
below the desired accuracy. This interval expands as the initialization becomes smaller. (ii) Two-
phase convergence: Our analysis reveals a two-phase convergence behavior of (3). The initial
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“spectral” phase sees the iterates mimic a theoretical centralized power method with full data access,
while the subsequent “refinement” phase steers the trajectory towards the ground-truth solution. To
the best of our knowledge, this provides the first evidence of a simplicity bias in a decentralized
algorithm, aligning with the observed behavior of centralized GD [34]. (iii) Generalization error
and communication complexity: The generalization error is shown to scale polynomially with the
initialization size while the communication complexity scales logarithmically. Consequently, one
can achieve arbitrarily small estimation errors with only a modest increase in communication and
computation cost. (iv) RIP and network connectivity: Our findings hold under the conditions that
the centralized measurement operator satisfies the standard RIP, and that network connectivity
is sufficiently small. The former condition implies that our algorithm operates under the same
sample complexity requested in the centralized setting. The latter is distinctive of the decentralized
settings and shown to be unavoidable. (v) Almost performance invariance with the network size:
We demonstrate that with an increase in the network size, the generalization error maintains its
consistency whereas the communication cost grows logarithmically. Thus, the algorithm ensures
effective error control with a marginal increase in communication overhead as the network expands.

• Convergence analysis: Although our analysis draws some insights from [34], the proof techniques
employed diverge from those used therein. The decentralized nature of our setting introduces
additional error terms, thereby making the analysis substantially more complex. Our methodology
hinges on a newly introduced concept of RIP, termed in-network RIP. This concept harnesses the RIP
of the measurement operator, much like the centralized GD, and intertwines it with the network’s
connectivity to derive favorable attributes of the new, overarching network-wide measurement
operator. Furthermore, it reveals the interplay between sample complexity, network connectivity &
topology, and communication complexity towards achieving statistical and computational guarantees
over networks. Although we have defined the in-network RIP in the context of our specific algorithm
dynamics, we posit that it possesses independent significance and could potentially pave the way for
performance analysis of other distributed schemes.

2 Preliminaries

In this section, we first list the notations used in the paper, and then provide details of our theoretical
setup and necessary preliminary results.

2.1 Notations

For any positive integer m, we define [m] , {1, . . . ,m}; 1m is the m-dimensional vector of all ones;
Id is the d⇥ d identity matrix; ⌦ denotes the Kronecker product; and range(M) (resp. rank(M))
denotes the range space (resp. rank) of the matrix M . When considering a matrix M 2 Rmd⇥md,
partitioned into blocks of size d ⇥ d, we will denote the block at the i-th row and j-th column as
[M ]ij , for i, j 2 [m]. Here, i and j indices increment by d, reflecting the size of the blocks.

We use k·k to denote the Euclidean norm. When applied to matrices, k·k is the operator norm induced
by k·k, and k·kF denotes the Frobenius norm of the argument matrix. We order the eigenvalues of any
symmetric matrix M 2 Rd⇥d in nonincreasing fashion, i.e., �1(M) � . . . � �d(M). The singular
values of (a rectangular) matrix M of rank r are denoted as �1(M) � �2(M) � · · ·�r(M) > 0.

Truncated SVD: For any given matrix M 2 Rd1⇥d2 , with rank r
?
> 0, we write the truncated

SVD as M = VM⇤MQ
>
M

, where VM 2 Rd1⇥r
?

and QM 2 Rd2⇥r
?

satisfy V
>
M
VM = Id1 and

Q
>
M
QM = Id2 , and ⇤M 2 Rr

?⇥r
?

is a diagonal matrix.

Augmented matrices: It is convenient to introduce the following “augmented” matrices suitable to
rewrite the decentralized algorithm (3) in a concise block-stacked form:

W := W ⌦ Id, J := (1/m)1m1>
m
⌦ Id. (4)

where W 2 Rm⇥m is the matrix of the gossip weights in (3), defined as [W ]ij = wij .

2.2 Basic definitions and assumptions

We develop our theoretical analysis under the following standard assumptions on the matrix sensing
problem, algorithm parameters, and network connectivity.
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• On the matrix sensing problem: Given the signal model (1), we decompose the ground-truth
matrix as Z̄? = X̄X̄

>, for some X̄ 2 Rd⇥r
?

(recall, r? is the rank of Z̄?).

Definition 1 (condition number). We define the condition number of X̄ 2 Rd⇥r
?

as  = kX̄k
�r? (X̄)

.

We associate to the signal model (1) the measurement linear operator Rd⇥d
3 Z̄ 7! Ā(Z̄) 2 RN and

its adjoint RN
3 w 7! Ā

⇤(w) 2 Rd⇥d, defined as

Ā(Z̄) :=
1

p
N

�⌦
Aj , Z̄

↵�
j2Di,i2[m]

and Ā
⇤(w) =

1
p
N

mX

i=1

X

j2Di

wjAj . (5)

A standard assumption in the matrix sensing literature is requiring the RIP for the operator Ā.
Definition 2 (RIP). The measurement operator Ā : Rd⇥d

! RN satisfies the (�, r)-RIP condition if

(1� �)kZ̄k
2
F
 kĀ(Z̄)k2  (1 + �)kZ̄k

2
F
, (6)

for all matrices Z̄ 2 Rd⇥d with rank(Z̄)  r.

The RIP condition is the key to ensure the ground truth Z̄
? to be recoverable with partial observations.

In fact, an important consequence of RIP is that Ā⇤
Ā(Z̄) = (1/N)

P
m

i=1

P
j2Dj

hAj , Z̄iAj ⇡ Z̄,
for all Z̄ low-rank (see, e.g., [34]). Notice that when all entries of the matrices Aj are drawn i.i.d.
with distribution N (0, 1) on the off-diagonal entries and distribution N (0, 1/

p
2) on the diagonal,

the (�, r)-RIP holds with high probability, if the number of observations N = ⌦(dr/�2) (e.g., [3]).

• Network setup and gossip matrices: Agents are embedded in a communication network, modelled
as an undirected graph G = {V, E}, where the vertices V = [m] , {1, . . . ,m} correspond to the
agents and E is the set of edges of the graph; (i, j) 2 E if and only if there is a communication
link between agents i and j. We study the decentralized algorithm (3) using gossip weight matrices
satisfying the following standard assumption in the literature of distributed optimization.
Assumption 1. W = [wij ]mij=1 satisfies: (i) wij > 0, if (i, j) 2 E; otherwise wij = 0; furthermore,
wii > 0, for all i 2 [m]; (ii) W = W

> and W1 = 1 (stochastic); (iii) W is positive semidefinite;
and (iv) there holds ⇢ , kW � 1m1>

m
/mk2 < 1.

Assumption 1 is standard in the literature of distributed algorithms and is satisfied by several weight
matrices; see, e.g., [26]. Note that ⇢ < 1 holds true by construction for connected graphs. Roughly
speaking, ⇢ measures how fast the network mixes information; the smaller ⇢, the faster the mixing.

2.3 Augmented mapping and in-network RIP

Fundamental to our analysis is a novel RIP-like property associated with an augmented linear mapping
tied to the decentralized algorithm (3). This new property effectively captures the admissible “degree
of distortion” on the signal information Z̄

?, taking into account both the partial observability of Z̄?

as postulated in (1) (through the measurement operator Ā defined in (5)) and the intricacies of the
in-network optimization process (regulated by the network operator W , as defined in (4)).

We begin rewriting the decentralized algorithm (3) in a compact form. To do so, we define the
following quantities: (i) the stacked block matrices U t

2 Rmd⇥r and Z
?
2 Rmd⇥md:

U
t := (Ū t

i
)i2[m] and Z

? := 1m1>
m
⌦ Z̄

?
, (7)

respectively; (ii) the augmented mapping A : Rmd⇥md
! RN and its adjoint A⇤ : RN

! Rmd⇥md:

[A(Z)]` ,
1

p
mn

D
m

⇣
wV(`)w

>
V(`)

⌘
⌦A`, Z

E
, A

⇤(q) ,
NX

`=1

q`
p
mn

(mwV(`)w
>
V(`))⌦A`, (8)

where V(`) : [m

i=1Di ! V returns the index i such that ` 2 Di, ` 2 [N ]. Note that these operators
depend on both data measures (via Ā) and the network (via W). Using the definitions in (4), (7), and
(8), it is not difficult to check that (3) can be rewritten equivalently as:

U
t+1 =

⇣
W

2 +
↵

m
A

⇤
A(Z?

� U
t(U t)>)

⌘
U

t
. (9)
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For the convergence of (9) towards low-rank matrices with strong generalization properties, we
anticipate certain conditions to be imposed on the operator A. The algorithmic mapping structure
in (9) provides some insights in this regard. Since W

2
J = J (due to Assumption1(ii)), the linear

network operator W2 effectively functions as the identity map on matrices Z 2 Rdm⇥dm with
range(Z) ⇢ range(J ). This is in particular true for (d⇥ d block) consensual matrices Z = JZJ ,
including the (augmented) ground-truth Z

?, as defined in (7). This implies that to accomplish precise
reconstructions of Z?, the operator A ought to exhibit some RIP-like regularity. Postponing to
Sec. 3.1 a more rigorous and comprehensive argument, we claim that the following property suffices.
Definition 3 (In-network RIP). The operator A : Rmd⇥md

! RN defined in (8) satisfies the
in-network (�, r)�RIP property with tolerance � � 0, if

(1� �) kJZJ k
2
F
��kZ � JZJ k

2
F
 kA(Z)k22  (1 + �)kJZJ k

2
F
+�kZ � JZJ k

2
F
, (10)

for any matrix Z 2 Rmd⇥md such that each of its d ⇥ d blocks [Z]i,j and its block-average
Z̄ = 1

m2

P
m

i=1

P
m

j=1[Z]i,j are of rank at most r.

The condition (10) reads as an “exact" RIP property of A along (block) consensual directions, allowing
for some “perturbation” in the form of consensus errors kZ � JZJ k

2
F

. The following result shows
that the tolerance error can be controlled by the network connectivity ⇢ (see Assumption 1(iv)).
Lemma 1. Suppose Ā satisfies the (�2r, 2r)-RIP, and the gossip matrix W is chosen according to
Assumption 1. Then, the augmented operator A satisfies the in-network (2�2r, r)-RIP with tolerance

� = ⇢
2
·
4m5(1 + 2�2r)

�2r
(1 + �2r). (11)

Clearly, the smaller ⇢, the smaller �, revealing an unexplored interplay between (potential) generaliza-
tion properties and network characteristics. Since small ⇢ can be enforced also by employing multiple
rounds of communications per iteration (see Sec. 3 for details), the communication complexity
enters in the tradeoff equation. Our theory in the next section will quantify this interplay, reveal-
ing conditions and tuning recommendations to achieve fast convergence and strong generalization
properties.

3 Main Results

We are ready to state the convergence results of Algorithm (3). Here we consider the overparametrized
case r � 2r? while the other ranges of r are discussed in the supplementary material.
Theorem 1. Consider the matrix sensing problem (1), with augmented ground-truth Z

?, under
r � 2r?, and the measurement operator Ā satisfying the (4(r? +1), �)�RIP, with � - 

�4(r?)�1/2.
Let {U t

}t be the (augmented) sequence generated by Algorithm (3), under the following tuning: (i)
the stepsize ↵ - 

�4
kX̄k

�2; (ii) the gossip matrix W is chosen to satisfy Assumption 1, with

⇢ - �
2

m64r?
; (12)

and (iii) the initialization U
0 is chosen as U

0 = µU, where U 2 Rmd⇥r has i.i.d. N (0,
p
m/r)

distributed entries, and µ satisfies

µ
2 - min

8
<

:

p
rm

d
p
d9

,

p
r

d
p
d

 

2

r
d

r

!�9629=

; . (13)

Then, after

t̂ - 1

↵�
2
r?(X̄)

 
ln

 

2

r
d

r

!
+ ln

✓
�r?(X̄)

µ

◆
+ ln

✓
max

⇢
1,

r
?

r � r?

�
kX̄k

µ

◆!
(14)

iterations, there holds

kU
t̂(U t̂)> � Z

?
kF

kZ?k
-
 
(r � r

?)7/8(r?)1/8kX̄k
�21/16

µ
21/16

✓

2 d

r

◆21/16
!
, (15)

with probability at least 1� c1e
�c2 r, where c1, c2 > 0 are universal constants.
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• Statistical guarantees: (15) demonstrates that, in the setting above, the iterates U t(U t)> converge
to an estimate of the low-rank solution Z

? within a precision that can be made arbitrarily small by
reducing the size µ of the random initialization. The test error’s dependence on µ is polynomial,
whereas the worst-case convergence time only increases logarithmically with µ (see (14)), indicating
that significant test error reductions can be achieved with moderate increases in communication and
local computations. These guarantees are established under the RIP of the measurement operator
Ā, and thus operate under the same sample complexity as the centralized setting. For instance, for
Gaussian measurement matrices, N % d(r?)28. While the dependence on d is optimal, the scaling
on (r?)2 and 

8 is less favorable compared to convex approaches based on nuclear norm minimization
[3]. However, decentralized methods solving such formulations directly (e.g., [23]) would entail a
communication cost of O(d2), which is significantly less favorable than the O(rd) of Algorithm 3.

• On the number of iterations: Interestingly, the worst-case iteration complexity aligns with what
observed for the GD in the centralized setting, following thus the same interpretation [34]. The
first term in (14) represents the duration of the spectral alignment phase: beginning from a small
initialization, the iterates U

t(U t)> progressively align with the r
? leading eigenvectors of the

mapping W
2 + ↵/mA

⇤
A(Z?). Under the in-network RIP (Lemma 1), which requires the RIP of

Ā and a sufficiently small ⇢, we establish that this operator approximates the mapping of the power
method applied to Z

? (see the sketch of the proof in Sec. 3.1). The remaining two terms in (14)
represent the duration of the subsequent refinement phase. This phase steers the iterates away from
certain degenerate saddle points while ensuring convergence towards the low-rank matrix Z

?.

In line with the findings for centralized GD [34], the test accuracy achieved at time t̂ might not
persist for larger iterations. The corollary below refines these results by establishing a nonempty time
interval within which the estimation error is guaranteed to stay within the desired accuracy.
Corollary 1. Under the conditions of Theorem 1, it holds

kU
t(U t)> � Z

?
kF

kZ?k
- (r � r

?)7/8(r?)1/8µ1/8
kX̄k

�21/16

✓

2 d

r

◆1/8

, (16)

for any t 2 [t̂, T ], with

T � t̂ % 1� d
2
µ

r

↵
�
2�2µ1/8

� and � := c3(r
?)1/8(r � r

?)7/8kX̄k
11/16

, (17)

where c3 > 0 is an universal constant.

The corollary ensures that the test error remains proportional to µ
1/8 throughout the interval T � t̂.

Notably, the duration of this interval increases as µ approaches zero. This result is quite desirable,
especially in distributed settings where coordinating termination at a specific time may be challenging.

• On the condition (12) on ⇢ and network scalability: The stipulation on ⇢ signifies the need of a
well-connected network—the larger the network size m or the condition number  of the ground
truth, the smaller ⇢. This is a non-negotiable condition essential for managing consensus errors
through the tolerance �, thus ensuring an adequate in-network RIP for the algorithm operator A.
When coupled with the RIP of the measurement operator Ā, it suffices for a sufficient alignment of
the iterates U t(U t)> with the signal subspace from the early stages of the algorithm. Our numerical
experiments (see Sec. 4) indeed demonstrate that maintaining such a constraint on ⇢ is indispensable
for securing convergence and favorable estimation errors. When the network graph is predetermined
(with given W ), one can meet the condition (12) (if not a-priori satisfied) by employing at each
agent’s side multiple rounds of communications per gradient evaluation. This is a common practice
[27] that in our case results in a communication overhead that is only logarithmic in m and .

Notice that the generalization error (see (15) and (16)) is independent of ⇢ or m. This demonstrates
that the algorithm’s performance scales favorably with m. As m increases, the generalization error
remains unchanged, whereas the communication cost grows only modestly (logarithmically with m).

3.1 Sketch of the proof of Theorem 1

This section provides some insights on the proof of the theorem, highlighting the challenges and the
differences with existing centralized and decentralized techniques.
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The goal is to establish that U t(U t)> ⇡ Z
? as the algorithm progresses. Following [34], we

decompose the iterates as
U

t = U
t
Q

t(Qt)>| {z }
,signal

+U
t
Q

t,?(Qt,?)>| {z }
,noise

, (18)

where Q
t
2 Rr⇥r

?

contains the right singular vectors of V >
Z?U

t, i.e., V >
Z?U

t = V
t⇤t(Qt)>; and

Q
t,?

2 R(r⇥r�r
?) is the orthonormal complement of Qt

. By construction, span(Qt)[span(Qt,?) =
Rr, allowing for the decomposition (18). Further, notice that the noise term is orthogonal to the
signal space, i.e. V >

Z?U
t
Q

t,? = 0, which implies that once U
t is projected onto the signal space, the

only relevant term left is V >
Z?U

t = V
>
Z?U

t
Q

t(Qt)>, hence the name “signal”.

Based on (18), and under the assumptions of the theorem, we establish that: (i) U
t
Q

t(Qt)> is full
rank and the signal-term grows as the algorithm progresses. (ii) The noise-term grows slower than
the signal and remains sufficiently small. (ii) The error can be bounded by a polynomial proportional
to the initialization size. Similar to [34], the analysis is organized in two phases.

Phase I (power-like method): The goal of this phase is to establish that after sufficiently long time
t? since the initialization (t = 0), �min(U t?Q

t?) > ckU
t?Q

t?,?k and and that k(V ?
Z?)>VUt?Qt? k

is small, which means that the iterates are better aligned with the signal space than the noise space.
Therefore, we are to identify in (9) a mechanism that allows VUtQt to become aligned with VZ? .

Given the initialization U
0 = µU , at iteration t = 1, we have

U
1 =

⇣
W

2 +
↵

m
A

⇤
A(Z?)

⌘
U

0 + µ
2 ↵

m
A

⇤
A(UU

>)U0
. (19)

Consequently, if µ is sufficiently small, for the first few iterations t, one can write

U
t
⇡

⇣
W

2 +
↵

m
A

⇤
A(Z?)

⌘t
U

0 +O
�
µ
2
kU

0
kkUk

2
�
. (20)

Under the assumption that Ā fulfills the �r? RIP, we can establish using the in-network RIP that
if ⇢  O

⇣
�2(r?+1)

m2
p
m

⌘
, A⇤

A(Z?) = Z
? + ", with k"k  O(�2r?kZ

?
k). Further, by construction

W
2
Z

? = Z
?
W

2, implying that W2 and Z
? share the same eigenspace. Also, �i(W2) = 1, for all

i = 1, . . . , d. Consequently �i

�
W

2 + ↵

m
Z

?
�
= 1 + ↵

m
�i(Z?) for i = 1, . . . , d. Therefore, we can

further approximate (20) as

U
t
⇡

⇣
W

2 +
↵

m
Z

?

⌘t
U

0 +O
�
µ
2
kU

0
kkUk

2
�
, (21)

where we have disregarded ", for simplicity of exposition. Leveraging perturbation theory arguments,
in the proof we demonstrate that " can be properly controlled. Using the above arguments, we have

VZ?V
>
Z?U

t
⇡ VZ?

⇣
I +

↵

m
⇤Z?

⌘t
V

>
Z?U

0 + VZ?V
>
Z?

�
W

2
�t
V

?
Z?

�
V

?
Z?

�>
U

0 +O
�
µ
2
kU

0
kkUk

2
�

(22)

V
?
Z?(V ?

Z?)>U t
⇡ V

?
Z?(W2)t(V ?

Z?)>U0 +O(µ2
kU

0
kkUk

2), (23)

where the first term in the RHS of (22) corresponds to the power method on the matrix Z
?
. Further,

we see that the mentioned term grows faster than any other. Consequently, at the time t? at which we
exit phase I, U t? is sufficiently aligned with the signal space as compared to the noise space.

Phase II (refinement): In this phase we establish that, given �min(U t?Q
t?) � c0kU

t?Q
t?,?k and

k(V ?
Z?)>VUt?Qt? k  c1 : (i) the alignment �min(V >

Z?U
t?Q

t?) grows and stabilizes away from zero,
(ii) the error kU t

Q
t,?

k grows slower than the alignment kU t
Q

t
k and, (iii) the error kV >

Z?VUtQtk

remains sufficiently small. A careful study and balance of these quantities yield the final convergence.

Challenges with respect to the centralized case: The main challenge with respect to analyses
of the GD (e.g., [34]) comes from the distributed nature of the algorithm generating extra error
terms (e.g., consensus errors), which significantly complicate the analysis. Our analysis builds on a
newly introduced notion of RIP for the algorithm operator A. This is substantially different from the
classical RIP or GD mapping [34], which lack of the network gossip matrix W

2
.

Challenges with respect to existing distributed optimization approaches: The standard approach
in the distributed optimization literature typically takes the route of splitting the algorithm dynamics
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in its average and consensus error. We deviated from such decomposition, because controlling such
errors on U

t(U t)> would result in bounds of the type

kU
t(U t)> � JU

t(U t)>J k  O
�
⇢kU

t(U t)� Z
?
k
�

(24)

which are insufficient to understand for example the dynamics of k(V ?
Z?)>VUtQtk. Furthermore, the

split into signal and noise subspaces allows us to invoke the in-network RIP with r
?, which would

not be the case if splitting the iterates along consensus and non-consensus spaces.

Specifically regarding to phase I of the scheme, another mode classical approach would be “centering”
the dynamics around the centralized trajectory of the power method, i.e.,

U
1 =

⇣
J +

↵

m
JA

⇤
A(Z?)J

⌘
U

0
� µ

2 ↵

m
A

⇤
A(UU

>)U0 (25)

+ (W2
� J )U0 +

↵

m
(A⇤

A(Z?)� JA
⇤
A(Z?)J )U0

, (26)

which, using the in-network RIP and the fact that µ2 and t are sufficiently small, would yield

U
t
⇡

⇣
J +

↵

m
JA

⇤
A(Z?)J

⌘t
U

0 + µ
2
O
�
kUk

2
kU

0
k
�
+O

�
⇢
2
kU

0
k
�
. (27)

Here, the degree of freedom to control the error terms (second and third) are ⇢ and µ. This however
would enforce the undesirable condition ⇢  O(µ), which couples the network connectivity with the
size of the initialization.

4 Numerical experiments

We discuss some preliminary experiments validating our theoretical findings. All simulations are
performed on a Apple M2 Pro @ 3.5 GHz computer, using 32 GB RAM running macOS Ventura
13.3.1. We generate a random matrix X̄ 2 Rd⇥r

?

, with d = 50 and r
? = 2, which we use through all

experiments. The symmetric measurement matrices are generated as Ai = (1/2)(Si + S
>
i
), where

Si 2 Rd⇥d have i.i.d. standard Gaussian elements. The communication networks are generated as
Erdős-Rényi graphs, with link activation probability p = 0.05. and different sizes m (specified in
each experiment below). For any generated graph, we set W̄ according to Metropolis weights [28],
and then let W = W̄

K , with the integer K chosen to meet the condition (12) on ⇢, resulting in K

communication rounds per agent/iteration. Finally, we choose ↵ = 1/4 and µ = d
�3

.

(i) Validating Theorem 1: This experiment shows that under the conditions of Theorem 1, the test
error behaves predictably as that of the centralized GD (up to constant factors). Furthermore, the
invariance of such an error with the network size m is also confirmed, as long as ⇢  O(1/m6)
(as requested in (12)). In the experiments, the total sample size is N = 1000, split equally among
agents m = {5, 100, 500, 1000}. Fig 1a plots the normalized test error; Fig 1b shows k(V ?

M
)>VUtk

which measures the missalignment of U t with the power method matrix; and and Fig 1c displays
the �r?(U t)/�r?(X) which combined with Fig 1b allows us to claim that the signal U t

Q
t is well

aligned with VZ? and full ranked. The curves show that the behavior of the decentralized algorithm
is close to that of the centralized GD (blue lines). As predicted, the error decays quickly after the
correct subspace has been identified. Furthermore, convergence rate and generalization error are
almost invariant to network-size scaling, as long as ⇢  O(m�6).

(ii) Validating condition (12) on ⇢: We showcase the necessity of decreasing ⇢ while increasing
m. Given a connected base graph with associated W̄ , for the sequence of graphs generated with
increasing m = {10, 50, 100, 500}, we let W̄ = W̄

T , with T such that ⇢ ⇡ 0.85, for all m. This
eventually violates (12). Fig. 2 (resp. Fig. 2b ) plots the normalized generalization error versus the
iterations, for m = 1, m = 10 and m = 50 (resp. m = 100 and m = 500, where the two curves are
only up to the iterations t = 70 and t = 17, respectively). The figures demonstrate the necessity of
⇢ scaling down with m increasing. In fact, both the rate and achievable estimation errors degrade
(and eventually break down) as the network size increases while keeping ⇢ fixed. We claim that this
stems from the fact that if the network is not sufficiently well-connected, the in-network RIP does
not hold with sufficiently small tolerance, yielding to a failure of the power method early stage and
consequently producing an unrecoverable missalignment with the signal subspace.
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Figure 1: Performance of Algorithm 3, for different network size m, with ⇢ = O(m�6).
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Figure 2: Performance of Algorithm 3, for different network size m, and fixed ⇢ ⇡ 0.85.

Acknowledgments and Disclosure of Funding

Funding in direct support of this work: ONR Grant # N00014-21-1-267.

References

[1] S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank
matrix recovery. In Adv. Neural Inf. Process. Syst., pages 3873–3881, 2016.

[2] P. Bianchi and J. Jakubowicz. Convergence of a multi-agent projected stochastic gradient
algorithm for non-convex optimization. IEEE Trans. on Automatic Control, 58(2):391–405, Feb.
2013.

[3] Emmanuel J Candès and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery
from a minimal number of noisy random measurements. IEEE Transactions on information
theory, 57(4):2342–2359„ 2011.

[4] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix
factorization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

[5] A. Daneshmand, Ying Sun, G. Scutari, F. Facchinei, and B. Sadler. Decentralized dictionary
learning over time-varying digraphs. J. on Machine Learning Research, (139):1–62, 2019.

[6] Amir Daneshmand, Gesualdo Scutari, and Vyacheslav Kungurtsev. Second-order guarantees of
distributed gradient algorithms. SIAM Journal on Optimization, 30(4):3029–3068, 2020.

[7] M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from incomplete
observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622, 2016.

[8] P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE Trans. on Signal
and Information Processing over Networks, 2(2):120–136, June 2016.

10



[9] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos.
Gradient descent can take exponential time to escape saddle points. Advances in Neural
Information Processing Systems, 30, 2017.

[10] Arpita Gang and Waheed U Bajwa. Fast-pca: A fast and exact algorithm for distributed principal
component analysis. IEEE Transactions on Signal Processing, 70:6080–6095, 2022.

[11] Arpita Gang and Waheed U. Bajwa. A linearly convergent algorithm for distributed principal
component analysis. Signal Processing, 193:108408, 2022.

[12] Arpita Gang, Bingqing Xiang, and Waheed U. Bajwa. Distributed principal subspace analysis
for partitioned big data: Algorithms, analysis, and implementation. IEEE Transactions on
Signal and Information Processing over Networks, 7:699–715, 2021.

[13] G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete gradient dynamics
in linear neural networks. In Advances in Neural Information Processing Systems, volume 32,
pages 3202–3211, 2019.

[14] D. Hajinezhad and M. Hong. Perturbed proximal primal-dual algorithm for nonconvex nons-
mooth optimization. Math. Program., Ser. B, 176:207–245, 2019.

[15] M Hong, D. Hajinezhad, and M. Zhao. Prox-PDA: The proximal primal-dual algorithm for
fast distributed nonconvex optimization and learning over networks. In Proc. of the 34th
International Conference on Machine Learning (ICML 2017), volume 70, pages 1529–1538,
2017.

[16] M. Hong, J. D. Lee, and M. Razaviyayn. Gradient primal-dual algorithm converges to second-
order stationary solution for nonconvex distributed optimization over networks. In International
Conference on Machine Learning, pages 2014–2023, 2018.

[17] M. Hong, S Zeng, J. Zhang, and H. Sun. On the divergence of decentralized nonconvex
optimization. SIAM Journal on Optimization, 32(4):2879–2908, 2022.

[18] Charikleia Iakovidou and Ermin Wei. On the convergence of near-dgd for nonconvex optimiza-
tion with second order guarantees. In 2021 60th IEEE Conference on Decision and Control
(CDC), pages 259–264, 2021.

[19] Yuchen Jiao and Yuantao Gu. Communication-efficient decentralized subspace estimation.
IEEE Journal of Selected Topics in Signal Processing, 16(3):516–531, 2022.

[20] Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon Du, and Jason Lee. Understanding incremen-
tal learning of gradient descent: A fine-grained analysis of matrix sensing. arXiv prepring,
arXiv:2301.11500, 2023.

[21] D. S. Kalogerias and A. P. Petropulu. Matrix completion in colocated mimo radar: Recoverabil-
ity, bounds and theoretical guarantees. IEEE Transactions on Signal Processing, 62(2):309–321,
2013.

[22] Q. Li, Z. Zhu, and G. Tang. The non-convex geometry of low-rank matrix optimization. Inf.
Inference, 8(1):51–96, 2019.

[23] Weijian Li, Xianlin Zeng, Yiguang Hong, and Haibo Ji. Distributed design for nuclear norm
minimization of linear matrix equations with constraints. IEEE Transactions on Automatic
Control, 66(2):745–752, 2020.

[24] Songtao Lu, Jason D. Lee, Meisam Razaviyayn, and Mingyi Hong. Linearized admm converges
to second-order stationary points for non-convex problems. IEEE Transactions on Signal
Processing, 69:4859–4874, 2021.

[25] Marie Maros and Gesualdo Scutari. Dgdˆ2: A linearly convergent distributed algorithm for
high-dimensional statistical recovery. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 3475–3487. Curran Associates, Inc., 2022.

11
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