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Abstract

We consider the problem of online allocation subject to a long-term fairness penalty.
Contrary to existing works, however, we do not assume that the decision-maker
observes the protected attributes—which is often unrealistic in practice. Instead
they can purchase data that help estimate them from sources of different quality;
and hence reduce the fairness penalty at some cost. We model this problem as a
multi-armed bandit problem where each arm corresponds to the choice of a data
source, coupled with the online allocation problem. We propose an algorithm that
jointly solves both problems and show that it has a regret bounded by O(

√
T ). A

key difficulty is that the rewards received by selecting a source are correlated by
the fairness penalty, which leads to a need for randomization (despite a stochastic
setting). Our algorithm takes into account contextual information available before
the source selection, and can adapt to many different fairness notions. We also
show that in some instances, the estimates used can be learned on the fly.

1 Introduction

We consider the problem of online allocation with a long-term fairness penalty: A decision maker
interacts sequentially with different types of users with the global objective of maximizing some
cumulative rewards (e.g., number of views, clicks, or conversions); but she also has a second objective
of taking globally “fair” decisions with respect to some protected/sensitive attributes such as gender or
ethnicity (the exact concepts of fairness will be discussed later). This problem is important because it
models a large number of practical online allocation situations where the additional fairness constraint
might be crucial. For instance, in online advertising (where the decision maker chooses to which
users an ad is shown), some ads are actually positive opportunities such as job offers, and targeted
advertising has been shown to be prone to discrimination Lambrecht & Tucker (2019); Speicher et al.
(2018); Ali et al. (2019). Those questions also arise in many different fields such as workforce hiring
(Dickerson et al., 2018), recommendation systems (Burke, 2017), or placement in refugee settlements
(Ahani et al., 2021).

There has been a flourishing trend of research addressing fairness constraints in machine learning—
see e.g., (Chouldechova, 2017; Hardt et al., 2016; Kleinberg & Raghavan, 2018; Barocas et al., 2019;
Emelianov et al., 2020; Molina & Loiseau, 2022)—and in sequential decision-making problems—see
e.g., (Joseph et al., 2016; Jabbari et al., 2017; Heidari & Krause, 2018)—as algorithmic decisions have
real consequences on the lives of individuals, with unfortunate observed discrimination (Buolamwini
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& Gebru, 2018; Larson et al., 2016; Dastin, 2018). In online allocation problems, general long-term
constraints have been studied for instance by Agrawal & Devanur (2015) who maximize the utility of
the allocation while ensuring the feasibility of the average allocation, or by Balseiro et al. (2020) who
show how to handle hard budget constraints for online allocation problems. More directly related
to fairness, Nasr & Tschantz (2020) formulate the problem of fair repeated auctions with a hard
constraint on the difference between the number of ads shown to each group. Finally, in recent works,
Balseiro et al. (2021); Celli et al. (2022) consider the online allocation problem where a non-separable
penalty related to fairness is suffered by the decision maker at the end of the decision-making process
instead of a hard constraint—these works are the closest to ours.

All the aforementioned papers, unfortunately, assume that the protected attributes (which define the
fairness constraints) are observed before taking decisions. In practice, it is often not the case—for
instance to respect users’ privacy (Guardian, 2023)—and this makes it challenging to satisfy fairness
constraints (Lipton et al., 2018). In online advertising for example, the decision-maker typically has
access to some public “contexts” on each user, from which she could try to infer the value of the
attribute; but it was shown that the amount of noise can be prohibitive and therefore ensuring that a
campaign reaches a non-discriminatory audience is non-trivial Gelauff et al. (2020).

Our contribution. In this paper, we consider the online allocation problem under long-term fairness
penalty, in the practical case where the protected attributes are not observed. Instead, we consider the
case where the decision-maker can pay to acquire more precise information on the attributes (beyond
the public context), either by directly compensating the user (the more precise the information on the
attribute, the higher the price) or by buying additional data to some third parties data-broker.1 Using
this extra information, she should be able to estimate more precisely, and thus sequentially reduces,
the unfairness of her decisions while keeping a high cumulative net reward. The main question we
aim at answering is how should the decision maker decide when, and from which source (or at what
level of precision), to buy additional data in order to make fair optimal allocations?

Compared to the closest existing works (Balseiro et al., 2021; Celli et al., 2022) which study online
allocation with a long term fairness penalty, the main novelty in the setting we examine is two-fold:
we allow for uncertainty on the attributes of each individual, and more importantly we consider jointly
the fair online allocation problem with a source selection problem. Consequently, we present the
efficient Algorithm 1 that tackles both of these challenges concurrently. This algorithm combines a
dual gradient descent for the fair allocation aspect and a bandit algorithm for the source selection
part. The final performance of an algorithm is its net cumulative utility (rewards minus costs of
buying extra information) penalized by its long-term unfairness; that is quantified by the “regret”: the
difference between this performance and the one of some benchmarking “optimal” algorithm. We
show that Algorithm 1 has a sub-linear regret bound under some stochastic assumptions. Notably, the
performance achieved by Algorithm 1 using randomized source selection is strictly better than when
using a single fixed source, because of the interaction through the fairness penalty—a key difference
with standard bandit settings. On a more technical level we show how one can model the randomness
and estimates for the protected attributes, how to bound the fair dual parameters which is crucial in
order to use adversarial bandit techniques, and how to combine the analysis of the primal and dual
steps of the algorithm.

There are many different definitions of group fairness that can be studied (e.g., demographic parity,
equal opportunity, etc.). Instead of focusing on a specific one, we consider a generic formulation
that can be instantiated to handle most of those different concepts (see Section 2.1 and Appendix A).
We also discuss in Section 4.1 how to adapt our algorithm to different fairness penalties. This gives
a higher level of generality to our results compared to existing approaches that can handle fewer
fairness criteria (e.g., Celli et al. (2022)).

For the sake of clarity, we expose our key results in a simple setting. In particular, we assume
binary decisions and a linear utility, and we assume that the expected utility conditional on the
context is known. All these assumptions can be relaxed. In particular, we can learn the utilities (see
Section 4.2). We can handle also more general decision variables and utility forms. This allows in
particular to tackle problems of matching and auctions (albeit with some restrictions), we discuss that
in Appendices B and C.

1This setting includes as special cases the extremes where no additional information can be bought and where
the full information is available.
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Related work. The problem of online fair allocation is closely related to online optimization
problems with constraints, which is studied in a few papers. For instance, bandit problems with
knapsack constraints where the algorithm stops once the budget has been depleted have been studied
by Badanidiyuru et al. (2018); Agrawal & Devanur (2016). Li & Ye (2021); Li et al. (2022) consider
online linear programs, with stochastic and adversarial inputs. Liu et al. (2021) deal with linear
bandits and general anytime constraints, which can be instantiated as fairness constraints. More
recently Castiglioni et al. (2022a,b) propose online algorithms for long-term constraints in the
stochastic and adversarial cases with bandit or full information feedback. Some papers take into
account soft long-term constraints (Agrawal & Devanur, 2015; Jenatton et al., 2016), and more
recently in (Balseiro et al., 2021; Celli et al., 2022) where the long-term constraint can be instantiated
as a fairness penalty—we also adopt a soft constraint. We depart from this literature by considering
the case where the protected attributes (based on which fairness is defined) is not observed. We
consider the case where the decision-maker can buy additional information to estimate it (which
adds considerable technical complexity), but even in the case where no additional information can be
bought our work extends that of (Balseiro et al., 2021; Celli et al., 2022).

As mentioned above, the fairness literature usually assumes perfect observation of the protected
attributes yet noisy realizations of protected attributes or limited access to them to measure and
compute fair machine learning models has also been considered (Lamy et al., 2019; Celis et al.,
2021; Zhao et al., 2022). In some cases, the noise may come from privacy requirements, and the
interaction between those two notions has been studied (Jagielski et al., 2019; Chang & Shokri, 2021),
see (Fioretto et al., 2022) for a survey. There are also works on data acquisition, which is similar to
purchasing information from different sources of information; e.g., Chen et al. (2018); Chen & Zheng
(2019) study mechanisms to acquire data so as to estimate some of the population’s statistics. They
use a mechanism design approach where the cost of data is unknown and do not consider fairness (or
protected attributes). However, none of these approaches can handle sequential decision problems
with fairness constraints or penalties (and choosing information sources).

2 Preliminaries

2.1 Model and assumptions

We present here a simpler model, and later-on discuss possible extensions. Consider a decision maker
making sequential allocation decisions for a known number of T users (or simply stages) in order
to maximize her cumulative rewards. The user t has some protected attributes at ∈ A ⊂ Rd, that
is not observed before taking a decision xt. On the other hand, the decision-maker first observes
some public context zt ∈ Z , where Z is the finite set of all possible public contexts and she has the
possibility to buy additional information. There are K different sources for additional information
and choosing the source kt ∈ [K] has a cost of pkt , but it provides a new piece of information, which
together with the public information is summarized in the random variable ctkt = (zt, data from kt).
Based on this, the decision xt ∈ {0, 1} can be made; this corresponds to include, or not, user t in
the cohort (for instance, to display an ad or not). Including user t generates some reward/utility ut,
which might be unknown to the decision maker (as it may depend on the private attribute), but can be
estimated using the different contexts.

To fix ideas, we show how this model applies to two examples: Imagine an advertiser aiming to
display ads to an user, able to see some bare-bone information through cookies, such as which
website was previously visited (zt). Based on this information, they can decide whether or not to buy
additional information (ctk) from different data brokers that collect user activity. For example, if they
observe that the user has browsed clothing stores, they might opt to acquire data containing purchase
details from this website. This enables them to estimate the user’s gender (at) based on the type of
clothing bought. Now consider the problem of fairly relocating refugees to different cities. When the
organization in charge of resettlement receives a resettlement case (zt), it can either decide to directly
assign the refugee to a specific city, or to conduct an additional costly investigation (which might
involve a third party watch-dog) to get more information (ctk) on some protected attributes of interest
such as wealth or age (at), which might have been intentionally misreported.

We assume that the global objective is to maximize the sum of three terms: the cumulative rewards
of all selected users, minus the costs of the additional information bought, minus some unfairness
penalty, represented by some function R(.). Denoting by k = (k1, · · · , kT ) and x = (x1, · · · , xT )
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the sources and allocations selected during the T rounds, the total utility of the decision maker is then

U(k,x) =
T∑
t=1

utxt −
T∑
t=1

pkt − TR
( 1
T

T∑
t=1

atxt
)
. (1)

The penalty function R(.) is a convex penalty function that measures the fairness cost of the decision-
making process, due to the unbalancedness of the selected users at the end of the T rounds. It can be
used to represent statistical parity (Kamishima et al., 2011), as a measure of how far the allocation is
from this fairness notion. This fairness penalty R(.) is also used in Balseiro et al. (2021); Celli et al.
(2022). In fact, the objective (1) is equal the one used in these papers minus the cost of additional
information bought,

∑
t pkt .

Knowns, unknowns and stochasticity We assume that users are independent and identically
distributed (i.i.d.), in the sense that the whole vectors (zt, ut, at, ct1 . . . ctK) are i.i.d., drawn from
some underlying unknown probability distribution. While this may be a strong assumption, some
applications such as online advertising correspond to large T but to a short real time-frame, hence
incurring very little variation in the underlying distribution. The prices pk and the penalty function
R(.) are known beforehand. As mentioned several times, the only feedback received is ctk, after
selecting source k, and this should be enough to estimate ut and at. We therefore assume that the
conditional expectations E[ut | ctkt ] and E[at | ctkt ] are known. The rationale behind this assumption
is that these conditional expectations have been learned from past data.

Penalty examples and generalizations A typical example for at is the case of one-hot encoding:
there are d protected categories of users and at indicates the category of user t. For simplicity, assume
that d = 2, then the quantity

∑
t atixt is the number of users of type i ∈ {1, 2} that have been

selected. The choice of TR(
∑T
t=1 atxt/T ) = |

∑
t at1xt −

∑
t at2xt| amounts to penalizing the

decision maker proportional to the absolute difference of users in both groups. This generic setting
can also model other notions of fairness, such as Equality of Opportunity (Hardt et al., 2016), by
choosing other values for at and R(.), see examples and discussion in Appendix A.

Similarly, the choice of xt ∈ {0, 1} can be immediately generalized to any finite decision set or
even continuous compact one (say, the reward at stage t would then be u⊤

t xt for some vector ut),
which makes it possible to handle problems such as bipartite matching. Instead of deriving a linear
utility from selecting an user, general bounded upper semi-continuous (u.s.c.) utility functions can
also be treated, and can be used to instantiate auctions mechanism (with some limitations detailed in
Appendix C). We also explain how to relax the assumption that E[ut | ctkt ] is known in Section 4.2,
by deriving an algorithm that actually learns it in an online fashion, following linear contextual bandit
techniques (Abbasi-yadkori et al., 2011).

We show in Section 3.5 that the assumption that Z is finite can be relaxed if all conditional distributions
depend smoothly on z, following techniques from Perchet & Rigollet (2013).

Mathematical assumptions We shall assume |ut| ≤ ū, for all t, and that ∥a∥2 ≤ 1 for all a ∈ A.
We make, for now, no structural assumption on the variables ctk. We mention here that the decision
maker has to choose a single source at each stage, but this is obviously without loss of generality (by
adding void or combination of sources).

We define ∆ = Conv(A ∪ {0}), where Conv is the closed convex hull of a set. Since A is compact,
the set ∆ is also convex and compact. The penalty function R : ∆ → R is a proper closed convex
function that is L-Lipschitz continuous for the Euclidean norm ∥ ·∥2. While the convexity assumption
is pretty usual, the Lipschitzness assumption is rather mild as ∆ is convex and compact. Nevertheless,
interesting non-Lipschitz functions, such as the Kullback-Leibler divergence, can be modified to
respect these assumptions (see Celli et al. (2022)).

2.2 Benchmark and regret

A usual measure of performance for online algorithms is the regret that compares the utility obtained
by an online allocation to the one obtained by an oracle that knows all parameters of the problem, yet
not the realized sequence of private attributes. We denote the performance of this oracle by OPT:

OPT = max
h∈([K]Z)T

E
[

max
x∈{0,1}T

E [U(k,x) | c1k1 , . . . , cTkT ]
]
, (2)
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where the conditional expectation indicates that the oracle first chooses a contextual policy ht for
all users that specifies which source kt = ht(zt) to select as a function of the variables zt. It then
observes all contexts ctkt and makes for all t the decisions xt based on that.

Denoting ALG the expected penalized utility of an online algorithm, its expected regret is:

Reg = OPT−E[U(k,x)] = OPT−ALG . (3)

We remark that the benchmark of Equation (2) allows choosing different sources of information for
different users with the same public information zt. As such, it differs from classical benchmarks in
the contextual bandit literature that compare the performance of an algorithm to the best static choice
of arm per context and whose performance would be

static−OPT := max
h∈[K]Z

E[ max
x∈{0,1}T

E[U(k,x)|c1k1 , . . . , cTkT ]], (4)

where the h ∈ [K]Z policy that maps the public information to a source selection is the same for all
users.

The benchmark (4) is the typical benchmark in contextual multi-armed bandits, as the global impact
of decisions at different epochs and for different contexts are independent. However, this is no longer
the case with the unfairness penalty R(.) that requires coupling all decisions:
Proposition 2.1. There exist an instance of the problem and a constant b > 0 such that for all T :

static−OPT+ bT < OPT .

This result shows that an algorithm that only tries to identify the best source will have a linear
regret compared to OPT. This indicates that the problem of source selection and fairness are strongly
coupled, even without public information available, and cannot be solved through some sort of
two-phase algorithm where each problem is solved separately. The proof of this result is presented in
Appendix F.1. In this paper, our primary emphasis lies in the examination of the performance disparity
between an online algorithm and the offline optimum. Nevertheless, we provide supplementary
experiments in Appendix F.3 that investigate how variations in the prices pk and the penalty R impact
the solution of the offline optimum.

3 Algorithm and Regret Bounds

In this part, we present our online allocation algorithm and its regret bound. For clarity of exposition,
we first present the algorithm in the case |Z| = 1, i.e., without public information available (and thus
we remove zt from the algorithm). The extension to |Z| > 1 uses similar arguments and is discussed
in Section 3.5.

3.1 Overview of the algorithm

Algorithm 1 devised to solve this problem is composed of two parts: a bandit algorithm for the
source selection, and a gradient descent to adjust the penalty regularization term. This requires a dual
parameter λt ∈ Rd that is used to perform the source selection as well as the allocation decision xt.

The intuition is the following: the performance of each source is evaluated through some “dual value”
for a given dual parameter λ. The optimal primal performance is equal to the dual value when it is
minimized in λ, because R is convex and randomized combinations of sources is allowed thus there
is no duality gap. Hence the dual value of each source is iteratively evaluated in order to select the
best source, and simultaneously minimize the dual value of the selected source through λ, so that the
source selected is indeed optimal.

Bandit part. For the source selection, we use the EXP3 algorithm (see Chapter 11 of Lattimore &
Szepesvári (2020)) on a virtual reward that depends on the dual parameter. Given a dual parameter
λ ∈ Rd and a context ctk, we define the virtual reward as

φ(λt, ctk, k) = max (E[ut | ctk]− ⟨λt,E[at | ctk]⟩, 0)− pk, (5)

where ⟨λt,E[at | ctk]⟩ denotes the scalar product between λt and E[at | ctk]. To compute this
expectation, one needs to know the quantities pk, E[ut|ctk] and E[at|ctk].
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To apply EXP3, a key property is to ensure that the virtual rewards are bounded, which requires λt to
remain bounded. As we show in Lemma 3.2, this is actually guaranteed by the design of the gradient
descent on λ. This lemma implies that there exists m ∈ R+ such that |φ(λt, ctk)| ≤ m for all t and
k. Let us denote by πtk the probability that source k is chosen at time t and kt ∼ πt. We define the
importance-weighted unbiased estimator vector φ̂(λ, ct) ∈ RK where each coordinate k′ ∈ [K] is:

φ̂(λ, ctk, k, k
′) = m− 1[k′ = k]

m− φ(λ, ctk, k)

πtk
.

Using this unbiased estimator, we can apply the EXP3 algorithm to this virtual reward function.

Gradient descent part. Once the source kt for user t is chosen and ctkt is observed, we can
compute the decision xt (see (6)). This xt is then used in (8)-(9) to perform a dual descent step on
the multiplier λt. Although using a dual descent step is classical, our implementation is different
because we need to guarantee that the values of λt remain bounded for EXP3. To do so, we modify
the geometry of the convex optimization sub-problem by considering a set of allocation targets larger
than the original ∆. For δ ∈ ∆, we define the set ∆δ as the ball of center δ and radius Diam(∆).
This ball contains ∆: ∆ ⊂ ∆δ .

Algorithm 1 uses any extension of R to ∆̄ = ∪δ∈∆∆δ that is convex and Lipschitz-continuous, for
instance, the following one (see Lemma D.2):

R̄(δ) = inf
δ′∈∆

{R(δ′) + L∥δ − δ′∥2},

that has the same Lipschitz-constant L as R (which is the best Lipschitz-constant possible).

3.2 Algorithm and implementation

Combining these different ideas leads to Algorithm 1. This algorithm maintains a dual parameter λt
that encodes the history of unfairness that ensures that the fairness penalty R(.) is taken into account.
This dual parameter λt is used in (6) to compute the allocation xt and in (7) to choose the source of
information. The dual update (8)-(9) guarantees that we take R(.) into account.

Algorithm 1 Online Fair Allocation with Source Selection
Input: Initial dual parameter λ0, step sizes η and ρ, cumulative estimated rewards S0 = 0 ∈ RK .
for t ∈ [T ] do

Draw a source kt ∼ πt where πtk = exp(ρSt−1,k)/
∑K
l=1 exp(ρSt−1,l), and observe ctkt .

Compute the allocation for user t:

xt =

{
1 if E[ut | ctkt ] ≥ ⟨λt,E[at | ctkt ]⟩
0 otherwise. (6)

Update the estimated rewards sum and sources distributions for all k ∈ [K]:

Stk = S(t−1)k + φ̂(λt, ctk, kt, k), (7)

Let δt = xtE[at | ctkt ]. Compute the dual fairness allocation target and update the dual
parameter

γt = argmax
γ∈∆δt

{⟨λt, γ⟩ − R̄(γ)}, (8)

λt+1 = λt − η(γt − δt). (9)

end for

An interesting property of the dual gradient descent is that it manages to provide a good fair allocation
while updating the source selection parameters simultaneously. Indeed if λ were fixed, then we could
solve the source selection part through φ and a bandit algorithm. However, both the λt and the πt
change over time, which may hint at the necessity of a two-phased algorithm as the combination
of these two problems generates non-stationarity for both the dual update and also for the bandit
problem. The dual gradient descent manages to combine both updates in a single-phased algorithm.
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The different assumptions imply that the decision maker has access to the E[at|ctk] and to E[ut | ctk]
for any possible context value ctk. Such values could be indeed estimated from offline data. The
knowledge of such values is sufficient to compute the allocation xt in (6), the virtual value estimation
φ̂ of (7), or to compute δt. Once these values are computed, the only difficulty is to solve (8). In
some cases, it might be solved analytically. Otherwise, it can also be solved numerically as it is an (a
priori low-dimensional) convex optimization problem. Overall this is an efficient online algorithm
which only uses the current algorithm parameters λt, πt, and current context ctkt .

3.3 Regret bound

We emphasize that Algorithm 1 uses randomization among the different sources of information and
does not aim to identify the best source. As shown in Proposition 2.1, this is important because
using the best source of information can be strictly less good that using randomization. Moreover, it
simplifies the analysis because it convexifies the set of strategies. This means that Sion’s minimax
theorem can be applied to some dual function, which allows for λt and πt to be updated simultaneously.
If one would try to target the best static source of information (static-OPT), one would need to
determine the optimal dual parameter λk of each source. This would lead to an algorithm that is both
more complicated and less efficient (because of Proposition 2.1).

The following theorem shows that Algorithm 1 has a sub-linear regret of order O(
√
T ). This regret

bound is comparable to those in Balseiro et al. (2021); Celli et al. (2022) but we handle the much
more challenging case of having multiple sources of information, and imperfect information about at
and ut.
Theorem 3.1. Assume that Algorithm 1 is run with the parameters η = L/(2Diam(∆)

√
T ),

m = ū + L + maxk|pk| + 2ηDiam(∆), ρ =
√

log(K)/(TKm2), and that λ0 ∈ ∂R(0), the
subgradient of R at 0. Then the expected regret of the algorithm is upper bounded by:

Reg ≤ 2((L+ ū+max
k

|pk|)
√
K log(K) + L

√
d+ LDiam(∆))

√
T + 2L

√
K log(K).

Note that this regret bound is tight: when R = 0 the problem we consider reduces to a K-armed
bandit with bounded rewards E[max(E[ut | ct,k], 0) − pk] for arm k ∈ [K], which has a Ω(

√
T )

regret lower bound (Lattimore & Szepesvári, 2020). It is of the same order in T as our regret upper
bound. Remark that R = 0 implies that L = 0 and we do recover the regret bound for the EXP3
algorithm. Similarly if K = 1 the bandit regret contribution disappears. In our analysis, the regret
due to the interaction between the bandit and the online fair allocation is L

√
K log(K)T .

The time-horizon dependent parameters used in Algorithm 1 can be adapted to obtain an anytime
algorithm. While using a doubling trick directly for η is not possible as some protected attribute
would already be selected when restarting the algorithm, we can use an adaptive learning rate of
ηt = O(1/

√
t). Indeed due to the boundedness of the (λt)t∈T (Lemma 3.2), we can act as if we had

a finite diameter for the space of the λt. This results in a slight increase of regret, the constant term in
Theorem 3.1 now scaling in O(

√
T ).

3.4 Sketch of proof

As mentioned above, when K = 1 (resp. R = 0) the problem reduces to fair online allocation
as in Balseiro et al. (2021); Celli et al. (2022) (resp. to multi-armed bandits). The main technical
difficulty thus lie in combining algorithms used in these problems. Ideally, we would have access
to some optimal dual parameter λ∗k before we run the algorithm so that we can simply run a bandit
algorithm, which is obviously not possible as the selected source kt affects the fairness, and the
selected parameter λt affects the arms virtual rewards. In particular it is not clear how the λt evolve
in the worst case while the algorithm is running. Instead we alternate between those primal and dual
updates. We thus need to show that this alternation indeed achieves good performance.

We present two important lemmas used in the proof of Theorem 3.1. The first one guarantees that
doing a gradient descent with R̄ implies that the dual values λt remain bounded. This is crucial for
EXP3 as it implies that the virtual values φ remain bounded along the path of the λt.
Lemma 3.2. Let λ0 ∈ Rd, η > 0, and an arbitrary sequences (δ1, δ2, . . . ) ∈ ∆N. Assume
that λ0 ∈ ∂R(0) and define recursively λt by Equations (8) and (9). Then for all t, we have
∥λt∥2 ≤ L+ 2ηDiam(∆).
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Sketch of Proof. The main idea is to show that the distance of λt to the reunion of subgradients of
R̄ (which is bounded by Lipschitzness property) is a decreasing function in t. We can show this by
using the KKT conditions of the optimization problem. The convex set over which we optimize is
a simple Euclidean ball, because of our modification, centered around the appropriate point hence
allowing us to redirect the gradient λt+1 − λt towards this set. Moreover, we add some “security”
around this set of the size of the gradient bound to make sure that the λt remains in this set. The full
proof can be found in Appendix D.3.

The second lemma guarantees that having access to the conditional expectation E[at|ctk] is enough
to derive a good algorithm when considering the conditional expectation of the total utility. This way
we avoid the computation of the conditional expectation of R, which would be more difficult.

Lemma 3.3. For (x1, . . . , xT ) and (k1, . . . , kT ) generated according to Algorithm 1, with δt =
xtE[at | ctkt ], we have the following upper bound:

∣∣∣E[R( 1
T

T∑
t=1

atxt)−R(
1

T

T∑
t=1

δt)]
∣∣∣ ≤ 2L

√
d

T
.

Sketch of proof. We use the Lipschitz property of R and some inequalities to directly compare the
difference of the sums. The variable xt depends on the past history and needs to be carefully taken
into account, through proper conditioning. Finally, we compute the variance of a sum of martingale
differences. See proof in Appendix D.4.

Using these two Lemmas, we now give the main ideas of the proof of Theorem 3.1. First, we upper-
bound OPT through a dual function involving the convex conjugate R∗, with similar arguments as in
Balseiro et al. (2021); Celli et al. (2022). Then we need to lower-bound ALG with this dual function
minus the regret. The main difficulty is that the source virtual rewards distribution changes with λt,
and so does the average λt target through πt. The performance of ALG can be decomposed at each
step t into the sum of the virtual reward and a term in R∗(λt) encoding the fairness penalty. We deal
with the virtual rewards using an adversarial bandits algorithm able to handle any reward sequence
using techniques for adversarial bandits algorithm from Hazan (2022); Lattimore & Szepesvári
(2020), as the λt are generated by a quite complicated Markov-Chain. These rewards are bounded
because of Lemma 3.2. This yields the two regret terms in

√
K log(K), the second one stems from

the difference between ∆̄ and ∆. For the fairness penalty, using the online gradient descent on the
λt we end up being close to the penalty of the conditional expectations up to the regret term in
Diam(∆). This last term is close to the true penalty through Lemma 3.3. This provides us with a
computable regret bound where all the parameters are known beforehand. The full proof can be found
in Appendix E.

3.5 Public contexts

We now go back to the general case with |Z| > 1 finite. We would like to derive a good algorithm,
which also takes into account the public information zt. Reusing the analogy with bandit problems,
this seems to be akin to the contextual bandit problem, where we would simply run the algorithm for
each context in parallel. However, this would be incorrect: not only for a fixed public context does
the non-separability of R couples the source selection with the fairness penalty, it also couples all
of the public contexts zt together. Hence the optimal policy is not to take the best policy for each
context, which is once again different from the classical bandit setting.

The solution is to run an anytime version of the EXP3 algorithm for each public context in Z , but
to keep a common λt for the evaluation of the virtual value. While it is technically not much more
difficult and uses similar ideas to what was done for different sources when |Z| = 1, the fact that
only one of the "block" of the algorithm (the bandit part) needs to be parallelized, is quite specific
and surprisingly simple.

Proposition 3.4. For µ the probability distribution over Z finite, we can derive an algorithm that
has a modified regret of order O(

√
TK log(K)

∑
z∈Z

√
µ(z)), where µ(z) is the probability that

the public attribute is z.
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The algorithm and its analysis are provided in Appendix J.1. Note that in the worst case, when Z is
finite, one has

∑
z∈Z

√
µ(z) ≤

√
|Z| by Jensen’s inequality on the square root function.

If Z is not finite but a bounded subset of a vector space set of dimension r, such as Z = [0, 1]r,
additional assumptions on the smoothness of the conditional expectations are sufficient to obtain a
sub-linear regret algorithm:
Proposition 3.5. If the conditional expectations of at and ut are both Lipschitz in z, then discretizing
the space Z = [0, 1]r through an ϵ-cover and applying the previous algorithm considering that one
public context corresponds to one of the discretized bins, we can obtain a regret bound of order
O(T (r+1)/(r+2)).

The proof of this result uses standard discretization arguments under Lipschitz assumptions from
Perchet & Rigollet (2013), which can also be found in Chapter 8.2 of Slivkins (2019) or in Exercise
19.5 of Lattimore & Szepesvári (2020). Specificities for this problem, such as these assumptions
being enough to guarantee that φ is Lipschitz in z, can be found in Appendix J.2.

4 Extensions

4.1 Other types of fairness penalty

The fairness penalty term of Equation (1) is quantified as TR(
∑
atxt/T ). While this term is the

same as the one used in Celli et al. (2022) and can encode various fairness definitions (see the
discussion in the aforementioned paper), this does not encompass all possible fairness notions. For
instance, one may want to express fairness as a function of

∑
atxt/

∑
t xt, which is the conditional

empirical distribution of the user’s protected attributes given that they were selected. This would lead
to replacing the original penalty term by (

∑
t xt)R(

∑
atxt/

∑
t xt).

As pointed out in Celli et al. (2022), one possible issue is that R(
∑
atxt/

∑
t xt), in general, is not

convex in x, even if R is convex. However (
∑
t xt)R(

∑
atxt/

∑
t xt) is the perspective function of

R(A(.)) (with A the matrix with columns the at), which is thus convex. Hence, Algorithm 1 can be
adapted to handle this new fairness penalty with two modifications. First, for the bandit part, we run
the algorithm with a new virtual reward function, expressed as:

φ̃(λt, ctk, k) = max(E[ut | ctk]− ⟨λt,E[at | ctk]⟩+R∗(λt), 0)− pk.

This leads to an allocation xt = 1 if E[ut | ctkt ] +R∗(λt) ≥ ⟨λt,E[at | ctkt ]⟩ and xt = 0 otherwise.

Second, we modify the set on which the dual descent is done. The set ∆ now becomes ∆̃ = Conv(A)

(without the union with 0), and we now use δ̃t = E[at | ctkt ] instead of δt = xtE[at | ctkt ]. Line
(8) remains unchanged up to replacing δ and ∆ by δ̃ and ∆̃. Finally the dual parameter update now
becomes λt+1 = λt − ηxt(γt − δ̃t), which means that whenever xt = 0, λt does not change.

With these modifications, the following theorem (whose proof is very similar to the one of Theorem 3.1
and detailed in Appendix G), shows that we recover similar regret bounds as previously, with some
modified constants due to the presence of R∗ in the virtual reward, and the modified ∆. This yields a
new class of usable fairness penalties which was previously not known to work.
Theorem 4.1. Using Algorithm 1 with the modifications detailed above, the regret with respect to the
objective with the modified penalty (

∑
t xt)R(

∑
t atxt/

∑
t xt) is of order O(

√
T ).

4.2 Learning conditional utilities E[ut | ctk]

To compute the virtual values, the algorithm relies on the knowledge of E[ut | ctk] for all possible
context values. We now show how to relax this assumption even if the decision maker receives the
feedback ut only when the user is selected (xt = 1). We shall make the usual structural assumption
of the classical stochastic linear bandit model. The analysis relies on Chapters 19 and 20 of Lattimore
& Szepesvári (2020), and only the main ideas are given here. For simplicity we will assume that there
are no public contexts (|Z| = 1).

We assume that the contexts ctk are now feature vectors of dimension qk, and that for all k ∈ [K],
there exists some vector ψk ∈ Rqk so that

ut − ⟨ψk, ctk⟩, (10)
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is a zero mean 1-subgaussian random variable conditioned on the previous observation (see a more
precise definition in Appendix H). We make classical boundedness assumptions, that for all k:
∥ψk∥2 ≤ ψ̄, that ∥ctk∥2 ≤ c̄, and that ⟨ψk, ctk⟩ ≤ 1 for all possible values of ctk.

Intuitively, we aim at running a stochastic linear bandit algorithm on each of the different sources
for Tk steps, where Tk is the number of times that source k is selected, but this breaks because
of dependencies among the k sources. Hence, what we do is to slightly change the rewards and
contextual actions, so that we do something akin to artificially running K bandits in parallel for T
steps. We force a reward and action of 0 for source k whenever it is not selected, and consider that
each source is run for T steps (even if it is actually selected less than T times). Thus we can directly
leverage and modify the existing analysis for the stochastic linear bandit. The full algorithm is given
in Appendix H.
Proposition 4.2. Given the above assumptions, the added regret of having to learn E[ut | ctk] is of
order O(

√
KT log(T )).

If the decision maker knows the optimal combination of sources, she can simply select sources
proportionally to this combination, and actually learn the conditional expectation independently for
each source. The worst case is to have to pull each arm T/K times, which then incurs an additional
regret with the same

√
K constant. This shows that this bound is actually not too wasteful, as the

cost of artificially running these bandits algorithm in parallel only impacts the logarithmic term.

5 Conclusion

We have shown how the problem of optimal data purchase for fair allocations can be tackled, using
techniques from online convex optimization and bandits algorithms. We proposed a computationally
efficient algorithm yielding a O(

√
T ) regret algorithm in the most general case. Interestingly, because

of the non separable penalty R, the benchmark is different from a bandit algorithm, as randomization
can strictly improve the performance for some instances, even though the setting is stochastic. We
have also presented different types of fairness penalties that we can additionally tackle compared to
previous works, in particular in the full information setting, and some instances where assumptions
on the decision maker’s knowledge can be relaxed.

Throughout the paper (even in Section 4.2 where we relax the assumption that E[ut | ctk] is known),
we assumed that the decision-maker knows E[at | ctk]. This assumption is reasonable as this is
related to demographic data and not to a utility that may be specific to the decision maker. Yet, this
assumption can also be relaxed in specific cases. As an example, suppose that the decision maker can
pay different prices to receive more or less noisy versions of at that correspond to the data sources
(the pricing could be related to different levels of Local Differential Privacy for the users, see Dwork
& Roth (2014)). Then, under some assumptions, E[at | ctk] can also be learned online—we defer the
details to Appendix I.

The works of Balseiro et al. (2021) and Celli et al. (2022) can include hard constraints on some
budget consumption when making the allocation decision xt, which we did not include in our work.
If this budget cost is measurable with respect to ctk, then our analysis does not preclude using similar
stopping time arguments as was done in these two works. However if this budget consumption is
completely random, our algorithm and analysis can not be directly applied as this budget consumption
may give additional information on the at that was just observed. Regarding the i.i.d. assumption, in
Balseiro et al. (2021) adversarial inputs are also considered, and the same could be done here for the
contexts ct,k with similar results. However some stochasticity is still needed so that E[ut | ct,k] is
well defined, which leads to an ambiguous stochastic-adversarial model. An open question would be
to consider an intermediate case where E[ut | ct,k] would depend on t, and take into account learning
for non-stationary distributions.
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A Fairness Penalty

In the main part of the paper, we have considered a penalty with a general form R(
∑
t atxt/T ). Here

we give examples of fairness notions that can be encoded through this general penalty.

Statistical parity Notions likes statistical parity are defined as constraints on the independence
between protected attributes and selection decisions. More precisely, if X denotes a treatment
variable, and A the protected attributes of an individual, we say that X and A are fair with respect to
statistical parity if X and A are independent.

If X ∈ X and A ∈ A can take a finite number of values, this can be equivalently rewritten using
probability distribution: X satisfies statistical parity if for all (x, a) ∈ X ×A:

Pr(A = a,X = x) = Pr(A = a) Pr(X = x). (11)

To encode statistical parity in our framework, we consider that the at are one-hot encoding of the
protected attributes (i.e, at is a vector with d = |A| dimensions that is equal to 0 everywhere except
on the coordinate corresponding to the protected attribute of individual t, that equals 1). For the
decision variables xt ∈ {0, 1},

∑
t xt is the number of individual selected and

∑
t(at)ixt is the

number of selected individual whose protected attributed is i ∈ [d]. Hence, (11) rewrites as: for all
i ∈ [d]:

∑
t(at)ixt
T

=

(∑
t(at)i
T

)(∑
t xt
T

)
.

Recall that the variables at are i.i.d. and let us denote by α ∈ Pd the probability distribution vector of
the at. For large T , we have

∑
t at/T ≈ α. Which means that we will say that an allocation vector

x satisfies statistical parity if
∑
t atxt/T =

∑
t αxt/T , which can be equivalently rewritten as∑

t a
′
txt

T
= 0,

with a′t = at − α.

Penalties R corresponding to statistical parity In practice, achieving strict statistical parity is
very constraining, and most of the time some relaxation of this constraint is allowed, at the price
of some penalty (Ahani et al., 2021). In our paper, we penalize the non-independence through the
function R. There are different choices of penalty function that can be used:

• A natural choice can be to penalize as a function of the distance between joint empirical
distribution a′txt/T and 0. For instance, one could use R(a′txt/T ) = ||a′txt/T ||β for any
given norm || · || and any parameter β > 0.

• It is also possible to measure the non-independence with the empirical distribution of
the xt conditioned on at = a, which should be equal regardless of the protected group
a ∈ A. In this case, the empirical distribution conditioned on the protected group i ∈ [d] is∑
t atixt/

∑
t ati ≈

∑
t atixt/(αiT ). Similarly we the previous case, R can penalize how

far is this vector from 0.

In the two cases, the fairness penalty can be written as TR(
∑
t a

′
txt/T ), for some modified a′t that

are not necessarily one-hot encoder. This explains why we choose the set A to be more general than
the set of one-hot encoders.

If we want to target another specific proportion for each protected group, we can replace α by any
other distribution ν. Note that another possibility is to instead use the empirical distribution of the at
conditioned on the xt. This time the form of the vector is slightly different, it is

∑
t atxt/

∑
t xt;

this is the type of penalty tackled and discussed in Section 4.1.

Equality of opportunity Another popular fairness notion is the one of equality of opportunity
(Hardt et al., 2016), where the probability distribution is further conditioned on another finite random
variable yt taking some discrete value in Y that indicates some fitness of the individual. For Y a
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random variable with an outcome y ∈ Y considered as a positive opportunity, we say that X , A and
Y are fair with respect to equality of opportunity, if

X and A are independent given [Y = y].

In order to adapt this notion in the online allocation setting, is sufficient to consider the cartesian
product A′ = A× Y as an extended new set. Then if we would like to penalize with a metric related
to equality of opportunity, we can for instance compose R with the projection over the coordinates
corresponding to yt = 1.

Overall, this shows that the choice of R, the type of fairness vectors, and the choice of A are all
crucial when designing a fairness penalty.

B A More General Online Allocation Setting

In the main body of the paper, we choose to simplify the exposition and to restrict ourselves to
xt ∈ {0, 1} and to formulate utilities as scalar variables ut. In the following, the regret bounds of
Algorithm 1 are obtained in a setting that is more general than the one previously introduced:

• We now consider that the allocations decisions xt are in some set X ⊂ Rn+. This makes it
possible to tackle bipartite matching problems, by letting X = {x ∈ Rn+ |

∑n
i=1 xi ≤ 1}

be a matching polytope.
• Instead of a random scalar ut being drawn, we suppose that a random function ft : X → R

is drawn. The functions ft are supposed u.s.c. and are all bounded in absolute value by some
f̄ . This could simply be a deterministic concave function of ut for instance. Remark that
when we assume that the conditional expectation can be computed, the decision maker’s
required knowledge is more demanding, as she needs to be able to compute it for all x ∈ X .

• Instead of a random vector, a continuous random function at : X → A can be drawn, with
∥at(x)∥2 uniformly bounded for all at and x, and we define ∆ = Conv(A). We suppose
that ∥at(x)∥2 ≤ 1, which can be done without loss of generality.

The setting of Section 2.1 is recovered by using ft(x) = utx, at(x) = atx and X = {0, 1}. For the
more general setting, we need to redefine the virtual value with ft and at as:

φ(λ, ctk, k) = max
x∈X

E[ft(x)− ⟨λt, at(x)⟩ | ctk]− pk (12)

This virtual reward is well defined by Lemma D.1. We rewrite Algorithm 1 using ft and this new
virtual value to obtain Algorithm 2. There are two differences with Algorithm 1: First we use the
argmax function in (13) instead of the explicit form of Equation (6); Second we use the virtual value
function (12) in Equation (14) instead of the virtual value function of Equation (5).

C Reduction from auctions

In the rest of the paper, we assume that the decision variables are the values xt. In this section,
we explain how our setting can be adapted the the case of targeted advertisement, that are usually
allocated through auction mechanisms. In the later, the decision variables are the bids but not the xt:
the variables xt are a consequence of the bids of the decision maker and of the bids of others.

Model The model that we consider is as follows: for user t, after choosing a source of information
kt, the decision maker observes ctkt and decides to bid bt ∈ B. The allocation xt = 1 is given if her
bid is higher than the maximum bid of the other bidders. If the bidder wins the auction, it then pays a
price that depends on the auction format (e.g., bt for first price auctions and the second highest bid for
second price auctions). Assuming that the bid of the others are not affected by the decision maker’s
strategy, the bids of the others are i.i.d. (see Iyer et al. (2011); Balseiro et al. (2014); Flajolet & Jaillet
(2017) for a discussion about the stationarity assumption). In this case, one falls back to our model
with i.i.d. users, except that the decision variables are the variables bt and we have xt(bt). We can
apply our algorithm to this setting, by replacing the set of strategies X by the set of possible bids B,
which is also compact. For that, we need to consider a new utility function b 7→ ut(b)xt(b) which is
a bounded u.s.c. function, and the new protected attributes function b 7→ atxt(b). If E[atxt(b) | ctk]
is continuous in b, this falls under the setting that we described in Appendix B.
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Algorithm 2 Online Fair Allocation with Source Selection — General algorithm
Input: Initial dual parameter λ0, initial source-selection-distribution π0 = (1/K, . . . , 1/K), dual
gradient descent step size η, EXP3 step size ρ, cumulative estimated rewards S0 = 0 ∈ RK .
for t ∈ [T ] do

Draw a source kt ∼ πt, where (πt)k ∝ exp(ρS(t−1)k) and observe ctkt .
Compute the allocation for user t:

xt = argmax
x∈X

E[ft(x)− ⟨λt, at(x)⟩ | ctkt ]. (13)

Update the estimated rewards sum and sources distributions for all k ∈ [K]:

Stk = St−1,k + φ̂(λt, ctk, kt), (14)

Compute the expected protected group allocation δt = E[at(xt) | ctkt , xt] and compute the dual
protected groups allocation target and update the dual parameter:

γt = argmax
γ∈∆δt

{⟨λt, γ⟩ − R̄(γ)},

λt+1 = λt − η(γt − δt).

end for

Examples of utilities: first-price and second price auctions Let us denote by vt the value of the
user t for the decision maker, and by dt the highest bid of the others for this user. The decision maker
will win the auction if bt ≥ dt. Hence, the allocations will be xt(bt) = 1bt>dt . Moreover, the utility
function will be:

• ft(bt) = (vt − bt)xt(bt) for first price auctions.

• ft(bt) = (vt − dt)xt(bt) for second price auctions.

These functions are u.s.c with respect to bt. Moreover, under mild assumption that the distribution of
the highest bid of the others dt has a density, the function E[atxt(b)|ctkt ] is continuous. Hence, our
algorithm can be applied.

Difficulty: Knowledge is power To apply the algorithm, the main difficulty is to be able to compute
the value bt that maximizes Equation (12). For that it is sufficient for the decision maker to have
access to E[ft(bt)|ctkt ] and E[atxt(bt)|ct,kt ]. This presupposes a lot of distributional knowledge
from her part. In the case of full information with at and vt directly given, Balseiro et al. (2021);
Celli et al. (2022) were able to obtain an efficient reduction from online allocations to second price
auctions, using the incentive compatible nature of this kind of auction. Similarly, Flajolet & Jaillet
(2017) were able to derive efficient bidding strategies using limited knowledge for repeated auctions
with budget constraints under some independence assumptions. Translating what is done in these two
lines of work to our general model is difficult because we would need to rely on the assumption that
at and dt are independent conditioned on ctkt . While we think that this assumption is not reasonable
because different agents might have access to different information sources, and because as the at is
common to all bidders it is correlated with all the bids hence also with dt, we explain in the remark
below how assuming independence can lead to a simple algorithm for second price auctions.

Some remarks:

• For our model, the first price and second price auctions are equally difficult: The amount of
knowledge needed to compute bt and πt is the same for both cases and first price auction is
not more difficult than the second-price auction setting (contrary to what usually happens).

• During this whole reduction from auctions, we have not assumed that the dt (or xt) are
observed as a feedback (whether the bidder wins the auction or not), and thus they are not
assumed to be observed in the benchmark either. This is because observing dt or xt could
give us access to information on at that are not contained in ctkt .

• If we do make the assumption that (ut, at) is independent of dt conditionally on all ctk,
then we do recover an easy algorithm for second price auctions, and we can allow for a
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benchmark taking into account the feedback dt (simply because now this feedback does not
give any additional information for the estimation of at). Indeed, in that case the optimal
bid is bt = E[vt − ⟨λt, at⟩ | ctk]. This follows from similar argument made in Flajolet &
Jaillet (2017), as for bt some Ht measurable bidding strategy we have:

E[vtxt − ⟨λt, at⟩xt − dtxt | ctkt ] = E[E[vtxt − ⟨λt, at⟩xt − dtxt | Ht, dt] | ctkt ]
= E[E[vt | ctkt ]xt − ⟨λt,E[at | ctkt ]⟩xt − dtxt | ctk]
= E[xt(E[vt | ctkt ]− ⟨λt,E[at | ctkt ]⟩ − dt) | ctk]
≤ E[max(E[vt | ctkt ]− ⟨λt,E[at | ctkt ]⟩ − dt, 0) | ctk],

and this last inequality is reached for bt = E[vt − ⟨λt, at⟩ | ctk].

D Technical & Useful Lemmas

In this section, we prove several lemmas that are useful for the proof of the main Theorem 3.1.

D.1 Preliminary lemmas

We first provide some simple lemmas. For completeness, we provide proofs of all results, even if
they are almost direct consequences of the definitions.
Lemma D.1. The virtual value function φ is well defined by Equation (12), as the argmax is
non-empty and the maximum is reached.

Proof. We simply need to have that E[ft(x) | ctk] and −⟨λ,E[at(x) | ctk]⟩ are u.s.c. in x. The
continuity of at is used to guarantee that −⟨λ, at(x)⟩ is u.s.c. regardless of the values of λ. This is
immediate from the definition of upper semi-continuity and the Reverse Fatou Lemma. We detail it
here for ft for completeness. We say that ft is u.s.c. if and only if

∀x ∈ X if there is a sequence (xn)n∈N so that xn −−−−→
n→∞

x, then lim sup
n→∞

ft(xn) ≤ ft(x).

For x ∈ X , let (xn)n∈N be a sequence so that xn → x. Let P be a probability distribution over
ft conditionally on ctk. The function |ft(xn)| ≤ f̄ , ft(xn) is integrable, we can apply the Reverse
Fatou Lemma for conditional expectation. If ft(xn) is not positive, we can apply it to ft(xn) + f̄
which is positive. Using the Reverse Fatou Lemma and the upper semi-continuity of ft we obtain:

lim sup
n→∞

∫
ft(xn)dP ≤

∫
lim sup
n→∞

ft(xn)dP ≤
∫
ft(x)dP.

This means that x 7→ E[ft(x) | ctk] is u.s.c. over X .

Because X is compact, and because the maximum of an u.s.c. function is reached over a compact set,
the maximum is well defined.

Lemma D.2. Let R̄ : δ 7→ infδ′∈∆{R(δ′) + L∥δ − δ′∥2}. Then R̄ = R over ∆, Lip(R) = Lip(R̄),
and R̄ is convex.

Proof. The function R̄ is obtained through the explicit formula of the Kirszbraun theorem, which
states that we can extend functions over Hilbert spaces with the same Lipschitz constant. Hence the
equality over ∆ and the same Lipschitz constant.

It remains to prove the convexity. Note that because R is proper, it is lower semi-continuous, ∥δ− ·∥2
as well, and ∆ is compact, hence the inf is reached and it is actually a minimum. Let δ1, δ2 in Rd
and α ∈ [0, 1], and let u1 and u2 be the minimums of the optimization problem for respectively δ1
and δ2. Let u = αu1 + (1− α)u2. We have u ∈ ∆ because ∆ is convex, and using that R is convex
and we have

R(u) + L∥(αδ1 + (1− α)δ2)− u∥2 ≤ α(R(u1) + L∥δ1 − u1∥2) + (1− α)(R(u2) + L∥δ2 − u2∥2)
= αR̄(δ1) + (1− α)R̄(δ2),

and taking the inf over ∆ on the left hand-side we obtain the convexity of R̄.
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D.2 Conditional expectation: notation and abuse of notations

In the analysis of the algorithm, we will consider conditional expectation by fixing some of the
random variables to specific values. To simplify notations, we will use the following notation: if
X and Y are random variables and g is a measurable function, then we denote EX [g(X,Y )] the
expectation with respect to X , that is:

EX [g(X,Y )] = E[g(X ′, Y )|Y ],

where X ′ is a random variable independent of Y that has the same law as X . This is equivalent to the
random variable obtained by fixing Y and taking the expectation with respect to the law of X only.

In Algorithm 2, we have assumed that the decision maker is able to compute E[ft(xt) | ctkt ] and
E[at(xt) | ctkt ]. While the law of ctkt is complicated (because it involves all past decision up to time
t), what the decision maker needs to compute is the value ζ(ctkt , x, kt), where ζ(c, x, k) = E[ft(x) |
ctk = c]. Those two quantities are equal because users are i.i.d. and kt and ft are independent
(conditioned on zt and the history).

This manipulation is properly stated by Lemma D.3. Indeed by denoting Ht−1 the whole history up
to time t − 1, and applying this Lemma: for xt the decision generated by the algorithm which is
(Ht−1, kt, ctkt) measurable, we have that

E[ft(xt) | ctkt ,Ht−1, kt] = ζ(ctkt , xt, kt) = Eft [ft(xt) | ctkt ]. (15)

It is identical for at(xt): for ζ ′(c, x, k) = E[at(x) | ctk = c] we have the following equality

E[at(xt) | ctkt ,Ht−1, kt] = ζ ′(ctkt , xt, kt) = Eat [at(xt) | ctkt ]. (16)

The following Lemma is a modification of the so-called "Freezing Lemma" (see Lemma 8 of Cesari
& Colomboni (2020)) which helps simplifying conditional expectations by allowing you to "fix" the
random variable if it is measurable with respect to the conditioning of the expectation:
Lemma D.3. Let X ,Y and Z be random variables with (X,Z) independent of Y , and g some
bounded measurable function. Let us denote by σ(X) the sigma-algebra generated by the random
variable X . Then

E[g(X,Y, Z) | σ(Y,Z)] = EX [g(X,Y, Z) | σ(Z)].

Proof. Let V (Y,Z) = EX [g(X,Y, Z) | σ(Z)]. To show that W is the conditional expectation of
g(X,Y, Z) given σ(Y,Z), we need to show that V is σ(Y,Z) measurable and that for any bounded
W that is σ(Y,Z) measurable we have

E[VW ] = E[g(X,Y, Z)W ].

We denote by µ the distribution of (X,Z) and ν the distribution of Y . By the Doob-Dynkin Lemma,
because W is σ(Y,Z) measurable, we have that W = h(Y,Z) where h is measurable. First, by
independence of Y and (X,Z), we have that the distribution of (X,Y, Z) is dν ⊗ dµ. Thus

E[g(X,Y, Z)W ] =

∫ ∫
g(x, y, z)h(y, z)dν(x, z)dν(y).

Now let us compute the other expectation using Fubini theorem as both g and h are bounded:

E[VW ] =

∫ ∫
V (y, z)h(y, z)dµ(z)dν(y)

=

∫
dν(y)

(∫
V (y, z)h(y, z)dµ(z)

)
=

∫
dν(y) (EZ [V (y, Z)h(y, Z)]) .

The random variable h(y, Z) is σ(Z) measurable, thus because V (y, Z) is a conditional expectation
given σ(Z), we have

EZ [V (y, Z)h(y, Z)] = EX,Z [g(X, y, Z)h(y, Z)] =
∫
g(x, y, z)h(y, z)dµ(x, z).
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Using Fubini again we obtain

E[VW ] =

∫
dν(y)

(∫
g(x, y, z)h(y, z)dµ(x, z)

)
=

∫ ∫
g(x, y, z)h(y, z)dµ(x, z)dν(y)

= E[g(X,Y, Z)W ],

which proves that this is indeed the conditional expectation, as the lemma stated.

D.3 Boundedness of λt — proof of Lemma 3.2

We next show the proof of the boundedness of the λt for the sequence generated by our Algorithm 1.
Lemma. Let λ0 ∈ Rd, η > 0, and an arbitrary sequences (δ1, δ2, . . . ) ∈ ∆N. We define recursively
λt as follows:

γt = argmax
γ∈∆δt

{⟨λt, γ⟩ − R̄(γ)},

λt+1 = λt + η(δt − γt).

Then for Λ = ∪δ∈∆̄∂R̄(δ) we have the following upper bound:

∥λt∥2 ≤ L+ 2ηDiam(∆) + Dist(λ0,Λ +B(0, 2ηDiam(∆))),

where B(0, 2ηDiam(∆)) is the ball centered in 0 and of diameter 2ηDiam(∆), with the diameter
and the distance taken with respect to the euclidean L2 norm.

Proof. Recall that ∆̄ = ∪δ∈∆∆δ, with ∆δ = {γ : ∥γ − δ∥2 ≤ Diam(∆)}. Hence, for any
δ ∈ ∆ and γ ∈ ∆̄, we have ∥γ − δ∥2 ≤ 2Diam(∆). Let Λ = ∪δ∈∆̄∂R̄(δ), and C = Conv(Λ) +
B(0, η2Diam(∆)). Using that R̄ is L-Lipschitz, we have that Λ is bounded by L for the norm ∥ · ∥2,
and so does Conv(Λ). Thus C is bounded by L+ 2ηDiam(∆) for ∥ · ∥2. This implies that, to prove
the theorem, it suffices to show that Dist(λt+1, C) ≤ Dist(λt, C) is true for all t. Indeed, this would
imply that

∥λt∥2 ≤ sup
c∈C

∥c∥2 +Dist(λt, C) ≤ L+ 2ηDiam∆+Dist(λ0, C).

In the remainder of the proof, we show that Dist(λt+1, C) ≤ Dist(λt, C). First, let us remark that γt
is the solution of a convex optimization problem, wit a constraint set ∆δt that can be rewritten as a
single inequality : ht(γ) ≤ 0, with ht(γ) = ∥γ − δt∥22 −Diam(∆)2. The derivative of this function
ht() is∇ht(γ) = 2(γ − δt). As the point δt is in the interior (assuming that Diam(∆) > 0) of ∆δt ,
Slater’s conditions hold, and we can apply the KKT conditions at the optimal point (γt). This implies
that there exists µ ≥ 0 such that 0 ∈ −λt + ∂R̄(γt) + µ2(γt − δt). This implies that there exists
λδt ∈ ∂R̄(γt) such that

λδt − λt = 2µ(δt − γt).

The norm of the left-hand side of the above equation must be equal to the norm of its right-hand
side, which means that ∥λδt − λt∥2 = 2µ∥δt − γt∥2. This determines the value of µ. Let αt =
η∥δt − γt∥2/∥λδt − λt∥2, the value λt+1 is therefore equal to:

λt+1 = λt + η(δt − γt) = λt + αt(λδt − λt) = (1− αt)λt + αtλδt .

We now consider multiple cases:

Case 1. If αt > 1, then we rewrite λt+1 as:

λt+1 = λδt + (1− αt)(λt − λδt)

= λδt + η(∥δt − γt∥2 − ∥λδt − λt∥2)
λt − λδt

∥λt − λδt∥2
.

By assumption, the λδt ∈ ∂R̄(γt) ⊂ Λ. Moreover, the norm of the second term is bounded by
2ηDiam(∆) because

|∥δt − γt∥2 − ∥λδt − λt∥2| = ∥δt − γt∥2 − ∥λδt − λt∥2 ≤ 2Diam(∆).
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This implies that λt+1 ∈ Conv(Λ) + B(0, 2ηDiam(∆)) = C, and therefore that Dist(λt+1, C) =
0 ≤ Dist(λt, C).
Case 2. If αt ≤ 1 and λt ∈ C. In this case, λt+1 is a convex combination of λδt and λt. As,
λδt ∈ Λ ⊂ C and λt ∈ C, and because C is convex, we have that λt+1 ∈ C.

Case 3. If αt ≤ 1 and λt ̸∈ C, we define πt = λt the projection of λt on C. Let yt = (1− αt)πt +
αtλδt . Because C is convex, αt ∈ [0, 1], λδt ∈ C, and πt ∈ C, we have yt ∈ C. This implies that

Dist(λt+1, C) ≤ ∥λt+1 − yt∥2
= (1− αt)∥λt − πt∥2
= (1− αt)Dist(λt, C)
≤ Dist(λt, C).

This shows that for all cases, Dist(λt+1, C) ≤ Dist(λt, C), which concludes the proof.

Using this previous Lemma, we can simply bound the virtual reward functions.
Lemma D.4. For λ0 ∈ ∂R(0), and for λt generated according to Algorithm 1, the virtual reward
function

φ(λt, ctk, k) = max
x∈X

E[ft(x)− ⟨λt, at(x)⟩ | ctk]− pk,

is bounded in absolute value by

m := f̄ + L+ 2ηDiam(∆) +max
k

|pk|.

Proof. Because at(x) used for the update of λt is in ∆ for all t, we can apply Lemma 3.2 to bound
the trajectory of the (λt)t∈[T ] generated by the algorithm. Using a triangle inequality first, then
Cauchy-Schwartz inequality, and finally the boundedness assumptions on ft and at with the Lemma,
we have

|max
x∈X

E[ft(x)− ⟨λt, at(x)⟩ | ctk]− pk| ≤ |max
x∈X

E[ft(x) | ctk]|+ |max
x∈X

E[⟨λt, at(x)⟩ | ctk]|+ |pk|

≤ |max
x∈X

E[ft(x) | ctk]|+ |max
x∈X

E[∥λt∥2∥at(x)∥2 | ctk]|+ |pk|

≤ f̄ + L+ 2ηDiam(∆) +max
k

|pk|.

Lemma D.5. For λ0 ∈ ∂R(a) (for some a ∈ A), and for λt generated according to Algorithm 1,
if the quantity at(x)/x is always well defined and in ∆ for all at and all x, then the virtual reward
function

φ̃(λt, ctk, k) = max
x∈X

(E[ft(x)− ⟨λt, at(x)⟩ | ctk] +R∗(λt))− pk,

is bounded in absolute value by

m̃ := f̄ + L+ 2ηDiam(∆) +max{R∗(λ) | ∥λ∥2 ≤ L+ 2ηDiam(∆)}+max
k

|pk|.

Proof. The proof of this Lemma is identical to the previous one, except that we also need to bound
R∗. As a convex conjugate, R∗ is convex. By Corollary 10.1.1 of Rockafellar (1970), every convex
function from Rd to R is continuous. By Lemma 1 of Celli et al. (2022), we know that the domain of
R∗ is indeed Rd, hence it is continuous.

Now let us look at the modified dual update λt+1 = λt + η(γtxt − at(xt)). We can factorize by xt
to recover λt+1 = λt + xtη(γt − at(xt)/xt). Because of our hypothesis, at(xt)/xt ∈ ∆, therefore
we can apply Lemma 3.2 with ηt = ηxt, which is upper bounded by η. Hence the λt are all in
{λ ∈ Rd | ∥λ∥2 ≤ L+ 2ηDiam(∆)} which is compact. By continuity of R∗, it is continuous over
this compact set hence bounded, and the virtual reward is bounded by m̃ overall.

Remark. We made the technical assumption that at(x)/x ∈ ∆. It is clear that when at is linear, such
as atx, then atx/x = at ∈ A ⊂ ∆ and the condition is satisfied. Regardless, if at(x)/x is always
well defined and bounded, we can simply increase the size of ∆, so that this quantity always remain
in ∆. Of course, this will degrade the performance of the algorithm as it depends on Diam(∆).
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D.4 Expected difference between penalty and penalty of expectation — Proof of Lemma 3.3

We next prove the following lemma, which tells us that observing the conditional expectation of the
at(xt) is enough to observe the expectation of the penalty R:
Lemma. For (x1, . . . , xT ) and (k1, . . . , kT ) generated according to Algorithm 1, we have the
following upper bound:

|E[R( 1
T

T∑
t=1

atxt)−R(
1

T

T∑
t=1

Eat [at(xt) | ctkt ])]| ≤ 2L

√
d

T
.

Proof. Let us denote by δt = Eat [at(xt) | ctkt ] the expectation of at(xt) with xt fixed. Using first
the triangle inequality for the expectation, and then the Lipschitzness of R we have that

|E[R( 1
T

T∑
t=1

at(xt))−R(
1

T

T∑
t=1

Eat [at(xt) | ctkt ])]| ≤ E[|R( 1
T

T∑
t=1

at(xt))−R(
1

T

T∑
t=1

δt)|]

≤ L

T
E[∥

T∑
t=1

(at(xt)− δt)∥2]

≤ L

T

√√√√E[∥
T∑
t=1

(at(xt)− δt)∥22], (17)

where we used Jensen’s inequality with x 7→
√
x for the last inequality.

We denote by δt,l the l-th coordinate of δt for l ∈ [d], and similarly for at,l. We have:

E[∥
T∑
t=1

(at(xt)− δt)∥22] =
d∑
l=1

E[

(
T∑
t=1

(at,l(xt)− δt,l)

)2

]

By Equation (16), the sequence at,l(xt) − δt,l is a Martingale difference sequence for the filtra-
tion σ((aτ , cτkτ , kτ )τ∈[t−1], kt, ctkt). Hence, using that the expectation is 0 by the law of total
expectation, we obtain that

E

( T∑
t=1

(at,l(xt)− δt,l)

)2
 = Var[

T∑
t=1

(at,l(xt)− δt,l)] =

T∑
t=1

Var[at,l(xt)− δt,l]. (18)

The terms at,l(xt)− δt,l are bounded in [−2, 2] by the assumption that ∥at(x)∥2 ≤ 1, therefore we
can bound each of these variances by 4, for a total bound of 4T . Plugging this into Equation (17)
concludes the proof.

E Proof of the main Theorem 3.1

The proof builds upon the proof used in the full information case (at and ft are given) from Balseiro
et al. (2021); Celli et al. (2022).

In order to bound the regret, we upper bound the performance of OPT, and lower bound the
performance of ALG. We proceed by first upper-bounding the optimum.

Recall that the convex conjugate R∗ of R (which we consider as a function from Rd → R that is
+∞ outside of ∆) is a function that associates to a dual parameter λ the quantity R∗(λ):

R∗(λ) = max
γ∈Rd

{⟨γ, λ⟩ −R(γ)} = max
γ∈∆

{⟨γ, λ⟩ −R(γ)}.

The Fenchel-Moreau theorem, tells us that for a proper convex function, the biconjugate is equal to
the original function: R∗∗ = R.

Recall that φ is defined in Equation (5). We define the dual vector function D(λ) =
(D(λ, 1), . . . ,D(λ,K)) which is a vector representing the value of the dual conjugate problem.
For coordinate k ∈ [K], it is defined as

D(λ, k) = E[φ(λ, ctk, k)] +R∗(λ).
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We denote the unit simplex of dimension K by PK = {π ∈ RK | πk ≥ 0,
∑K
k=1 πk = 1}.

Lemma E.1. We have the following upper-bound for the offline optimum:

OPT ≤ T sup
π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩,

Proof. We upper bound the performance of OPT through a Lagrangian relaxation using the convex
conjugate of R, as was done similarly in Jenatton et al. (2016).

Let (k1, . . . , kT ) ∈ [K]T be the (deterministic) sequence of sources selected, and (x1, . . . , xT ) ∈ X T

the offline allocation. These xt are all σ(c1k1 , . . . , cTkT ) measurable. We define f̃t(x) = Eft [ft(x) |
ctkt ] and δt = Eat [at(xt) | ctkt ].
Using Jensen’s inequality for R convex we have

E[U(k,x) | c1k1 , . . . , cTkT ] =
T∑
t=1

E[ft(xt)− pkt | c1k1 , . . . , cTkT ]− TE[R(
1

T

T∑
t=1

at(xt)) | c1k1 , . . . , cTkT ]

≤
T∑
t=1

E[ft(xt)− pkt | c1k1 , . . . , cTkT ]− TR(E[
1

T

T∑
t=1

at(xt) | c1k1 , . . . , cTkT ]).

Because the xt are σ(c1k1, . . . , cTkT ) measurable, and by independence of the (ft, at, ct1, . . . , ctK)
we have that E[at(xt) | σ(c1k1 , . . . , ctkT )] = Eat [at(xt) | ctkt ] = δt. With the same argument we
obtain that E[ft(xt) | σ(c1k1 , . . . , ctkt)] = f̃t(xt). Therefore

E[U(k,x) | c1k1 , . . . , cTkT ] ≤
T∑
t=1

f̃t(xt)− pkt − TR(
1

T

T∑
t=1

δt). (19)

We define the function L : (k, c,x, λ) 7→
∑T
t=1 f̃t(xt)− pkt − ⟨λ, δt⟩+ TR∗(λ).

We now show that this function is always greater than the conditional expectation of U :

L(k, c,x, λ) ≥ inf
λ∈Rd

L(k, c,x, λ)

=

T∑
t=1

f̃t(xt)− pkt − T sup
λ∈Rd

{⟨λ, 1
T

T∑
t=1

δt⟩ −R∗(λ)}

=

T∑
t=1

f̃t(xt)− pkt − TR∗∗(
1

T

T∑
t=1

δt)

=

T∑
t=1

f̃t(xt)− pkt − TR(
1

T

T∑
t=1

δt)

≥ E[U(k,x) | ck], (20)

the last equality results from applying Fenchel-Moreau theorem, and the last inequality is obtained
by using Equation (19).

Let us now compute the max in (x1, . . . , xT ) of L. Looking at the terms inside the sum, the only
possible dependency of f̃t(xt) − pkt − ⟨λ, δt⟩ to other contexts for t′ ̸= t, is possible through the
allocation xt, which can depend on the other contexts. Therefore the maximum of the sum is the sum
of the maximums. This yields that

max
(x1,...,xT )

L(k, c,x, λ) =
T∑
t=1

max
xt∈X

Eft,at [ft(xt)− pkt − ⟨λ, at(xt)⟩ | ctkt ] + TR∗(λ)

=

T∑
t=1

(φ(λ, ctkt , kt) +R∗(λ)).
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Thus by taking the max in (x1, . . . , xT ) on both sides of Equation (20) and then taking the expectation
(which is over the contexts as everything is measurable with respect to them), we obtain

E[ max
(x1,...,xT )

E[U(k,x) | c1k1 , . . . , cTkT ]] ≤
T∑
t=1

E[φ(λ, ctkt , kt) +R∗(λ)] =

T∑
t=1

D(λ, kt). (21)

What is nice here, is that by looking at the dual problem which was originally to address the
non-separability in x, we also have the separability in kt.

We denote by Tk =
∑T
t=1 1[kt = k] the number of times source k is selected, and by π̂ =

(T1/T, . . . , TK/T ) ∈ PK the selection proportions of each source k over the T rounds. This vector
of proportions can be seen as the empirical distribution of selected sources. We can rewrite in the
following way the dual objective

T∑
t=1

D(λ, kt) =

K∑
k=1

TkD(λ, k) = T

K∑
k=1

π̂kD(λ, k) = T ⟨π̂,D(λ)⟩.

Finally, using the previous equation with Equation (21), taking first the inf in λ and then the max in
kt we can conclude:

OPT ≤ T max
k1,...,kT

inf
λ∈Rd

⟨π̂,D(λ)⟩ ≤ T sup
π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩.

Remark. Note that the function D(λ) is convex and lower semi-continuous (l.s.c.) (as the supremum
of a family of l.s.c. functions). In addition, ⟨π,D(λ)⟩ is concave and u.s.c. in π by linearity, and PK
is compact convex. Hence Sion’s minimax theorem can be applied, and the sup in π is actually a
max.

We can now proceed to the rest of the proof of the main Theorem 3.1:

Theorem E.2. For η = L/(2Diam(∆)
√
T ), m = f̄ + L + maxk|pk| + 2ηDiam(∆), ρ =√

log(K)/(TKm2), and λ0 ∈ ∂R(0), algorithm Algorithm 1 has the following regret upper bound:

Reg ≤ 2((L+ f̄ +max
k

|pk|)
√
Klog(K) + L

√
d+Diam(∆))

√
T + 2L

√
K log(K)

Proof. We first lower bound the performance of the algorithm. Then we simply need to apply
Lemma E.1 to get the regret bound. Let Ht be the natural filtration generated by the (cτkτ , kτ )τ∈[t].
Let xt, kt, λt and γt defined as in 1. We denote by δt = Eat [at(xt) | ctkt ]. The quantity δt is in ∆
because of the expectation and by convexity of ∆. Note that here these are all random variables, with
γt and λt being Ht−1 measurable and xt being Ht measurable.

To first get a broad picture on how we are going to lower bound the utility of the algorithm, let us
decompose it into different parts. It can be rewritten as

E[
T∑
t=1

ft(xt)− pkt − TR(
1

T

T∑
t=1

at(xt))] =E

[(
T∑
t=1

ft(xt)− pkt − R̄(γt)

)
(22)

+

(
T∑
t=1

R̄(γt)− TR(
1

T

T∑
t=1

δt)

)
(23)

+

(
TR(

1

T

T∑
t=1

δt)− TR(
1

T

T∑
t=1

at(xt))

)]
. (24)

The first line (Equation (22)) corresponds to some adjusted separable rewards, and we bound it by
first reducing it to the virtual rewards φ, and then using bandits algorithms techniques. The second
line (Equation (23)) corresponds to the difference between the unfairness of the adjusted rewards,
and the true unfairness, which is not big because of the gradient descent on λt. Finally the last line
(Equation (24)) corresponds to the difference between the penalty of the expected allocation and
the expected penalty of the allocation, which we have already shown in Lemma 3.3 is bounded by
O(

√
T ).
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Reduction of Equation (22) to a bandit problem with φ Using first the tower property of the
conditional expectation, and then Equation (15), we have that

E[ft(xt)] = E [E[ft(xt) | Ht]] = E [Eft [ft(xt) | ctkt ]] .

We add and remove ⟨λt, δt⟩, and use that xt is the allocation that yields the virtual reward function:

E[ft(xt)− pkt ] = E [Eft [ft(xt) | ctkt ]− pkt − ⟨λt, δt⟩+ ⟨λt, δt⟩]
= E[φ(λt, ctkt , kt) + ⟨λt, δt⟩].

Using the definition of γt as a maximizer, we have

−R̄(γt) = −R̄(γt) + ⟨λt, γt⟩ − ⟨λt, γt⟩
= max
γ∈∆δt

{⟨λt, γ⟩ − R̄(γ)} − ⟨λt, γt⟩.

Because ∆ ⊂ ∆δt and, because R̄ and R are equal over ∆ we recover a lower bound with R∗:

max
γ∈∆δt

{⟨λt, γ⟩ − R̄(γ)} − ⟨λt, γt⟩ ≥ max
γ∈∆

{⟨λt, γ⟩ − R̄(γ)} − ⟨λt, γt⟩

= max
γ∈∆

{⟨λt, γ⟩ −R(γ)} − ⟨λt, γt⟩

= R∗(λt)− ⟨λt, γt⟩.

Thus
E[ft(xt)− pkt − R̄(γt)] ≥ E[φ(λt, ctkt , kt) +R∗(λt) + ⟨λt, δt − γt⟩]. (25)

Application of Bandits Algorithm Let πt be the distribution generated according to the algorithm.
We actually have that E[φ(λt, ctkt) +R∗(λt)] is just (through independence, measurability, and total
expectation arguments) E[⟨πt,D(λt)⟩]. Hence the main idea is to apply Online Convex Optimization
theorems to the linear rewards D(λt) with the decision variable πt (see Hazan (2022), Orabona
(2019) or Lattimore & Szepesvári (2020) for introductions to these types of problems). Here we don’t
have access either to D(λt), nor even to D(λt, kt): we are in an adversarial bandit setting regarding
the λt, and also in a stochastic setting regarding the expectation in D taken with respect to ct. Hence
we use an unbiased estimator of the gradient D(λt) for the linear gain, which we will describe further
down.

Notice that it is crucial to be able to deal with any sequence D(λt), this is because these are neither
independent nor related to martingales, as the λt are generated from a quite complicated Markov
Chain with states (λt, ct, πt, kt). Hence the outside expectation does not help us much, and we will
face as losses (or here rewards) the random arbitrary sequence of the D(λt). We don’t care about
R∗(λt) as it is Ht−1 measurable.

Here the different arms of a bandit problem correspond to different sources. Using the tower rule, we
have

E

[
T∑
t=1

φ(λt, ctkt , kt)

]
= E

[
T∑
t=1

E[φ(λt, ctkt , kt) | Ht−1]

]
.

To use results for adversarial bandits, the bandits rewards need to be bounded. By Lemma D.4,
the virtual reward φ, and consequently its conditional expectation, is bounded by m := f̄ + L +
2ηDiam(∆) +maxk |pk|. Therefore E[φ(λt, ctk, k) | Ht−1]/m ∈ [−1, 1].

We now construct an unbiased estimator of E[φ(λt, ctk, k) | Ht−1], which is the following importance
weighted estimator:

φ̂(λt, ctk, k) = m− 1[kt = k]
(m− φ(λt, ctk, k))

πtk
.

This estimator is unbiased for the conditional expectation given Ht−1. Indeed because πtk is Ht−1

measurable, and because 1[kt = k] and φ(λt, ctk, k) are independent conditionally on Ht−1 we
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have:

E[φ̂(λt, ctk, k) | Ht−1] = m− 1

πtk
E[(m− φ(λt, ctk, k))1[kt = k] | Ht−1]

= m− 1

πtk
E[m− φ(λt, ctk, k) | Ht−1]E[1[kt = k] | Ht−1]

= m− E[m− φ(λt, ctk, k) | Ht−1]

= E[φ(λt, ctk, k) | Ht−1],

which is exactly the reward needed.

We can now use the following Theorem 11.2 from Lattimore & Szepesvári (2020):

Theorem (EXP3 Regret Bound). Let X ∈ [0, 1]T×K be the rewards of an adversarial bandit, then
running EXP3 with with learning rate ρ =

√
2 log(K)/(TK) and denoting kt the arm chosen at

time t, achieves the following regret bound:

max
k∈K

T∑
t=1

Xt,k − E[
T∑
t=1

Xt,kt ] ≤
√
2TK log(K)

The fact that we can possibly have negative rewards instead of in [0, 1] like requested in the theorem,
just changes that the loss estimator used as an intermediary is bounded by 2 instead of 1. Hence by
selecting ρ =

√
log(K)/TK/m, and using the importance weighted estimator φ̂(λt, ct) we can use

the EXP3 Theorem an apply the expectation to obtain the following regret bound:

E[max
k∈[K]

T∑
t=1

E[φ(λt, ctk, k) | Ht−1]]− E[
T∑
t=1

φ(λt, ctkt , kt)] ≤ 2m
√
TK log(K).

We know that any convex combination of the sum of the rewards of multiple sources is smaller than
the sum of the rewards for the best source. Let us denote by (πn)n∈N the sequence of distributions
that maximizes the dual objective of Lemma E.1. We will use πn as a convex combination, and
taking the expectation over the regret bound we obtain:

E[
T∑
t=1

φ(λt, ctkt , kt)] ≥ E

[
K∑
k=1

πnk

T∑
t=1

E[φ(λt, ctk, k) | Ht−1]

]
− 2m

√
TK log(K).

Moreover using that ctk is independent of Ht−1 and that λt is Ht−1 measurable we can deduce using
the freezing Lemma that

E[φ(λt, ctk, k) | Ht−1] +R∗(λt) = Ectk [φ(λt, ctk, k)] +R∗(λt) = D(λt, k).

Hence

E[
T∑
t=1

φ(λt, ctkt) +R∗(λt)] ≥ E[
K∑
k=1

πnk

T∑
t=1

D(λt, k)]− 2m
√
TK log(K)

= E[
T∑
t=1

⟨πn,D(λt)⟩]− 2m
√
TK log(K)

≥
T∑
t=1

inf
λ∈Rd

⟨πn,D(λ)⟩ − 2m
√
TK log(K).

Taking the limit in n→ ∞ and by definition of πn we conclude that

E[
T∑
t=1

φ(λt, ctkt) +R∗(λt)] ≥ T sup
π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩ − 2m
√
TK log(K).

Using the above regret bound and Equation (25) we obtain

E

[
T∑
t=1

ft(xt)− pkt − R̄(γt)

]
≥ T sup

π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩ − 2m
√
TK log(K)

+ E

[
T∑
t=1

⟨λt, δt − γt⟩

]
. (26)
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Analysis of Equation (23) and dual gradient descent We will now compare TR(
∑T
t=1 δt/T )

and
∑T
t=1 R̄(γt). Here we consider a modified version of R̄, which is equal to R̄ over ∆̄ and is equal

to +∞ outside of ∆̄, and we will use its convex conjugate R̄∗ (note that the convex conjugate of R̄
without these modification would have been different !). Let

λ̂ ∈ argmax
λ∈Rd

{⟨λ, 1
T

T∑
t=1

δt⟩ − R̄∗(λ)}.

We have by the Fenchel-Moreau theorem that

R̄(
1

T

T∑
t=1

δt) = R̄∗∗(
1

T

T∑
t=1

δt) = ⟨λ̂, 1
T

T∑
t=1

δt⟩ − R̄∗(λ̂).

By definition of the convex conjugate of R̄, for any γ ∈ Rd, thus in particular for all γt, we have

R̄∗(λ̂) ≥ ⟨λ̂, γt⟩ − R̄(γt).

Summing for every t ∈ [T ] we obtain

TR̄∗(λ̂) ≥
T∑
t=1

⟨λ̂, γt⟩ − R̄(γt)

Hence

⟨λ̂,
T∑
t=1

δt⟩ − TR̄(
1

T

T∑
t=1

δt) ≥
T∑
t=1

⟨λ̂, γt⟩ − R̄(γt)

⇔ ⟨λ̂,
T∑
t=1

δt − γt⟩ ≥ TR̄(
1

T

T∑
t=1

δt)−
T∑
t=1

R̄(γt).

Finally because R̄ and R are equal over ∆, and because
∑T
t=1 δt/T ∈ ∆, we derive the following

inequality:
T∑
t=1

R̄(γt)− TR(
1

T

T∑
t=1

δt) ≥
T∑
t=1

⟨λ̂, γt − δt⟩. (27)

We now would like to track the left-hand sum evaluated at the dual parameter λ̂. To do so we will use
straightforward Online Gradient Descent on the linear function λ 7→ ⟨λ, γt − δt⟩, with sub-gradients
γt − δt.

We will use Lemma 6.17 from Orabona (2019):

Theorem (Online Gradient Descent). For gt = γt − δt a sub-gradient of a convex loss function lt
with ∥gt∥2 ≤ G, for wt generated according to a gradient descent update with parameter η, we have
that for any u ∈ Rd:

T∑
t=1

lt(wt)− lt(u) ≤
∥u∥22
2η

+
η

2
TG2.

This is exactly our setting, and the way we update λt. Therefore

T∑
t=1

⟨λt, γt − δt⟩ − ⟨λ̂, γt − δt⟩ ≤
∥λ̂∥22
2η

+
η

2
TG2.

Moreover, because λ̂ is the argmax which yields the convex conjugate of R̄∗, we have λ̂ ∈
∂R̄∗∗(

∑
δt/T ) = ∂R∗∗(

∑
δt/T ). Because R is L-Lipschitz for ∥ · ∥2, we have ∥λ̂∥2 ≤ L.

Hence
T∑
t=1

⟨λt, γt − δt⟩ − ⟨λ̂, γt − δt⟩ ≤
L2

2η
+
η

2
TG2.
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What do we lose by using R̄ instead of R to generate γt in our gradient descent ? We have larger
gradients bounds by a factor 2 in our case. Indeed instead of having G ≤ Diam(∆), because γt can
be outside of ∆, we have ∥γt − δt∥2 ≤ 2Diam(∆). In this case, choosing η = L/(2Diam(∆)

√
T )

is optimal, and yields the following regret bound:

T∑
t=1

⟨λt, γt − δt⟩ − ⟨λ̂, γt − δt⟩ ≤ 2LDiam(∆)
√
T (28)

Using both Equation (27) and Equation (28) yield:

T∑
t=1

R̄(γt)− TR(
1

T

T∑
t=1

δt) ≥
T∑
t=1

⟨λt, γt − δt⟩ − 2LDiam(∆)
√
T (29)

We can finally put everything together. Through the decomposition with Equations (22) to (24), using
respectively Equations (26) and (29) and Lemma 3.3 for each of those differences and summing the
inequalities, the terms in ⟨λt, γt − δt⟩ cancel out, and we obtain that

ALG ≥ T sup
π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩ − 2m
√
TK log(K)− 2LDiam(∆)

√
T − 2L

√
dT .

By applying Lemma E.1 we conclude that

Reg = OPT−ALG ≤ 2
(
(L+f̄+max

k
|pk|)

√
K log(K)+L

√
d+LDiam(∆)

)√
T+2L

√
K log(K).

F The Importance of Randomizing Between Sources: OPT vs static-OPT

F.1 Proof of Proposition 2.1

We can directly derive from the proof of Lemma E.1 and Algorithm 1 the following proposition,
which is a rewriting of Proposition 2.1.

Proposition. There are instances of the problem such that

lim
T→∞

static−OPT

T
< lim
T→∞

OPT

T
.

Proof. What we have shown indirectly in the proof of Theorem 3.1, is that

|T max
π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩ −OPT | ≤ O(
√
T ),

therefore limT→∞ OPT /T = limT→∞ maxπ∈PK
infλ∈Rd⟨π,D(λ)⟩/T which also gives us a sim-

ple way to compute a close upper bound for OPT as a saddle point, instead of having to solve a
combinatorial optimization problem.

Following the same arguments as in Lemma E.1 besides the last maximization step, we can also
derive that

static−OPT ≤ T max
k∈[K]

inf
λ∈Rd

D(λ, k).

It remains to find an example such that

max
k∈[K]

inf
λ∈Rd

D(λ, k) < max
π∈PK

inf
λ∈Rd

⟨π,D(λ)⟩.

We used such an example in Appendix F.2, where maxk∈[K] infλ∈Rd D(λ, k) = 0 and
maxπ∈PK

infλ∈Rd⟨π,D(λ)⟩ = 0.25.
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F.2 Simple example and numerical illustration

We illustrate Proposition 2.1 and give an example that shows that randomizing over the different
sources can outperform the best performance achievable by a single source.

We consider a case where the utility ut ∈ {−1, 1} and the protected attribute of a user at ∈ {−1, 1}.
All combination of ut and at are equiprobable: P(ut = u, at = a) = 1/4 for all u, a ∈ {−1, 1}.
The penalty function is R(δ) = 5|δ|. There are K = 2 sources of information. The first source is
capable of identifying good indivduals of group 1: it gives a context ct1 = 1 when (at, ut) = (1, 1)
and ct2 = 0 otherwise. The second source does the same for good individuals of group −1: it gives
ct2 = 1 when (at, ut) = (−1, 1) and ct2 = 0 otherwise. In terms of conditional expectations, this
translates into E[ut|ct1=1] = E[at|ct1=1] = 1, E[ut|ct1=0] = E[at|ct1=0] = −1/3 for the first
source; and E[ut|ct2=1] = 1, E[at|ct2=1] = −1, E[ut|ct2=0] = −1/3, E[at|ct2=0] = 1/3 for the
second source.

We apply Algorithm 1 to this example, and we compare its performance to (i) the one of an algorithm
that has only access to the first source (which is the best source since both sources are symmetric),
(ii) a greedy algorithm that only use the first source and selects xt = 1 whenever E[ut | ct1] > 0,
and (iii) the offline optimal bounds OPT and static-OPT. The results are presented in Figure 1. We
observe that our algorithm is close to OPT as shown in Theorem 3.1. It also vastly outperforms the
algorithm that simply picks the best source, whose performance is close to static-OPT. The greedy
has a largely negative utility because it is unfair. Our randomizing algorithm picks an allocation
xt = 1 only when the context implies that ut = 1. It obtain a fair allocation by switching sources. An
algorithm that uses a single source cannot be fair unless it chooses xt = 0, which is why static-OPT=0
for this example. The 1st and 3rd quartiles are reported for multiple random seeds, the solid lines are
the means. The computations were done on a laptop with an i7-10510U and 16 Gb of ram.

0 20000 40000 60000 80000 100000
T

5000

0

5000

10000

15000

20000

25000

30000

To
ta

l U
til

ity

Algorithm 1
Algorithm 1 without source selection: t = 1 or 2
Greedy Algorithm
OPT
static-OPT

k

Figure 1: Static source vs randomization: The red curve is the total utility of Algorithm 1, The blue
the utility of Algorithm 1 ran on the best-fixed source, and the green the utility of an unfair greedy
algorithm. Black curves correspond to the upper bounds T limT→∞(OPT /T ) and similarly for
static-OPT.

F.3 Additional experiments on the effect on OPT of sources and fairness prices

In the main body of the paper, we study how one is able to use the online algorithm Algorithm 1 so as
to achieve a good total utility asymptotically close to that of the offline optimal OPT. However we
only consider R and the prices pk of the different sources as inputs for the algorithm, and we did not
discuss how their variation actually affect the performance of OPT . While the previous illustrating
example shows how a mixture of sources may achieve strictly better performance, we now only focus
on the static optimization problem and how various metrics may change as we vary R and pk.
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Data model: We consider a fairness penalty R(x) = rx2 with r ≥ 0, and A = {−1, 1} so that at
can only be either −1 or 1, encoding men and women for instance. We suppose that the protected
attributes and the utility (ut, at) are distributed according to Pr(at = 1) = Pr(at = −1) = 1/2 and
ut ∼ N (at, 1), hence the group for which at = 1 is generally correlated to having better utilities
than those for which at = −1. We suppose that there are no public context, and that there are K = 2
information sources, with ct,1 = (at, ut) for source 1 associated with a price of p1 = p, and for
source k = 2 we can observe ct,2 = ut with a price of 0. Here the sources are ‘monotone’ in that one
contains strictly more information than the other, but is more expensive. Basically we are going to
observe the utility ut in all cases, but before observing ut we can pay p to additionally observe at.
Note that when r = 0 then R = 0 and there is no fairness penalty meaning that we don’t actually
care about at and will always select source k = 2, while when p = 0 the information about at is free
and there is no uncertainty.

We study the asymptotic regime with T → ∞, and compute the optimal solution of the offline
optimization problem through its dual problem. Figure 1 represent the quantities associated to the
optimal solution for varying p and r: (top-left) π∗ the percentage of times information is bought (i.e.,
k = 1 is chosen), (top-right) the probability of group 1 being selected Pr(at = 1 | xt = 1), (bottom-
left) the fairness cost relative to utility R(E[atxt])/E[utxt], and (bottom-right) the information cost
relative to utility pπ∗/E[utxt].
Analysis and interpretation:

• (top-left) Looking at the optimal action in terms of information (to buy the observation of
at or not), we see that there are three regimes: π∗ = 1, π∗ = 0 and a transitive regime
π∗ ∈ (0, 1). When r = 0 there is no reason to care about at, thus we simply do not buy
information (π∗ = 0), this remains true as long as the cost of p is large over r. When p = 0
there are no costs to observe at and thus π∗ = 1 and this remains true as long as the fairness
penalty r is large enough over p. In between, we may obtain optimal actions which are
strictly between 0 and 1: in this case the best action is a strict convex combination between
the two sources and there is some trade-off between buying costly information and selecting
an unfair allocation.

• (top-right) Regarding the proportion of individuals of group 1 selected, we see that it is
always higher than 0.5 as group at = 1 correlates to higher utility compared to group
at = −1. Therefore it is decreasing in r and goes towards the perfectly fair allocation 0.5
which would incur no penalty even for high r. It is also increasing in p as higher information
costs make it less desirable to pay to observe at, and thus more difficult to accurately achieve
a fair allocation: the support of the utility ut conditioned on at = 1 and conditioned on
at = −1 are not disjoint, which makes it difficult only by observing ut to determine whether
at = 1 or −1.

• (bottom-left) For the relative fairness cost compared to utility, when the information cost p
increases the allocation becomes more unfair as it becomes more difficult without access
to at to choose a fair allocation with good utility as describe above. Moreover the average
utility ut of the selected groups tend to decrease as the individuals which are more likely to
be at = −1 based on ut have low utility. Therefore the ratio fairness penalty over expected
utility tend to increase. When r increases there are three conflicting effects: high r makes it
more appealing to achieve a fair allocation at the cost of expected utility ut which makes
the latter decrease, the expected group allocation becomes more fair as seen previously, and
the scaling of R increases. When r becomes high there is some balance between a fairer
allocation and higher penalty, and when r = 0 the fairness penalty is clearly 0. Overall for
each fixed p there is some maximum in terms of fairness penalty relative to utility.

• (bottom-right) Finally for the information cost relative to utility, it is increasing in r. Indeed
due to large fairness penalties it is better to buy information thus π∗ increases while p
remains fixed, hence the product pπ∗ increases. When p increases, we buy information less
often (π∗ decreases), and because pπ∗ = 0 for p = 0 or p large, there is some maximum for
each r fixed.

Overall, we see that higher fairness penalties tend to make it more likely to buy information and
select a fair allocation even at the cost of utility, while high information cost makes it unattractive
to buy this information and can lead to unfairness due to the difficulty of identifying the protected
attribute without this additional data.
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Figure 2: For varying fairness scaling r and information cost p: (top-left) optimal information
purchase frequency π∗, (top-right) optimal probability of group 1 selection Pr(at = 1 | xt = 1),
(bottom-left) optimal fairness cost relative to utility R(E[atxt])/E[utxt], and (bottom-right) optimal
information cost relative to utility pπ∗/E[utxt]

Here we looked at a simple example to try to isolate how sensible is the optimal solution to some
variations on r and p. Other parameters can lead to unfairness, such as an unbalance in the protected
group population where one would still need a balanced allocation, or penalty functions with varying
convexity strength.

G Other Fairness Penalty — proof of Theorem 4.1

In this section, we consider an other type of fairness penalty as described in Section 4.1.

We redefine U(.) in the following way:
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U(k,x) =
T∑
t=1

(ft(xt)− pkt)−
( T∑
t=1

xt
)
R

(∑T
t=1 at(xt)∑T
t=1 xt

)
. (30)

When X ⊂ Rn+ with n > 1, there are two ways to intuitively generalize this penalty for higher
dimension allocations. We can replace

∑T
t=1 xt by

∑T
t=1

∑n
i=1 xti, which is still a scalar and the

proof follows directly. For instance, this corresponds for online bipartite matching with node arrival
to a fairness condition on all online arriving nodes (it does not matter to which offline nodes they are
matched). Otherwise we can instantiate n penalties R1, . . . , Rn, using

∑
t xti for each penalty Ri

with i ∈ [n]. This corresponds to a fairness condition on the selected online nodes for each of the n
offline node. This can be dealt with using one parameter λi for each penalty Ri. For this proof we
will assume that n = 1 without loss of generality.

We require the following technical assumption:
∑t
τ=1 aτ (xτ )/

∑t
τ=1 xτ ∈ ∆ for all xτ , aτ and t.

Of course, the size of ∆ can be increased to guarantee — if possible — that this quantity stays inside
∆, but with the trade-off that Diam(∆) increases. Clearly, this assumption is verified for the special
case of at(xt) = axt for some a ∈ A, as the xτ/

∑
t xt form a convex combination.

Let us redefine the virtual reward associated to this other fairness penalty:

φ̃(λ, ctk, k) = max
x∈X

E ([ft(x)− ⟨λt, at(x)⟩ | ctk] + xR∗(λt))− pk.

We also redefine the unbiased estimator φ̂ with this new φ̃.

We now use Algorithm 3. There are 4 differences with Algorithm 2: the new function φ contains in
addition xR∗(λ), xt is the argmax with respect to this new virtual reward, γt is the argmax over
∆δt/xt

instead of ∆δt , and finally the update for λt+1 uses xtγt instead of γt.

Algorithm 3 Online Fair Allocation with Source Selection — Other fairness penalty
Input: Initial dual parameter λ0, initial source-selection-distribution π0 = (1/K, . . . , 1/K), dual
gradient descent step size η, EXP3 step size ρ, cumulative estimated rewards S0 = 0 ∈ RK .
for t ∈ [T ] do

Draw a source kt ∼ πt, where (πt)k ∝ exp(ρS(t−1)k) and observe ctkt .
Compute the allocation for user t:

xt = argmax
x∈X

(E[ft(x)− ⟨λt, at(x)⟩ | ctkt ] + xR∗(λt)) . (31)

Update the estimated rewards sum and sources distributions for all k ∈ [K]:

Stk = St−1,k + φ̂(λt, ctk, kt), (32)

Compute the expected protected group allocation δt = E[at(xt) | ctkt , xt] and compute the dual
protected groups allocation target and update the dual parameter:

γt = argmax
γ∈∆δt/xt

{⟨λt, γ⟩ − R̄(γ)},

λt+1 = λt − xtη(γt − δt/xt).

end for

Let us first prove an upper bound on OPT, which actually guides the design of the modified virtual
reward φ̃:

Lemma G.1. We have the following upper-bound for the offline optimum:

˜OPT ≤ T sup
π∈PK

inf
λ∈Rd

⟨π, D̃(λ)⟩,

where D̃(λ) = (D̃(λ, 1), . . . , D̃(λ,K)) is a vector representing the value of the dual conjugate
problem, with for k ∈ [K] the coordinates

D̃(λ, k) = Ectk [φ̃(λ, ctk, k)].
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Proof. The idea will be the same as in Lemma E.1, we only use a different lagrangian function.

We recall that the xt are σ(c1k1 , . . . , ctkt) measurable (because the kt are deterministic). Let
δt = Eat [at(xt) | ctk], and f̃t(x) = Eft [at(xt) | ctk]. Using Jensen’s inequality for R convex we
have

E[U(k,x) | c1k1 , . . . , cTkT ] =
T∑
t=1

E[ft(xt)− pkt | c1k1 , . . . , cTkT ]− E[
( T∑
t=1

xt
)
R

(∑T
t=1 at(xt)∑T
t=1 xt

)
| c1k1 , . . . , cTkT ]

=

T∑
t=1

E[ft(xt)− pkt | c1k1 , . . . , cTkT ]−
( T∑
t=1

xt
)
E[R

(∑T
t=1 at(xt)∑T
t=1 xt

)
| c1k1 , . . . , cTkT ]

≤
T∑
t=1

E[ft(xt)− pkt | c1k1 , . . . , cTkT ]−
( T∑
t=1

xt
)
R

(
E[
∑T
t=1 at(xt)∑T
t=1 xt

| c1k1 , . . . , cTkT ]

)

=

T∑
t=1

E[ft(xt)− pkt | c1k1 , . . . , cTkT ]−
( T∑
t=1

xt
)
R

(
E[
∑T
t=1 at(xt) | c1k1 , . . . , cTkT ]∑T

t=1 xt

)
.

Moreover by independence of the (ft, at, ct1, . . . , ctK) we have that E[at(xt) | σ(c1k1 , . . . , ctkt)] =
Eat [at(xt) | ctkt ] = δt. This is basically an application of Lemma D.3 where we state it more
carefully. With the same argument we obtain that E[ft(xt) | σ(c1k1 , . . . , cTkT )] = f̃t(xt). Therefore

E[U(k,x) | c1k1 , . . . , cTkT ] ≤
T∑
t=1

f̃t(xt)− pkt −
( T∑
t=1

xt
)
R

(∑T
t=1 δt∑T
t=1 xt

)
. (33)

We define the function L : (k, c,x, λ) 7→
∑T
t=1 f̃t(xt)− pkt − xt⟨λ, ãt⟩+ xtR

∗(λ).

Using the Fenchel-Moreau theorem, and the previous inequality we have

L(k, c,x, λ) ≥ inf
λ∈Rd

L(c,x, λ)

=

T∑
t=1

f̃t(xt)− pkt − sup
λ∈Rd

{⟨λ,
T∑
t=1

ãtxt⟩ −
( T∑
t=1

xt
)
R∗(λ)}

=

T∑
t=1

f̃t(xt)− pkt −
( T∑
t=1

xt
)
sup
λ∈Rd

{⟨λ,
∑T
t=1 δt∑T
t=1 xt

⟩ −R∗(λ)}

=

T∑
t=1

f̃t(xt)− pkt −
( T∑
t=1

xt
)
R∗∗

(∑T
t=1 δt∑T
t=1 xt

)

=

T∑
t=1

f̃t(xt)− pkt −
( T∑
t=1

xt
)
R

(∑T
t=1 δt∑T
t=1 xt

)
≥ E[U(k,x) | ck]. (34)

We can then finish as we did for Lemma E.1.

We now proceed to the rest of the proof of Theorem 4.1:

Theorem. For η = L/(2Diam(∆)
√
T ), m = f̄ + L +maxk|pk| + 2ηDiam(∆) +m∗ (m∗ is a

constant defined in the proof and depends on ∆ and R), ρ =
√

log(K)/(TKm2), and λ0 ∈ ∂R(a)
for some a ∈ A, algorithm Algorithm 1 modified as suggested in Section 4.1 has the following regret
upper bound:

Reg ≤ 2((L+ f̄ +max
k

|pk|+m∗)
√
Klog(K) + L

√
d+Diam(∆))

√
T + 2L

√
K log(K)

Proof. We present here only the parts that are different from the proof of Theorem 3.1, and we refer
to the corresponding proof for more details.
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Comparison of performance with φ̃ By adding and removing −xt⟨λt, ãt⟩+ xtR
∗(λt), and using

that xt is the maximizer that yields φ we derive that
E[ft(xt)] = E[Eft [ft(xt) | ctkt ]− ⟨λt, δt⟩+ ⟨λt, δt⟩+ xtR

∗(λt)− xtR
∗(λt)]

= E[φ(λt, ctkt) + ⟨λt, δt⟩ − xtR
∗(λt)].

Because ∆ ⊂ ∆δt and, because R̄ and R are equal over ∆ we have:
R∗(λt) = max

γ∈∆
{⟨λt, γ⟩ −R(γ)}

= max
γ∈∆

{⟨λt, γ⟩ − R̄(γ)}

≤ max
γ∈∆ãt

{⟨λt, γ⟩ − R̄(γ)}

= ⟨λt, γt⟩ − R̄(γt).

Thus
E[ft(xt)− pkt − xtR̄(γt)] ≥ E[φ̃(λt, ctkt) + ⟨λt, δt − xtγt⟩]. (35)

Application of bandit algorithms Compared to the previous setting, the only change is that the
function R∗ is included in φ, so we need to bound it as well. See Lemma D.5. This is where m∗

comes from.

Dual gradient descent Let us now focus in the tracking of the fairness parameter. In the evaluation
of our lower bound of the algorithm performance, we used −xtR̄(γt) instead of the true penalty
(
∑T
t=1 xt)R(

∑T
t=1 at(xt)/

∑T
t=1 xt). Because of a small modification of Lemma 3.3 we only need

to compare it with the penalty over the conditional expectation of atxt. Indeed, by the Lipschitz
property of R, whether we re-scale by T or

∑
xt does not change anything.

Hence will now compare those two penalties. Here we will consider a modified version of R̄, which
is equal to R̄ over ∆̄ and is equal to +∞ outside of ∆̄, and we will use its convex conjugate R̄∗ (note
that the convex conjugate of R̄ without the modification would have been different !). Let

λ̂ ∈ argmax
λ∈Rd

{⟨λ,
∑T
t=1 δt∑T
t=1 xt

⟩ − R̄∗(λ)}.

We have by Fenchel-Moreau theorem that

⟨λ̂,
∑T
t=1 δt∑T
t=1 xt

⟩ − R̄∗(λ̂) = R̄∗∗

(∑T
t=1 δt∑T
t=1 xt

)

= R̄

(∑T
t=1 δt∑T
t=1 xt

)
.

Hence

⟨λ̂,
T∑
t=1

δt⟩ − (

T∑
t=1

xt)R̄

(∑T
t=1 δt∑T
t=1 xt

)
= (

T∑
t=1

xt)R̄
∗(λ̂).

By definition of the convex conjugate of R̄, for any γ ∈ Rd, thus in particular for all γt, we have

R̄∗(λ̂) ≥ ⟨λ̂, γt⟩ − R̄(γt).

Multiplying by xt and summing for every t ∈ [T ] we obtain

(

T∑
t=1

xt)R̄
∗(λ̂) ≥

T∑
t=1

⟨λ̂, xtγt⟩ − xtR̄(γt)

Hence

⟨λ̂,
T∑
t=1

δt⟩ − (

T∑
t=1

xt)R̄

(∑T
t=1 δt∑T
t=1 xt

)
≥

T∑
t=1

⟨λ̂, γtxt⟩ − R̄(γt)

⇔ ⟨λ̂,
T∑
t=1

δt − xtγt⟩ ≥ (

T∑
t=1

xt)R̄

(∑T
t=1 δt∑T
t=1 xt

)
−

T∑
t=1

xtR̄(γt).
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Finally because R̄ and R are equal over ∆, and because
∑T
t=1 δt/

∑T
t=1 xt ∈ ∆ by the assumption,

we have that

⟨λ̂,
T∑
t=1

δt − xtγt⟩ ≥ (

T∑
t=1

xt)R

(∑T
t=1 δt∑T
t=1 xt

)
−

T∑
t=1

xtR̄(γt) (36)

As we did earlier, we apply Online Gradient Descent to track the term evaluated at λ̂ and obtain
Equation (28). We just need to make sure that as before λ̂ is bounded. By the definition of λ̂:

λ̂ ∈ ∂R̄∗∗(

∑T
t=1 δt∑T
t=1 xt

) = ∂R̄(

∑T
t=1 δt∑T
t=1 xt

) = ∂R(

∑T
t=1 δt∑T
t=1 xt

).

Because R is L-Lipschitz for ∥ · ∥2, we have ∥λ̂∥2 ≤ L.

The rest of the proof is identical.

H Learning ut — proof of Proposition 4.2

We prove in this section the result regarding the added regret of learning ut. In terms of utility
functions ft, protected attributes at, and allocations xt, we go back to the setting of Section 2.1 with
ft(x) = utx and X = {0, 1}.

In addition to the assumptions made in Section 4.2, we give more precision regarding the structure of
ut. We define θtk = 1[kt = k] the indicator variable of selecting source k at time t. We define the
following filtration for all k ∈ [K] and all t ∈ [T ]:

Ftk = σ(x1, c1k, θ1k, u1, . . . , xt, ctk, θtk, ut, xt+1, ct+1,k, θt+1,k).

We assume that the contexts ctk are now feature vectors of dimension qk, and that for all k ∈ [K],
there exists some vector ψk ∈ Rqk so that

ηtk = ut − ⟨ψk, ctk⟩, (37)

is a zero mean 1-subgaussian random variable conditionally on Ft−1,k.

Consider that each source k corresponds to one bandit problem, with an action set at time t composed
of two contextual actions {ctkθtkx, x ∈ X} = {ctkθtk, 0}, and a reward utxtθtk. If θtk = 0 then the
action selected is 0, and the new reward is 0, which means both are “observed”. If θtk = 1, then the
feedback is ut if xt = 1, and 0 otherwise. Regardless of the source selected, the feedback received
and the action producing this feedback are observed for all arms in parallel. This is akin to artificially
playing all the [K] bandits in simultaneously. This new reward still follows the conditional linearity
assumption, and xtθtkηt is still Ft−1,k conditionally 1-subgaussian.

With these rewards and actions, we can define for each source ψ̂tk and Vtk the least squares estimator
and the design matrix as done in Equations (19.5) and (19.6) of Lattimore & Szepesvári (2020). Let
δ ∈ (0, 1). We define the confidence set parameter βt as

√
βt = ψ̄ +

√
2 log

(
1

δ

)
+max
k∈[k]

qk log

(
1 +

tc̄2

maxk∈[k] qk

)
. (38)

This parameter is independent of k, this will make the computations easier later on. We now define
the ellipsoid confidence set of ψk as

Itk = {ψ ∈ Rqk , ∥ψ − ψ̂tk∥2Vt−1,k
≤ βt}. (39)

Algorithm 1 is modified in the following way. For each time t, let ψ̃tk = argmaxψ∈Itk
⟨ψ, ctk⟩. We

now select xt using this optimistic estimate of ψk:

xt = argmax
x∈{0,1}

{x(⟨ψ̃tk, ctk⟩ − ⟨λt, ãt⟩)}. (40)
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Proposition. Given the above assumptions, the added regret of having to learn E[ut | ctk] is of order
O(

√
KT log(T )).

The proof will proceed as follows: we first highlight where the learning will impact the algorithm,
leverage the concentration results from Abbasi-yadkori et al. (2011) to decompose into a good event
and bad event, and finally bound the loss over the good event.

Let us now analyze the main part of the proof in Appendix E that is modified, which is “Comparison
of performance with φ”, because the only change is the quantity that xt maximizes. Let x∗t be the
maximizer obtained by replacing the optimistic estimate with the true parameter ψk. Let ãt = E[at |
ctkt ]. Because xt maximizes the quantity with the optimistic estimate we have

xtE[ut | ctkt ]− xt⟨λt, ãt⟩ = xt⟨ψkt , ctkt⟩ − xt⟨λt, ãt⟩
= xt(⟨ψkt , ctkt⟩ − ⟨ψ̃tkt , ctkt⟩) + xt⟨ψ̃tkt , ctkt⟩ − xt⟨λt, ãt⟩
≥ xt⟨ψkt − ψ̃tkt , ctkt⟩+ x∗t ⟨ψ̃tkt , ctkt⟩ − x∗t ⟨λt, ãt⟩
= xt⟨ψkt − ψ̃tkt , ctkt⟩+ x∗t ⟨ψ̃tkt − ψkt , ctkt⟩+ x∗t ⟨ψkt , ctkt⟩ − x∗t ⟨λt, ãt⟩
= xt⟨ψkt − ψ̃tkt , ctkt⟩+ x∗t ⟨ψ̃tkt − ψkt , ctkt⟩+ φ(λt, ctkt , kt) + pkt .

The last term φ is the one we want, we now need to lower bound the first two terms.

By Theorem 20.5 of Lattimore & Szepesvári (2020), we know with probability at least 1− δ that
ψk ∈ Itk for all t. By union bound, the probability that the ψk are simultaneously all in their
confidence set is at least 1−Kδ. We denote this event by I .

Suppose that the event I is satisfied. Then by definition of ψ̃tkt , we have

x∗t ⟨ψ̃tkt − ψkt , ctkt⟩ ≥ 0.

Now let us look at the last term. We can first decompose it over the K sources:

xt⟨ψkt − ψ̃tkt , ctkt⟩ =
K∑
k=1

θtkxt⟨ψk − ψ̃tk, ctk⟩ =
K∑
k=1

⟨ψk − ψ̃tk, θtkxtctk⟩.

Now, consider one source k, and sum the difference term for every t. By remarking that θtk = θ2tk,
we have that

T∑
t=1

|⟨ψk − ψ̃tk | θtkxtctk⟩| =
T∑
t=1

θtk|⟨ψk − ψ̃tk | θtkxtctk⟩|

≤
T∑
t=1

θtk∥ψk − ψ̃tk∥Vt−1,k
∥θtkxtctk∥V −1

t−1,k
(dual-norm inequality)

≤ 2

T∑
t=1

θtk
√
βt∥θtkxtctk∥V −1

t−1,k
(by the event I)

≤ 2

T∑
t=1

θtk
√
βT max{1, ∥θtkxtctk∥V −1

t−1,k
} (βt are increasing)

≤ 2
√
βT

√√√√ T∑
t=1

θ2tk

√√√√ T∑
t=1

max{1, ∥θtkxtctk∥2V −1
t−1,k

} (C.S. inequality)

= 2
√
βT

√√√√ T∑
t=1

θtk

√√√√ T∑
t=1

max{1, ∥θtkxtctk∥2V −1
t−1,k

}

= 2
√
βT
√
Tk

√√√√ T∑
t=1

max{1, ∥θtkxtctk∥2V −1
t−1,k

},

where Tk is the number of times source k is selected.
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By Lemma 19.4 of Lattimore & Szepesvári (2020), we have that

T∑
t=1

max{1, ∥θtkxtctk∥2V −1
t−1,k

} ≤ 2qk log

(
1 +

T c̄2

qk

)
.

Therefore, using Jensen inequality for the square root function which is concave over the Tk, and
because

∑
k Tk = T , we obtain

T∑
t=1

K∑
k=1

|⟨ψk − ψ̃tk | θtkxtctk⟩| ≤
K∑
k=1

2
√
βT
√
Tk

√
2qk log

(
1 +

T c̄2

qk

)

≤ 2
√
βT

K∑
k=1

√
Tk

√
2qk log

(
1 +

T c̄2

qk

)

≤
√

8TβT

√√√√ K∑
k=1

qk log

(
1 +

T c̄2

qk

)
.

This yields a O(
√
KT log(T )) error.

And with probability at most Kδ the concentration event I does not hold, but the error is bounded
by 4 for each t. Thus overall in expectation, it is bounded by 4TKδ. Picking δ = 1/T , yields the
desired sub-linear regret bound.

I Learning at

In this section, we provide further intuitions on the existence of [K] different sources, and how it is
possible to adapt the algorithm to learn E[at | ctk] on the fly. Let us consider the special case of our
model, where the additional information given by each source is a noisy observation âtk of at, with
different noise levels; in the main setting this can be described as ctk = (zt, âtk). Sources with lower
noise levels will have higher prices (one directly pays for the level of accuracy). This setting can be
used to give users the level of privacy they are willing to give up (as in Local Differential Privacy
(Dwork & Roth, 2014)), by revealing some noisy information about their private data; of course, the
more data is revealed (or the smaller the noise), the higher the compensation (the price).

Furthermore, if the source k corresponds to adding additive independent noise Ltk and to returning
âtk = at + Ltk, then knowing the law of both Ltk and at, the decision maker can directly compute
the conditional expectation of at having observed âtk. Nevertheless, if she only knows the noise
distribution, but not the law of at, conditional expectation can still be learned in an online fashion in
some cases.

Indeed, suppose for simplicity that at ∈ {−1, 1}, Pr(at = 1) = α ∈ (0, 1), (zt, ut) is independent
of at (therefore we can focus only in dealing with at), and that the Ltk are 0 mean σk sub-exponential
random variables (see 2.7.5 Vershynin (2018)). We define the following running empirical estimate
of α:

α̂t =
1

t

t∑
τ=1

(âτ,kτ + 1)/2.

It is an unbiased estimator of α as

E[âtk] = E[at] + E[Ltk] = 2α− 1 + 0 = 2α− 1.

Note that the ât,kt are not independent, and the conditional expectation is not Lispchitz-continuous
with respect to the parameter α. Still, we can derive an algorithm with a sub-linear regret bound.

First let us state a Lemma on the concentration of α̂t
Lemma I.1. We have the following concentration bound for t ≳ log(T ):

Pr

(
|α̂t − α| ≥

√
κ2 log(T )

ct

)
≤ 2

T
(41)

36



Proof. We refer to Chapter 2 of Vershynin (2018) for concentration results of sum of independent
random variables. Let us recall some definitions, properties, and a concentration inequality.

Let us consider the following Orlicz space norm for random variables. For a random variable X , we
define

∥X∥ψ1 = inf{t > 0,E[exp(|X|/t)] ≤ 2}.

If ∥X∥ψ1 is finite, then X is called sub-exponential. It is a norm, and for a bounded variable X
in [−1, 1], we have ∥X∥ψ1 ≤ 1/ log(2) (see exercise 2.5.7, example 2.5.8, and Lemma 2.7.6 of
Vershynin (2018)). Hence because (at + 1)/2 − α ∈ [−α, 1 − α] ⊂ [−1, 1], for α̂tk the estimate
obtained by always choosing source k, we have by triangle inequality that

∥α̂tk − α∥ψ1 ≤ 1

log(2)
+
σk
2
.

We now recall Bernstein’s inequality:

Theorem (Theorem 2.8.1 of Vershynin (2018)). Let X1, . . . , XN be N independent, mean 0, sub-
exponential random variables, with κ = maxi ∥Xi∥ψ1 . Then for c > 0 a constant, for every t > 0
we have

Pr

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−cmin

(
t2

Nκ2
,
t

κ

)]
.

We want to apply this Theorem to (ât,kt + 1)/2 − α the centered α̂t where we now change the
source depending on kt. Remark that now however the α̂t is not a sum of independent variables
anymore because of kt which does depend on the previous realizations of the ât,kt . Nevertheless
it is a martingale difference for the filtration Ht, and similar results will apply. We denote by
κ = 1/ log(2) + maxk σk/2 an upper bound on the sub-exponential norm of the centered α̂t
conditional on Ht−1. Then the martingale

∑t
τ=1 α̂τ − α is also a sub-exponential random variable.

This is a known result, which is stated here for completeness, but that can otherwise be skipped.
Indeed from proposition 2.7.1 part e) of Vershynin (2018), we know that finite sub-exponential norm
for a centered random variable X means that the moment generating function of X at y is bounded
by exp(c1∥X∥2ψ1y2) for y ≤ c2/∥X∥ψ1 , with c1 and c2 some positive constants.

Therefore, for y ≤ c2/κ, using the property of the conditional sub-exponentiality of α̂t, we have

E[exp(y
t∑

τ=1

(α̂τ − α))] = E[E[exp(y
t∑

τ=1

(α̂τ − α)) | Ft−1]]

= E[exp(y
t−1∑
τ=1

(α̂τ − α))E[exp(y(α̂t − α)) | Ft−1]]

≤ E[exp(y
t−1∑
τ=1

(α̂τ − α))E[exp(c1y2κ2) | Ft−1]].

Iterating this inequality we obtain for y ≤ c2/κ that

E[exp(y
t∑

τ=1

(α̂τ − α))] ≤ E[exp(c1tκ2y2)].

This yields inequality (2.24) in Vershynin (2018) the main element needed for the proof of Bernstein’s
Inequality. Thus Bernstein’s inequality still holds for centered martingale sequence which are
conditionally sub-exponential. We stress that this is not a new concentration inequality result.
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Let us now apply Bernstein’s Inequality with a deviation of order
√
κ2 log(T )/(ct), for t ≥ log(T )/c:

Pr

(
|α̂t − α| ≥

√
κ2 log(T )

ct

)
= Pr

(
|
t∑

τ=1

(α̂τ − α)| ≥
√
κ2t log(T )

c

)

≤ 2 exp

[
−cmin

(
log(T )

c
,

√
log(T )t

c

)]

=
2

T

Proposition I.2. Given these assumptions, using Algorithm 1 with α̂t instead of α to compute the
conditional expectations yields an added regret of order O((maxk σk + 2/ log(2))

√
T log(T )).

Proof. There are two parts of the proof of Theorem 3.1 that we need to modify, when the xt is
involved, and when we compare the penalty. We will deal with the first part (the more complicated),
and the second one follows immediately by the same arguments. This will be done in 3 steps: we
first highlight where the learning error occurs, then use the concentration result to decompose the
error under a good and bad event, and finally show that under the good event the error in expectation
is small enough.

Impact of learning error We suppose for simplicity that Ltk has a density gk over the support R,
but this also holds for discrete random variables. We denote by νk the density of âtk. First let us
express ãt = E[at | ctkt ] as a function of ât,kt = â and α:

E[at | ât,kt = â] = Pr(at = 1 | ât,kt = â)− Pr(at = −1 | ât,kt = â)

=
Pr(at = 1)gkt(â− 1)

νkt(â)
− Pr(at = −1)gkt(â+ 1)

νkt(â)

=
αgkt(â− 1)− (1− α)gkt(â+ 1)

αgkt(â− 1) + (1− α)gkt(â+ 1)
.

Let us define the plug-in estimate of ãt using ᾱt−1 whenever ᾱt−1 is in [0, 1] by:

st(â) =
ᾱt−1gkt(â− 1)− (1− ᾱt−1)gkt(â+ 1)

ᾱt−1gkt(â− 1) + (1− ᾱt−1)gkt(â+ 1)
. (42)

When the estimated parameter is not in [0, 1], we use st = 0.

We define by xt the maximisation of the virtual value function φ when replacing ãt by st, and by x∗t
the allocation obtained if we were to actually use ãt. Because xt is a maximizer of utxt − ⟨λt, st⟩xt,
we have

utxt = utxt − ⟨λt, st⟩xt + ⟨λt, st⟩xt
≥ utx

∗
t − ⟨λt, st⟩x∗t + ⟨λt, st⟩xt

= φ(λt, ât,kt , kt) + ⟨λt, ãt − st⟩x∗t + ⟨λt, st⟩xt.

The term ⟨λt, st⟩xt will be tracked with the help of the OGD, it remains to take care of ⟨λt, ãt−st⟩x∗t .
By Cauchy Schwartz:

|⟨λt, ãt − st⟩x∗t | ≤ ∥λt∥2∥ãt − st∥2.
We know that λt is already bounded, so we only need to bound the right-hand term. Decomposing
depending on the values of kt, we can rewrite

st − ãt =

K∑
k=1

1[kt = k](st − E[at | âtk])
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Decomposition under good and bad event Denote by Ct = [|α̂t − α| ≤
√
(κ2 log(T )/(ct)]

the event of α̂t concentrating around its mean. For t large enough, that is to say t ≥
(κ2 log(T ))/(cmin(α, 1− α)), the event Ct is included in [ᾱt−1 ∈ (0, 1)]. We can then decompose
the analysis over these events using the triangle inequality: |st− ãt| ≤ 1Ct−1

|st− ãt|+1C̄t−1
|st− ãt|,

and we know that for the term multiplied by 1Ct−1
we have that either it is 0 or ᾱt−1 ∈ [0, 1]. Let us

consider such a t− 1 big enough, and first analyze the left-hand term with the “good” event.

Small error under good event in expectation We consider the conditional expectation of this sum
given kt, and ᾱt−1. By independence between (kt, ᾱt−1, E) and âtk for all k, we have:

E[1Ct−1
|st − ãt| | kt, ᾱt−1]

≤ 1Ct−1

K∑
k=1

1[kt = k]

∫
R

∣∣∣∣ ᾱt−1gk(â− 1)− (1− ᾱt−1)gk(â+ 1)

ᾱt−1gk(â− 1) + (1− ᾱt−1)gk(â+ 1)
− αgk(â− 1)− (1− α)gk(â+ 1)

αgk(â− 1) + (1− α)gk(â+ 1)

∣∣∣∣ νk(â)dâ.
Because νkt(â) = (αgk(â− 1) + (1− α)gk(â+ 1)) we can simplify the integral:

E[1Ct−1
|st−ãt| | kt, ᾱt−1] ≤ 1Ct−1

K∑
k=1

1[kt = k]

∫
R
2|ᾱt−1−α|

gk(â− 1)gk(â+ 1)

ᾱt−1gk(â− 1) + (1− ᾱt−1)gk(â+ 1)
dâ.

For α ∈ [0, 1], we have the following inequality:

xy

αx+ (1− α)y
≤ max(x, y) ≤ x+ y.

Thus using this inequality and the fact that gk is a density (which sums to 1), we obtain that

E[1Ct−1
|st − ãt| | kt, ᾱt−1] ≤ 21Ct−1

|ᾱt−1 − α|
K∑
k=1

1[kt = k](

∫
R
gk(â+ 1)dâ+

∫
R
gk(â− 1)dâ)

≤ 41Ct−1
|ᾱt−1 − α|

K∑
k=1

1[kt = k]

≤ 4

√
κ2 log(T )

c(t− 1)

K∑
k=1

1[kt = k].

Finally taking the full expectation yields

E[1Ct−1 |st − ãt|] ≤ 4

√
κ2 log(T )

c(t− 1)
.

For the complementary event C̄t−1:

E[1C̄t−1
|st − ãt|] ≤ 2E[1C̄t−1

] =
4

T
.
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Putting everything back together Now denoting by mλ the upper bound over the λt obtained by
Lemma 3.2 and summing over all t:

|E[
T∑
t=1

⟨λt, ãt − st⟩x∗t ]| ≤ mλ

T∑
t=1

E[|st − ãt|]

≤ 2mλ
κ2 log(T )

cmin(α, 1− α)
+mλ

T∑
t=

κ2 log(T )
cmin(α,1−α)

+1

E[|st − ãt|]

≤ 2mλ
κ2 log(T )

cmin(α, 1− α)
+mλ

T∑
t=

κ2 log(T )
cmin(α,1−α)

+1

(4

√
κ2 log(T )

c(t− 1)
+

4

T
)

≤ 2mλ
κ2 log(T )

cmin(α, 1− α)
+mλ

T∑
t=1

(4

√
κ2 log(T )

ct
+

4

T
)

≤ mλ(
8√
c

√
κ2T log(T ) + 2

κ2 log(T )

cmin(α, 1− α)
+ 4) = O(

√
T log(T )),

where we used a series-integral comparison of x 7→ 1/
√
x for the second to last inequality.

There is a second place where replacing ãt by st impacts the performance of the algorithm. Indeed,
through the gradient descent on λt, we will have a penalty converging towards R(

∑T
t=1 stxt/T ) and

not R(
∑T
t=1 ãtxt/T ). This is because the Online Gradient Descent for the λt uses st and not ãt.

Nevertheless, because of the Lipschitz property of R:

E[T |R(
∑T
t=1 ãtxt
T

)−R(

∑T
t=1 stxt
T

)|] ≤ L

T∑
t=1

E[|ãt − st|] ≤ O(
√
T log(T )),

where the last inequality is obtained by similar manipulations on Ct to what we just did.

Overall, the added regret when using st instead of ãt is of order
√
T log(T ) which still guarantees a

sub-linear regret.

Another algorithm is possible: first sample the source with the lowest sub-exponential constant
T 2/3 log(T ) times, and then use the estimate obtained to compute st (without updating it with the
newest noise received). The advantage is that even though we incur a T 2/3 regret (this can be shown
using basically the same methods), we can obtain a lower κ. Hence if there is a big difference between
the sub-exponential constant of the different sources, or even one source with infinite sub-exponential
constant, this may be a viable algorithm.

J Public Contexts

For this section and in order to make the dependence in the public context zt appear more clearly,
we suppose that ctk represent only the additional information of the source k, and thus (ctkt , zt)
represent the whole information available at time t after selecting a source.

J.1 Finite number of Contexts — proof of Proposition 3.4

We propose the following Algorithm 4.

Proposition. For µ the probability distribution over Z finite, we can derive an algorithm that has
a modified regret of order O(

√
TK log(K)

∑
z∈Z

√
µ(z)), where µ(z) is the probability that the

public attribute is z.

Proof. Most of the proof consists is identical to the proof of Theorem 3.1, and only the different parts
will be highlighted, which is the upper bound of OPT, and applying bandits algorithms.
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Algorithm 4 Online Fair Allocation with Source Selection — With public contexts
Input: Initial dual parameter λ0, initial source-selection-distribution π0(z) = (1/K, . . . , 1/K),
dual gradient descent step size η, EXP3 step size ρt(z) that uses a doubling trick, cumulative
estimated rewards S0(z) = 0 ∈ RK for all z ∈ Z .
for t ∈ [T ] do

Observe zt ∈ Z
Draw a source kt ∼ πt(zt), where πtk(zt) ∝ exp(ρt(zt)S(t−1)k(zt)) and observe ctkt .
Compute the allocation for user t:

xt = argmax
x∈X

E[ft(x)− ⟨λt, at(x)⟩ | ctkt , zt].

Update the estimated rewards sum and sources distributions for all k ∈ [K]:

Stk(zt) = St−1,k(zt) + φ̂(λt, ctk, kt, zt),

Stk(z) = St−1,k(z), ∀z ∈ Z \ {zt}.

Compute the expected protected group allocation δt = E[at(xt) | ctkt , zt, xt] and compute the
dual protected groups allocation target and update the dual parameter:

γt = argmax
γ∈∆δt

{⟨λt, γ⟩ − R̄(γ)},

λt+1 = λt − η(γt − δt).

end for

We first upper bound the performance of OPT. For all t let ht ∈ [K]Z be the deterministic source
selection policies, kt = ht(zt) the selected sources, xt ∈ X be (zt, ct,kt) measurable, and λ ∈ Rd be
a dual variable. In an identical manner to Equation (20) we can obtain the following inequality:

max
x∈XT

E[U(x, k) | z1, c1,k1 , . . . , zT , cT,kT ] ≤
T∑
t=1

max
x∈X

E[ft(x)−⟨λ, at(x)⟩ | zt, ctkt ]−pkt+TR∗(λ).

Let us define φ(λ, ctk, k, z) = maxx∈X E[ft(x)− ⟨λ, at(x)⟩ | z, ctk]− pk, and µ(z) = Pr(zt = z).
We also define πk(z) =

∑T
t=1 1[ht(z) = k]/T the total number of times we would have selected

source k for the public context z.

We now take the expectation of the sum. We obtain by tower property of the conditional expectation,
and using the i.i.d. assumption:

T∑
t=1

E[φ(λ, ct,ht(zt), ht(zt), zt)] =

T∑
t=1

E[E[φ(λ, c, ht(zt), zt) | zt]]

=

T∑
t=1

∑
z∈Z

E[φ(λ, c, ht(z), z) | z]µ(z)

=
∑
z∈Z

T∑
t=1

E[φ(λ, c, ht(z), z) | z]µ(z)

=
∑
z∈Z

∑
k∈[K]

T∑
t=1

ht(z)=k

E[φ(λ, c, k, z) | z]µ(z)

= T
∑
z∈Z

∑
k∈[K]

πk(z)Ec[φ(λ, c, k, z) | z]µ(z).

Clearly πk(z) ∈ PK , thus if we maximize over this space for the πk(z) instead of over ([K]Z)T , it
will be higher. Therefore

OPT ≤ T sup
π∈PZ

K

inf
λ∈Rd

R∗(λ) +
∑
z∈Z

∑
k∈[K]

πk(z)Ec[φ(λ, c, k, z) | z]µ(z)

 . (43)
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Notice that µ(z) plays an important role in determining the optimal policy. If we had sim-
ply run the previous algorithm for each context, this would be akin to considering that the zt
are distributed uniformly according to µ(z) = 1/Z, which would have yielded a sub-optimal policy π.

Now let us take care of the lower bound. As done in Equation (25), we have that

E[ft(xt)− pkt − R̄(γt)] ≥ E[φ(λt, kt, zt, ctkt) +R∗(λt) + ⟨λt, δt − γt⟩],
and as we did before we will use bandits algorithm on these rewards.

We would now like to bound the following adversarial contextual bandit problem regret:

Reg =
∑
z∈Z

max
k∈[K]

T∑
t=1
zt=z

E[φ(λt, ct, k, z) | Ht−1, zt]−
T∑
t=1

E[φ(λt, ct, kt, zt) | Ht−1, zt].

The weighted estimator φ̂ is unbiased as φ(λt, ct, kt, zt)1[kt = k]/πtk(zt) is still unbiased. Indeed,
ct and kt are conditionally independent given (zt,Ht−1), and πtk(zt) is (zt,Ht−1) measurable. Thus

E[
φ(λt, ct, kt, zt)1[kt = k]

πtk(zt)
| Ht−1, zt] =

E[φ(λt, ct, kt, zt)1[kt = k] | Ht−1, zt]

πtk(zt)

=
E[φ(λt, ct, kt, zt) | Ht−1, zt]E[1[kt = k] | Ht−1, zt]

πtk(zt)

= E[φ(λt, ct, kt, zt) | Ht−1, zt].

As suggested section (18.1) of Lattimore & Szepesvári (2020) running one anytime version ofEXP3
(using a doubling trick for instance) on each of these public contexts z ∈ Z , achieves a regret bound

of order O(
√
K log(K)

∑
z∈Z

√∑T
t=1 1[zt = z]).

Taking the expectation (for zt) of this regret bound, and using Jensen’s inequality for the square root
function we have a regret term of order

E[O
(√

K log(K)
∑
z∈Z

√∑
t∈[T ]

1[zt = z]
)
] ≤ O

(√
K log(K)

∑
z∈Z

√
E[
∑
t∈[T ]

1[zt = z]]
)

= O
(√

TK log(K)
∑
z∈Z

√
µ(z)

)
. (44)

Let (πn) ∈ (PZ
K)N be the sequence of contextual source mixing that maximizes the upper bound

for OPT in Equation (43). Then because the maximum of [K] points is greater than any convex
combination, πn(z) in particular, we have∑

z∈Z
max
k∈[K]

T∑
t=1
zt=z

E[φ(λt, ct, k, z) | Ht−1, z] ≥
∑
z∈Z

∑
k∈[K]

πnk (z)

T∑
t=1
zt=z

E[φ(λt, c, k, z) | Ht−1, z]

=
∑
k∈[K]

T∑
t=1

πnk (zt)E[φ(λt, c, k, zt) | Ht−1, zt].

In expectation this yields:

E[
∑
z∈Z

max
k∈[K]

T∑
t=1
zt=z

E[φ(λt, ct, k, z) | Ht−1, z]] ≥ E[
∑
k∈[K]

T∑
t=1

πnk (zt)E[φ(λt, c, k, zt) | Ht−1, zt]]

=
∑
k∈[K]

T∑
t=1

E[E[πnk (zt)E[φ(λt, c, k, zt) | Ht−1, zt] | Ht−1]],

where we used the linearity of the expectation, and the tower property of the expectation for the last
equality.
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Because zt and Ht−1 are independent, we can first use Lemma D.3 and then the freezing lemma to
express the conditional expectation given Ht−1 as

E[E[πnk (zt)E[φ(λt, c, k, zt) | Ht−1, zt] | Ht−1]] = E[E[πnk (zt)Ec[φ(λt, c, k, z) | z] | Ht−1]]

= E[
∑
z∈Z

µ(z)πnk (zt)Ec[φ(λt, c, k, z) | z]]

Hence,

E[
∑
z∈Z

max
k∈[K]

T∑
t=1
zt=z

E[φ(λt, ct, k, z) | Ht−1, z]] ≥
T∑
t=1

E[
∑
k∈[K]

∑
z∈Z

µ(z)πnk (z)Ec[φ(λt, c, k, z) | z]].

Grouping it together with the R∗(λt) terms, and taking the inf over λ we derive that

E

 T∑
t=1

R∗(λt) +
∑
z∈Z

max
k∈[K]

T∑
t=1
zt=z

E[φ(λt, ct, k, z) | Ht−1, z]


≥

T∑
t=1

E

 inf
λ∈Rd

R∗(λ) +
∑
k∈[K]

∑
z∈Z

µ(z)πnk (z)Ec[φ(λ, c, k, z) | z]


≥ T inf

λ∈Rd

R∗(λ) +
∑
k∈[K]

∑
z∈Z

µ(z)πnk (z)Ec[φ(λ, c, k, z) | z]

 .

As n→ ∞ and by definition of πn, we can conclude that

E

 T∑
t=1

R∗(λt) +
∑
z∈Z

max
k∈[K]

T∑
t=1
zt=z

E[φ(λt, ct, k, z) | Ht−1, z]


= T sup

π∈PZ
K

inf
λ∈Rd

R∗(λ) +
∑
z∈Z

∑
k∈[K]

πk(z)Ec[φ(λ, c, k, z) | z]µ(z)


≥ OPT .

Finally, using Equation (44) and the previous inequality we obtain

E[
T∑
t=1

φ(λt, kt, zt, ct) +R∗(λt)] ≥ OPT−O
(√

TK log(K)
∑
z∈Z

√
µ(z)

)
. (45)

The rest of the proof follows Appendix E.

Clearly, if µ has a non-zero probability only for one z, we recover the previous regret bound without
public information.

J.2 Infinite number of contexts — proof of Proposition 3.5

Lemma. If E[at(x) | ctk, zt] and E[ft(x) | ctk, zt] are Lipschitz continuous in z with respective
constants La and Lf for all x ∈ X with respect to ∥ · ∥2, then so is φ in z with Lipschitz constant
La + Lf .

Proof. Let λ ∈ Rd, k ∈ [K], ctk the additional information, z1, z2 ∈ Z , and x1, x2 ∈ X be the
maximizers that respectively yields φ(λ, ctk, k, z1) and φ(λ, ctk, k, z2). Because x2 is a maximizer,
we have that

φ(λ, ctk, k, z1)− φ(λ, ctk, k, z2)

≤ E[ft(x1) | ctk, z1]− E[ft(x1) | ctk, z1] + ⟨λ | E[at(x1) | ctk, z2]− E[at(x1) | ctk, z2]⟩
≤ Lf∥z1 − z2∥2 + La∥at(x1)∥2∥z1 − z2∥2
≤ Lf + La.

Using the same arguments because x1 is a maximizer, we obtain the symmetric inequality.
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The main idea for the discretization (that averages the rewards over the discretized bins), is that
the performance of the algorithm is close to the discretized optimal, which itself is close to the
continuous optimal for smoothness reasons. However here the discretization is applied not to the
original total utility U , but instead to the bandits reward part. The number of discretized bins is then
tuned depending on the lipschitz constants and the space dimension r.

The proof of the proposition Proposition 3.5 then directly follows from exercise 19.5 of Lattimore &
Szepesvári (2020) applied to the contextual bandit problem with rewards φ.
Remark. In the case when Z is continuous, there are no guarantees that there exists an optimal policy
π∗. Indeed, if for the product topology the space PZ

K is compact (by Tychonoff’s theorem), the dual
function used to derive OPT is not continuous. Vice versa, for a topology which makes this dual
function continuous, it is unlikely for this space of functions to be compact. Hence why we need to
take a maximizing sequence of πn so that the dual function of these πn converges to the upper bound
of OPT.
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