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Abstract

Uncertainty estimation aims to evaluate the confidence of a trained deep neu-
ral network. However, existing uncertainty estimation approaches rely on low-
dimensional distributional assumptions and thus suffer from the high dimensionality
of latent features. Existing approaches tend to focus on uncertainty on discrete
classification probabilities, which leads to poor generalizability to uncertainty
estimation for other tasks. Moreover, most of the literature require seeing the out-
of-distribution (OOD) data in the training for better estimation of uncertainty, which
limits the uncertainty estimation performance in practice because the OOD data
are typically unseen. To overcome these limitations, we propose a new framework
using data-adaptive high-dimensional hypothesis testing for uncertainty estimation,
which leverages the statistical properties of the feature representations. Our method
directly operates on latent representations and thus does not require retraining the
feature encoder under a modified objective. The test statistic relaxes the feature
distribution assumptions to high dimensionality, and it is more discriminative to
uncertainties in the latent representations. We demonstrate that encoding features
with Bayesian neural networks can enhance testing performance and lead to more
accurate uncertainty estimation. We further introduce a family-wise testing proce-
dure to determine the optimal threshold of OOD detection, which minimizes the
false discovery rate (FDR). Extensive experiments validate the satisfactory perfor-
mance of our framework on uncertainty estimation and task-specific prediction over
a variety of competitors. The experiments on the OOD detection task also show sat-
isfactory performance of our method when the OOD data are unseen in the training.
Codes are available at https://github.com/HKU-MedAI/bnn_uncertainty.
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1 Introduction

Deep neural networks (DNNs) have demonstrated state-of-the-art (SOTA) performances on many
problem domains, such as computer vision [30, 31], medical diagnosis [24, 16, 38, 2], and recommen-
dation systems [1, 3]. Despite their successes, most of the existing DNN designs can only recognize
in-distribution samples (i.e., samples from training distributions) but cannot measure the confidence
level (i.e., the uncertainties) in the prediction, especially for out-of-distribution (OOD) samples.
Estimation of prediction uncertainties plays an important role in many machine learning applications
[25, 37]. For instance, uncertainty estimation can help to detect OOD samples in the data and inspect
anomalies in the system. Further, the uncertainty estimates can indicate the distributional shifts in the
environment and thus facilitate learning in a non-stationary environment.

In response to the high demand, several attempts have been made to obtain a better estimate of
the uncertainty, which can be roughly divided into two categories — Bayesian and non-Bayesian
methods. Bayesian methods [4, 19] mainly operate with a Bayesian neural network (BNN), which
introduces a probability distribution (e.g., multivariate Gaussian) to the neural network weights. This
enables the model to address model-wise (i.e., epistemic) uncertainty by drawing samples from the
posterior distribution. Non-Bayesian methods [32, 27, 10], on the other hand, assume a distribution
on the model outputs (e.g., classification probabilities). The uncertainty scores can be obtained by
evaluating a pre-determined metric (e.g., classification entropy) on the derived distribution.

However, most of the aforementioned methods are subject to several drawbacks: (1) They rely on
strong assumptions (e.g., parametric models) on low-dimensional features and thus suffer from the
curse of high dimensionality, leading to poor performance when the dimension of the output is high.
(2) They are limited to classification problems, and existing methods explicitly make assumptions
about the classification probabilities. This leads to poor generalizability in uncertainty estimation
for other tasks, such as regression and representation learning. (3) Their performances heavily rely
upon the feature encoder, which can be compromised when the features are of poor quality (e.g., the
number of samples used to train the encoder is small). (4) They require a modification of the training
loss, and thus additional training is needed when applying the methods to a new problem. Pretrained
features cannot be directly applied to the OOD tasks without retraining for their proposed loss.

Observing the above limitations, we propose a new framework for uncertainty estimation. Our
framework comprises two key components: one Bayesian deep learning encoding module and
one uncertainty estimation module using the adaptable regularized Hotelling T 2 (ARHT) [26].
Our contributions are summarized as: (1) We formulate uncertainty estimation as a multiple high-
dimensional hypothesis testing problem, and adopt a Bayesian deep learning module to better address
the aleatoric and epistemic uncertainties when learning feature distributions. (2) We propose using
the ARHT test statistic for measuring uncertainty and demonstrate the advantages of ARHT over
the existing uncertainty measures, including its consistency and robustness properties. This enables
us to design a data-adaptive detection method so that each individual data point can be assigned an
optimal hyperparameter. Because it relaxes the strong assumptions on latent feature distributions,
ARHT less sensitive to the feature quality. As result, our method can be interpreted as a post-hoc
method as it works on feature distributions generated by any encoder (e.g., a pre-trained encoder). (3)
We adopt the family-wise testing procedure to determine the optimal threshold of OOD detection,
which minimizes the false discovery rate (FDR). (4) We perform extensive experiments on standard
and medical image datasets to validate our method on OOD detection and image classification tasks
compared to SOTA methods. Our proposed method does not require prior knowledge of the OOD
data, while it yields satisfactory performance even when the training samples are limited.

2 Preliminaries

Deep Neural Network: A deep neural network (DNN) with L layers can be defined as

fl(x;Wl, bl) =
1√
Dl−1

(
Wlϕ(fl−1(x;Wl−1, bl−1))

)
+ bl, l ∈ {1, . . . , L},

where ϕ is a nonlinearity activation function, x is the input, Dl−1 is the dimension of the input,
bl ∈ RDl is a vector of bias parameters for layer l, and Wl ∈ RDl×Dl−1 is the matrix of weight
parameters. Let wl = {Wl, bl} denote the weight and bias parameters of layer l, and the entire
trainable network parameters are denoted as θ = {wl}Ll=1.
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Bayesian neural network (BNN): A BNN specifies a prior π(θ) on the trainable parameters θ.
Given the dataset D = {xi, yi}Ni=1 of N pairs of observations and responses, we aim to estimate the
posterior distribution of θ, p(θ|D) = π(θ)

∏N
i=1 p(yi|f(xi;θ))/p(D), where p(yi|f(xi;θ)) is the

likelihood function and p(D) is the normalization term.

Pooled Sample Covariance Matrix: Let {X1j}n1
j=1 be the p-dimensional embeddings from the

training images and {X2j}n2
j=1 be the p-dimensional embeddings from the testing images. The pooled

sample covariance is defined as

Sn =
1

n− 2

2∑
k=1

nk∑
j=1

(Xkj − X̄k)(Xkj − X̄k)
⊤, (1)

where n = n1 + n2, nk is the sample size and X̄k is the sample mean of the k-th set (k = 1, 2).

High-Dimensional Test Statistics: The Hotelling T 2 test statistic [15] is given by

T =
n(n− p)

p(n− 1)
(X̄1 − X̄2)

⊤S−1
n (X̄1 − X̄2). (2)

The Hotelling T 2 test assumes T ∼ F (p, n− p) under the null hypothesis. To resolve the potential
singularity of the covariance matrix, the regularized Hotelling T 2 (RHT) test statistic [5] loads an
identity matrix Ip to T ,

RHT(λ) =
n1n2

n1 + n2
(X̄1 − X̄2)

⊤(Sn + λIp)
−1(X̄1 − X̄2), (3)

where λ is a tuning parameter. The ARHT test statistic, which will be formally introduced by Eq. 4
in Section 3.3, standardizes the RHT and addresses the skewness of Hotelling’s T 2 when the feature
dimension is high.

3 Methodology

Our uncertainty estimation framework comprises a Bayesian neural network encoder and an OOD
testing module with ARHT as the uncertainty measure. Figure 1 provides an overview of our proposed
framework, with the detailed algorithm given in the appendix. Ablation studies on key components
of our framework are provided in Section 5.

3.1 Problem Definition and Test Hypothesis

Suppose that we have a set of samples {I1, . . . , In} as the training set, and a set of testing samples
I ′1, . . . , I

′
n} containing both in-distribution and OOD data. We aim to develop an uncertainty es-

timation framework that can accurately classify the test samples as either in-distribution or OOD,
without seeing the OOD data during the training. Moreover, the framework can still perform well on
its predictive task (e.g., classification) without sacrifice in uncertainty estimation. We set the null
hypothesis H0 : µ1 = µ2 and the alternative hypothesis as H1 : µ1 ̸= µ2, where µ1 and µ2 are the
mean representations of the training and the testing samples, respectively.

3.2 Bayesian Neural Network as Encoder

We adopt a BNN encoder and train it with stochastic variational inference (SVI) [29] to learn
the representation of the input. In SVI, a posterior distribution p(θ|y) is approximated by a dis-
tribution q selected from a candidate set Q by maximizing an evidence lower bound (ELBO):
maxq∈Q Eθ∼q[logp(y|θ)]− KL(q∥π), where KL(q∥π) is the Kullback–Leibler divergence between
the variational posterior distribution q and the prior distribution π, p(y|θ) is the likelihood, and
Eθ∼q[logp(y|θ)] represents the learning objective. This can be supervised (e.g., cross-entropy loss)
or unsupervised (e.g., contrastive learning loss) learning. The KL divergence of two multi-variate
Gaussian distributions is provided in the appendix. We use gradient descent to optimize the ELBO,
i.e., to minimize the distance between prior and variational posterior distributions. We obtain the
trained BNN encoder once the optimization step is completed. Since BNNs operate on an ensemble
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Figure 1: Workflow of our proposed uncertainty estimation framework. Our framework contains a
BNN encoding module and an uncertainty estimation module using high-dimensional testing. The
training objective Lobj can be either supervised (e.g., cross-entropy) or unsupervised (e.g., contrastive
learning). The ELBO represents the evidence lower bound used for training BNN.

of posterior model weights, they can capture the epistemic uncertainties in the posterior predictive
distribution p(y|D). Hence, using BNNs instead of frequentist architectures can better approximate
the posterior distribution of the feature embeddings.

To obtain the uncertainty scores, we need to compute the sample means X̄1, X̄2 and covariance
matrices Σ1,Σ2 for the training data (containing in-distribution data only) and the testing data
(containing both in-distribution and OOD data). First, we sample s weights for every data point
in the training data, and generate representations for each data point using the sampled weights.
In total, n1 representations are generated from the training data. We can compute the mean X̄1

and covariance matrix Σ1 of the training data using these n1 representations. For each testing
data point xt, we sample n2 weights from the variational posterior distribution, and generate n2

representations {x̂tj = f(xt;θj)}n2
j=1, where θj is the j-th weight sample drawn from the trained

posterior distribution p(θ|D). We obtain the mean X̄2 =
∑n2

j=1 x̂tj/n2 and the covariance matrix
Σ2 =

∑n2

j=1(x̂tj − X̄2)(x̂tj − X̄2)
⊤/n2. Hence, we can compute the pooled covariance matrix Sn

by Eq. (1).

3.3 High-Dimensional Testing as Uncertainty Measure

With the pooled sample covariance matrix, we can compute the ARHT test statistics by Eq. (3) and
Eq. (4), where X̄1 is the mean of training samples and X̄2 is the mean of n2 embeddings of each
testing sample. To solve the skew F distribution of RHT when n ≫ p for large n and p (as shown in
Figure 2), we adopt the ARHT statistic to perform a two-sample test which has robust regularization
of the covariance matrix [26]. In particular, the ARHT is given by

ARHT(λ) =
√
p
p−1RHT(λ)− Θ̂1(λ, γ)

{2Θ̂2(λ, γ)}
1
2

, (4)

where Θ̂1(λ, γ) = {1− λmF (−λ)}/{1− γ(1− λmF (−λ))},

Θ̂2(λ, γ) =
1− λmF (−λ)

[1− γ(1− λmF (−λ))]3
− λ

mF (−λ)− λm′
F (−λ)

[1− γ(1− λmF (−λ))]4
,

mF (z) =
1

p
tr{Rn(z)}, m′

F (z) =
1

p
tr{R2

n(z)}, Rn(z) = (Sn − zIp)
−1, γ =

p

n
.

As a result, we have ARHT(λ) ∼ N (0, 1) [26], which prevents the catastrophic skewness of F -
distribution in high dimensions (see Figure 2) and yields smoother uncertainty scores. The ARHT can
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Table 1: The OOD detection performance (in %) of our method, BNN-ARHT, compared to various
competitors, using the LeNet [22] architecture. Standard deviations are given in brackets.

OOD Datasets
Fashion–MNIST OMNIGLOT SVHN

Model In-Distrib. AUC AUPR AUC AUPR AUC AUPR
MC Dropout [10] MNIST 99.33 (0.3) 99.27 (0.3) 99.85 (0.09) 99.88 (0.07) 99.96 (0.007) 99.96 (0.002)
Deep Ensembles [21] MNIST 90.70 (8.4) 91.08 (7.7) 99.70 (8.4) 91.08 (7.7) 99.21 (0.9) 99.68 (0.4)
Kendall and Gal [19] MNIST 92.54 (2.6) 92.77 (1.9) 94.11 (4.9) 93.40 (5.7) 99.60 (0.5) 99.13 (1.0)
EDL [32] MNIST 73.43 (16.0) 80.22 (11.1) 72.61 (8.6) 81.42 (7.0) 63.43 (1.2) 85.09 (3.4)
DPN [27] MNIST 99.41 (0.2) 99.37 (0.3) 99.96 (0.03) 99.96 (0.03) 99.96 (0.01) 99.96 (0.003)
PostNet [4] MNIST 98.59 (0.4) 94.70 (0.5) — — — —
Detectron [12] MNIST 75.57 (15.2) 83.75 (29.9) 95.71 (11.0) 85.00 (30.0) 77.92 (12.4) 83.75 (37.3)
BNN-ARHT (Ours) MNIST 99.51 (0.4) 99.47 (0.3) 99.98 (0.01) 99.98 (0.004) 99.97 (0.007) 99.96 (0.004)
MC Dropout [10] CIFAR10 76.23 (5.6) 74.21 (5.3) 77.15 (2.2) 79.0 (1.9) 78.09 (1.2) 84.35 (1.1)
Deep Ensembles [21] CIFAR10 71.25 (3.0) 75.32 (2.3) 86.77 (3.6) 90.35 (3.1) 76.15 (5.3) 82.62 (13.1)
Kendall and Gal [19] CIFAR10 77.41 (17.3) 77.00 (18.2) 89.08 (17.8) 90.93 (14.8) 67.40 (3.1) 71.44 (10.1)
EDL [32] CIFAR10 67.81 (12.1) 71.81 (11.5) 77.53 (14.4) 80.50 (11.7) 69.57 (4.7) 83.74 (3.4)
DPN [27] CIFAR10 57.54 (1.7) 68.29 (3.4) 62.34 (3.7) 70.49 (8.0) 57.48 (4.4) 77.76 (6.2)
PostNet [4] CIFAR10 — — — — 76.04 (1.6) 69.30 (1.7)
Detectron [12] CIFAR10 76.46 (15.3) 71.63 (21.5) 76.99 (15.9) 91.00 (24.4) 76.01 (13.6) 90.00 (22.9)
BNN-ARHT (Ours) CIFAR10 77.78 (5.0) 79.06 (6.8) 92.77 (1.8) 93.74 (1.0) 82.01 (1.2) 91.61 (0.3)

be interpreted as a more robust distance measure on embedding distributions compared to existing
metrics such as Mahalanobis distance.

We select λ from a predefined set using a data-adaptive method [26]. The set for grid search is
chosen as {λ0, 5λ0, 10λ0} given the hyperparameter λ0. For a testing data point xt, we compute
Q(λ, γ; ξ) =

∑2
k=0 ξkρ̂k(−λ, γ)/{γΘ̂2(λ, γ)}1/2, for each λ in the candidate set, where ξ =

(ξ0, ξ1, ξ2) ∈ R3 is a pre-specified weight vector set as ξ = (0, 1, 0), ρ̂0(−λ, γ) = mF (−λ),
ρ̂1(−λ, γ) = Θ̂1(λ, γ), and ρ̂2(−λ, γ) = {1+γΘ̂1(λ, γ)}{p−1tr{Sn}−λρ̂1(−λ, γ)}. The optimal
λ is then selected by maximizing the Q function, i.e., argmaxλ Q(λ, γ; ξ). For each testing data
point, we can proceed with the above selection process to determine the optimal λ for the individual
input. This makes the determination of uncertainty scores more flexible and data-adaptive.

3.4 Optimal Threshold Adjusting for Family-Wise Discovery Error

We obtain the area under the receiver operating characteristic curve (AUROC) and the
area under the precision-recall curve (AUPR) using different thresholds. To determine
the optimal threshold, we adopt a family-wise testing procedure to compute the p-values.

Figure 2: Comparison of the density functions of
N (0, 1) and F -distribution under low (left) and
high (right) dimensions.

It is necessary to balance the tradeoff between
the power and the type I error rate of the test.
We adopt the Benjamini–Hochberg (BH) proce-
dure [35] procedure to adjust for multiple tests.
The threshold of p-values is calibrated by the BH
procedure, and we have a rejection set R̂ of in-
dices to the samples whose p-values are below the
threshold, R̂ =

{
i ∈ I : p̂i ≤ αk̂/(mHm)

}
,

where k̂ = max
{
k ∈ I : p̂i ≤ αk(mHm)

}
,

I = {1, . . . ,m} is the set of indices correspond-
ing to the m tests, and Hm =

∑m
j=1 1/j. The

samples in the rejection set are then classified as
the OOD sample. The BH procedure is shown to
achieve a more powerful hypothesis testing perfor-
mance [13].

4 Experiments

4.1 Datasets and Experiment Setting

We design OOD detection tasks on both standard and medical image datasets to demonstrate
the application of our framework. We also evaluate our framework on the image classification
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Table 2: The OOD detection performance (in %)
on DRD [8], with the LeNet [22] architecture.

Model AUROC AUPR
MC Dropout [10] 59.52 (1.1) 60.95 (6.0)
Kendall and Gal [19] 91.06 (9.8) 92.71 (7.8)
Deep Ensembles [21] 59.67 (1.3) 56.58 (2.3)
DPN [27] 60.57 (1.1) 65.32 (1.3)
EDL [32] 53.01 (1.9) 58.22 (9.6)
Detectron [12] 90.74 (9.9) 46.00 (31.4)
BNN-ARHT (Ours) 93.44 (3.8) 95.44 (2.2)

Table 3: Classification performance (in %)
on MNIST, with the LeNet [22] architecture.

Model Accuracy F-1 Score
MC Dropout [10] 98.48 98.89
Kendall and Gal [19] 98.78 98.65
Deep Ensembles [21] 97.90 97.89
DPN [27] 98.89 98.83
EDL [32] 21.24 12.88
PostNet [4] 99.12 99.06
BNN-ARHT (Ours) 99.26 99.06

task in comparison with the baseline methods to show that our framework does not sacrifice
classification performance. For the image classification task, we benchmark the classification
performance of the encoder trained on a holdout set of the in-distribution dataset (i.e., MNIST).

Figure 3: Healthy (left) and unhealthy (right)
samples of the DRD dataset.

For the OOD detection task, we treat CIFAR 10
and MNIST as the in-distribution datasets, and
Fashion–MNIST, OMNIGLOT, and SVHN as the
OOD datasets. To validate the advantage of BNN
encoding on limited observations, we compose a
medical image benchmark using samples from the
Diabetes Retinopathy Detection (DRD) dataset [8],
with samples shown in Figure 3. We treat healthy
samples as in-distribution data and unhealthy samples as OOD data. Distinct from the settings in
some existing works [27] which include OOD data in the training, we exclude the OOD data when
training the feature encoder. We use the AUROC and AUPR as the evaluation metrics for OOD
detection tasks, and adopt accuracy and the macro F1-score to evaluate the classification performance.
Detailed definitions of the evaluation metrics and further descriptions of the datasets can be found in
the appendix.

4.2 Competitive Methods
We compare our proposed framework, named as BNN-ARHT, with seven competitors — (1) Deep
ensembles [21]: an ensemble of neural networks to address the epistemic uncertainties, and the
number of models in the ensemble is set as 5; (2) MC Dropout [10]: a non-Bayesian method using
dropout on trained weights to produce Monte Carlo weight samples [27]; (3) Kendall and Gal
[19]: the first work addressing the aleatoric and epistemic uncertainties in deep learning; (4) EDL
[32]: it estimates uncertainty by collecting evidence from outputs of neural network classifiers by
assuming a Dirichlet distribution on the class probabilities; (5) DPN [27]: it assumes a prior network
with Dirichlet distributions on the classification outputs; (6) PostNet [4]: it uses normalizing flow
to predict an individual closed-form posterior distribution over predicted class probabilities; (7)
Detectron [12]: it detects the change in distribution with the discordance between an ensemble of
classifiers trained to agree on training data and disagree on testing data. Since Detectron operates on
small samples from each dataset for OOD detection (e.g., 50 over 60,000 for CIFAR 10), we use a
larger number of runs (i.e., 100) for a fair comparison. Five-fold cross-validation is applied to each of
the competitive methods. We report the means and standard deviations over the runs for each metric.

4.3 Predictive and Uncertainty Estimation Performance

Verify Uncertainty Quality by OOD Detection. Tables 1 and 2 present the OOD detection
results of our method compared with competitors on different pairs of datasets. We observe that
existing methods, which assume having seen OOD data in the training, perform poorly in our settings,
especially when the training observations are limited. Detectron [12] yields larger standard errors
than other methods since it operates on small samples of the datasets. This validates the argument
that existing methods heavily rely upon the availability of OOD data during the training. We also
observe that our framework outperforms all the baselines on almost all OOD detection tasks, which
demonstrates its satisfactory performance. In particular, our method shows a great improvement on
the DRD dataset in which the number of samples is small, indicating the advantage of using a BNN
encoder. As the MNIST dataset has dense feature representations, the OOD features can be easily
distinguished. Hence, the OOD performance of the methods is relatively better on MNIST than on
CIFAR10.
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Table 4: The OOD detection performance (in %) of competitive methods under various model
architectures [20, 22, 14]. CNN refers to the two-layer standard CNN architecture used by Malinin
and Gales [27]. We use CIFAR10 as the in-distribution dataset and SVHN as the OOD dataset. ‘Freq’
represents the frequentist architecture and ‘Bayes’ represents the Bayesian architecture.

CNN LeNet AlexNet ResNet
# of parameters (Freq) 31,340 62,006 2,472,266 11,699,522
# of parameters (Bayes) 62,700 125,112 4,922,120 12,372,904
Model AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
MC Dropout [10] 63.85 74.79 68.58 78.53 74.72 82.57 61.46 76.04
Deep Ensembles [21] 78.44 89.10 61.01 62.69 72.14 59.83 58.11 78.26
Kendall and Gal [19] 67.77 80.87 55.36 69.82 70.88 73.15 50.01 83.86
EDL [32] 65.26 67.07 66.53 67.12 65.81 61.68 51.34 73.50
DPN [27] 63.98 77.30 57.44 73.84 67.10 80.75 76.36 86.46
PostNet [4] 73.68 66.85 76.04 69.30 81.67 76.52 82.19 79.43
Detectron [12] 73.84 88.50 76.01 90.00 80.58 85.00 78.27 89.50
BNN-ARHT (Ours) 85.36 89.37 82.01 91.61 82.10 70.04 88.16 93.19

Predictive Performance Is Preserved. As shown in Table 3, we also perform image classification
to demonstrate the benefits of the post-hoc method (i.e., without modifying the original objective).
We fix the neural network architecture as LeNet. For Kendall and Gal [19] and our method, we use
the Bayesian counterpart of LeNet to perform the experiment. We observe that without modifying
the original learning objective, the predictive performance of the encoder can be preserved and
outperforms other methods. The BNN may underperform its frequentist counterpart due to the
introduction of the KL regularization. Hence, in practice, a (pre-trained) frequentist encoder can be
used to replace the BNN encoder if predictive performance is the focus. Section 5 shows the sacrifice
in the OOD detection performance if a frequentist architecture is used.

Visualization of Uncertainty Scores. To better understand the uncertainty scores of in-
distribution and OOD data under different uncertainty measures, Figure 4 presents the dis-
tributions of the ARHT uncertainty scores of in-distribution data (MNIST) and OOD data
(Fashion-MNIST), respectively. We observe that the distributions of ARHT are of dif-
ferent shapes for in-distribution data and OOD data. This demonstrates the effective-
ness of ARHT in identifying the unique characteristics of the distributions of the datasets.

Figure 4: Distributions of the ARHT un-
certainty scores for the in-distribution data
(MNIST) and OOD data (Fashion-MNIST),
respectively.

5 Ablation Studies
Different Neural Network Architectures. We com-
pare the performance with encoders under different
architectures. We choose the standard CNN used in
Malinin and Gales [27], LeNet [22], Alexnet [20],
and ResNet18 [14] as the SOTA examples in encod-
ing image features. For ResNet18, as the variance
increases drastically with the increasing depth of the
architecture, it is not feasible to replace all the lay-
ers with their Bayesian counterparts. Therefore, we
replace only the last fully-connected layer and the
second last convolutional layer with their Bayesian
versions. Table 4 presents the comparison of OOD
detection of our method with the competitors under different neural network architectures. We
observe that our method is able to obtain satisfactory performance over the competitors when the
neural network architecture changes.

Effects of Key Hyperparameters. We evaluate our method with a range of hyperparameters to assess
their impacts on our method. Figure 5 presents the OOD detection performance with different values
of λ0, n2, and p. (1) Initial loading value λ0: we observe that the performance of our model is
robust to changes in λ0. Since the ARHT relaxes the Gaussian assumption of embeddings, the change
in the magnitude of the loading matrix would not heavily affect the covariance structure of the testing
embeddings. Hence we can safely load λ to the covariance matrix to resolve the singularity problem,
with no concern about the decrease in performance; (2) Number of training weight samples n1:
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Figure 5: Performance of our method with different values of λ0 (left), n2 (middle), and p (right)
by fixing the network architecture as LeNet [22]. We use MNIST as the in-distribution dataset and
Fashion-MNIST as the OOD dataset.

The size n1 is controlled by the hyperparameter s in our framework. We have conducted experiments
with s ranging from 1 to 5 (Figure 6). The pattern shows that the performance decreases when s
increases (i.e., more embedding samples from the in-distribution dataset). This demonstrates that the
covariance structure affects ARHT more as s increases, and the contribution of testing embeddings is
less weighed, which leads to slightly decreasing performance. (3) Number of testing weight samples
n2: The number of testing weight samples n2 is a key to approximate the testing embedding distribu-
tions. Since the approximation of the testing distribution is crucial to the performance of our method,
we tune the hyper-parameter n2 to determine the optimal number of testing embeddings to choose for
each task. We observe that even if the number of testing samples is small (e.g., 5), ARHT can still cap-
ture the distributional difference between the in-distribution and OOD data. This leads to a consistent
performance as n2 varies. (4) Embedding dimension p: we also evaluate the OOD detection perfor-
mance of our method with respect to the change in embedding dimensions (p = 8, 16, 32, 64, 128).

Figure 6: Ablation study with respect to s
(In-distribution: CIFAR 10, OOD: SVHN).

We observe that our method is robust to changes in
feature dimensions. This enables our framework to
perform OOD detection on the representation level
with customized embedding dimensions, relaxing the
constraint on classification problems.

Feature Learning Objectives. One key component
of our framework is the BNN encoder, which is
trained by supervision (i.e., cross-entropy loss for
image classification) on standard datasets. We eval-
uate the robustness of our method when the encoder
is trained with different objectives (i.e., unsupervised
contrastive learning loss). We select the margin of
contrastive learning loss as 0.2. The performance in AUROC on the OOD detection task decreases
slightly from 99.98 to 98.42 (for MNIST vs. OMNIGLOT OOD detection). This shows that our
framework is sensitive to the quality of the encoder, and a supervised learning objective is preferred
to improve the encoding performance.

6 Discussion: Impacts and Limitations of BNN and ARHT

We discuss why a BNN encoder is preferred for our framework, with Figure 7 illustrating the
difference between features generated by BNN and frequentist DNN. A frequentist DNN gives one
feature embedding to every input data point, and the uncertainty estimate ignores the covariance
structure of the distribution because only the point estimate is provided. However, a BNN estimates
the posterior embedding distribution for every data point, and the covariance structure can be
incorporated to obtain a more accurate uncertainty estimate. Although some recent non-Bayesian
method [32, 27] places parametric distributions on posterior embeddings (e.g., Dirichlet distribution
on class probabilities), these parametric distributions are less accurate in approximating the posterior
distributions than BNNs because the strong parametric assumption limits their capabilities in searching
the candidate distributions.

To demonstrate why ARHT is preferred as an uncertainty metric, we further evaluate its perfor-
mance over an array of uncertainty measures, including the maximum probability, entropy, and

8



differential entropy proposed by Malinin and Gales [27]. Detailed definitions of these metrics
are presented in the appendix. We also include the frequently used Mahalanobis distance which
possesses stronger assumptions on the Gaussianity of the embeddings. We fix the model architec-
ture to be LeNet and compare its Bayesian and frequentist designs. Table 5 presents the summary
of the comparison. We observe that using ARHT as the uncertainty score can achieve the best
OOD detection performance than existing uncertainty measures when a BNN encoder is used.

Frequentist
DNN

Feature
Distribution

From Testing 
Samples

From Normal 
Samples

BNN Posterior 
Predictive 

Distribution

Estimated Uncertainty
Feature 

Distribution of 
Normal 
Samples

(by DNN/BNN)

Figure 7: Comparison of features generated by a frequen-
tist DNN and those by a BNN. The uncertainty estimated
by a frequentist DNN ignores the covariance structure of
the posterior distribution, where a BNN provides a distri-
butional estimate for each testing sample.

Our method achieves a better perfor-
mance using features generated by
BNNs than those generated by frequen-
tist counterparts, which demonstrates
the advantage of using Bayesian en-
coders in our framework. However,
BNN encoders require drawing n2 sam-
ples of weights for posterior inference,
which requires higher time complexity
than the frequentist counterparts. Fur-
ther, BNNs are limited by the scalability
constraints [11], which makes them dif-
ficult to have deeper structures. How to
make BNNs deep remains a challenging
topic [11, 36, 7, 29].

Support of Single-Sample Uncer-
tainty. As the training set (as the in-
distribution set) is available (at least for
training or fine-tuning the encoder) in most of the problems, one can use samples from training sets
and the testing samples to compute ARHT. One exception is the zero-shot case where we only have
the pre-trained encoder but no original data (i.e., in-distribution samples). In this case, most of the
uncertainty estimation methods cannot work since they require at least in-distribution data to fit
their parametric assumptions (e.g., concentration rates of the Dirichlet distributions in classification
problems). However, one may still obtain ARHT as an uncertainty estimate using methods to recon-
struct/generate pseudo-training data from the pre-trained models, which is not the focus of our work
but warrants future research.

7 Related Works

Uncertainty Estimation. Estimating uncertainty in neural networks has become an increas-
ingly important topic in deep learning. Existing uncertainty estimation methods can be di-
vided into two classes: Bayesian methods [19, 23] and non-Bayesian methods [32, 27, 21,
4, 9, 10]. Bayesian methods address the model-wise (i.e., epistemic) uncertainties by learn-
ing a posterior distribution of weights. The uncertainties in neural networks can be ap-
proximated by the predictions given by the weights sampled from the posterior distributions.

Table 5: Performance of the ARHT against other
uncertainty measures, with the LeNet [22] archi-
tecture, the in-distribution dataset CIFAR10, and
the OOD dataset SVHN.

Frequentist Bayesian
Model AUROC AUPR AUROC AUPR
Maximum 77.50 64.69 81.30 83.11Probability
Entropy 80.22 88.47 82.49 78.14
Differential 79.59 86.98 66.15 75.27Entropy
RHT 79.06 62.82 82.29 64.07
ARHT 79.07 63.44 82.64 91.69

Despite the success of these methods, most works
only focus on classification uncertainties and rely
upon arbitrary distributional assumptions on the
class probabilities. For instance, DPN [27] as-
sumes that the classification probabilities follow a
Dirichlet distribution and train the OOD detector
based on the KL divergence of the prior and pos-
terior Dirichlet distributions. These methods are
not generalizable to tasks other than classification.
Furthermore, most existing methods [32, 27, 10]
assume that the samples from the target domain
are available when training the OOD detector,
which is unrealistic in most applications.

Hypothesis Testing in High Dimension. The task of uncertainty estimation can be redefined as
a high-dimensional hypothesis testing problem. We report the detection of OOD samples if we
reject the null hypothesis at significance level α. The Hotelling T 2 test [15, 18] in Eq. (2) assumes
T ∼ F (p, n − p) under the null hypothesis. The unnormalized version of T in Eq. (2) is known
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as Mahalanobis distance. However, the Hotelling test statistic suffers from poor robustness and
consistency when n and p are large and even becomes undefined when p > n or when Sn is singular
[26]. This results in all test statistics (as uncertainty scores) concentrating on the singular point leading
to trivial estimation of uncertainties. Figure 2 presents an example of comparisons of F (10, 10) and
F (1000, 1000) to N (0, 1). Chen et al. [5] attempt to overcome this issue by proposing the RHT
statistic, which resolves the singularity issue of the covariance matrix but yet the inconsistency and
poor performance of Hotelling’s T 2 statistic under the regime p/n → γ. Li et al. [26] propose
adaptable RHT and design an adaptive selection procedure for the loading parameter λ based on the
work of Chen et al. [5], which resolves the inconsistency of Hotelling’s T 2.

Bayesian Deep Learning. SOTA DNN architectures [33, 14, 34] demonstrate significant success
in tasks from different domains. Their designs enable them to mine high-dimensional features into
low-dimensional representations and address the aleatoric uncertainties. Despite the success, the
DNNs typically only yield maximum likelihood estimates of weights under the frequentist framework
and cannot address epistemic uncertainties [19]. Existing works of BNN assign prior distributions to
the neural network weights so as to obtain the posterior distributions of weights given the observed
data [36, 11, 29, 17]. This enables BNN to provide a more accurate approximation to the target
distribution and address epistemic uncertainties. Particularly when the training observations are
limited, using a BNN can prevent overfitting and generate more representative feature distributions.

8 Conclusion
We propose a novel uncertainty estimation framework by introducing high-dimensional hypothesis
testing to feature representations. We introduce the ARHT as the uncertainty measure which is
adaptable to individual data point and robust compared to existing uncertainty measures. Our
proposed uncertainty measure operates on latent features and hence can be generalized to any other
tasks beyond image classification (e.g., regression or feature representation learning). Empirical
evaluations on OOD detection and image classification tasks validate the satisfactory performance of
our method over the SOTAs. Ablation studies on key components of the proposed framework validate
the robustness and generalizability of our method to variations. One of the best potential applications
of our framework is continual learning, where the proposed method can accurately measure the
uncertainty as the domain shifts when encountering non-stationary environments. Our framework
can be potentially applied to various settings where distributional shifts and OOD detection are vital,
such as medical imaging, computational histopathology, and reinforcement learning.
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Overview. In the appendix, we first provide more explanations on the ARHT test statistic in Section
A. We then present a detailed summary of the datasets in Section B. Additional experiment results
and analysis are reported in Section C Detailed descriptions of distributions used for BNN training
are provided in Section D. We further present the implementation settings, hyperparameters and
settings of baseline methods in Section E. We give the definitions of uncertainty measures used for
comparison in Section F, together with an algorithm of our framework (Algorithm 1).

A Additional Discussion on ARHT

Why using ARHT? One of our motivations is to formulate uncertainty estimation as a hypothesis
testing problem, where we interpret high-dimensional test statistics as distance measures. The ARHT
can be viewed as a distance measure between each testing sample and the in-distribution sample,
where a larger ARHT indicates the sample is more likely to be OOD. The detection of OOD is then
determined by a threshold, while the optimal threshold can be obtained by the Benjamini–Hochberg
(BH) procedure. One advantage of ARHT is that it directly operates on the sampling distributions
of the latent features, and hence it does not require parametric assumptions on the latent features or
logits (e.g., assuming a Dirichlet distribution on class probabilities), which makes it a more robust
metric for uncertainty estimation.

Motivation of loading λIp: This is a standard way to ensure the covariance matrix to be positive
definite (and thus invertible) and hence improve the numerical stability.

Why does ARHT follow the standard normal distribution? : The major part of Li et al. [26] is to
prove why ARHT(λ) follows the standard Gaussian distribution. The proof is complex and hence is
not focused in this paper. Intuitively, ARHT(λ) can be viewed as a “standardized” version of RHT
(i.e., known as Mahalanobis distance) by its theoretical mean and SD, for which the derivations are
detailed in Li et al. [26]

Intuitive explanation and detailed derivation of the BH procedure: Although the BH procedure
may not be intuitive to the general audience, it is well-known in the statistics community due to
multiple testing issues. Intuitively, we consider the OOD detection procedure for each testing image
as a hypothesis testing problem. Then, such a procedure for the whole testing set can be viewed as a
multiple-testing problem (i.e., conducting a large number of tests). However, applying a universal
threshold for all tests (e.g., α = 0.05) is too conservative and leads to many false discoveries. Hence,
the BH procedure is applied to assign a threshold adaptable to each sample according to the p-values
of all tests such that the false discovery rate (FDR) can be minimized.

B Additional Information on Datasets

Table 6 presents a summary of the datasets used for the experiments. We use eight image datasets to
evaluate our method, including natural images and medical images.

Table 6: Summary of datasets, including the number of classes for classification, and the split of
training and testing sets.

Dataset No. Classes No. Training No. Testing

MNIST 10 60,000 10,000
Fashion-MNIST 10 60,000 10,000
OMNIGLOT 50 13,180 19,280
SVHN 10 73,257 26,032
CIFAR-10 10 60,000 10,000
CIFAR-100 100 60,000 10,000
TinyImageNet 200 80,000 20,000
DRD 2 50 100

Diabetes Retinopathy Detection (DRD). For this experiment, we define in-distribution samples as
healthy (no DR; with label 0), and OOD samples as DR (mild, moderate, severe, or proliferative DR;
corresponding to labels 1–4). We select 50 healthy images to train the encoder, and compute µ1 and

13



Σ1 from these samples using the trained encoder. For testing, we select 50 images as in-distribution
data and 50 images as the OOD data. All images are resized to 64×64 for computational convenience.
We train the encoder with a task to classify whether the input image is the left eye or right eye. The
examples of healthy and DR are presented in Figure 8.

Figure 8: Health and unhealthy (DR) samples from the Diabetes Retinopathy Detection (DRD)
dataset [8].

C Additional Experiment Results

We first present the OOD detection results on a more realistic dataset (i.e., TinyImageNet), with a
more realistic architecture (e.g., ResNet50). We also include more baseline methods for comparison.
Additionally, to study the effect of the encoder quality on OOD detection performance, we use the
training accuracy at different epochs to measure the quality of the encoder, and assess how the OOD
detection performance changes accordingly.

C.1 More Realistic Datasets.

We have conducted additional experiments on OOD detection, with CIFAR10 as the in-distribution
dataset and TinyImageNet as the OOD dataset. The results are presented in Tables 7 and 8, which
show that the uncertainty estimation still performs satisfactorily when being generalized to larger
datasets.

Table 7: The OOD detection performance (in %) of our method, BNN-ARHT, compared to various
competitors, using the LeNet [22] architecture. We use CIFAR 10 as the in-distribution dataset and
TinyImageNet as the OOD dataset.

Model AUC AUPR
MC Dropout [10] 66.98 64.46
Deep Ensembles [21] 66.41 63.97
Kendall and Gal [19] 63.23 63.06
EDL [32] 51.64 66.31
DPN [27] 61.68 58.33
BNN-ARHT (Ours) 67.77 66.74

C.2 Scalability

We aim to use the Bayesian counterpart of a smaller architecture to demonstrate the capability of
BNNs to generate latent feature distributions (for details see the discussion section in the main text).
One can generate ideal feature distributions using very large frequentist vision models (e.g., ViT),
which however induces enormous complexity in training and inference.
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Table 8: The OOD detection performance (in %) of our method, BNN-ARHT, compared with various
competitors, using the LeNet [22] architecture. We use TinyImageNet as the in-distribution dataset
and CIFAR10 as the OOD dataset.

Model AUC AUPR
MC Dropout [10] 64.36 60.47
Deep Ensembles [21] 66.41 63.97
Kendall and Gal [19] 58.54 55.29
EDL [32] 50.37 70.39
DPN [27] 59.59 59.87
BNN-ARHT (Ours) 69.27 71.54

Table 9: The OOD detection performance (in %) of our method, BNN-ARHT, compared with various
competitors, using the ResNet50 architecture. We use CIFAR 10 as the in-distribution dataset and
SVHN as the OOD dataset.

Model AUC AUPR
MC Dropout [10] 68.32 78.24
Deep Ensembles [21] 65.13 82.19
Kendall and Gal [19] 72.24 81.43
EDL [32] 51.21 73.78
DPN [27] 62.33 79.11
Detectron [12] 73.16 82.5
BNN-ARHT (Ours) 73.46 78.27

A related ablation experiment comparing the frequentist and Bayesian architecture is presented in the
main text. We additionally conduct an experiment with the Bayesian model architecture scaled up to
ResNet50. We further conduct an experiment using the frequentist ResNet50 (the hypothesis test
reduces to a one-sample test) and the testing AUROC is 72.77. These results validate the scalability
of our method to large and modern vision architectures.

C.3 Encoder Quality

To assess the effect of the encoder quality, we fix the encoder (e.g., LeNet) when comparing our
framework with the current SOTA methods. Since the baseline methods are trained on classification
problems (e.g., the CIFAR 10 image classification and DRD auxiliary task), we use the training
accuracy at different epochs to measure the quality of the encoder. We observe that the OOD
detection performance is monotonously improved with the increase in the training accuracy (i.e., the
encoder quality). Figure 9 presents an example of the OOD detection experiment on CIFAR10 and
TinyImageNet.

C.4 Influence of n2.

Figure 11 presents the OOD detection results under a more complex setting (In-distribution: CIFAR10,
OOD: SVHN). We observe a similar pattern to that in Figure 5 in the main text. This shows that
the sample covariance is more influenced by the n1 training/in-distribution samples, making the test
statistics reflect more the training distribution (hence the overall consistent pattern). Future work on
variance-adjusted test statistics may put more weight on the feature distributions of testing samples,
so that we would more easily observe performance improvement as n2 increases in this case.

C.5 Under the Regression Setting.

We choose OOD as the benchmark task since it is the most common benchmark for uncertainty
estimation. We additionally construct a regression setting with two multivariate Gaussian distributions
of different means and variances indicating different distributions. Most of the uncertainty estimation
frameworks cannot be applied to this setting because they only work under the classification settings.
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Figure 9: The OOD detection performance in terms of AUROC with respect to the training accuracy
of the encoder. We adopt CIFAR 10 as the training/in-distribution dataset and TinyImageNet as the
OOD data.

Figure 10: Ablation study with respect to s. We
use CIFAR10 as the in-distribution dataset and
SVHN as the OOD dataset.

Figure 11: Ablation study with respect to n2. We
use CIFAR10 as the in-distribution dataset and
SVHN as the OOD dataset.

The results in Table 10 show that our method also achieves satisfactory performance under the
regression settings, demonstrating its generalizability to other tasks.

C.6 Comparison with More Baselines

More baselines on uncertainty estimation are added for comparison: (1) I-EDL [6]: use the Fisher
information matrix to measure the informativeness of evidence carried by each sample; and (2) RKL-
PN [28]: prior networks trained with the reverse KL divergence. Table 11 presents the additional
results, from which we observe that our method still achieve the state-of-the-art performance with
more baselines included.

D Multivariate Gaussian Distribution

The multivariate Gaussian distribution is crucial for the approximation of a vanilla BNN [17]. We
provide the formal definition and its important properties in this section. The density of a multivariate
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Table 10: The OOD detection performance (in %) of our method, BNN-ARHT, compared with
various competitors, using the ResNet50 architecture. We constructed a simulated regression setting
where N (µ,Σ) is the distribution for in-distribution data and N (−µ,Σ) is the distribution for OOD
data. The auxiliary regression task is to predict the norm of the sampled vector using an MLP with
two layers. We choose µ = [0.5, . . . , 0.5]⊤, Σ = 9Ip, and p = 128.

Model AUROC AUPR
MC Dropout [10] 62.12 63.35
Deep Ensembles [21] 73.18 70.45
Kendall and Gal [19] 67.00 70.00
BNN-ARHT (Ours) 73.52 72.99

Table 11: The OOD detection performance (in %) of our method, BNN-ARHT, compared with
various competitors, using the LeNet architecture. Standard deviations are given in brackets.

OOD Datasets
Fashion–MNIST SVHN

Model In-Distrib. AUC AUPR In-Distrib. AUC AUPR
MC Dropout MNIST 99.33 (0.3) 99.27 (0.3) CIFAR10 78.09 (1.2) 84.35 (1.1)
Deep Ensembles MNIST 90.70 (8.4) 91.08 (7.7) CIFAR10 76.15 (5.3) 82.62 (13.1)
Kendall and Gal MNIST 92.54 (2.6) 92.77 (1.9) CIFAR10 67.40 (3.1) 71.44 (10.1)
EDL MNIST 73.43 (16.0) 80.22 (11.1) CIFAR10 69.57 (4.7) 83.74 (3.4)
DPN MNIST 99.41 (0.2) 99.37 (0.3) CIFAR10 57.48 (4.4) 77.76 (6.2)
PostNet MNIST 98.59 (0.4) 94.70 (0.5) CIFAR10 76.04 (1.6) 69.30 (1.7)
Detectron MNIST 75.57 (15.2) 83.75 (29.9) CIFAR10 76.01 (13.6) 90.00 (22.9)
RKL-PN MNIST — 78.45 (3.1) CIFAR10 57.89 (1.8) 61.41 (2.8)
I-EDL MNIST 98.49 (0.3) 98.89 (0.3) CIFAR10 — 83.26 (2.4)
BNN-ARHT (Ours) MNIST 99.51 (0.4) 99.47 (0.3) CIFAR10 82.01 (1.2) 91.61 (0.3)

Gaussian distribution is defined as

p(x;µ,Σ) =
1
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where µ ∈ Rp is a p-dimensional mean vector and Σ ∈ Rp×p is the covariance matrix. The KL
divergence between two multivariate normal distributions N (µ1,Σ1) and N (µ2,Σ2) is given by

KL(N (µ1,Σ1)∥N (µ2,Σ2)) =
1

2

[
log

|Σ2|
|Σ1|

− p+ tr{Σ−1
2 Σ1}+ (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
.

E Baseline Methods and Implementation Details

Implementation Details. We present additional implementation details and hyperparameter settings.
We first provide the key settings and adaptations applied to the baseline methods for reproducibility.
We follow the default settings for other fine-grained parameters (e.g., learning rates).

The proposed method is implemented in Python with Pytorch library on a server equipped with four
NVIDIA TESLA V100 GPUs. The dropout ratio of each dropout layer is selected as 0.2. All models
are trained with 100 epochs with possible early stopping. We use the Adam optimizer to optimize the
model with a learning rate of 5× 10−5 and a weight decay of 1× 10−5. Data augmentations such as
color jittering and random cropping and flipping are applied as a regularization measure.

Hyperparameter Settings. The hyperparameter settings for BNN training and ARHT testing are
given as follows:

• Prior mean of weights — sampled from N (−3, 0.01)

• s = 5
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• n2 = 300

• λ0 = 0.01

Additional Settings of Baseline Methods. We further introduce the experimental settings of baseline
methods:

• Deep ensembles [21]: Set the number of ensembles as 5.
• MCDropout [10]: Set the dropout ratio as 0.2 for both training and inference.
• Kendall and Gal: Set the number of inference weight samples as 20.
• Detectron [12]: Set the number of runs as 100.
• PostNet [4]: Because the original codes operate on the features extracted from the stan-

dard datasets, this method cannot be generalized to new datasets (e.g., SVHN) due to
unavailability of the data processing codes.

F Uncertainty Measures

We describe the uncertainty measures used in the OOD misclassification task in this section. These
definitions are well-known and summarized in Malinin and Gales [27],

• Entropy:

H[p(µ|D)] = −
K∑
c=1

p(wc|D) ln p(wc|D),

where P (wc|D) is the predictive probability of class c, and K is the number of classes for
classification.

• Maximum probability: we take the maximum predicted probability P from all classes as the
confidence score,

P = max
c

P (wc|D).

• Differential entropy:

I[y,µ|D] = −
∫
SK−1

p(µ|D) ln p(µ|D)dµ

where SK−1 is the supporting set, and µ is the predictive class probability assumed to
follow a Dirichlet distribution.

• Accuracy: the fraction of correct predictions to the total number of ground truth labels.
• F-1 score: The F-1 score for each class is defined as

F-1 score = 2 · precision · recall
precision + recall

where ‘recall’ is the fraction of correct predictions to the total number of ground truths
in each class and ‘precision’ is the fraction of correct predictions to the total number of
predictions in each class.

• AUROC: the area under the receiver operating curve (ROC) which is the plot of the true
positive rate (TPR/Recall) against the false positive rate (FPR).

• AUPR: the area under the precision-recall curve. Note that the AUPR for binary classification
is sensitive to the distribution of positive and negative classes. Hence, the higher AUPR
does not necessarily imply a better model performance.

G Algorithm

Algorithm 1 gives the detailed workflow of our proposed uncertainty estimation framework.
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Algorithm 1 Our proposed uncertainty estimation framework
Input:
The prior distribution of weights of BNN encoder π(θ) ∼ N (0, I);
Training data Dtr = {xi, yi}Ntr

i=1;
Testing data Dte = {xi, yi}Nte

i=1;
Hyperparameters µ0, ρ0, n2;
Initial variational posterior distribution q(θ) ∼ N (µ, log(1 + exp(ρ))) with initial parameters
µ = µ01 and ρ = ρ01
Output: The uncertainty scores

1: for (xi, yi) in Dtr do ▷ Train BNN encoder
2: Draw weight sample θ from q(θ)
3: ŷi = fθ(xi) ▷ Forward propagation
4: Compute task-specific loss Lobj

5: Compute KL(q∥π) and hence the ELBO
6: Backpropagate the ELBO to update µ and ρ
7: end for
8: Compute µ1 ∈ Rp, Σ1 ∈ Rp×p ▷ Obtain summary statistics of training
9: for (xi, yi) in Dtr do ▷ OOD Detection

10: Compute µ2 ∈ Rp, Σ2 ∈ Rp×p

11: Compute the pooled sample covariance matrix by Eq. (1)
12: Compute ARHT by Eq. (4) as the uncertainty score
13: Detect OOD samples using the uncertainty score under family-wise adjusted threshold
14: end for
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