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Abstract

Diffusion models have gained significant attention in the realm of image generation1

due to their exceptional performance. Their success has been recently expanded2

to text generation via generating all tokens within a sequence concurrently. How-3

ever, natural language exhibits a far more pronounced sequential dependency in4

comparison to images, and the majority of existing language models are trained5

with a left-to-right auto-regressive approach. To account for the inherent sequen-6

tial characteristic of natural language, we introduce Auto-Regressive Diffusion7

(AR-DIFFUSION). AR-DIFFUSION ensures that the generation of tokens on the8

right depends on the generated ones on the left, a mechanism achieved through9

employing a dynamic number of denoising steps that vary based on token position.10

This results in tokens on the left undergoing fewer denoising steps than those on11

the right, thereby enabling them to generate earlier and subsequently influence12

the generation of tokens on the right. In a series of experiments on various text13

generation tasks, including text summarization, machine translation, and common14

sense generation, AR-DIFFUSION clearly demonstrated its superiority over existing15

diffusion language models and that it can be 100× ∼ 600× faster when achieving16

comparable results. Our code will be publicly available.17

1 Introduction18

Text generation is a fundamental task within the field of natural language processing (NLP). Pre-19

trained language models like GPT-4 [OpenAI, 2023], LLaMA [Touvron et al., 2023], and Alpaca20

[Taori et al., 2023] have garnered significant attention with their ability to generate fluent and human-21

like textual content. These models utilize the auto-regressive (AR) Transformer decoders [Vaswani22

et al., 2017] to emit generated tokens one-by-one in sequential order from left to right. By leveraging23

the power of position dependency, AR models are able to enhance the naturalness, coherence, and24

adherence to human language conventions in the generated text [Brown et al., 2020].25

Recent studies have shown the remarkable performance of diffusion models in image generation [Ho26

et al., 2020], motivating researchers to extend diffusion to text generation [Li et al., 2022a, Gong27

et al., 2022, Dieleman et al., 2022, Yuan et al., 2022, Ye et al., 2023]. By introducing timestep, these28

methods progressively regulate the interpolation between the original tokens and Gaussian noise, then29

iteratively denoise for text generation. At each timestep, the diffusion-based text generator predicts30

all tokens simultaneously following Non-Auto-Regression (NAR) [Lewis et al., 2020, Qi et al., 2020,31

2021, Li et al., 2022b], leading to faster decoding speed compared to AR. However, it also inherits32

the drawback of NAR, namely the sacrifice of inter-token position dependency [Li et al., 2022c] and33

the drop of generation performance [Bao et al., 2021].34

To conduct a comprehensive analysis, we introduce a two-dimensional coordinate system to track the35

diffusion timestep of tokens f(·) positioned at various locations. As illustrated in Figure 1, the system36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



𝑡𝑖+1

T
T

𝑡𝑖+1

𝑡𝑖

𝑡𝑖

Timestep Timestep

PositionPosition

𝑓(𝑛2, 𝑡𝑖+1)

𝑓(𝑛2, 𝑡𝑖)

(a) Diffusion-LM (c) AR-Diffusion

Token-Level Diffusion Timestep FunctionForward Diffusion Process Reverse Diffusion Process

(𝑛𝑒, 𝑡𝑒)

𝑛1 𝑛2 NN𝑛2

T

𝑡𝑖+1𝑡𝑖

Timestep

Position

(b) AR
N𝑛2𝑛1

𝒗 𝒏𝟐, 𝒕𝒊, 𝒕𝒊+𝟏 = |𝒕𝒊+𝟏 − 𝒕𝒊|

𝒗 𝒏𝟏, 𝒕𝒊, 𝒕𝒊+𝟏 = |𝒕𝒊+𝟏 − 𝒕𝒊|

𝑓(𝑛1, 𝑡𝑖+1)

𝑓(𝑛1, 𝑡𝑖)

𝑛1

𝑓(𝑛2, 𝑡𝑖+1)

𝑓(𝑛2, 𝑡𝑖)

𝒗 𝒏𝟐, 𝒕𝒊, 𝒕𝒊+𝟏 = 𝑻

𝒗 𝒏𝟏, 𝒕𝒊, 𝒕𝒊+𝟏 = 𝟎

𝑓 𝑛1, 𝑡𝑖 = 𝑓(𝑛1, 𝑡𝑖+1)

𝑓(𝑛2, 𝑡𝑖+1)

𝑓(𝑛2, 𝑡𝑖)

𝒗(𝒏𝟐, 𝒕𝒊, 𝒕𝒊+𝟏 )

𝒗(𝒏𝟏, 𝒕𝒊, 𝒕𝒊+𝟏 )

𝑓(𝑛1, 𝑡𝑖+1)

𝑓(𝑛1, 𝑡𝑖)

Figure 1: Model behaviors illustrated on a two-dimensional coordinate system, where the horizontal
axis stands for the position and the vertical axis represents the diffusion timestep. In the inference
stage, different models will behave differently. (a) For the typical Diffusion-LM [Li et al., 2022a],
each token share the identical movement speed v(n1, ti, ti+1) = v(n2, ti, ti+1) = |ti+1− ti|. (b) For
AR from the perspective of diffusion models, the tokens have two states based on the degree of interpo-
lation between the original tokens and Gaussian noise: to be decoded (at timestep t = T ) and already
decoded (at timestep t = 0). Specifically, we have v(n1, ti, ti+1) = 0 and v(n2, ti, ti+1) = T . (c)
In AR-DIFFUSION, (ne, te) is the coordinate of anchor point. Tokens in different positions exhibit
varying movement speeds, such as v(n1, ti, ti+1) > v(n2, ti, ti+1) when n1 < n2.

assigns the token position n ∈ [1, N ] to the horizontal axis and the diffusion timestep t ∈ [0, T ] to37

the vertical axis. Diffusion-LM [Li et al., 2022a], which is followed by existing diffusion-based text38

generation models, is shown in Figure 1(a). It assigns a uniform timestep t to all tokens. In contrast,39

tokens in the AR model depicted in Figure 1(b) exhibit distinct timesteps within a generation step (ti).40

For instance, the already decoded token at position n1 has a timestep of 0, while the to-be-decoded41

token at position n2 has a timestep of T . This approach effectively captures the sequential dependency.42

Motivated by this observation, we introduce AR-DIFFUSION, an auto-regressive diffusion method,43

for the disparity in token positions and the principle of sequential token identification.44

In AR-DIFFUSION, we propose a multi-level diffusion strategy that includes both sentence-level45

and token-level diffusion. We randomly choose a sentence-level timestep t, and assign dynamic46

movement speeds v(·) by determining position-sensitive token-level timestep f(n, t) for each token.47

This enables tokens at the left of a sentence to undergo faster movement from random Gaussian noise48

to token embedding, while those at the right of the sentence experience slower movement to better49

utilize information from previously denoised tokens. During inference, to reduce the significant50

number of inference steps (e.g., 2,000) required in Diffusion-LM [Li et al., 2022a], SeqDiffSeq [Yuan51

et al., 2022] and GENIE [Lin et al., 2023], we introduce a skipping mechanism that collaborates with52

the multi-level diffusion strategy to accelerate the process.53

Experimental results across various text generation tasks, such as text summarization, machine54

translation, and common sense generation, have consistently demonstrated that AR-DIFFUSION55

surpasses existing text diffusion models, including AR methods in terms of both quality and diversity.56

Moreover, our verification reveals that AR-DIFFUSION requires fewer resources during decoding57

while maintaining superior performance. It achieves 100× faster than SeqDiffSeq [Yuan et al., 2022]58

in machine translation and 600× faster than GENIE [Lin et al., 2023] in text summarization while59

delivering comparable results. Furthermore, it demonstrates promising results even in a challenging60

scenario where decoding is limited to only two steps.61

2 Preliminary62

2.1 Conditional Generative Language Models63

In the field of natural language generation, conditional generative models are commonly implemented64

using either auto-regressive (AR) or non-auto-regressive (NAR) methods. In AR [Vaswani et al.,65
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2017], tokens on the right are predicted based on visible left tokens. The likelihood is given by66

pAR(y|x) =
∏N

i=1 p(yi|y1:i−1;x), where yi denotes the i-th token of y. On the other hand, NAR [Gu67

et al., 2017] assumes conditional independence among tokens and generates them uniformly without68

distinction during decoding, resulting in the likelihood pNAR(y|x) =
∏N

i=1 p(yi|x). This parallel gen-69

eration approach is of lower quality compared to AR, although it offers a substantial speed advantage.70

2.2 Diffusion Models for Text Generation71

Recently, Li et al. [2022a] propose a natural language generation model based on the diffusion72

process, which is typically divided into a forward noising process and a reverse denoising process.73

Specifically, the forward process is a fixed linear Gaussian model, which gradually perturbs the74

random variable z0 until it becomes the standard Gaussian distribution. This can be formalized as:75

q(zt | z0;x) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (1)

where, ᾱt =
∏t

i=1 αi, and αi is a coefficient that monotonically decreases with timestep t, zt is the76

latent state at timestep t.77

The reverse process is to initiate from standard Gaussian noise and progressively utilize the denoising78

transition pθ(zt−1|zt;x) for generation.79

pθ(zt−1 | zt;x) = N
(
zt−1;µθ(zt, t;x),Σθ(zt, t;x)

)
, (2)

where the mean µθ and variance Σθ are learned from the model. In particular, we follow Li et al.80

[2022a]’s approach of using predefined variance without trainable parameters.81

To extend the continuous diffusion process to discrete text generation, Li et al. [2022a] introduce82

an additional Markov transition from the discrete tokens y to the latent variable z0. In practice, we83

add an embedding step qϕ(z0|y) = N (z0; Emb(y), (1 − α0)I) in the forward process, and use a84

trainable rounding step which is parametrized by pθ(y|z0;x) =
∏N

i=1 pθ(yi|zi0;x) in the reverse85

process. In each timestep, we utilize an encoder-decoder model gθ(zt, t;x) to approximate z0 [Lin86

et al., 2023] in a NAR manner and then estimate µθ(zt, t;x).87

In consequence, combined with maximizing the evidence lower bound (ELBO) of log pθ(y|x), our88

training objective of the conditional diffusion language model is:89

L = Eqϕ(z0:T |y)

[
− log pθ(y | z0;x) +

T∑
t=1

∥z0 − gθ(zt, t;x)∥2
]
. (3)

3 Methodology90

3.1 Multi-Level Diffusion91

In the typical diffusion process, every token in the text sequence has the same diffusion timestep.92

In order to leverage the sequential nature of language, we enable tokens to have different diffusion93

timesteps during the forward and reverse pass. To accomplish this, we propose a multi-level diffusion94

strategy that includes both sentence-level and token-level diffusion. Firstly, at the sentence-level, we95

follow Diffusion-LM [Li et al., 2022a] to randomly select a timestep t. Secondly, at the token-level,96

we incorporate positional information n ∈ [1, N ] based on the sentence-level timestep to regulate97

the diffusion timestep for the current token. The procedure is illustrated as:98

zt =
(
z1
f(1,t),z

2
f(2,t), · · · ,zN

f(N,t)

)
, (4)

where N is the given target sentence length, zt is the sentence representation at timestep1 t, zn
f(n,t)99

is the latent representation for the n-th token at sentence-level timestep t, and f(n, t) is a token-level100

timestep function that denotes the token-level diffusion timestep determined by token position n101

and sentence-level timestep t.102

We visualize the token-level timestep
(
n, f(n, t)

)
onto a two-dimensional coordinate system as Fig-103

ure 1 , which takes the token position as the horizontal axis and the sentence-level timestep as the104

1Please note that if we talk about a “timestep” without explicitly indicating that it is for token-level, it should
be for sentence-level.

3



vertical axis. Furthermore, to provide a more profound description of the characteristics of movement,105

we define the speed of movement as the following equation.106

v(n, ti, ti+1) = f(n, ti+1)− f(n, ti), (5)

where ti and ti+1 are the start and end sentence-level diffusion timesteps. It can be observed that107

tokens in Diffusion-LM share the same movement speed, while those in AR exhibit different speeds.108

3.2 Token-Level Diffusion with Dynamic Movement Speed109

Based on the speed of movement, we propose a fundamental principle, dynamic movement speed,110

for designing the token-level diffusion timestep function f(n, t) to take advantage of AR in diffusion.111

Specifically, elements on the left side of a sentence undergo higher movement speed from random112

Gaussian noise to token embedding, while those on the right side experience lower movement speed,113

thereby they can be generated in the later sentence-level timestep and utilize information from114

previously generated tokens more effectively.115

Algorithm 1 Training Process of AR-DIFFUSION.
Input: Dataset {(x,y)}, maximum timestep number T and maximum target length N .
Output: Optimized model parameters θ.

1: Define an anchor point (ne, te)
2.

2: repeat
3: Sample (x,y) from the dataset and embed y into z0.
4: Sample a sentence-level timestep t from the interval [0, N + T ], then the start point is determined by the

following equation:
(ns, ts) =

(
clip(N − t, 0, N), clip(t−N, 0, T )

)
(6)

5: Use the point-slope linear function to determine the token-level timestep f(n, t) in position n:

f(n, t) = clip
( te − ts
ne − ns

(n− ns) + ts, 0, T
)

(7)

6: Sample zn
f(n,t) for each n in different positions with Gaussian reparameterization.

7: According to equation (3) and equation (9), employ gradient descent to optimize the objective:

min
θ

[
− log pθ(y | z0;x) +

N∑
n=1

∥∥gθ(z
n
f(n,t), f(n, t);x)− z0

∥∥2
]

(8)

8: until converged

Following the guidance of the principle, we develop a token-level diffusion strategy with the116

linear function, which is shown in Figure 1(c). In particular, the procedure is illustrated in117

Algorithm 1, where clip(x,min,max) function is to clamp all elements in x into the range118

[min,max]. Specifically, in the forward process of diffusion, the start point goes to the left from119

(N, 0) to (0, 0) along the horizontal axis and then moves up to (0, T ) along the vertical axis.120

Therefore, the entire range of sentence-level timestep is extended to [0, N + T ].121

In the reverse diffusion process, the multi-level diffusion follows the formula:122

gθ

(
zt, t;x

)
= gθ

((
z1
f(1,t), f(1, t)

)
,
(
z2
f(2,t), f(2, t)

)
, · · · ,

(
zN
f(N,t), f(N, t)

)
;x

)
, (9)

where gθ(z
n
f(n,t), f(n, t);x) denotes the n-th element.123

3.3 Inference with Skipping124

Typically, the generation process needs to go through all the sentence-level timesteps from T +N125

to 0. To reduce the decoding time, we introduce a skipping mechanism that allows us to traverse126

a subset of timesteps.127

2In particular, the anchor point is set as (2×N,T ) in our implementation. The impact of different choices
of the anchor point is discussed in supplementary material D.
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Algorithm 2 Inference Process of AR-DIFFUSION with the Skipping Mechanism.
Input: Source condition x, number of decoding steps M and model parameters θ.
Output: Predicted target embedding ŷ.

1: Define an anchor point (ne, te).
2: Uniformly select a decreasing sequence of timesteps {ti}Mi=0 ranging from T +N to 0.
3: Sample zt0 ∼ N (0, I).
4: for i = 0 to M − 1 do
5: Calculate the start point (ns, ts) using equation (6).
6: Based on the current sentence-level inference steps ti and the next one ti+1, assign token-level timesteps

f(n, ti) and f(n, ti+1) to token in position n using equation (7).
7: Reverse sample zti+1 =

(
z1
f(1,ti+1)

,z2
f(2,ti+1)

, · · · ,zN
f(N,ti+1)

)
from pθ(zti+1 | zti ;x) with the

following formulas:

pθ(zti+1 | zti ;x) =

N∏
n=1

pθ
(
zn
f(n,ti+1) | z

n
f(n,ti);x

)
(10)

pθ
(
zn
f(n,ti+1) | z

n
f(n,ti);x

)
∼ N

(
zn
f(n,ti+1);λz

n
f(n,ti) + µgθ(z

n
f(n,t), f(n, t);x), σI

)
(11)

8: end for
9: Map ztM to the nearest embedding ŷ.

In practice, we propose an algorithm for the inference, illustrated in Algorithm 2.128

λ =

√
ᾱf(n,ti)

ᾱf(n,ti+1)
(1− ᾱf(n,ti+1))

1− ᾱf(n,ti)

, µ =

√
ᾱf(n,ti+1)(1−

ᾱf(n,ti)

ᾱf(n,ti+1)
)

1− ᾱf(n,ti)

, σ =
(1− αf(n,ti))(1− ᾱf(n,ti+1))

1− ᾱf(n,ti)

(12)

In equation (10), the conditional distribution of zti+1 is inferred by pθ(zti+1 |zti ;x), and then we129

decompose it by positions due to the independent forward process of elements at different positions.130

From equation (11) to equation (12), we establish the relationship between tokens at different131

timesteps, and the detailed derivation can be found in supplementary material E.132

4 Experiments133

4.1 Tasks and Datasets134

Text Summarization This task involves taking a long document as input and generating a concise135

sentence as output. This requires models with the ability to identify important content and rewrite it136

in a condensed form. In our experiments, we use the publicly available XSUM [Narayan et al., 2018]137

and CNN/DAILYMAIL Hermann et al. [2015] on GLGE3, which is also named as GLGE-Easy.138

Machine Translation Translation is a widely used sequence-to-sequence task. The input is a139

sequence of words in the source language, and the output is a sequence of corresponding words in the140

target language. We choose the IWSLT 2014 dataset and the data processing method is to follow the141

scripts provided by fairseq4.142

Common Sense Generation In this task, the model is provided with a concept set consisting of143

objects and actions as input. The objective is to generate a sentence that incorporates these concepts144

and describes a realistic scenario. We use COMMONGEN5 dataset for evaluation.145

4.2 Main Results146

The results on different datasets are shown in Table 1, Table 2, Table 3 and Table 4. The best147

result is bolded and the second-best result is underlined . “k” indicates the number of generated148

3https://microsoft.github.io/glge/
4https://github.com/facebookresearch/fairseq/tree/main/examples/translation
5https://inklab.usc.edu/CommonGen/
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candidate samples6. It can be seen from the results in each table that AR-DIFFUSION achieves the149

best performance.150

During the inference process, we utilize 20 inference steps and employ Minimum Bayes Risk (MBR)151

[Kumar and Byrne, 2004] decoding to select the best sample, following [Li et al., 2022a]. We choose152

MBR instead of the selection approach in GENIE, as GENIE picks up the best sample by calculating153

the maximum score for each generated one using ground truth, which introduces unfairness. To154

ensure a fair comparison, we re-implement GENIE using our configuration and perform inference155

with 20 steps. More experimental details can be found in the supplementary material B.156

Table 1: Results on XSUM test set. The results of NAR and Semi-NAR are from Qi et al. [2021], and
the results of AR are from GLGE [Liu et al., 2021].

Methods Pattern ROUGE-1 ROUGE-2 ROUGE-L

NAT [Gu et al., 2017]

NAR

24.0 3.9 20.3
iNAT [Lee et al., 2018] 24.0 4.0 20.4
CMLM [Ghazvininejad et al., 2019] 23.8 3.6 20.2
LevT [Gu et al., 2019] 24.8 4.2 20.9

InsT [Stern et al., 2019]

Semi-NAR

17.7 5.2 16.1
iNAT [Lee et al., 2018] 27.0 6.9 22.4
CMLM [Ghazvininejad et al., 2019] 29.1 7.7 23.0
LevT [Gu et al., 2019] 25.3 7.4 21.5

LSTM [Greff et al., 2017] AR7 25.1 6.9 19.9
Transformer [Vaswani et al., 2017] 30.5 10.4 24.2

GENIE [Lin et al., 2023] (k = 50)
Diffusion

29.3 8.3 21.9
AR-DIFFUSION (k = 50) 31.7 10.1 24.7
AR-DIFFUSION (k = 500) 32.2 10.6 25.2

Table 2: Results on CNN/DAILYMAIL test set. The results of AR are from GLGE Liu et al. [2021].
Methods Pattern ROUGE-1 ROUGE-2 ROUGE-L

LSTM [Greff et al., 2017] AR 37.3 15.7 34.4
Transformer [Vaswani et al., 2017] 39.5 16.7 36.7

GENIE [Lin et al., 2023] (k = 50)
Diffusion

34.4 12.8 32.1
AR-DIFFUSION (k = 50) 39.6 16.3 37.1
AR-DIFFUSION (k = 500) 40.2 17.1 37.7

Text Summarization The results presented in Table 1 and Table 2 clearly demonstrate that AR-157

DIFFUSION outperforms the existing NAR and Semi-NAR approaches across all metrics. Moreover,158

AR-DIFFUSION consistently achieves significant improvements over GENIE in terms of all indicators.159

Furthermore, in comparison to Transformer, AR-DIFFUSION outperforms it on both ROUGE-1 and160

ROUGE-L, while achieving comparable performance in terms of ROUGE-2. Notably, when the sample161

number is 500, AR-DIFFUSION demonstrates superiority over Transformer across all the measures.162

Machine Translation Table 3 presents the BLEU score implemented by SeqDiffuSeq setting8.163

AR-DIFFUSION outperforms the non-auto-regressive CNAT in greedy search for a single sample, and164

achieves a substantial gain. Moreover, the BLEU score of AR-DIFFUSION surpasses GENIE by a large165

margin and shows a slightly better performance than the AR Transformer. Specially, AR-DIFFUSION166

achieves a more powerful result at k = 500.167

Common Sense Generation As depicted in Table 4, AR-DIFFUSION achieves superior perfor-168

mance compared to the current AR, NAR, and other diffusion methods across all the metrics on the169

COMMONGEN dataset.170

6The relationship between sample number and results is discussed in supplementary material D.
7Notably, although AR’s beam search has a small beam, the search space may be larger than 50 or even 500.
8We also report SacreBLEU in supplementary material C to compare with DINOISER.

6



Table 3: Results on IWSLT14 DE→EN test set following the setting of SEQDIFFUSEQ. “NFE”
indicates the Number of Function Evaluations [Ye et al., 2023].

Methods Pattern BLEU Steps NFE (Steps×k)

Transformer [Vaswani et al., 2017] AR 34.74 - -

CNAT [Bao et al., 2021] NAR 29.81 - -

SeqDiffuSeq [Yuan et al., 2022] (k = 1) Diffusion 29.83 2,000 2,000 (2,000 × 1)
AR-DIFFUSION (k = 1) 30.19 20 20 (20 × 1)

GENIE [Lin et al., 2023] (k = 50) 30.08 20 1,000 (20 × 50)
AR-DIFFUSION (k = 50) Diffusion 34.95 20 1,000 (20 × 50)
AR-DIFFUSION (k = 500) 35.62 20 10,000 (20 × 500)

Table 4: Results on COMMONGEN dev set. Results of NAR and AR are from Lin et al. [2020].
Methods Pattern ROUGE-2/L BLEU-3/4 METEOR SPICE

bRNN-CopyNet [Gu et al., 2016]
AR

9.23 30.57 13.60 7.80 17.40 16.90
Trans-CopyNet [Lin et al., 2020] 11.08 32.57 17.20 10.60 18.80 18.00
MeanPooling-CopyNet [Lin et al., 2020] 11.36 34.63 14.80 8.90 19.20 20.20

LevT [Gu et al., 2019] NAR 12.22 35.42 23.10 15.00 22.10 21.40
ConstLeven [Susanto et al., 2020] 13.47 35.19 21.30 12.30 25.00 23.20

GENIE [Lin et al., 2023] (k = 50) Diffusion 12.89 35.21 22.00 13.30 24.30 23.00
AR-DIFFUSION (k = 50) 13.93 37.36 25.60 16.40 25.00 24.20

4.3 Inference Efficiency171

First, we use the number of function evaluations (NFE) as a measure to compare inference effi-172

ciency [Ye et al., 2023] in machine translation. From Table 3, it is evident that even when the NFE173

is reduced to 1% of SeqDiffuSeq (equivalent to 100× faster), AR-DIFFUSION still outperforms174

SeqDiffuSeq. Moreover, increasing the number of generated candidate samples (k = 500) leads to175

further performance improvements, albeit with increased time consumption.176

Second, we conduct experiments with an extremely limited number of inference steps (2 and 3)9177

and compare the performance with that of GENIE in XSUM. The results are presented in Table 5.178

When reducing the number of steps to 2, GENIE experiences a significant decline, with an average179

score of 4.20 in the AVG Drop column, while AR-DIFFUSION exhibits a comparatively smaller180

decrease of 1.34. Furthermore, with 3 steps, although the performance deterioration of GENIE is181

somewhat reduced, the average score still shows a decline of 2.81. In contrast, AR-DIFFUSION182

maintains a high performance level, with an average score differing from the 20-step result by only183

0.64. Notably, the results of AR-DIFFUSION at 3 steps are comparable to the results of GENIE184

at 2,000 steps. Therefore, compared to GENIE, the inference speed of AR-DIFFUSION can be185

accelerated by up to 600×.186

4.4 Analysis187

Diversity of Samples Diversity is a key advantage of diffusion models. To measure the diversity188

of generated samples, We adopt the SELF-BLEU [Zhu et al., 2018] metric, in which a lower score189

indicates higher diversity. In Lin et al. [2023], various sampling methods were applied to the pre-190

trained auto-regressive model BART10. As shown in Table 6, AR-DIFFUSION achieves significantly191

higher diversity compared to the auto-regressive model. Furthermore, the diversity can be comparable192

to GENIE with a better performance.193

Ablation Study To demonstrate the effectiveness of our proposed method, we perform ablation194

experiments on the XSUM dataset. Our results show that both our proposed multi-level diffusion and195

skipping mechanism are essential for achieving the high performance of AR-DIFFUSION.196

9The time consumed by each step in the inference process is exactly the same.
10Specific details are written in supplementary material F.
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Table 5: Experimental results of GENIE and AR-DIFFUSION with inference steps of 2 and 3 on
XSUM test set. Take k = 10 to apply the MBR decoding strategy. (·) indicates the drop score
compared to the 20-step.

Methods Steps NFE ROUGE-1 ROUGE-2 ROUGE-L AVG Drop

GENIE

2,000 20,000 30.36 8.78 23.31 -

20 200 28.33 7.46 21.15 -

3 30 25.03 (-3.30) 5.32 (-2.14) 18.17 (-2.98) 2.81
2 20 23.45 (-4.88) 3.95 (-3.51) 16.94 (-4.21) 4.20

AR-DIFFUSION
20 200 30.99 9.32 23.95 -

3 30 30.23 (-0.76) 8.68 (-0.64) 23.43 (-0.52) 0.64
2 20 29.28 (-1.71) 7.99 (-1.33) 22.98 (-0.97) 1.34

Table 6: Diversity of 10 generated samples on XSUM test set and average of 10 results. The results
of BART and GENIE are quoted from Lin et al. [2023].

Methods BART GENIE AR-DIFFUSION

Sampling Greedy
Search

Beam
Search

Diverse
Beam Search

Typical
Sample

Top-k
Sample

Nucleus
Sample Diffusion

SELF-BLEU ↓ 100.0 93.4 75.6 76.9 80.2 79.1 29.3 30.4

Maintaining the skipping inference method, we remove the token-level diffusion during the training197

process, which degenerates to GENIE w/ skipping. The comparison results are shown in Figure 2(a).198

It can be observed that after removing, the AVG-ROUGE score is greatly lower after 2 steps.199

The performance of applying our proposed skipping mechanism and DDIM [Song et al., 2021] to200

AR-DIFFUSION is shown in Figure 2(b). The results demonstrate that the skipping mechanism201

consistently outperforms DDIM in various inference steps. Additionally, the skipping mechanism202

can be easily applied to GENIE. As depicted in Figure 2(c), DDIM suffers a significant drop in203

performance when the number of inference steps is less than 40. In contrast, the skipping mechanism204

consistently maintains good performance across all inference steps.205

Case Study By mapping the state to the token with the highest logits, we visualize the intermediate206

states of AR-DIFFUSION. As depicted in Figure 3, AR-DIFFUSION undergoes a denoising process,207

transforming the random Gaussian noise into a coherent sentence over 20 steps, and we present 5 of208

them. With the progression of each timestep, compared to the tokens on the right side of the sentence,209

the tokens on the left side demonstrate faster determination and a rapid increase in the corresponding210

logits. This behavior is consistent with our principle of dynamic movement speed from left to right.211

5 Related Work212

AR and NAR Language Models AR models have been the dominant approach for text generation213

[OpenAI, 2023, Touvron et al., 2023, Dong et al., 2023], but their token-by-token generation nature214

often leads to unsatisfactory inference speed. To address this issue, NAR models have been developed215

in recent years. The NAR method is initially proposed by Gu et al. [2017], its objective is generate the216

entire output sequence in parallel, thereby improving generation speed and efficiency. Subsequently,217

LevT [Gu et al., 2019] adopts insertion and deletion to address the lack of flexibility in NAR218

generation, CMLM [Ghazvininejad et al., 2019] utilizes a masked language model to improve the219

quality of NAR generation through a constant number of iterations, and CNAT [Bao et al., 2021]220

introduces latent variables to represent the category information of the target word to make full use221

of the latent representation. However, these NAR methods are hard to model inter-token position222

dependency and deficient in generation performance.223

Continuous Text Diffusion The application of diffusion models to continuous text space is first224

introduced by Li et al. [2022a]. Through the embedding and rounding processes, the direct integration225
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(a) (b) (c)

Figure 2: Ablation experiments on XSUM test set and taking k = 5. The horizontal axis is the number
of inference steps and the vertical axis is AVG-ROUGE = (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.
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Figure 3: The intermediate state of AR-DIFFUSION gradually generating real text from a standard
Gaussian noise through 20 steps. The brightness of the color represents the magnitude of the logits,
with darker colors indicating larger logits. More cases are shown in the supplementary materials G.

of continuous noise into word embeddings was accomplished. After that, more people attempt to226

adopt continuous text diffusion model to solve sequence-to-sequence tasks. DiffuSeq [Gong et al.,227

2022] divides the input into two parts, utilizing one part as a condition, and perturbs the other part228

with noise. CDCD [Dieleman et al., 2022] proposes score interpolation and time warping to allow229

diffusion model and Euclidean embedding to share the same loss function for training. SeqDiffuSeq230

[Yuan et al., 2022], GENIE [Lin et al., 2023] and DINOISER [Ye et al., 2023] incorporate diffusion231

model into the encoder-decoder structure through cross-attention mechanisms.232

It is important to highlight the differences between our method and both ARDMs [Hoogeboom233

et al., 2022] and TimeGrad [Rasul et al., 2021], despite the common references to autoregression234

and diffusion in all these. ARDMs employ an order-agnostic technique, leveraging masking and235

prediction for generation in arbitrary orders. On the other hand, TimeGrad integrates RNN and236

diffusion to model the conditional distribution of future steps of multivariate time series. In contrast,237

our research focuses on implementing the diffusion process within a continuous embedding space,238

with the primary aim of generating text in a left-to-right sequence.239

6 Conclusion240

This paper introduces AR-DIFFUSION, which exhibits AR-like generation behavior but enables241

efficient parallel decoding. Embracing the inherent sequential nature of language, we propose a multi-242

level diffusion model, consisting of sentence-level and token-level components, to assign dynamic243

movement speeds to tokens. Consequently, compared to those on the right, the left tokens undergo244

fewer denoising steps and generate earlier to subsequently influence the later ones. Furthermore,245

we introduce a skipping mechanism to facilitate parallel generation within the multi-level diffusion246

framework. The experimental results across various tasks demonstrate that AR-DIFFUSION surpasses247

existing diffusion models in terms of quality while maintaining diversity. Additionally, compared248

to existing diffusion language models, AR-DIFFUSION achieves comparable results while being249

100× ∼ 600× faster.250
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A Limitation406

A primary limitation of our work lies in the requirement of generating a large number of candidate407

samples for optimal performance. As an illustration in Table 2 of CNN/DAILYMAIL dataset, AR-408

DIFFUSION (k = 50) achieves a 0.8 lower ROUGE-2 score compared to AR-DIFFUSION (k = 500).409

We anticipate exploring more efficient sampling strategies to minimize the number of generated410

samples without performance drop.411

B Experimental Details412

Model Setup Our model configuration is implemented based on Transformer-base [Vaswani413

et al., 2017]. In particular, For XSUM and CNN/DAILYMAIL, we set the diffusion embedding414

dimension to 128. For IWSLT14, we use 64-dimensional diffusion embedding, 4 attention heads415

and 1024-dimensional feed-forward layers. For COMMONGEN, we adopt 64-dimensional diffusion416

embedding, 8 attention heads and 512-dimensional feed-forward layers.417

Training and Inference In the training phase, we employ a square-root noise schedule and 2,000418

diffusion steps [Li et al., 2022a]. Specially, we use the tokenizer and vocabulary constructed by Byte419

Pair Encoding (BPE)11 [Kudo and Richardson, 2018] for translation tasks. For other tasks, we adopt420

the tokenizer and vocabulary of bert-base-uncased.421

Baselines We set four groups of baselines:422

• NAR: NAT [Gu et al., 2017], iNAT [Lee et al., 2018], CMLM [Ghazvininejad et al., 2019], LevT423

[Gu et al., 2019] and CNAT [Bao et al., 2021];424

• Semi-NAR: InsT [Stern et al., 2019], iNAT [Lee et al., 2018], CMLM [Ghazvininejad et al., 2019]425

and LevT [Gu et al., 2019];426

• AR: bRNN [Gu et al., 2016], LSTM [Greff et al., 2017] and Transformer [Vaswani et al., 2017];427

• Diffusion: DiffusionLM [Li et al., 2022a], CDCD [Dieleman et al., 2022], SeqDiffuSeq [Yuan428

et al., 2022], DINOISER [Ye et al., 2023] and GENIE [Lin et al., 2023].429

Metrics We follow the approach of Qi et al. [2020]12 to evaluate the ROUGE-1/2/L of the430

summarization task. For the evaluation of translation tasks, we adopt the setting of SeqDiffuSeq [Yuan431

et al., 2022] to report BLEU score. In addition, we also calculate the SacreBLEU score according432

to the setting of DINOISER [Ye et al., 2023] for comparison. For COMMONGEN, we employ433

ROUGE-2/L, BLEU-3/4, METEOR and SPICE under the evaluation methods of Lin et al. [2020]13.434

Training Parameters Our training parameters on different datasets are shown in Table 7. Our435

linear schedule warm up steps is 4,000 ×Ngc , where Ngc denotes gradient accumulation number. In436

addition, we use the AdamW (weight decay = 0.0) optimizer and dropout is 0.2. All experiments are437

implemented on 8 Tesla V100-32G. It takes about 20 hours to train XSUM and CNN/DAILYMAIL,438

about 5 hours to train IWSLT14, and about 2 hours to train COMMENGEN.439

C More Results on IWSLT14440

In Table 8 we give the SacreBLEU score according to the setting of DINOISER. AR-DIFFUSION441

has notable improvements over non-auto-regressive CMLM. Besides, AR-DIFFUSION achieves442

excellent performance among text diffusion models for both EN→DE and DE→EN tasks. Specifically,443

AR-DIFFUSION is far superior to GENIE and comparable to the newly proposed DINOISER at n =444

50. Nevertheless, the performance is stronger than DINOISER when k = 50014.445

11We train bpe on the training set, and follow the vocabulary size of fairseq, IWSLT14 is set to 10,000 .
12https://github.com/microsoft/ProphetNet/tree/master/GLGE_baselines
13https://github.com/INK-USC/CommonGen/tree/master/evaluation/Traditional/eval_

metrics
14DINOISER has shown in their Figure 4 that their method is not better with a larger k.

14

https://github.com/microsoft/ProphetNet/tree/master/GLGE_baselines
https://github.com/INK-USC/CommonGen/tree/master/evaluation/Traditional/eval_metrics
https://github.com/INK-USC/CommonGen/tree/master/evaluation/Traditional/eval_metrics


Table 7: Training Parameter Settings. Batch Size = mini batch size ×Ngc × GPU number, Optimized
Steps = total steps / Ngc, and Ngc is gradient accumulation number.

Dataset Lr & Schedule Batch Size Optimized Steps Target Length

XSUM 8e-4 & Cosine 128×3×8 80,000 / 3 50
CNN/DAILYMAIL 8e-4 & Cosine 80×5×8 100,000 / 5 180
IWSLT14 DE→EN 2e-3 & Cosine 192×2×8 160,000 / 2 90
IWSLT14 EN→DE 1.8e-3 & Cosine 768×1×8 60,000 90
COMMONGEN 3e-4 & Constant 384×1×8 40,000 54

Table 8: SacreBLEU on the IWSLT14 test set. This result follows the setting of DINOISER.

Methods IWSLT14

DE→EN EN→DE

Transformer (AR, beam = 5) [Vaswani et al., 2017] 33.61 28.30

CMLM (NAR, k = 5) [Ghazvininejad et al., 2019] 29.41 24.34

DiffusionLM (k = 50) [Li et al., 2022a] 29.11 22.91
DINOISER (k = 50) [Ye et al., 2023] 31.61 26.14

GENIE (k = 50) [Lin et al., 2023] 29.45 23.89
AR-DIFFUSION (k = 50) 31.80 26.01
AR-DIFFUSION (k = 500) 32.35 26.51

D Impact of Minimum Bayes Risk and Anchor Point446

Minimum Bayes Risk To investigate the relationship between the number of generated candidate447

samples (k) and the quality of generation, we generate varying numbers of samples, ranging up to448

1,000, on the IWSLT14 De→En test set and present the results in Figure 4. The curve demonstrates449

an initial gain of approximately 0.5 SacreBLEU within the first 200 samples, after which the gain450

becomes insignificant with generating more samples.451

Anchor Point We conduct experiments on AR-DIFFUSION using different anchor points (ne, te).452

These anchor points vary in terms of ne values, namely 1.0×N , 2.0×N and 3.0×N , where N453

denotes the target sentence length. Additionally, they share a common te value of T , which represents454

the total time step of diffusion. We present the results in Table 9, and determine that the best result is455

achieved at (ne, te) = (2.0×N,T ).456

Figure 4: Relationship between the number
of candidate samples for applying MBR and
SacreBLEU on IWSLT14 DE→EN test set.

Table 9: Effect of anchor point at different posi-
tions on the IWSLT14 DE→EN test set. “N” indi-
cates the target sequence length and “T” represents
the total time step of diffusion.

ne te SacreBLEU

1.0×N T 31.23
2.0×N T 31.80
3.0×N T 31.58

E Proof of Inference with Skipping457

During the inference process, skipping strategy requires the model gθ to infer the state zn2
ti+1

at a458

far-off timestep ti+1 compared to the current state zn2
ti , where ti+1 ≪ ti. In our model, due to the459
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dynamic speed setting, token zn1
ti+1

with smaller timestep ti+1 ≤ ti, which is closer to ti+1, and460

positions n1 ≤ n2 can provide stronger auxiliary information than zn1
ti . This reduces the difficulty of461

inferring states for tokens in the end, making our multi-level diffusion model particularly suitable for462

accelerating the generation process.463

Through maximizing the evidence lower bound (ELBO) of p(z0), the training object is equivalent to464

minimize the divergence between q(zt|zt−1, z0) and pθ(zt−1|zt) following [Luo, 2022].465

By converting the joint probability distribution into a conditional probability distribution, we obtain466

the following formula for q(zti+1
|zti , z0).467

q(zti+1 |zti ,z0) = q(zti+1 |zti−1,zti ,z0) q(zti+1−1|zti ,z0)

= q(zti+1 |zti−1,z0) q(zti+1−1|zti ,z0)

= q(zti+1 |zti−2,z0) q(zti+1−2|zti−1,z0) q(zti+1−1|zti ,z0)

=

ti−ti+1∏
k=1

q(zti−k|zti−k+1,z0)

(13)

Similarly, we reach the same conclusion regarding pθ(zti+1 |zti).468

Based on equation (13), which consists of q(zt|zt−1, z0), and the interchangeability between469

q(zt|zt−1, z0) and pθ(zt−1|zt), we can decompose q(zti+1
|zti , z0) by incorporating zti and z0,470

and utilize our estimated z0 to determine the expression of pθ(zti+1
|zti).471

q(zti+1 | zti ,z0) =

N∏
n=1

q
(
znf(n,ti+1) | z

n
f(n,ti), z

n
0

)
(14)

Next, we obtain the explicit expression q
(
znf(n,ti+1)

| znf(n,ti), z
n
0

)
through linear interpolation472

between znf(n,ti) and zn0 .473

q
(
znf(n,ti+1) | z

n
f(n,ti), z

n
0

)
=

q(znf(n,ti)
| znf(n,ti+1)

, zn0 )q(z
n
f(n,ti+1)

| zn0 )
q(znf(n,ti)

| zn0 )

=

N
(
znf(n,ti)

;

√
ᾱf(n,ti)

ᾱf(n,ti+1)
znf(n,ti+1)

,
(
1− ᾱf(n,ti)

ᾱf(n,ti+1
)

)
I
)
N
(
znf(n,ti+1)

;
√

ᾱf(n,ti+1)z
n
0 , (1− ᾱf(n,ti+1))I

)
N
(
znf(n,ti)

;
√
ᾱf(n,ti)z

n
0 , (1− ᾱti)I

)

∝ exp
{
−

(
znf(n,ti)

−
√

ᾱf(n,ti)

ᾱf(n,ti+1)
znf(n,ti+1)

)2
2(1− ᾱf(n,ti)

ᾱf(n,ti+1)
)

−
(
znf(n,ti+1)

−
√

ᾱti+1z
n
0

)2
1− ᾱf(n,ti+1)

+

(
znf(n,ti)

−√
ᾱf(n,ti)z

n
0

)2
1− ᾱf(n,ti)

}

=exp
{
− 1− ᾱti

2(1− ᾱti
ᾱti+1

)(1− ᾱti+1)

[
znf(n,ti+1)

2 − 2
(√ ᾱf(n,ti)

ᾱf(n,ti+1)
(1− ᾱf(n,ti+1))

1− ᾱf(n,ti)

znf(n,ti)

+

√
ᾱf(n,ti+1)(1−

ᾱf(n,ti)

ᾱf(n,ti+1)
)

1− ᾱf(n,ti)

zn0

)
znf(n,ti+1)

]}

∝ N
(
znf(n,ti+1);

√
ᾱf(n,ti)

ᾱf(n,ti+1)
(1− ᾱf(n,ti+1))

1− ᾱf(n,ti)

znf(n,ti) +

√
ᾱf(n,ti+1)(1−

ᾱf(n,ti)

ᾱf(n,ti+1)
)

1− ᾱf(n,ti)

zn0 ,

(1− ᾱti
ᾱti+1

)(1− ᾱti+1)

1− ᾱti

I
)

=N (znf(n,ti+1);λz
n
f(n,ti) + µzn0 , σI)

(15)
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where we have the following notations for simplification.474

λ =

√
ᾱf(n,ti)

ᾱf(n,ti+1)
(1− ᾱf(n,ti+1))

1− ᾱf(n,ti)

, µ =

√
ᾱf(n,ti+1)(1−

ᾱf(n,ti)

ᾱf(n,ti+1)
)

1− ᾱf(n,ti)

, σ =
(1− αf(n,ti))(1− ᾱf(n,ti+1))

1− ᾱf(n,ti)

Building upon equation (15), we substitute zn
0 with gθ(z

n
f(n,t), f(n, t);x), yielding the final formula475

for pθ
(
zn
f(n,ti+1)

| zn
f(n,ti)

;x
)

as the following equation.476

pθ
(
zn
f(n,ti+1) | z

n
f(n,ti);x

)
∼ N

(
zn
f(n,ti+1);λz

n
f(n,ti) + µgθ(z

n
f(n,t), f(n, t);x), σI

)
(16)

F Different Sampling Methods of BART477

The sampling methods used by Lin et al. [2023] including Greedy Search, Beam Search Xiao et al.478

[2022], Diverse Beam Search(diversity strength = 0.8) Vijayakumar et al. [2016], Typical Sample479

(τ = 1.2) Meister et al. [2022], Top-k Sample (k = 50) Fan et al. [2018] and Nucleus Sample (p =480

0.92) Holtzman et al. [2020].481

Specifically, greedy search is to select the token with the highest probability at each step. Beam search482

is to select the largest token from among the beams with higher probability at each step. Diverse beam483

search is to divide the beams into multiple groups at each step and ensure the difference between484

groups by calculating the diversity score between groups. Typical sampling selects samples through a485

discrete random process. Top-k sampling is to randomly select one of the k candidate tokens with the486

highest probability at each step. Nucleus sampling is to randomly select one token at each step from487

the candidate tokens whose probability density is greater than p.488

G More Cases489

12.0

##ft hmm る northern hacker support by yells lion on [unused698] tennis bars named！ ##s つ 1898 1682ια limp

a british soldier who was killed by an army in 43 lifted losers requested ##ged a prosecutor of verbal of rogers য.

a british soldier who was killed by an army in intersect has been named upon a prosecutor of deep ofise ি process. 

a british soldier who was killed by an army in ash has been named by the ministry of crucial of championships .

a british soldier who was killed by an army in afghanistan has been named by the ministry of defence of moddra .
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proxy oxidation ##ћ ##г อ ɬ ##ilaonate ##rwinpuri saskatoon amplitude ད the ভغ ## 1702 ##rvalstraße ##： barcelona

a plaque for spain ' s first ##alis war amid been be in the historic fleet of serumrnik say, the ##ɹ of 2003 dso g fee . ##₍р 

a plaque for spain ' s first world war has been added in the century city of liverpool say, the certain of britain in g fee .

a plaque for spain ' s first world war has been be in the historic city of liverpool say, the amazing of serum in g post .

a plaque for spain ' s first world war has been unveiled in the historic city of liverpool , the first of britain in the years .
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##ₓ angelicaნ breach ##nostic [unused557] fires sale why organizational interception originates  کinial ##pa knots

china ' s prime minister creators it concerning the " 800  کin མ beach ' 1728 withdrawal [unused308] ##♦ attending

china ' s prime minister says it is the "ity emissions " in the country ' s [unused697] foundation , the engine of " .

china ' s prime minister says it is the " emissions " in the country ' s tq crisis , the engine of " . ⺼ [unused887]√

china ' s prime minister says it is the " emissions " in the country ' s economic crisis , the engine of parliament .
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