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Figure 1: The high-level overview comparing the performance of 12 existing 3D detectors and our
Uni3DETR on a broad range of 3D object detection datasets: indoor datasets SUN RGB-D (SUN),
ScanNet, S3DIS, and outdoor datasets KITTI, nuScenes (nuS). The metrics are AP25 for indoor
datasets, AP70 on moderate difficulty car for KITTI, and NDS for nuScenes. The center of the circle
means that the corresponding metric is less than 10%, and the outermost means 90%. Existing indoor
detectors are plotted in red and outdoor detectors are in green. Our model has the remarkable capacity
to generalize across a wide range of diverse 3D scenes (a larger polygon area).

Abstract

Existing point cloud based 3D detectors are designed for the particular scene, either
indoor or outdoor ones. Because of the substantial differences in object distribution
and point density within point clouds collected from various environments, coupled
with the intricate nature of 3D metrics, there is still a lack of a unified network
architecture that can accommodate diverse scenes. In this paper, we propose
Uni3DETR, a unified 3D detector that addresses indoor and outdoor 3D detection
within the same framework. Specifically, we employ the detection transformer
with point-voxel interaction for object prediction, which leverages voxel features
and points for cross-attention and behaves resistant to the discrepancies from data.
We then propose the mixture of query points, which sufficiently exploits global
information for dense small-range indoor scenes and local information for large-
range sparse outdoor ones. Furthermore, our proposed decoupled IoU provides an
easy-to-optimize training target for localization by disentangling the xy and z space.
Extensive experiments validate that Uni3DETR exhibits excellent performance
consistently on both indoor and outdoor 3D detection. In contrast to previous
specialized detectors, which may perform well on some particular datasets but
suffer a substantial degradation on different scenes, Uni3DETR demonstrates the
strong generalization ability under heterogeneous conditions (Fig. 1). Codes are
available at https://github.com/zhenyuw16/Uni3DETR.
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1 Introduction
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Figure 2: Illustration of the structures of previous indoor
3D detectors (a), outdoor detectors (b) and our model.
Our model has the capacity for 3D detection in both indoor
and outdoor scenes.

3D object detection from point clouds
aims to predict the oriented 3D bound-
ing boxes and the semantic labels
for the real scenes given a point set.
Unlike mature 2D detectors [41, 19,
56, 4] on RGB images, which have
demonstrated the ability to effectively
address diverse conditions, the prob-
lem of 3D object detection has been
considered under different scenarios,
leading to the development of distinct
benchmarks and methodologies for
each. Specifically, 3D detection ap-
proaches are currently addressed sep-
arately for indoor and outdoor scenes.
Indoor 3D detectors [38, 70, 62, 58] usually adopt the “grouping, clustering and classification” man-
ner (Fig. 2a), while outdoor detectors [64, 24, 52, 49] typically convert the features into the 2D
bird’s-eye-view (BEV) space (Fig. 2b). Although these two tasks only differ in their respective
application contexts, the optimal approaches addressing them exhibit significant differences.

The key challenge in developing a unified 3D detector lies in the substantial disparities of point
cloud data collected in indoor and outdoor environments. In general, indoor scenarios are cluttered,
where various objects are close and dense, occupying the majority of the scene. In comparison,
objects in outdoor scenes are small and sparse, where background points dominate the collected
point clouds. Such disparities result in the lack of a unified 3D detector: 1) For the detection head,
because of the severe distraction of excessive background points in outdoor point clouds, together
with the hyperparameter sensitivity associated with grouping, the grouping-based indoor detectors are
infeasible for outdoor 3D detection. Besides, outdoor objects are separated clearly and not overlapped
in the BEV space, which does not apply to indoor objects. The height overlap among indoor objects
makes the manner of detecting in the BEV space inappropriate for indoor detection. 2) For the feature
extractor, existing backbones in 3D detectors are similarly designed for a singular scene. Indoor
detectors are usually equipped with point-based [39, 40] or 3D sparse convolution based [10, 43]
backbone, where point-based models are usually susceptible to the diverse structures of points under
different scenes, and sparse convolution models are deficient in representing the features of object
centers. In contrast, the 2D convolutions in outdoor detectors for extracting BEV features easily lead
to information loss for indoor detection.

In this paper, we propose a Unified 3D DEtection TRansformer (Uni3DETR) based on only point
clouds for detecting in diverse environments (Fig. 2c). Two attributes of our Uni3DETR contribute to
its universality for both indoor and outdoor scenes. First, we employ a hybrid structure that combines
3D sparse convolution and dense convolution for feature extraction. The pure 3D architecture avoids
excessive height compression for indoor point clouds. Simultaneously, the sparse convolution prevents
the huge memory consumption for large-range outdoor data, and the dense convolution alleviates
the center feature missing problem for sparse outdoor points. Second, we utilize transformer [57]
for 3D object detection. The set-to-set prediction way in transformer-based detectors [4, 77] directly
considers predicted objects and ground-truth labels, thus tends to be resistant to the distinction from
data themselves. The transformer decoder is built on the extracted voxel feature and we formulate
queries as 3D points from the scene. The points and voxels interact through cross-attention, which
well adapts to the characteristics of 3D data.

Based on our 3D detection transformer, we further propose two necessary components for universality
under various scenes. One is the mixture of query points. Specifically, besides the learnable query,
we introduce the non-learnable query initialized by sampling the original points and the voxelized
points, and integrate the learnable and non-learnable queries for feeding the transformer. We observe
that the learnable query points mostly contain local information and fit the outdoor detection well,
while non-learnable query points emphasize global information thus are more effective for dense
indoor scenes. The other one is the decoupled 3D IoU. Compared to the usual 3D IoU, we decouple
the x, y and z axis in the decoupled IoU to provide stronger positional regularization, which not only
involves all directions in the 3D space but also is beneficial for optimization in transformer decoders.
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Figure 3: The overall architecture of our Uni3DETR. We use the hybrid combination of 3D
sparse convolution and dense convolution for 3D feature extraction, and our detection transformer
for set prediction. The mixture of query points contributes to the sufficient usage of global and local
information, and the decoupled IoU provides more effective supervision about localization.

Our main contributions can be summarized as follows:

• We propose Uni3DETR, a unified 3D detection transformer that is designed to operate effectively
in both indoor and outdoor scenes. To the best of our knowledge, this is the first point cloud based
3D detector that demonstrates robust generalization across diverse environments.

• We propose the mixture of query points that collaboratively leverages the learnable and non-
learnable query. By aggregating local and global information, our mixture of queries fully explores
the multi-scene detection capacity.

• We decouple the multiple directions in the 3D space and present the decoupled 3D IoU to bring
more effective positional supervision for the transformer decoder.

Our Uni3DETR achieves the state-of-the-art results on both indoor [53, 12, 1] and outdoor [16, 3]
datasets. It obtains the 67.0% and 71.7% AP25 on the challenging SUN RGB-D and ScanNet
V2 indoor datasets, and the 86.7% AP in the moderate car category on KITTI validation. On the
challenging nuScenes dataset, Uni3DETR also achieves the 61.7% mAP and 68.5% NDS.

2 Uni3DETR

2.1 Overview

We present the overall architecture of our Uni3DETR in Fig. 3. It consists of a 3D feature extractor
and the detection transformer for detecting in various 3D scenes. The mixture of query points is fed
into transformer decoders to predict 3D boxes, under the supervision of decoupled 3D IoU.

3D feature extractor. Existing 3D detectors usually adopt point-based [40] or voxel-based [64, 43]
backbones for feature extraction. Considering that point-based backbones are vulnerable to the
specific structure of point clouds themselves and less efficient in point set abstraction, we utilize
the voxel-based model for extracting 3D features. After voxelization, we utilize a series of 3D
sparse convolution layers to encode and downsample 3D features, to avoid the overload memory
consumption for large-range outdoor scenes. Then, we convert the extracted sparse features into the
dense ones and apply 3D dense convolutions for further feature processing. The dense convolution
alleviates the feature missing problem of center points.

2.2 Unified 3D Detection Transformer for Diverse Scenes

Detection transformer with point-voxel interaction. We employ the transformer structure based on
the extracted voxel features and the set prediction manner for 3D detection. Motivated by recent 2D
transformer-based detectors [29, 25, 69] that formulate queries as anchor boxes, we regard 3D points
in the 3D space as queries. Its structure is illustrated in Fig. 4.

Specifically, we denote Pq = (xq, yq, zq) as the q-th point to represent the q-th object, Cq ∈ RD is
its content query, where D is the dimension of decoder embeddings. We introduce the deformable
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attention [77] for the cross-attention module and view Pq as the reference point for point-voxel
interaction. Unlike the deformable DETR decoder, here we directly learn the reference point Pq.
Suppose the voxel feature as V , the process of the cross-attention is modeled as:

CrossAtt(Cq, V ) = DeformAtt(Cq +MLP(PE(Pq)), V, Pq) (1)

where PE denotes the sinusoidal positional encoding. The transformer decoder predicts the relative
positions for the query points: (∆xq,∆yq,∆zq). Based on the relative predictions, the query points
are refined layer-by-layer.
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Q
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Self-Attention

point query

ref
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K

Q
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x y z

Figure 4: The structure of our
detection transformer. The
decoder is built on extracted
voxel features and we intro-
duce 3D points as the query.
The points and voxels interact
through cross-attention.

Compared to 2D detection transformers, because of the stronger
positional information in the 3D space, our detection transformer
requires less layers for query refinement. To further utilize the
information across multiple layers, we average predictions from all
transformer decoders except for the first one.

Mixture of query points. In the learning process, the above query
points gradually turn around the object instances for better 3D
detection. As they are updated during training, we refer them as
learnable query points. Since such learnable query points finally
concentrate on the points near the objects, they primarily capture
the local information of the scene. For outdoor point clouds, where
objects are sparse and small within the large-range scene, the learn-
able query points help the detector avoid the disturbance of the
dominated background points.

In comparison, for the indoor scene, the range of 3D points is sig-
nificantly less and the objects in relation to the entire scene are of
comparable size. In this situation, besides the local information,
the transformer decoder should also utilize the global information
to consider the whole scene. We thus introduce the non-learnable
query points for global information. Specifically, we use the Far-
thest Point Sampling (FPS) [40] for the input point cloud data and
take the sampled points as the query points. These query points
are frozen during training. Because of the FPS, the sampled points
tend to cover the whole scene and can well compensate for objects
that learnable query points ignore.

As we utilize the voxel-based backbone for feature extraction, vox-
elization is a necessary step for processing the point cloud data. After voxelization, the coordinates
and numbers of the raw point clouds may change slightly. To consider the structure of both the raw
data and points after voxelization, what we use is two kinds of non-learnable query points Pnl and
Pnlv . Pnl denotes the non-learnable query points from FPS the original point clouds, and Pnlv comes
from sampling the points after voxelization. Together with the learnable query points Pl, the mixture
of query points ultimately consists of three ones: P = {Pl, Pnl, Pnlv}. We follow [5] to perform
group-wise self-attention in the transformer decoders for the mixture of query points, where these
three kinds of query points do not interact with each other. After transformer decoders, three sets of
predicted 3D boxes {bbl, bbnl, bbnlv} are predicted respectively. We apply one-to-one assignment to
each set of 3D boxes independently using the Hungarian matching algorithm [23] and calculate the
corresponding training loss to supervise the learning of the detection transformer.

At the test time, besides the above three kinds of query points, we further generate a series of
additional points uniformly and randomly in the 3D voxel space as another set of query points
Prd. These randomly generated points evenly fill the whole scene, thus well compensating for
some potentially missed objects, especially for the indoor scenes. As a result, four groups of query
points P = {Pl, Pnl, Pnlv, Prd} are utilized for inference. Ultimately, four sets of predicted 3D
boxes {bbl, bbnl, bbnlv, bbrd} are produced at the test time by Uni3DETR. Because of the one-to-one
assignment strategy, the individual box sets do not require additional post-processing methods for
removing duplicated boxes. However, there are still overlapped predictions among these four sets. We
thus conduct box merging finally among the box sets to fully utilize the global and local information
and eliminate duplicated predictions. Specifically, we cluster the 3D boxes based on the 3D IoU
among them and take the median of them for the final prediction. The confidence score of the final
box is the maximum one of the clustered boxes.
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2.3 Decoupled IoU

Existing transformer-based 2D detectors usually adopt the L1 loss and the generalized IoU loss
[42] for predicting the bounding box. The generalized IoU here mitigates the issue of L1 loss for
different scales thus provides further positional supervision. However, for 3D bounding boxes,
the calculation of IoU becomes a more challenging problem. One 3D box is usually denoted by:
bb = (x, y, z, w, l, h, θ), where (x, y, z) is the center, (w, l, h) is the size and θ is the rotation. The
usual 3D IoU [72] between two 3D boxes bb1 and bb2 is calculated by:

IoU3D =
Areaoverlapped · zoverlapped

Area1 · z1 +Area2 · z2 −Areaoverlapped · zoverlapped
(2)

where Area denotes the area of rotated boxes in the xy space.

From Equ. 2, we notice that the calculation of 3D IoU generally consists of two spaces: the xy space
for the bounding box area, involving the x, y, w, l, θ variables, and the z space for the box height.
The two spaces are multiplied together in the 3D IoU. When supervising the network, the gradients of
these two spaces are coupled together - optimizing in one space will interfere with another, making
the training process unstable. For 3D GIoU [72], besides the negative coupling effect, the calculation
of the smallest convex hull area is even non-optimizable. As a result, the usual 3D IoU is hard to
optimize for detectors. For our detection transformer, where L1 loss already exists for bounding box
regression, the optimization problem of 3D IoU severely diminishes its effect in training, thus being
hard to mitigate the scale problem of L1 loss.

Therefore, an ideal metric for transformer decoders in 3D should at least meet the following demands:
First, it should be easy to optimize. Especially for the coupling effect for different directions, its
negative effect should be alleviated. Second, all shape properties of the 3D box need to be considered,
so that accurate supervision signals can be provided for all variables. Third, the metric should be
scale invariant to alleviate the issue of L1 loss. Motivated by these, we forward the decoupled IoU:

IoUde = (
Areaoverlapped

Area1 +Area2 −Areaoverlapped
+

zoverlapped
z1 + z2 − zoverlapped

)/2 (3)

Specifically, our decoupled IoU is the average of the IoU in the xy space and the z space. Under the
summation operation, the gradients from the two items remain separate and independent, avoiding
any coupling effect. According to previous research [47], the coupling issue does not exist in 2D
or 1D IoU. As a result, the decoupled IoU effectively circumvents the negative effects of coupling.
The scale-invariant property of 3D IoU is also well-reserved for the decoupled IoU. These make our
decoupled IoU well suit the training of the transformer decoder.

The decoupled IoU is introduced in both the training loss and the matching cost. We also introduce it
into classification and adopt the variant of quality focal loss [26]. Denote the binary target class label
as c, the predicted class probability as p̂, the classification loss for Uni3DETR is:

Lcls = −α̂t · |c · IoUde − p̂|γ · log(|1− c− p̂|) (4)

where α̂t = α · c · IoUde + (1− α) · (1− c · IoUde). The above classification loss can be viewed
as using the soft target IoUde in focal loss [28]. The decoupled IoU is easy to optimize, allowing
us to avoid the need for performing the stop-gradient strategy on IoUde. Therefore, the learning
of classification and localization is not separated, assisting Uni3DETR predicting more accurate
confidence scores. Equ. 4 will force the predicted class probability p̂ towards IoUde, which might
be inconsistent with IoU3D used in evaluation. We thus follow [22] and introduce an IoU-branch
in our network to predict the 3D IoU. The normal IoU3D supervises the learning of the IoU-branch
and the binary cross-entropy loss is adopted for supervision. The weighted geometric mean of the
predicted 3D IoU and the classification score is utilized for the final confidence score. The final loss
function for training Uni3DETR is thus the classification loss (Equ. 4), the L1 loss and the IoU loss
with IoUde for bounding box regression, and the binary cross-entropy loss for IoU prediction.

3 Experiments

To demonstrate the universality of our Uni3DETR under various scenes, we conduct extensive
experiments in this section. We evaluate Uni3DETR in the indoor and outdoor scenes separately.
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Table 1: The performance of Uni3DETR for indoor 3D object detection. The main comparison is
based on the best results of multiple experiments. We re-implement VoteNet, H3DNet, and GroupFree
on the S3DIS dataset. * indicates the multi-modal method with both point clouds and RGB images.

Method SUN RGB-D ScanNet S3DIS
AP25 AP50 AP25 AP50 AP25 AP50

ImVoteNet* [37] 63.4 - - - - -
TokenFusion* [60] 64.9 48.3 70.8 54.2 - -

VoteNet [38] 57.7 35.7 58.6 33.5 58.0 25.3
GSDN [17] - - 62.8 34.8 47.8 25.1

H3DNet [70] 60.1 39.0 67.2 48.1 50.9 22.0
BRNet [9] 61.1 43.7 66.1 50.9 - -

3DETR [35] 59.1 32.7 65.0 47.0 - -
VENet [62] 62.5 39.2 67.7 - - -

GroupFree [30] 63.0 45.2 69.1 52.8 42.8 19.3
RBGNet [59] 64.1 47.2 70.6 55.2 - -

HyperDet3D [71] 63.5 47.3 70.9 57.2 - -
FCAF3D [43] 64.2 48.9 71.5 57.3 66.7 45.9

Uni3DETR (ours) 67.0 50.3 71.7 58.3 70.1 48.0

Datasets. For indoor 3D detection, we evaluate Uni3DETR on three indoor 3D scene datasets: SUN
RGB-D [53], ScanNet V2 [12] and S3DIS [1]. SUN RGB-D is a single-view indoor dataset with
5,285 training and 5,050 validation scenes, annotated with 10 classes and oriented 3D bounding
boxes. ScanNet V2 contains 1,201 reconstructed training scans and 312 validation scans, with 18
object categories for axis-aligned bounding boxes. S3DIS consists of 3D scans from 6 buildings, 5
object classes annotated with axis-aligned bounding boxes. We use the official split, evaluate our
method on 68 rooms from Area 5 and use the rest 204 samples for training. We use the mean average
precision (mAP) under IoU thresholds of 0.25 and 0.5 for evaluating on these three datasets.

For outdoor 3D detection, we conduct experiments on two popular outdoor benchmarks: KITTI [16]
and nuScenes [3]. The KITTI dataset consists of 7,481 LiDAR samples for its official training set,
and we split it into 3,712 training samples and 3,769 validation samples for training and evaluation.
The nuScenes dataset is a large-scale benchmark for autonomous driving, using the 32 lanes LiDAR
for data collection. We train on the 28,130 frames of samples in the training set and evaluate on the
6,010 validation samples. We use mAP and nuScenes detection score (NDS), a weighted average of
mAP and other box attributes like translation, scale, orientation, velocity.

Implementation details. We implement Uni3DETR with mmdetection3D [11], and train it with the
AdamW [32] optimizer. We set the number of learnable query points to 300 for datasets except for
nuScenes, where we set to 900. For indoor datasets, we choose the 0.02m grid size. For the KITTI
dataset, we use a (0.05m, 0.05m, 0.1m) voxel size and for the nuScenes, we use the (0.075m, 0.075m,
0.2m) voxel size. The nuScenes model is trained with 20 epochs, with the CBGS [75] strategy. For
outdoor datasets, we also conduct the ground-truth sampling augmentation [64] and we remove the
ground-truth sampling at the last 4 epochs. Dynamic voxelization [73] and ground-truth repeating
[21] are also adopted during training. Besides these data-related parameters, other architecture-related
hyper-parameters are all the same for different datasets.

3.1 Indoor 3D Object Detection

We first train and evaluate Uni3DETR on indoor 3D detection datasets and list the comparison with
existing state-of-the-art indoor 3D detectors in Tab. 1. Here we omit some grouping methods like
[58], which relies on mask annotations for better grouping and clustering. Our method obtains the
67.0% AP25 and 50.3% AP50 on SUN RGB-D, which surpasses FCAF3D, the state-of-the-art indoor
detector based on the CNN architecture, by almost 3%. On the ScanNet dataset, Uni3DETR surpasses
FCAF3D by 1% on AP50. It is also noticeable that with only point clouds participating in training,
our method even obtains better performance than existing multi-modal approaches that require both
point clouds and RGB images. On the SUN RGB-D dataset, our model is 2.1% higher on AP25 than
TokenFusion. This strongly demonstrates the effectiveness of Uni3DETR. The visualized results of
Uni3DETR on SUN RGB-D can be seen in the left two of Fig. 5.

Our method also significantly outperforms existing transformer-based indoor detectors, 3DETR and
GroupFree. The superiority of our method is more significant, especially in localization: Uni3DETR
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Table 2: The performance of Uni3DETR for outdoor 3D object detection on the KITTI validation
set with 11 recall positions. M : ✓means training on three classes and the blank means training only
on the car class. *: AP on the moderate car is the most important metric.

Method M
Car-3D (IoU=0.7) Ped.-3D (IoU=0.5) Cyc.-3D (IoU=0.5)

Easy Mod.* Hard Easy Mod. Hard Easy Mod. Hard
SECOND [64] ✓ 88.61 78.62 77.22 56.55 52.98 47.73 80.59 67.16 63.11
PointPillar [24] ✓ 86.46 77.28 74.65 57.75 52.29 47.91 80.06 62.69 59.71

PointRCNN [51] ✓ 89.06 78.74 78.09 67.69 60.74 55.83 86.16 71.16 67.92
Part-A2 [52] ✓ 89.56 79.41 78.84 65.69 60.05 55.45 85.50 69.90 65.49

PV-RCNN [49] ✓ 89.35 83.69 78.70 63.12 54.84 51.78 86.06 69.48 64.50
CT3D [46] ✓ 89.11 85.04 78.76 64.23 59.84 55.76 85.04 71.71 68.05
RDIoU [47] ✓ 89.16 85.24 78.41 63.26 57.47 52.53 83.32 68.39 63.63

Uni3DETR (ours) ✓ 89.61 86.57 78.96 70.18 62.49 58.32 87.18 72.90 68.86
3DSSD [65] 88.82 78.58 77.47 - - - - - -

STD [66] 89.70 79.80 79.30 - - - - - -
Voxel-RCNN [13] 89.41 84.52 78.93 - - - - - -

VoTr-TSD [33] 89.04 84.04 78.68 - - - - - -
CT3D [46] 89.54 86.06 78.99 - - - - - -
BtcDet [63] - 86.57 - - - - - -
RDIoU [47] 89.76 86.62 79.04 - - - - - -

Uni3DETR (ours) 90.23 86.74 79.31 - - - - - -

Table 3: The performance of Uni3DETR for outdoor 3D object detection on the nuScenes valida-
tion set. We compare with previous methods without test-time augmentation. *: the implementation
from OpenPCDet [55].

Method NDS(%) mAP(%) mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
PointPillar [24] 49.1 34.3 0.424 0.284 0.529 0.377 0.194

CBGS [75] 61.5 51.9 - - - - -
CenterPoint [67] 64.9 56.6 0.291 0.252 0.324 0.284 0.189
VoxelNeXt* [8] 66.7 60.5 0.301 0.252 0.406 0.217 0.186
PillarNet [48] 67.4 59.8 0.277 0.252 0.289 0.247 0.191
UVTR [27] 67.7 60.9 0.334 0.257 0.300 0.204 0.182

Uni3DETR (ours) 68.5 61.7 0.288 0.249 0.303 0.216 0.181

outperforms them by 5.1% on SUN RGB-D and 5.5% on ScanNet in AP50. Such results validate that
compared with existing transformers in 3D detection, our detection transformer on voxel features
with the mixture of query points is more appropriate for 3D detection.

3.2 Outdoor 3D Object Detection

KITTI. We then conduct experiments on the outdoor KITTI dataset. We report the detection results
on the KITTI validation set in three difficulty levels - easy, moderate, and hard in Tab. 2. We notice
that Uni3DETR also achieves the satisfying performance with the same structure as that for indoor
scenes. For the most important KITTI metric, AP on the moderate level of car, we obtain the 86.57%
AP, which is more than 1.5% higher than CT3D and 1.3% higher than RDIoU. With only the car class
in training, the car moderate AP is 86.74%, which is also higher than existing methods like BtcDet.
Its ability in outdoor scenes is thus demonstrated. The superiority of Uni3DETR is also consistent
for the pedestrian and cyclist class. This illustrates that our model can also distinguish small and
scarce objects well, which is one main aspect that hinders existing indoor detectors in the outdoor
environments. The visualized results are shown in the right two of Fig. 5.

nuScenes. We further conduct experiments on the nuScenes dataset. Compared to the KITTI dataset,
the range of scenes in nuScenes is larger, with 360 degrees around the LiDAR instead of only the
front view. The point cloud in nuScenes is also more sparse (with 32-beam LiDAR compared to
the KITTI 64 beams). These make the nuScenes more challenging and even some existing outdoor
detectors fail to address the detection problem on nuScenes. We list the comparative results in Tab.
3. We obtain the 68.5% NDS, which surpasses recent methods like PillarNet, UVTR, VoxelNeXt.
Compared to the most recent method VoxelNeXt, Uni3DETR is 1.8% higher in NDS and 1.4% higher
in mAP. Besides the detection metric mAP, Uni3DETR also achieves promising results for predicting
other attributes of boxes. The ability of our model in the outdoor scenes is further validated.
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Figure 5: The visualized results of Uni3DETR on the indoor SUN RGB-D dataset (the left two)
and the outdoor KITTI dataset (the right two). Better zoom in with colors.

Table 4: The 3D performance of
our detection transformer on the
SUN RGB-D dataset compared
with some existing transformer de-
coder structures.

transformer AP25 AP50

3DETR [35] 59.1 32.7
Deform [77] 61.3 45.4

DAB-Deform [29] 62.0 44.3
DN-Deform [25] 62.0 44.6

ours ({Pl}) 62.6 46.4
ours (mixed) 66.4 49.6

Table 5: Effect of the mixture of query points on 3D indoor
and outdoor detection. We compare with different combi-
nations of queries. *: AP on the moderate car is the most
important metric for KITTI.

query SUN RGB-D KITTI car
AP25 AP50 Easy Mod.* Hard

{Pl} 62.6 46.4 90.20 85.59 78.89
{Pnl} 54.0 39.9 89.42 79.24 78.29
{Pnlv} 57.4 43.1 89.70 79.34 78.14
{Pl, Pnl} 65.1 46.9 90.06 85.94 78.64
{Pl, Pnlv} 64.5 46.9 90.04 85.86 78.75

{Pl, Pnl, Pnlv} 66.4 49.6 90.12 86.26 79.01
{Pl, Pnl, Pnlv, Prd} 67.0 50.3 90.23 86.74 79.31

3.3 Ablation Study

3D detection transformer. We first compare the detection AP of our detection transformer with
existing transformer structures and list the results in Tab. 4. As 3DETR is built on point-based
features, its performance is restricted by the less effectiveness of point representations. We then
implement other methods based on voxel features. As anchors are negatively affected by the center
point missing in 3D point clouds, formulating queries as 3D anchors like DAB- or DN-DETR is
less effective than our query points. In comparison, our detection transformer better adapts the 3D
points, thus achieves the highest performance among existing methods. Besides, it accommodates the
mixture of query points, which brings further detection improvement.

Mixture of query points. Tab. 5 analyzes the effect of the mixture of query points on 3D object
detection. For indoor detection on SUN RGB-D, the simple usage of the learnable query points
{Pl} obtains the 62.6% AP25. Substituting the learnable query with the non-learnable query hurts
the performance. This is because non-learnable query points are fixed during training and cannot
adaptively attend to information around objects. After we introduce {Pl, Pnl}, we find such mixed
usage notably boosts AP25, from 62.6% to 65.1%: the global information in Pnl overcomes the
lack of local information in Pl and contributes to more comprehensive detection results. As a result,
the object-related metric is enhanced greatly. Utilizing {Pl, Pnlv} similarly improves AP25, but
less than the effect of Pnl. This is because voxelization may remove some points, making the
global information not that exhaustive. With {Pl, Pnl, Pnlv}, the three different query points further
enhance the performance. Pnlv here provides more location-accurate global information, thus AP50

is improved by almost 3%. Random points at the test time further brings a 0.6% improvement.

For outdoor detection on KITTI, we notice that the effect of non-learnable query points is less
significant than that in indoor scenes. Using {Pl, Pnl} is just 0.35% higher than {Pl}. Since outdoor
point clouds are large-range and sparse, the effect of global information in non-learnable query will
be counteracted by excessive background information. Therefore, local information matters more in
the outdoor task. The collaboration of the two-level information in the mixture of query makes it
suitable for 3D detection in various scenes.

We further combine multiple groups of learnable query points and list the performance in Tab. 6 to
compare with the mixture of query points. Such a combination is actually analogous to Group DETR
[5, 6] in 2D detection. We observe that unlike 2D detection, multiple groups of learnable queries
do not bring an improvement. Even though the number of groups has been raised to 7, the AP on
SUN RGB-D still keeps almost the same. The reason is that multiple groups in 2D mainly speed
up the convergence, which does not matter much in 3D. In this situation, by providing multi-level
information about the scene, the mixture of query points works better for 3D detection.
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Table 6: Comparison with multiple
groups of learnable query points on
the SUN RGB-D dataset.

query AP25 AP50

{Pl} 62.6 46.4
{Pl} × 2 62.2 46.2
{Pl} × 3 62.7 46.6
{Pl} × 5 62.3 46.7
{Pl} × 7 62.7 46.6
{Pl, Pnl} 65.1 46.9

{Pl, Pnl, Pnlv} 66.4 49.6

Table 7: Effect of the decoupled IoU on 3D indoor and
outdoor detection. IoUaa−3D denotes the 3D IoU in axis-
aligned way, IoUxy is the 2D IoU in the xy space, IoUz is
the 1D IoU in the z space.

IoU SUN RGB-D KITTI car
AP25 AP50 Easy Mod.* Hard

w/o IoU 20.7 3.7 69.81 61.97 64.85
IoU3D 48.3 29.4 88.70 78.52 77.60

IoUaa−3D 50.4 31.6 89.57 79.44 76.81
RD-IoU [47] 29.1 14.0 82.08 73.50 73.98

IoUxy 65.8 49.0 89.91 79.58 77.93
IoUz 64.7 44.1 90.09 79.74 78.57
IoUde 67.0 50.3 90.23 86.74 79.31

Table 8: Comparison of performance and computational complexity against existing methods
on the indoor SUN RGB-D and the outdoor nuScenes dataset. The metrics are AP25 for SUN
RGB-D and mAP for nuScenes. The computational cost is measured on a single RTX 3090 GPU.

Method performance efficiency
avg. indoor outdoor latency params FLOPS

CenterPoint [67] 37.75 18.9 56.6 0.32 s 9.17 M 121.10 G
VoxelNeXt [8] 39.30 18.1 60.5 0.29 s 7.12 M 42.57 G
PillarNet [48] 44.00 28.2 59.8 0.31 s 12.55 M 100.10 G
UVTR [27] 55.55 50.2 60.9 0.51 s 26.12 M 451.12 G

Uni3DETR (ours) 64.35 67.0 61.7 0.52 s 26.71 M 458.74 G

Decoupled IoU. In Tab. 7, we compare our decoupled IoU with different types of IoU in the 3D space.
On the SUN RGB-D dataset, optimizing with no IoU loss, only classification and L1 regression loss,
just obtains the 20.7% AP25, indicating that 3D IoU is necessary to address the scale problem of
L1 loss. Introducing the normal IoU3D alleviates the limitation of L1 loss to some extent, boosting
the AP25 to 48.3%. However, it is restricted by the negative coupling effect, thus is even inferior
to axis-aligned 3D IoU, which does not take the rotation angle into consideration. In comparison,
since this problem does not exist in 2D IoU, even the IoUxy, without considering the z axis, can be
17.5% higher than IoU3D. Our decoupled IoU, which can be viewed as (IoUxy + IoUz)/2, takes all
directions into account, thus further improves the AP25 to 67.0%. On the outdoor KITTI dataset, the
decoupled IoU is equally critical, 24.77% higher than w/o IoU and 8.22% higher than IoU3D. Its
necessity for transformer-based 3D detection is further validated.

3.4 Comparison of Computational Cost

Here we further list the comparison of both performance and efficiency in the Tab. 8. We can observe
that the computational budget compared with these methods is not significant: the inference time
(latency) is almost the same as UVTR and the FLOPS is only 1.16% more than UVTR. In addition,
we obtain significantly better detection performance on both indoor and outdoor datasets. Compared
with VoxelNeXt, one model that mainly focuses on reducing the FLOPS of 3D detectors, we achieve
more than 40% indoor AP and more than 25% average AP improvement. In this paper, we mainly
target a unified structure. To ensure that the detector can accommodate both indoor and outdoor
detection, we have, to a certain extent, made sacrifices in terms of efficiency, in order to prioritize its
unified ability. A more efficient and unified structure can be left as one of the future works.

3.5 Discussion

A unified voxel size. The word “unified” in our paper specifically refers to the architecture aspect.
Since point clouds are collected with different sensors, their ranges and distributions vary significantly
(about 3m for indoor but more than 70m for outdoor datasets). For the experiments above, we adopt
different values for the voxel size, one data-related parameter. We further conduct the experiment
with the same KITTI voxel size (0.05m, 0.05m, 0.1m) and list the results in Tab. 9. Compared
with other outdoor detectors, our superiority is still obvious. Therefore, even if standardizing such a
data-related parameter, our model can still obtain a higher AP.
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Table 9: Comparison with existing methods
on the indoor SUN RGB-D dataset and outdoor
KITTI car dataset with the same voxel size. *:
results from training with different voxel sizes.

Method indoor outdoor
3DSSD [65] 9.5 78.6

CenterPoint [67] 18.9 74.4
UVTR [27] 35.9 72.0

Uni3DETR (ours) 47.3 86.7
Uni3DETR (ours) * 67.0 86.7

Table 10: The cross-dataset performance on
the indoor SUN RGB-D dataset compared with
existing methods. We compare with the RGB
image based Cude RNN with its metric AP3D.

Method Trained on AP3D

Cube RCNN [2] SUN RGB-D 34.7
Cube RCNN OMNI3DIN 35.4

Uni3DETR (ours) SUN RGB-D 64.3
Uni3DETR (ours) ScanNet 50.9

Cross-dataset experiments. We further conduct the cross-dataset evaluation with the Omni3D
metric [2]. From the results in Tab. 10, it is worth noticing that Uni3DETR has a good cross-dataset
generalization ability. The cross-dataset AP (ScanNet to SUN RGB-D) is 16.2% higher than Cube
RCNN trained on the SUN RGB-D dataset. The reason is that our Uni3DETR takes point clouds as
input for 3D detection, while Cube RCNN takes RGB images for detection. By introducing 3D space
information from point clouds, the superiority of a unified architecture for point clouds over Cube
RCNN can be demonstrated. We further emphasize that cross-dataset evaluation is a more difficult
problem for point cloud based 3D object detection, as the dataset-interference issue is more serious.
We believe our Uni3DETR can become the basic platform and facilitate related research.

Limitation. One limitation is that we still require separate models for different datasets. Currently,
some methods [2, 68] have tried one single model for multiple datasets for 3D object detection. We
hope our Uni3DETR can become the foundation for indoor and outdoor 3D dataset joint training.

4 Related Work

Existing research on 3D Object Detection has been separated into indoor and outdoor categories.
Indoor 3D detectors [38, 70, 9, 58] usually cluster points first based on extracted point-wise features,
then conduct classification and detection. Recently, 3D sparse convolution based detectors [43, 45]
also adopt the anchor-free manner [56] in 2D for 3D indoor detection. In comparison, outdoor 3D
detectors [64, 52, 49, 13, 46, 7, 50] usually convert 3D features into the 2D BEV space and adopt 2D
convolutions for predicting 3D boxes. However, because of the significant difference in point clouds
between indoor and outdoor scenes, a unified 3D detector in various environments is still absent.
Some recent methods [20, 31, 60, 44] have performed experiments on both indoor and outdoor
datasets. However, they rely on RGB images to bridge the difference of point clouds.

Transformer-based object detectors have been widely used in 2D object detection [4, 77, 34, 29, 25,
69], predicting object instances in the set-to-set manner. Recently, the transformer structure has been
introduced in 3D object detection. Methods like [33, 18, 15, 54, 14] introduce transformers into the
backbone for 3D feature extraction, while still adopting CNNs for predicting boxes. In comparison,
approaches like [35, 61, 36, 74, 76] leverage transformers in the detection head for box prediction.
However, these methods still rely on point-wise features or BEV features for either indoor or outdoor
3D detection, thus are restricted by the singular scene.

5 Conclusion

In this paper, we propose Uni3DETR, a unified transformer-based 3D detection framework that
addresses indoor and outdoor 3D object detection within the same network structure. By feeding the
mixture of query points into the detection transformer for point-voxel interaction and supervising
the transformer decoder with the decoupled IoU, our Uni3DETR fills the gap of existing research
in unified 3D detection under various scenes. Extensive experiments demonstrate that our model
can address both indoor and outdoor 3D detection with a unified structure. We believe our work
will stimulate following research along the unified and universal 3D object detection direction, and
Uni3DETR will become a basic tool and platform.
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A Datasets and Implementation Details

SUN RGB-D [53]. When training on the SUN RGB-D dataset, the input point clouds are filtered in
the range [-3.2m, 3.2m] for the x axis, [-0.2m, 6.2m] for the y axis and [-2m, 0.56m] for the z axis.
The grid size is set to 0.02m. We randomly flip the input data along the x axis and randomly sample
20,000 points for data augmentation. The common global translation, rotation and scaling strategies
are also adopted here. We train Uni3DETR with the initial learning rate of 1.67e-4 and the batch size
of 32 for 90 epochs, and the learning rate is decayed by 10x on the 70th and 80th epoch. The ratio of
the classification score and the predicted IoU is 0.8:0.2.

ScanNet [12]. For the ScanNet dataset, here we adopt the range of [-6.4m, 6.4m] for the x and y axis
and [-0.1m, 2.46m] for the z axis after global alignment, with the 0.02m grid size. Here we do not
adopt the RGB information of the dataset for training. The input data are randomly flipped along both
the x and y axis. We utilize dynamic voxelization [73] on the ScanNet dataset. The initial learning
rate is set to 7.5e-5, with the batch size of 24. We train Uni3DETR for 240 epochs, where the learning
rate is decayed on the 192nd and the 228th epoch. Other hyper-parameters and operations are the
same as the SUN RGB-D dataset.

S3DIS [1]. As the S3DIS dataset point clouds are distributed only on the positive planes, which is
adverse to the random flipping augmentation, we first translate the input data to make it centered
at the original point. Besides the coordinate information, we also utilize the RGB information of
the point clouds. We train the Uni3DETR for 520 epochs, with the learning rate decaying at the
416th and 494th epoch. The batch size is set to 8, with the initial learning rate of 3.33e-5. Other
hyper-parameters and operations are the same as the ScanNet dataset.

KITTI [16]. For the KITTI dataset, the data augmentation operations are basically the same as
previous methods like [13]. For the ground-truth sampling augmentation, we sample at most 20
cars, 10 pedestrians and 10 cyclists from the database. 18000 points are randomly sampled at the
training time. During training, we also adopt van class objects as car objects. The ground-truth
sampling augmentation and the object-level noise strategy are removed at the last 2 epochs. We train
Uni3DETR for 70 epochs, with the learning rate decaying at the 64th epoch. The initial learning rate
is set to 9e-5, with the batch size of 8. As the KITTI dataset suffers from the sparse objects seriously,
we follow [21] to repeat the ground truth labels 5 times during training. The predicted car objects are
filtered at the threshold of 0.5 after inference. The ratio of the classification score and the predicted
IoU is 0.2:0.8 on the KITTI dataset.

nuScenes [3]. Compared to the KITTI dataset, the nuScenes dataset covers a larger range, with 360
degrees around the LiDAR instead of only the front view. The point cloud in nuScenes is also more
sparse (with 32-beam LiDAR compared to the KITTI 64 beams). Besides, the nuScenes dataset
contains 10 classes, with the severe long-tail problem. The initial learning rate is set to 1e-5, with the
batch size of 16 and the cyclic schedule. We train the Uni3DETR for 20 epochs.

B Test Set Results

We further conduct the experiment and evaluate our method on the test set of KITTI and nuScenes
dataset. The comparison is listed in the Tab. 11 and Tab. 12 separately. For the most important KITTI
metric, AP on the moderate level of car, we obtain the 82.26% AP, which is 0.83 points higher than
PV-RCNN, 0.49 points higher than CT3D, and 0.38 points higher than PV-RCNN++. On the test
set of the nuScenes dataset, we obtain the 65.2% mAP and 70.8% NDS. The consistent superiority
further demonstrates the ability of Uni3DETR on outdoor 3D detection.

C Visualized Results

Comparison results about the mixture of query points. We first provide comparative visualized
results in Fig. 6 to illustrate the effectiveness of the mixture of query points. For the first case, it can
be seen that training with only the learnable query points concentrates on the right region of the bed
and the nightstand, and ignores the left sofa. This similarly applies to the rest two cases. For the
second case, the right nightstand is not detected and for the third case, three chairs are ignored. The
common point among these three cases is that these ignored objects are partly occluded, thus with
insufficient points. The limited quantities of point clouds therefore restrict the performance of the 3D

15



Table 11: The performance of Uni3DETR for
outdoor 3D object detection on the KITTI test
set with 40 recall positions. We train the models
on the car category only. *: AP on the moderate
car is the most important metric.

Method Easy Mod.* Hard
SECOND [64] 88.61 78.62 77.22
PointPillar [24] 82.58 74.31 68.99

Part-A2 [52] 87.81 78.49 73.51
PV-RCNN [49] 90.25 81.43 76.82

CT3D [46] 87.83 81.77 77.16
PV-RCNN++ [50] - 81.88 -
Uni3DETR (ours) 91.14 82.26 77.58

Table 12: The performance of Uni3DETR for
outdoor 3D object detection on the nuScenes
test set. We compare with previous methods
with double-flip testing.

Method mAP(%) NDS(%)
PointPillar [24] 30.5 45.3

CBGS [75] 52.8 63.3
CenterPoint [67] 58.0 65.5
Focals Conv [7] 63.8 70.0

UVTR [27] 63.9 69.7
PillarNet [48] 65.0 70.8

Uni3DETR (ours) 65.2 70.8

Figure 6: The comparative visualized results of our mixture of query points, compared to the result
obtained from learnable query points only. The examples are from the SUN RGB-D dataset.

detector. After we introduce the mixture of query points, global information is better considered with
the help of non-learnable query points. As a result, even under the circumstance of insufficient point
cloud information, our Uni3DETR can still recognize these objects and detect them out relying on
the knowledge about the whole scene. More visualized examples are also provided in Fig. 7.

Comparison results about the decoupled IoU. We then compare the visualized results of Uni3DETR
with the normal 3D IoU and plot the results in Fig. 8. It can be seen that when supervising the detector
with the normal 3D IoU, although the 3D detector has the ability to detect the foreground objects out,
the localization precision remains significantly low. For example, for the second case, two chairs are
indeed detected, but the overlaps between the detected instances with the corresponding objects are
minimal. Furthermore, the low degree of the overlapped area also results in many duplicated boxes,
especially for the above one. The same thing also occurs at the third case. For the first case, besides
the localization error, only one chair is detected out. This is because 3D IoU is hard to optimize
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Figure 7: More comparative visualized results of our mixture of query points, compared to the
result obtained from learnable query points only. The left two examples are from the ScanNet
dataset and the right is from the KITTI dataset.

thus fails to alleviate the scale problem of L1 loss. In comparison, our decoupled IoU addresses the
coupling problem of 3D IoU, thus contributing to better localization accuracy.

More visualized results obtained by Uni3DETR. We further provide more visualized results
obtained by our Uni3DETR on different datasets. Uni3DETR obtains satisfying detection results on
all five datasets, which further demonstrate its effectiveness and universality.

D Per-category Results

Table 13: Per-category AP25 for the 10 classes on the SUN RGB-D dataset.
bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

H3DNet [70] 73.8 85.6 31.0 76.7 29.6 33.4 65.5 66.5 50.8 88.2 60.1
BRNet [9] 76.2 86.9 29.7 77.4 29.6 35.9 65.9 66.4 51.8 91.3 61.1

GroupFree [30] 80.0 87.8 32.5 79.4 32.6 36.0 66.7 70.0 53.8 91.1 63.0
FCAF3D [43] 79.0 88.3 33.0 81.1 34.0 40.1 71.9 69.7 53.0 91.3 64.2

Uni3DETR (ours) 80.7 89.1 30.7 85.6 38.6 42.7 74.7 75.1 59.2 93.9 67.0

Table 14: Per-category AP50 for the 10 classes on the SUN RGB-D dataset.
bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

H3DNet [70] 47.6 52.9 8.6 60.1 8.4 20.6 45.6 50.4 27.1 69.1 39.0
BRNet [9] 55.5 63.8 9.3 61.6 10.0 27.3 53.2 56.7 28.6 70.9 43.7

GroupFree [30] 64.0 67.1 12.4 62.6 14.5 21.9 49.8 58.2 29.2 72.2 45.2
FCAF3D [43] 66.2 69.8 11.6 68.8 14.8 30.1 59.8 58.2 35.5 74.5 48.9

Uni3DETR (ours) 67.4 66.2 10.7 71.7 14.8 33.5 60.3 63.0 36.7 78.6 50.3

We first list the per-category results for the 10 classes on the SUN RGB-D dataset in Tab. 13 and Tab.
14. For the AP25 metric, Uni3DETR achieves the best for 9 classes out of the total 10 classes. The
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Figure 8: The comparative visualized results of our decoupled IoU, compared to the result obtained
from the normal 3D IoU.

Figure 9: The visualized results of Uni3DETR on the SUN RGB-D dataset.
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Figure 10: The visualized results of Uni3DETR on the ScanNet dataset.

Figure 11: The visualized results of Uni3DETR on the S3DIS dataset.

Table 15: Per-category AP25 for the 18 classes on the ScanNet dataset.
cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

VoteNet [38] 36.3 87.9 88.7 89.6 58.8 47.3 38.1 44.6 7.8 56.1 71.7 47.2 45.4 57.1 94.9 54.7 92.1 37.2 58.7
GSDN [17] 41.6 82.5 92.1 87.0 61.1 42.4 40.7 51.5 10.2 64.2 71.1 54.9 40.0 70.5 100 75.5 93.2 53.1 62.8
H3DNet [70] 49.4 88.6 91.8 90.2 64.9 61.0 51.9 54.9 18.6 62.0 75.9 57.3 57.2 75.3 97.9 67.4 92.5 53.6 67.2
GroupFree[30] 52.1 92.9 93.6 88.0 70.7 60.7 53.7 62.4 16.1 58.5 80.9 67.9 47.0 76.3 99.6 72.0 95.3 56.4 69.1
FCAF3D [43] 57.2 87.0 95.0 92.3 70.3 61.1 60.2 64.5 29.9 64.3 71.5 60.1 52.4 83.9 99.9 84.7 86.6 65.4 71.5
Uni3DETR (ours) 58.1 87.0 94.9 91.2 71.7 66.9 58.5 59.6 34.6 73.2 81.0 55.6 52.7 81.2 99.6 78.2 83.5 63.7 71.7

Table 16: Per-category AP50 for the 18 classes on the ScanNet dataset.
cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

VoteNet [38] 8.1 76.1 67.2 68.8 42.4 15.3 6.4 28.0 1.3 9.5 37.5 11.6 27.8 10.0 86.5 16.8 78.9 11.7 33.5
GSDN [17] 13.2 74.9 75.8 60.3 39.5 8.5 11.6 27.6 1.5 3.2 37.5 14.1 25.9 1.4 87.0 37.5 76.9 30.5 34.8
H3DNet [70] 20.5 79.7 80.1 79.6 56.2 29.0 21.3 45.5 4.2 33.5 50.6 37.3 41.4 37.0 89.1 35.1 90.2 35.4 48.1
GroupFree[30] 26.0 81.3 82.9 70.7 62.2 41.7 26.5 55.8 7.8 34.7 67.2 43.9 44.3 44.1 92.8 37.4 89.7 40.6 52.8
FCAF3D [43] 35.8 81.5 89.8 85.0 62.0 44.1 30.7 58.4 17.9 31.3 53.4 44.2 46.8 64.2 91.6 52.6 84.5 57.1 57.3
Uni3DETR (ours) 39.5 82.5 90.4 83.1 63.8 50.5 31.9 56.4 23.5 38.6 62.8 38.4 42.2 61.6 97.8 50.9 80.2 56.3 58.3

most significant improvement comes from the sofa and table class, 5.4% and 6.2% respectively. For
the AP50 metric, UniDETR also achieves the best for 8 classes. For the sofa class, the improvement
is up to 4.8%. The effectiveness of UniDETR is thus further demonstrated.
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Figure 12: The visualized results of Uni3DETR on the KITTI dataset.

Figure 13: The visualized results of Uni3DETR on the nuScenes dataset.
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Table 17: Per-category AP25 for the 5 classes on the S3DIS dataset.
table chair sofa bkcase board mAP

GSDN [17] 73.7 98.1 20.8 33.4 12.9 47.8
FCAF3D [43] 69.7 97.4 92.4 36.7 37.3 66.7
Uni3DETR (ours) 74.4 98.7 77.4 47.7 52.2 70.1

Table 18: Per-category AP50 for the 5 classes on the S3DIS dataset.
table chair sofa bkcase board mAP

GSDN [17] 36.6 75.3 6.1 6.5 1.2 25.1
FCAF3D [43] 45.4 88.3 70.1 19.5 5.6 45.9
Uni3DETR (ours) 45.4 87.9 64.1 19.0 23.7 48.0

Table 19: Per-category AP for the 10 classes on the nuScenes dataset.
NDS mAP Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar

UVTR [27] 67.7 60.9 85.3 53.0 69.1 41.4 24.0 82.6 70.4 52.9 67.1 63.4
Uni3DETR (ours) 68.5 61.7 87.0 59.0 70.8 41.7 23.9 86.1 66.4 46.0 67.8 68.0

The per-category results for the 18 classes on the ScanNet dataset are listed in Tab. 15 and Tab. 16.
We achieve the best for 7 classes for the AP25 metric and for 9 classes for the AP50 metric. For the
S3DIS dataset, the per-category results are listed in Tab. 17 and Tab. 18. For the AP25 metric, we
achieve the best for 4 classes out of the total 5 ones. For the AP50 metric, we are 18.1% higher than
FCAF3D on the board class. These per-category results further demonstrate the ability of Uni3DETR
on indoor scenes.

We also list the per-category AP on the nuScenes dataset in Tab. 19. Our Uni3DETR achieves the
best for 7 out of 10 classes. The ability of Uni3DETR is further demonstrated on outdoor scenes.
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