
Markovian Sliced Wasserstein Distances: Beyond
Independent Projections

Khai Nguyen
Department of Statistics and Data Sciences

The University of Texas at Austin
Austin, TX 78712

khainb@utexas.edu

Tongzheng Ren
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
tongzheng@utexas.edu

Nhat Ho
Department of Statistics and Data Sciences

The University of Texas at Austin
Austin, TX 78712

minhnhat@utexas.edu

Abstract

Sliced Wasserstein (SW) distance suffers from redundant projections due to inde-
pendent uniform random projecting directions. To partially overcome the issue,
max K sliced Wasserstein (Max-K-SW) distance (K ≥ 1), seeks the best dis-
criminative orthogonal projecting directions. Despite being able to reduce the
number of projections, the metricity of the Max-K-SW cannot be guaranteed in
practice due to the non-optimality of the optimization. Moreover, the orthogonality
constraint is also computationally expensive and might not be effective. To address
the problem, we introduce a new family of SW distances, named Markovian sliced
Wasserstein (MSW) distance, which imposes a first-order Markov structure on
projecting directions. We discuss various members of the MSW by specifying the
Markov structure including the prior distribution, the transition distribution, and
the burning and thinning technique. Moreover, we investigate the theoretical prop-
erties of MSW including topological properties (metricity, weak convergence, and
connection to other distances), statistical properties (sample complexity, and Monte
Carlo estimation error), and computational properties (computational complexity
and memory complexity). Finally, we compare MSW distances with previous SW
variants in various applications such as gradient flows, color transfer, and deep
generative modeling to demonstrate the favorable performance of the MSW1.

1 Introduction

Sliced Wasserstein (SW) [7] distance has been well-known as a great alternative statistical distance
for Wasserstein distance [57, 49]. In short, SW takes the average of Wasserstein distances between
corresponding pairs of one-dimensional projected measures as the distance between the two original
measures. Hence, the SW has a low computational complexity compared to the conventional
Wasserstein distance due to the closed-form solution of optimal transport in one dimension. When
the probability measures have at most n supports, the computational complexity of the SW is only
O(n log n). This complexity is much lower than the computational complexity O(n3 log n) of
Wasserstein distance and the complexityO(n2) [1, 34, 35, 33] of entropic Wasserstein [11] (Sinkhorn

1Code for this paper is published at https://github.com/UT-Austin-Data-Science-Group/MSW.
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divergence). Moreover, the memory complexity of the SW is O(n) which is lower than O(n2) of
the Wasserstein (Sinkhorn) distance. The reason is that SW does not need to store the cost matrix
between supports which cost O(n2). An additional appealing property of the SW is that it does
not suffer from the curse of dimensionality, namely, its sample complexity is O(n−1/2) [40, 46]
compared to O(n−1/d) [19] of the Wasserstein distance (d is the number of dimensions).

Due to the scalability, the SW has been applied to almost all applications where the Wasserstein
distance is used. For example, we refer to some applications of the SW which are generative model-
ing [60, 15, 27, 42], domain adaptation [30], clustering [28], approximate Bayesian computation [39],
gradient flows [37, 5], and variational inference [61]. Moreover, there are many attempts to improve
the SW. The generalized sliced Wasserstein (GSW) distance that uses non-linear projection is pro-
posed in [26]. Distributional sliced Wasserstein distance is proposed in [44, 45] by replacing the
uniform distribution on the projecting directions in SW with an estimated distribution that puts high
probabilities for discriminative directions. Spherical sliced Wasserstein which is defined between
distributions that have their supports on the hyper-sphere is introduced in [4]. A sliced Wasserstein
variant between probability measures over images with convolution is defined in [43].

Despite having a lot of improvements, one common property in previous variants of the SW is that they
use independent projecting directions that are sampled from a distribution over a space of projecting
direction e.g., the unit-hypersphere. Those projecting directions are further utilized to project two
interested measures to corresponding pairs of one-dimensional measures. Due to the independence,
practitioners have reported that many projections do not have the power to discriminative between
two input probability measures [26, 15]. Moreover, having a lot of projections leads to redundancy
and losing computation for uninformative pairs of projected measures. This problem is known as the
projection complexity limitation of the SW.

To partially address the issue, the max sliced Wasserstein (Max-SW) distance is introduced in [14].
Max-SW seeks the best projecting direction that can maximize the projected Wasserstein distance.
Since the Max-SW contains a constraint optimization problem, the projected subgradient ascent
algorithm is performed. Since the algorithm only guarantees to obtain local maximum [46], the
performance of empirical estimation Max-SW is not stable in practice [42] since the metricity of
Max-SW can be only obtained at the global optimum. Another approach is to force the orthogo-
nality between projecting directions. In particular, K-sliced Wasserstein [50] (K-SW) uses K > 1
orthogonal projecting directions. Moreover, to generalize the Max-SW and the K-SW, max-K sliced
Wasserstein (Max-K-SW) distance (K > 1) appears in [12] to find the best K projecting directions
that are orthogonal to each other via the projected sub-gradient ascent algorithm. Nevertheless, the
orthogonality constraint is computationally expensive and might not be good in terms of reflecting
discrepancy between general measures. Moreover, Max-K-SW also suffers from the non-optimality
problem which leads to losing the metricity property in practice.

To avoid the independency and to satisfy the requirement of creating informative projecting directions
efficiently, we propose to impose a sequential structure on projecting directions. Namely, we choose
a new projecting direction based on the previously chosen directions. For having more efficiency in
computation, we consider first-order Markovian structure in the paper which means that a projecting
direction can be sampled by using only the previous direction. For the first projecting direction, it
can follow any types of distributions on the unit-hypersphere that were used in the literature e.g.,
uniform distribution [7] and von Mises-Fisher distribution [23, 45] to guarantee the metricity. For
the transition distribution on the second projecting direction and later, we propose two types of
family which are orthogonal-based transition and input-awared transition. For the orthogonal-based
transition, we choose the projecting direction uniformly on the unit hypersphere such that it is
orthogonal to the previous direction. In contrast to the previous transition which does not use the
information from the two input measures, the input-awared transition uses the sub-gradient with
respect to the previous projecting direction of the corresponding projected Wasserstein distance
between the two measures to design the transition. In particular, the projected sub-gradient update is
used to create the new projecting direction. Moreover, we further improve the computational time
and computational memory by introducing the burning and thinning technique to reduce the number
of random projecting directions.

Contribution. In summary, our contributions are two-fold:

1. We propose a novel family of distances on the space of probability measures, named
Markovian sliced Wasserstein (MSW) distances. MSW considers a first-order Markovian
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structure on random projecting directions. Moreover, we derive three variants of MSW
that use two different types of conditional transition distributions: orthogonal-based and
input-awared. We investigate the theoretical properties of MSW including topological
properties (metricity, weak convergence, and connection to other distances), statistical
properties (sample complexity, and Monte Carlo estimation error), and computational
properties (computational complexity and memory complexity). Moreover, we introduce a
burning and thinning approach to further reduce computational and memory complexity,
and we discuss the properties of the resulting distances.

2. We conduct experiments to compare MSW with SW, Max-SW, K-SW, and Max-K-SW in
various applications, namely, gradient flows, color transfer, and deep generative models on
standard image datasets: CIFAR10 and CelebA. We show that the input-awared MSW can
yield better qualitative and quantitative performance while consuming less computation than
previous distances in gradient flows and color transfer, and comparable computation in deep
generative modeling. Finally, we investigate the role of hyper-parameters of distances e.g.,
the number of projections, the number of time-steps, and so on, in applications.

Organization. We first provide background for Wasserstein distance, sliced Wasserstein distance,
and max sliced Wasserstein distance in Section 2. In Section 3, we propose Markovian sliced
Wasserstein distances and derive their theoretical properties. Section 4 contains the comparison of
MSW to previous SW variants in gradient flows, color transfer, and deep generative modeling. We
then conclude the paper in Section 5. Finally, we defer the proofs of key results in the paper and
supplementary materials to Appendices.

Notation. For p ≥ 1, Pp(Rd) is the set of all probability measures on Rd that have finite p-
moments. For any d ≥ 2, we denote U(Sd−1) is the uniform measure over the unit hyper-sphere
Sd−1 := {θ ∈ Rd | ||θ||22 = 1}. For any two sequences an and bn, the notation an = O(bn) means
that an ≤ Cbn for all n ≥ 1, where C is some universal constant. We denote θ♯µ is the push-forward
measures of µ through the function f : Rd → R that is f(x) = θ⊤x.

2 Background

We start with reviewing the background on Wasserstein distance, sliced Wasserstein distances, their
computation techniques, and their limitations.

Wasserstein distance. Given two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd), the Wasser-
stein distance [57, 48] between µ and ν is :

Wp
p(µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥ppdπ(x, y), (1)

where Π(µ, ν) is set of all couplings that have marginals are µ and ν respectively. The computational
complexity and memory complexity of Wasserstein distance are O(n3 log n) and O(n2) in turn
when µ and ν have at most n supports. When d = 1, the Wasserstein distance can be computed
with a closed form: Wp

p(µ, ν) =
∫ 1

0
|F−1
µ (z) − F−1

ν (z)|pdz, where Fµ and Fν are the cumulative
distribution function (CDF) of µ and ν respectively.

Sliced Wasserstein distance. By randomly projecting two interested high-dimensional measures to
corresponding pairs of one-dimensional measures, sliced Wasserstein (SW) distance can exploit the
closed-form benefit of Wasserstein distance in one dimension. The definition of sliced Wasserstein
distance [7] between two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is:

SWp
p(µ, ν) = Eθ∼U(Sd−1)W

p
p(θ♯µ, θ♯ν). (2)

Monte Carlo samples are often used to approximate the intractable expectation unbiasedly:

ŜW
p

p(µ, ν) =
1

L

L∑
l=1

Wp
p(θl♯µ, θl♯ν), (3)

where θ1, . . . , θL are drawn randomly from U(Sd−1). When µ and ν are discrete measures that have
at most n supports in d dimension, the computational complexity of SW is O(Ln log2 n+ Ldn) and
the memory complexity for storing the projecting directions and the projected supports isO(L(d+n)).
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Here, Ln log2 n is for sorting L sets of projected supports and Ld is for projecting supports to L sets
of scalars.

Max sliced Wasserstein distance. To select the best discriminative projecting direction, the max
sliced Wasserstein (Max-SW) distance [14] between µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is introduced as
follows:

Max-SWp(µ, ν) = max
θ∈Sd−1

Wp(θ♯µ, θ♯ν). (4)

Computing Max-SW requires solving the constrained optimization problem. In practice, the projected
sub-gradient ascent algorithm with T > 1 iterations is often used to obtain a surrogate projecting
direction θ̂T for the global optimum. Hence, the empirical Max-SW distance is M̂ax-SWp(µ, ν) =

Wp(θ̂T ♯µ, θ̂T ♯ν). The detail of the projected sub-gradient ascent algorithm is given in Algorithm 1 in
Appendix A.1. The computational complexity of Max-SW is O(Tn log2 n+ Tdn) and the memory
complexity of Max-SW is O(d+ n). It is worth noting that the projected sub-gradient ascent can
only yield local maximum [46]. Therefore, the empirical Max-SW might not be distance even when
T →∞ since the metricity of Max-SW can be only obtained at the global maximum.

K-sliced Wasserstein distance. The authors in [50] propose to estimate the sliced Wasserstein
distance based on orthogonal projecting directions. We refer to the distance as K-sliced Wasserstein
distance (K-SW). The definition of K-SW between two probability measures µ ∈ Pp(Rd) and
ν ∈ Pp(Rd) is:

K-SWp
p(µ, ν) = E

[
1

K

K∑
i=1

Wp
p(θi♯µ, θi♯ν)

]
, (5)

where the expectation is with respect to (θ1, . . . , θK) ∼ U(Vk(Rd)) with VK(Rd) =
{(θ1, . . . , θK) ∈ Sd−1|⟨θi, θj⟩ = 0 ∀i, j ≤ K} is the Stiefel manifold. The expectation can
be approximated with Monte Carlo samples (θ1l, . . . , θKl)

L
l=1 from U(VK(Rd)). In the orig-

inal paper, L is set to 1. To sample from the uniform distribution over the Stiefel manifold
U(Vk(Rd)), it requires using the Gram-Schmidt orthogonality process which has the computa-
tional complexity O(K2d) (quadratic in K). Therefore, the total computational complexity of K-SW
isO(LKn log2 n+LKdn+LK2d) and the memory complexity of K-SW isO(LK(d+n)). More
detail related to K-SW including Gram-Smith process and sampling uniformly from the Stiefel
manifold is given in Appendix A.1.

Max K sliced Wasserstein distance. To generalize both Max-SW and K-SW, Max K sliced
Wasserstein is introduced in [12]. Its definition between µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is:

Max-K-SWp
p(µ, ν) = max

(θ1,...,θK)∈VK(Rd)

[
1

K

K∑
i=1

Wp
p(θi♯µ, θi♯ν)

]
. (6)

Similar to Max-SW, a projected sub-gradient ascent algorithm with T > 1 iterations is used to
approximate Max-K-SW. We refer the reader to Algorithm 4 in Appendix A.1 for greater detail.
Since the projecting operator to the Stiefel manifold is the Gram-Smith process, the computational
complexity of Max-K-SW is O(TKn log2 n+ TKdn+ TK2d). The memory complexity of Max-
K-SW is O(K(d + n)). Similar to Max-SW, the metricity of Max-K-SW is only obtained at the
global optimum, hence, the empirical estimation might not be stable. Moreover, the orthogonality
constraint is also computationally expensive i.e., quadratic in terms of the number of orthogonal
projections K.

3 Markovian Sliced Wasserstein distances

We first define Markovian sliced Wasserstein (MSW) distance and discuss its theoretical properties
including topological properties, statistical properties, and computational properties in Section 3.1. In
Section 3.2, we discuss some choices in designing the Markov chain including the prior distribution
and the transition distribution. Finally, we discuss the burning and thinning variant of MSW which
can reduce the computational and memory complexity in Section 3.3.
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3.1 Definitions, Topological, Statistical, and Computational Properties

We first start with a general definition of Markovian sliced Wasserstein distance in Definition 1.

Definition 1. For any p ≥ 1, T ≥ 1, and dimension d ≥ 1, the Markovian sliced Wasserstein of
order p between two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is:

MSWp
p,T (µ, ν) = E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ, θt♯ν)

]
, (7)

where T is the number of time steps, the expectation is under the projecting distribution θ1:T ∼
σ(θ1:T ) with σ(θ1:T ) = σ(θ1, . . . , θT ) = σ1(θ1)

∏T
l=2 σt(θt|θt−1), and σ1(θ1), σt(θt|θt−1) ∈

P(Sd−1) for all t = 1, . . . , T .

The first projecting direction θ1 follows the distribution σ1(θ1) with σ1(θ1) to be any distribu-
tions on the unit hyper-sphere, e.g., the uniform distribution, a von Mises-Fisher distribution,
and so on. By designing the transition distribution σl(θl|θl−1), we can obtain various variants
of MSW. It is worth noting that the MSW can be rewritten as the average of T expectation of one-
dimensional Wasserstein distance, MSWp

p,T (µ, ν) = 1
T

∑T
t=1 Eθt∼σt(θt)[W

p
p (θt♯µ, θt♯ν)], how-

ever, σt(θt) =
∫ ∏t

i=1 σ1(θ1)
∏t
l=2 σt′(θt′ |θt′−1)dθ1 . . . dθt−1 are not the same for t = 1, . . . , T .

Moreover, sampling directly from σt(θt) is intractable, hence, using the definition of the MSW in
Definition 1 is more reasonable in terms of approximating the expectation using Monte Carlo samples.

Monte Carlo estimation. Similar to SW, we also need to use Monte Carlo samples to approximate
the expectation in Definition 1. We first samples θ11, . . . , θL1 ∼ σ1(θ1) for L ≥ 1, then we samples
θlt ∼ σt(θt|θlt−1) for t = 1, . . . , T and l = 1, . . . , L. After that, we can form an unbiased empirical
estimation of MSW as follows: M̂SW

p

p,T (µ, ν) =
1
LT

∑L
l=1

∑T
t=1 Wp

p(θlt♯µ, θlt♯ν).

Before going to the specific design of those distributions, we first discuss the empirical estimation of
MSW, and investigate its theoretical properties including topological properties, statistical properties,
and computational properties.

Topological Properties. We first state the following assumption: A1. In MSW, the prior distribution
σ1(θ1) is supported on all the unit-hypersphere or there exists a transition distribution σt(θt|θt−1)
being supported on all the unit-hypersphere. The assumption A1 is easy to satisfy and it holds for
all later choices of the prior distribution and transition distribution. We now consider the metricity
properties of the Markovian sliced Wasserstein distance.

Theorem 1 (Metricity). For any p ≥ 1, T ≥ 1, and dimension d ≥ 1, if A1 holds, Markovian sliced
Wasserstein MSWp,T (·, ·) is a valid metric on the space of probability measures Pp(Rd), namely, it
satisfies the (i) non-negativity, (ii) symmetry, (iii) triangle inequality, and (iv) identity.

The proof of Theorem 1 is in Appendix B.1. Next, we show that the convergence in MSW implies
the weak convergence of probability measures and the reverse also holds.

Theorem 2 (Weak Convergence). For any p ≥ 1, T ≥ 1, and dimension d ≥ 1, if A1 holds, the
convergence of probability measures in Pp(Rd) under the Markovian sliced Wasserstein distance
MSWp,T (·, ·) implies weak convergence of probability measures and vice versa.

Theorem 2 means that for any sequence of probability measures (µk)k∈N and µ in Pp(Rd),
limk→+∞ MSWp,T (µk, µ) = 0 if and only if for any continuous and bounded function f : Rd → R,
limk→+∞

∫
f dµk =

∫
f dµ. The proof of Theorem 2 is in Appendix B.2. Next, we discuss the

connection of MSW to previous sliced Wasserstein variants.

Proposition 1. For any p ≥ 1 and dimension d ≥ 1,

(i) For any T ≥ 1 and µ, ν ∈ Pp(Rd), MSWp,T (µ, ν) ≤ Max-SWp(µ, ν) ≤ Wp(µ, ν).

(ii) If T = 1 and the prior σ1(θ1) := U(Sd−1), MSWp,T (µ, ν) = SWp(µ, ν).

The proof of Proposition 1 is in Appendix B.3.

Statistical Properties. We investigate the sample complexity (empirical estimation rate) of the MSW.
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Proposition 2 (Sample Complexity). Let X1, X2, . . . , Xn be i.i.d. samples from the proba-
bility measure µ being supported on compact set of Rd. We denote the empirical measure
µn = 1

n

∑n
i=1 δXi . Then, for any p ≥ 1 and T ≥ 1, there exists a universal constant C > 0

such that E[MSWp,T (µn, µ)] ≤ C
√

(d+ 1) log n/n, where the outer expectation is taken with
respect to the data X1, X2, . . . , Xn.

The proof of Proposition 2 is in Appendix B.4. The proposition suggests that MSW does not suffer
from the curse of dimensionality. Next, we investigate the MSW’s Monte Carlo approximation error.
Proposition 3 (Monte Carlo error). For any p ≥ 1, T ≥ 1, dimension d ≥ 1, and µ, ν ∈ Pp(Rd),

we have: E|M̂SW
p

p,T (µ, ν) − MSWp
p,T (µ, ν)| ≤

1
T
√
L
V ar

[∑T
t=1W

p
p (θt♯µ, θt♯ν)

] 1
2

, where the

variance is with respect to σ(θ1, . . . , θT ).

The proof of Proposition 3 is in Appendix B.5. From the above proposition, we know that increasing
the number of projections L reduces the approximation error.

Computational Properties. When µ and ν are two discrete probability measures in Pp(Rd) that
have at most n supports, the computational complexity for the Monte Carlo approximation of MSW is
O(TLn log2 n+TLdn) whereO(TLn log n) is for computation of TL one-dimensional Wasserstein
distances and O(TLdn) is the projecting complexity for TL projections from d dimension to 1
dimension. The memory complexity of MSW is O(TL(d+ n)) for storing the projecting directions
and the projections.

3.2 Specific Choices of Projecting Distributions

Designing the projecting distribution σ(θ1, . . . , θT ) is the central task in using MSW since it controls
the projecting behavior. For each choice of the σ(θ1, . . . , θT ), we obtain a variant of MSW. Since
we impose the first order Markov structure σ(θ1, . . . , θT ) = σ1(θ1)

∏T
t=2 σt(θt|θt−1), there are

two types of distributions that we need to choose: the prior distribution σ1(θ1) and the transition
distribution σt(θt|θt−1) for all t = 2, . . . , T .

Prior distribution. The most simple choice of σ1(θ1) when we know nothing about probability
measures that we want to compare is the uniform distribution over the unit hypersphere U(Sd−1).
Moreover, the metricity of MSW is guaranteed regardless of the transition distribution with this
choice. Therefore, the uniform distribution is the choice that we use in our experiments in the paper.
It is worth noting that we could also use a distribution that is estimated from two interested probability
measures [44]; however, this approach costs more computation.

Transition distribution. We discuss some specific choices of the transition distributions σt(θt|θt−1).
Detailed algorithms for computing MSW with specific transitions are given in Appendix A.3.

Orthogonal-based transition. Motivated by the orthogonality constraint in Max-K-SW and K-SW, we
can design a transition distribution that gives us an orthogonal projecting direction to the previous one.
In particular, given a previous projecting direction θt−1, we want to have θt such that ⟨θt, θt−1⟩ = 0,
namely, we want to sample from the subsphere Sd−1

θt−1
:= {θt ∈ Sd−1|⟨θt, θt−1⟩ = 0}. To the

best of our knowledge, there is no explicit form of distribution (known pdf) that is defined on that
set. However, we can still sample from the uniform distribution over that set: U(Sd−1

θt−1
) since that

distribution can be constructed by pushing the uniform distribution over the whole unit hypersphere
U(Sd−1) through the projection operator: Projθt−1

(θt) = ProjSd−1

(
θt − ⟨θt−1,θt⟩

⟨θt−1,θt−1⟩θt−1

)
where

ProjSd−1(θ) = θ
||θ||2 is the normalizing operator. In a greater detail, we first sample θ′t ∼ U(Sd−1)

and then set θt = Projθt−1
(θ′t). Therefore, we have σt(θt|θt−1) = U(Sd−1

t−1 ) = Projθt−1
♯U(Sd−1).

Input-awared transition. The above two transition distributions do not take into account the informa-
tion of the two probability measures µ and ν that we want to compare. Hence, it could be inefficient
to explore good projecting directions by comparing µ and ν. Motivated by the projected sub-gradient
ascent [9] update in finding the “max" projecting direction, we could design the transition distri-
bution as follows: σt(θt|θt−1) = δf(θt−1|η,µ,ν) where δ denotes the Dirac Delta function and the
transition function f(θt−1|η, µ, ν) = ProjSd−1

(
θt−1 + η∇θt−1

Wp (θt−1♯µ, θt−1♯ν)
)
, with η > 0 is

the stepsize hyperparameter. As the current choice is a deterministic transition, it requires the prior
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distribution to have supports on all Sd−1 to obtain the metricity for MSW. A choice to guarantee
the metricity regardless of the prior distribution is the von Mises-Fisher (vMF) distribution [23],
namely, σt(θt|θt−1) = vMF(θt|ϵ = f(θt−1|η, µ, µ), κ). The details about the vMF distribution
including its probability density function, its sampling procedure, and its properties are given in Ap-
pendix A.2. In summary, the vMF distribution has two parameters: the location parameter ϵ ∈ Sd−1

which is the mean, and the concentration parameter κ ∈ R+ which plays the role as the precision.
Thank the interpolation properties of the vMF distribution: limκ→0 vMF(θ|ϵ, κ) = U(Sd−1) and
limκ→∞ vMF(θ|ϵ, κ) = δϵ, the transition distribution can balance between heading to the “max"
projecting direction and exploring the space of directions.

Stationarity of σT (θT ). A natural important question arises: what is the distribution of σT (θT ) =∫
. . .
∫
σ(θ1, . . . , θT )dθ1 . . . dθT−1 when T → ∞? The answer to the above questions depends

on the choice of the projection distribution which is discussed in Section 3.2. For the Orthogonal-
based transitions and the uniform distribution prior, it is unclear whether the stationary distri-
bution exists. For the deterministic Input-awared transition and the uniform prior, we have
limT→∞ σT (θT ) =

∑A
a=1 αaδθ∗a with

∑A
a=1 αa = 1 where θ∗a (a = 1, . . . , A) are local maxi-

mas of the optimization problem maxθ∈Sd−1 Wp(θ♯µ, θ♯ν) and some unknown weights αa that
depend on µ and ν. This property is due to the fact that the projected sub-gradient ascent can
guarantee local maxima convergence [46]. For the Input-awared vMF transition, it is also unclear if
the stationary distribution exists when the parameter κ <∞.

3.3 Burning and Thinning

In the definition of MSW in Definition 1, we take the expectation on the joint distribution over all
timesteps σ(θ1:T ) which leads to the time and memory complexities to be linear with T in the Monte
Carlo approximation. Therefore, we can adapt the practical technique from MCMC methods which
is burning and thinning to reduce the number of random variables while still having the dependency.
Definition 2. For any p ≥ 1, T ≥ 1, dimension d ≥ 1, the number of burned steps M ≥ 0, and the
number of thinned steps N ≥ 1, the burned thinned Markovian sliced Wasserstein of order p between
two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is:

MSWp
p,T,N,M (µ, ν) = E

 N

T −M

(T−M)/N∑
t=1

W p
p (θ′t♯µ, θ

′
t♯ν)

 , (8)

where the expectation is under the projection distribution θ′1:N(T−M) ∼ σ(θ′1:N(T−M)) with
σ(θ′1:N/(T−M)) being the marginal distribution which is obtained by integrating out random
projecting directions at the time step t such that t ≤ M or t%N ̸= 0 from σ(θ1, . . . , θT ) =

σ1(θ1)
∏T
l=2 σt(θt|θt−1) for all t = 1, . . . , T .

Similar to MSW, the burned-thinned MSW is also a metric on Pp(Rd) when there exists a time step t
that is not burned, is not thinned, and θt is a random variable that has the supports on all Sd−1. We
discuss more details about the burned-thinned MSW including its topological and statistical properties
in Appendix A.4. The Monte Carlo estimation of the burned-thinned MSW is given in Equation 10 in
Appendix A.4. The approximation is the average of the projected Wasserstein distance from θtl with
t ≥M and t%N = 0. By reducing the number of random projecting directions, the computational
complexity of the burned-thinned MSW is improved to O(((T −M)Ln log2 n+ (T −M)Ldn)/N)
in the orthogonal-based transitions. In the case of the input-awared transition, the computational
complexity is still O(TLn log2 n+ TLdn) since the transition requires computing the gradient of
the projected Wasserstein distance. However, in all cases, the memory complexity is reduced to
O((T −M)L(d+ n)/N).

Burned thinned MSW is the generalization of Max-SW. the empirical computation of Max-
SW [14] with the projected sub-gradient ascent and uniform random initialization can be viewed as a
special case of burned thinned MSW with the input-awared transition and with the number of burned
samples M = T − 1. The difference is that Max-SW uses only one local maximum to compute the
distance while the burned thinned MSW uses L ≥ 1 maximums (might not be unique).

More discussions. We refer the reader to Appendix A.5 for other related discussions e.g., “K-SW is
autoregressive decomposition of projecting distribution", “sequential generalization of Max-K-SW",
and related literature.
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Figure 1: The figures show the gradient flows that are from the empirical distribution over the
color points to the empirical distribution over S-shape points. The corresponding Wasserstein-2
distance between the empirical distribution at the current step and the S-shape distribution and the
computational time (in seconds) to reach the step is reported at the top of the figure.

Source SW (L=45), 41.77(s), W2 = 414.51 Max-SW (T=45), 59.13(s), W2 = 449.42 K-SW (L=15,K=3), 38.86(s), W2 = 411.74 Max-K-SW (K=3,T=15), 53.95(s), W2 = 479.43

oMSW (L=3,T=5), 13.69(s), W2 = 415.06 iMSW (L=3,T=5), 25.91(s), W2 = 16.97 viMSW (L=3,T=5, =50), 29.14(s), W2 = 16.48 viMSW (L=3,T=5, =100), 29.06(s), W2 = 17.09 Target

Figure 2: The figures show the source image, the target image, and the transferred images from
different distances. The corresponding Wasserstein-2 distance between the empirical distribution
over transferred color palates and the empirical distribution over the target color palette and the
computational time (in second) are reported at the top of the figure.

4 Experiments

In this section, we refer MSW with orthogonal-based transition as oMSW, MSW with input-awared
transition as iMSW (using the Dirac distribution) and viMSW (using the vMF distribution). We
compare MSW variants to SW, Max-SW, K-SW, and Max-K-SW in standard applications e.g.,
gradient flows, color transfer, and deep generative models. Moreover, we also investigate the role of
hyperparameters, e.g., concentration parameter κ, the number of projections L, the number of time
steps T , the number of burning steps M , and the number of thinning steps N in applications.

4.1 Gradient Flows and Color Transfer

Gradient flows. We follow the same setting in [17]. The gradient flow models a distribution µ(t)
flowing with time t along the gradient flow of a loss functional µ(t) → D(µ(t), ν) that drives it
towards a target distribution ν [53] where D is a given distance between probability measures. In this
setup, we consider ν = 1

n

∑n
i=1 δYi

as a fixed empirical target distribution and the model distribution
µ(t) = 1

n

∑n
i=1 δXi(t). Here, the model distribution is parameterized by a time-varying point cloud

X(t) = (Xi(t))
n
i=1 ∈

(
Rd
)n

. Starting from an initial condition at time t = 0, we integrate the
ordinary differential equation Ẋ(t) = −n∇X(t)

[
D
(
1
n

∑n
i=1 δXi(t), ν

)]
for each iteration. In the

experiments, we utilize the Euler scheme with 300 timesteps and the step size is 10−3 to move the
empirical distribution over colorful 1000 points µ(0) to the distribution over S-shape 1000 points (ν)
(see Figure 1). For Max-SW, Max-K-SW, iMSW, and viMSW, we use the learning rate parameter
for projecting directions η = 0.1. We report the Wasserstein-2 distances between the empirical
distribution µ(t) and the target empirical distribution ν, and the computational time in Table 1. We
also give the visualization of some obtained flows in Figure 1. We refer the reader to Figure 4 in
Appendix C.1 for the full visualization of all flows and detailed algorithms. We observe that iMSW
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Table 1: Summary of Wasserstein-2 distances, computational time in second (s) of different gradient flows.

Distances Wasserstein-2 (↓) Time (↓) Distances Wasserstein-2 (↓) Time (↓)
SW (L=30) 0.0099× 10−2 1.55 Max-K-SW (K=2,T=15) 0.0146× 10−2 3.35
Max-SW (T=30) 0.0098× 10−2 3.48 iMSW (L=2,T=5) (ours) 0.0064× 10−2 1.41
K-SW (L=15,K=2) 0.0098× 10−2 1.71 viMSW (L=2,T=5,κ=50)(ours) 0.0043× 10−2 2.94

Table 2: Summary of FID and IS scores from three different runs on CIFAR10 (32x32), and CelebA (64x64).

Method CIFAR10 (32x32) CelebA (64x64) Method CIFAR10 (32x32) CelebA (64x64)

FID (↓) IS (↑) FID (↓) FID (↓) IS (↑) FID (↓)
SW 14.21±1.12 8.19±0.07 8.93±0.23 oMSW (ours) 14.12±0.54 8.20±0.05 9.68±0.55
Max-K-SW 14.38±0.08 8.15±0.02 8.94±0.35 iMSW (ours) 14.12±0.48 8.24±0.09 8.89±0.23
K-SW 15.24±0.02 8.15±0.03 9.41±0.16 viMSW (ours) 13.98±0.59 8.12±0.20 8.91±0.11

gives better flows than SW, Max-SW, K-SW, and Max-K-SW. Namely, the empirical distribution
µ(t) (t = 300) with iMSW is closer to ν in terms of Wasserstein distance. More importantly, iMSW
consumes less computation than its competitors since it can use a smaller number of projections due
to more informative projecting directions. Furthermore, viMSW gives better final results than iMSW,
however, the trade-off is doubling the time computation due to the sampling step of vMF distribution.
In this case, K-SW is equivalent to our oMSW with T=K=2 since the dimension d = 2. We refer the
reader to Appendix C.1 for more discussion.

Studies on hyperparameters. From Table 3 in Appendix C.1, increasing the number of projections L
yields better performance for SW, K-SW, and iMSW. Similarly, increasing the number of timesteps T
also helps Max-SW and iMSW better. Moreover, we find that for the same number of total projections
e.g., L = 5, T = 2 and T = 2, L = 5, a larger timestep T might lead to a better result for iMSW.
For burning and thinning, we see that they help to reduce the computation while the performance
stays comparable or even better if choosing the right value of M and N . Also, iMSW the burning
steps M = T − 1 is still better than Max-SW with T time steps. For the concentration parameter κ
in viMSW, the performance of viMSW is not monotonic in terms of κ.

Color transfer. We aim to transfer the color palate (RGB) of a source image to the color palette
(RGB) target image. Therefore, it is natural to build a gradient flow that starts from the empirical
distribution over the color palette of the source image to the empirical distribution over the color
palette of the target image. Since the value of color palette is in the set {0, . . . , 255}3, we round the
value of the supports of the empirical distribution at the final step of the Euler scheme with 2000
steps and 10−3 step size. Greater detail can be found in Appendix C.2. For Max-SW, Max-K-SW,
iMSW, and viMSW, we use the learning rate parameter for projecting directions η = 0.1. We show
the transferred images, the corresponding Wasserstein-2 distances between the empirical distribution
over the transferred color palette and the empirical distribution over the target color palette, and the
corresponding computational time in Figure 2. From the figures, iMSW and viMSW give the best
transferred images quantitatively and qualitatively. Moreover, oMSW is comparable to SW, Max-SW,
K-SW, and are better than Max-K-SW while consuming much less computation. We refer the reader
to Figure 5 in Appendix C.2 for the color palette visualization and to Figure 6 for another choice of
the source and target images. We also conduct studies on hyperparameters in Appendix C.2 where
we observe some similar phenomenons as in gradient flow.

4.2 Deep Generative Models

We follow the setup of sliced Wasserstein deep generative models in [15]. The full settings of the
framework including neural network architectures, training framework, and hyperparameters are
given Appendix C.3. We compare MSW with previous baselines including SW, Max-SW, K-SW,
and Max-K-SW on benchmark datasets: CIFAR10 (image size 32x32) [29], and CelebA [36] (image
size 64x64). The evaluation metrics are FID score [21] and Inception score (IS) [51] (except on
CelebA since IS score poorly captures the perceptual quality of face images [21]). A notable change
in computing Max-SW is that we do not use momentum in optimization for max projecting direction
like in previous works [26, 42], which leads to a better result.

Summary of generative performance. We train generative models with SW (L ∈
{100, 1000, 10000}), K-SW (L ∈ {1, 10, 100},K = 10), Max-K-SW (K = {1, 10}, T =
{1, 10, 100, 1000}, η ∈ {0.01, 0.1})(Max-K-SW (K=1) is Max-SW), MSW (all variant, L =
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Figure 3: The FID scores and the IS scores over epochs, and some generated images from CelebA.

{10, 100}, T ∈ {10, 100}), iMSW and viMSW (η ∈ {0.01, 0.1}), and viMSW and (κ ∈ {10, 50}).
We report the best FID score and the best IS score for each distance in Table 2. In addition, we show
how scores change with respect to the training epochs in Figure 3. Overall, we observe that viMSW
and iMSW give the best generative performance in terms of the final scores and fast convergence on
CIFAR10 and CelebA. The oMSW gives comparable results to baselines. Since most computation in
training deep generative models is for updating neural networks, the computational time for distances
is almost the same. Furthermore, we show some generated images on CelebA in Figure 3 and all
generated images on CIFAR10 and CelebA in Figure 7 and Figure 8 in Appendix C.3. We visually
observe that the qualitative results are consistent with the quantitative results in Table 2.

Studies on hyperparameters. We conduct experiments to understand the behavior of the burning
and thinning technique, and to compare the role of L and T in Table 5 in Appendix C.3. Overall,
burning (thinning) sometimes helps to improve the performance of training generative models. There
is no clear sign of superiority between burning and thinning. We compare two settings of the same
number of total projections (same complexities): L = 10, T = 100 and L = 100, T = 10. On
CIFAR10, the first setting is better while the reverse case happens on CelebA.

5 Conclusion

We have introduced the Markovian sliced Wasserstein (MSW), a novel family of sliced Wasserstein
(SW) distances, which imposes a first-order Markov structure on projecting directions. We have
investigated the theoretical properties of MSW including topological properties, statistical properties,
and computational properties. Moreover, we have discussed three types of transition distribution
for MSW, namely, orthogonal-based, and input-awared transitions. In addition, we have proposed a
burning and thinning technique to improve the computational time and memory of MSW. Finally, we
have compared MSW to previous variants of SW in gradient flows, color transfer, and generative
modeling to show that MSW distances are both effective and efficient.
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Supplement to “Markovian Sliced Wasserstein Distances: Beyond
Independent Projections"

In this supplementary material, we present additional materials in Appendix A. In particular, we
provide additional background on sliced Wasserstein variants in Appendix A.1, background on von
Mises-Fisher distribution in Appendix A.2, algorithms for computing Markovian sliced Wasserstein
distances in Appendix A.3, additional information about burned thinned MSW in Appendix A.4, and
discussion on related works in Appendix A.5. We then provide skipped proofs in the main paper in
Appendix B. Additional experiments are presented in Appendix C.

A Additional Materials

A.1 Background on Sliced Wasserstein Variants

We review computational aspects of sliced Wasserstein variants.

Computation of Max sliced Wasserstein distance. We demonstrate the empirical estimation of
Max-SW via projected sub-gradient ascent algorithm in Algorithm 1. The initialization step for θ̂0
is rarely discussed in previous works. Normally, θ̂0 is randomly initialized by drawing from the
uniform distribution over the unit-hypersphere. Many previous works [26, 44, 45, 42] use Adam
update instead of the standard gradient ascent update for Max-SW. In this work, we find out that
using the standard gradient ascent update is more stable and effective.

Algorithm 1 Max sliced Wasserstein distance
Input. Probability measures µ, ν, learning rate η, the order p, and the number of iterations T .
Initialize θ̂0.
for t = 1 to T − 1 do
θ̂t = θ̂t−1 + η · ∇θ̂t−1

Wp(θ̂t−1♯µ, θ̂t−1♯ν)

θ̂t =
θ̂t

||θ̂t||2
end for
Return. Wp(θ̂T ♯µ, θ̂T ♯ν)

K sliced Wasserstein distance. We first review the Gram–Schmidt process in Algorithm 2. With
the Gram–Schmidt process, the sampling from U(VK(Rd)) can be done by sampling θ1, . . . , θk
i.i.d from N (0, Id) then applying the Gram-Schmidt process on them. Therefore, we present the
computation of K sliced Wasserstein distance in Algorithm 3. We would like to recall that the original
work of K-SW [50] uses only one set of orthogonal projecting directions. Here, we generalize the
original work by using L sets of orthogonal projecting directions.

Algorithm 2 Gram–Schmidt process
Input. K vectors θ1, . . . , θK
θ1 = θ1

||θ1||2
for k = 2 to K do

for i = 1 to k − 1 do
θk = θk − ⟨θi,θk⟩

⟨θi,θi⟩ θi
end for
θk = θk

||θk||2
end for
Return. θ1, . . . , θK

Max K sliced Wasserstein distance. We now present the empirical estimation of Max-K-SW
via projected sub-gradient ascent algorithm in Algorithm 4. This algorithm is first discussed in
the original paper of Max-K-SW [12]. The optimization of Max-K-SW can be solved by using
Riemannian optimization since the Stiefel manifold is a Riemannian manifold. However, to the best
of our knowledge, Riemannian optimization has not been applied to Max-K-SW.
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Algorithm 3 K sliced Wasserstein distance
Input. Probability measures µ, ν, the dimension d, the order p, the number of projections L, the
number of orthogonal projections K.
for l = 1 to L do

Draw θl1, . . . , θlK i.i.d from N (0, Id).
θl1, . . . , θlK = Gram–Schmidt(θl1, . . . , θlK)

end for
Return.

(
1
LK

∑L
l=1

∑K
k=1 Wp

p(θlk♯µ, θlk♯ν)
) 1

p

Algorithm 4 Max-K sliced Wasserstein distance
Input. Probability measures µ, ν, learning rate η, the dimension d, the order p, the number of
iterations T > 1, and the number of orthogonal projections K > 1.
Initialize θ̂01, . . . , θ̂0K to be orthogonal.
for t = 1 to T − 1 do

for k = 1 to K do
θ̂tk = θtk + η · ∇θ̂t−1k

Wp(θ̂t−1k♯µ, θ̂t−1k♯ν)

end for
θ̂t1, . . . , θ̂tK = Gram-Schmidt(θ̂t1, . . . , θ̂tK)

end for
Return.

(
1
K

∑K
k=1 Wp

p(θ̂Tk♯µ, θ̂Tk♯ν)
) 1

p

A.2 Von Mises-Fisher Distribution

We first start with the definition of von Mises-Fisher (vMF) distribution.

Algorithm 5 Sampling from vMF distribution
Input. location ϵ, concentration κ, dimension d, unit vector e1 = (1, 0, .., 0)
Draw v ∼ U(Sd−2)

b← −2κ+
√

4κ2+(d−1)2

d−1 , a← (d−1)+2κ+
√

4κ2+(d−1)2

4 , m← 4ab
(1+b) − (d− 1) log(d− 1)

repeat
Draw ψ ∼ Beta

(
1
2 (d− 1), 12 (d− 1)

)
ω ← h(ψ, κ) = 1−(1+b)ψ

1−(1−b)ψ
t← 2ab

1−(1−b)ψ
Draw u ∼ U([0, 1])

until (d− 1) log(t)− t+m ≥ log(u)

h1 ← (ω,
√
1− ω2v⊤)⊤

ϵ′ ← e1 − ϵ
u = ϵ′

||ϵ′||2
U = I − 2uu⊤

Output. Uh1

Definition 3. The von Mises–Fisher distribution (vMF)[23] is a probability distribution on the unit
hypersphere Sd−1 with the density function be:

f(x|ϵ, κ) := Cd(κ) exp(κϵ
⊤x), (9)

where ϵ ∈ Sd−1 is the location vector, κ ≥ 0 is the concentration parameter, and Cd(κ) :=
κd/2−1

(2π)d/2Id/2−1(κ)
is the normalization constant. Here, Iv is the modified Bessel function of the first

kind at order v [56].

The vMF distribution is a continuous distribution, its mass concentrates around the mean ϵ, and its
density decrease when x goes away from ϵ. When κ→ 0, vMF converges in distribution to U(Sd−1),
and when κ→∞, vMF converges in distribution to the Dirac distribution centered at ϵ [55].
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Sampling: We review the sampling process in Algorithm 5 [13, 45]. The sampling process of
vMF distribution is based on the rejection sampling procedure. It is worth noting that the sampling
algorithm is doing reparameterization implicitly. However, we only use the algorithm to obtain
random samples without estimating stochastic gradients.

A.3 Algorithms for Computing Markovian Sliced Wasserstein Distances

We first start with the general computation of MSW in Algorithm 6. For the orthogonal-based transi-
tion in oMSW, we use θlt ∼ U(Sd−1

θlt−1
) by first sampling θ′lt ∼ U(Sd−1) then set θlt = θlt− ⟨θ′lt,θlt⟩

⟨θ′lt,θ
′
lt⟩
θ′lt

then normalize θlt = θlt
||θlt||2 . For deterministic input-awared transition, iMSW, we set θlt = θlt−1 +

η∇θlt−1
Wp(θlt−1♯µ, θlt−1♯ν) then normalize θlt = θlt

||θlt||2 . For probabilistic input-awared transition,
viMSW, θlt ∼ vMF(θt|ϵ = ProjSd−1θ′lt, κ) with θ′lt = θlt−1 + η∇θlt−1

Wp(θlt−1♯µ, θlt−1♯ν).

Algorithm 6 Markovian sliced Wasserstein distance
Input. Probability measures µ, ν, the dimension d, the order p, the number of projections L, and
the number of timesteps T .
for l = 1 to L do

Draw θl0 ∼ σ(θ0)
for t = 1 to T − 1 do

Draw θlt ∼ σt(θt|θlt−1)
end for

end for
Return.

(
1
LT

∑L
l=1

∑T
t=1 Wp

p(θlt♯µ, θlt♯ν)
) 1

p

A.4 Burned Thinned Markovian Sliced Wasserstein Distance

We continue the discussion on burned thinned MSW in Section 3.3. We first start with the Monte
Carlo estimation of burned thinned MSW.

Monte Carlo Estimation: We samples θ11, . . . , θL1 ∼ σ1(θ1) for L ≥ 1, then we samples
θlt ∼ σt(θt|θlt−1) for t = 1, . . . , T and l = 1, . . . , L. We then obtain samples θ′lt by filtering out
t < M and t%N ̸= 0 from the set {θlt} for l = 1, . . . , L and t = 1, . . . , T . The Monte Carlo
approximation of the burned-thinned Markovian sliced Wasserstein distance is:

M̂SWp,T,N,M (µ, ν) =

 N

L(T −M)

L∑
l=1

(T−M)/N∑
t=1

W p
p (θ′lt♯µ, θ

′
lt♯ν)

 1
p

. (10)

Theoretical properties. We first state the following assumption: A2. Given T > M ≥ 0, N ≥ 1, the
prior distribution σ1(θ1) and the transition distribution σt(θt|θt−1) are chosen such that there exists
marginals σt(θt) =

∫
t−
σ(θ1, . . . , θt)dt

− with t ≥M and t%N = 0, t− = {t′ = 1, . . . , T |t′ ̸= t}.
The assumption A2 can be easily obtained by using vMF transition, e.g., in probabilistic input-awared
transition. From this assumption, we can derive theoretical properties of burned-thinned MSW
including topological properties and statistical complexity.

Proposition 4. For any p ≥ 1, T ≥ 1, M ≥ 0, N ≥ 1, and dimension d ≥ 1, if A2 holds, the burned
thinned Markovian sliced Wasserstein distance MSWp,T,N,M (·, ·) is a valid metric on the space of
probability measures Pp(Rd), namely, it satisfies the (i) non-negativity, (ii) symmetry, (iii) triangle
inequality, and (iv) identity.

The proof of Proposition 4 follows directly the proof of Theorem 1 in Appendix B.1.

Proposition 5 (Weak Convergence). For any p ≥ 1, T ≥ 1, M ≥ 0, N ≥ 1, and dimension d ≥ 1,
if A2 holds, the convergence of probability measures in Pp(Rd) under the burned thinned Markovian
sliced Wasserstein distance MSWp,T,N,M (·, ·) implies weak convergence of probability measures and
vice versa.
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The proof of Proposition 5 follows directly the proof of Theorem 2 in Appendix B.2.

Proposition 6. For any p ≥ 1 and dimension d ≥ 1, for any T ≥ 1, M ≥ 0, N ≥ 1 and
µ, ν ∈ Pp(Rd), MSWp,T,N,M (µ, ν) ≤ Max-SWp(µ, ν) ≤ Wp(µ, ν).

The proof of Proposition 6 follows directly the proof of Proposition 1 in Appendix B.3.

Proposition 7 (Sample Complexity). Let X1, X2, . . . , Xn be i.i.d. samples from the probability mea-
sure µ being supported on compact set of Rd. We denote the empirical measure µn = 1

n

∑n
i=1 δXi

.
Then, for any p ≥ 1 and T ≥ 1, M ≥ 0, N ≥ 1, there exists a universal constant C > 0 such that

E[MSWp,T,N,M (µn, µ)] ≤ C
√

(d+ 1) log n/n,

where the outer expectation is taken with respect to the data X1, X2, . . . , Xn.

The proof of Proposition 7 follows directly the proof of Proposition 2 in Appendix B.4.

Proposition 8 (Monte Carlo error). For any p ≥ 1, T ≥ 1, M ≥ 0, N ≥ 1, dimension d ≥ 1, and
µ, ν ∈ Pp(Rd), we have:

E|M̂SW
p

p,T,N,M (µ, ν)−MSWp
p,T,N,M (µ, ν)|

≤ N√
LT (T −M)

V ar

(T−M)/N∑
t=1

W p
p (θ′t♯µ, θ

′
t♯ν)

 1
2

,

where the variance is with respect to σ(θ′1, . . . , θ
′
(T−M)/N ).

The proof of Proposition 8 follows directly the proof of Proposition 3 in Appendix B.5.

A.5 Discussions on Related Works

K-SW is autoregressive decomposition. In MSW, we assume that the joint distribu-
tion over projecting directions has the first-order Markov structure: σ(θ1, . . . , θT ) =

σ1(θ1)
∏T
t=2 σt(θt|θt−1). However, we can consider the full autoregressive decomposition

σ(θ1, . . . , θT ) = σ1(θ1)
∏T
t=2 σt(θt|θ1, . . . , θt−1). Let T = K in K-SW, hence the transition

distribution that is used in K-SW is: σt(θt|θ1, . . . , θt−1) = Gram-Schmidtθ1,...,θt−1♯U(Sd−1), where
Gram-Schmidtθ1,...,θt−1(θt) denotes the Gram-Schmidt process update that applies on θt.

Generalization of Max-K-SW. Similar to Max-SW, we can derive a Markovian-based K-sliced
Wasserstein distance that generalizes the idea of the projected gradient ascent update in Max-K-SW.
However, the distance considers the transition on the Stiefel manifold instead of the unit hypersphere,
hence, it will be more computationally expensive. Moreover, orthogonality might not be a good
constraint. Therefore, the generalization of Max-K-SW might not have many advantages.

Beyond the projected sub-gradient ascent update. In the input-awared transition for MSW, we
utilize the projected sub-gradient update as the transition function to create a new projecting direction.
Therefore, we could other optimization techniques such as momentum, adaptive stepsize, and so on
to create the transition function. We will leave the investigation about this direction to future work.

Applications to other sliced Wasserstein variants. The Markovian approach can be applied to other
variants of sliced Wasserstein distances e.g., generalized sliced Wasserstein [26], augmented sliced
Wasserstein distance [10], projected robust Wasserstein (PRW) [47, 32, 22] (k > 1 dimensional
projection), convolution sliced Wasserstein [43], sliced partial optimal transport [6, 2], and so on.

Markovian sliced Wasserstein distances in other applications. We can apply MSW to the setting
in [31] which is an implementation technique that utilizes both RAM and GPUs’ memory for training
sliced Wasserstein generative models. MSW can also replace sliced Wasserstein distance in pooling
in [38]. Similarly, MSW can be used in applications that exist sliced Wasserstein distance e.g.,
clustering [28], Bayesian inference [39, 61], domain adaptation [60], and so on.
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B Proofs

B.1 Proof of Theorem 1

(i), (ii): the MSW is an expectation of the one-dimensional Wasserstein distance hence the non-
negativity and symmetry properties of the MSW follow directly by the non-negativity and symmetry
of the Wasserstein distance.

(iii) From the definition of MSW in Definition 1, given three probability measures µ1, µ2, µ3 ∈
Pp(Rd) we have:

MSWp,T (µ1, µ3) =

(
E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ1, θt♯µ3)

]) 1
p

≤

(
E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

(Wp (θt♯µ1, θt♯µ2) +Wp (θt♯µ2, θt♯µ3))
p

]) 1
p

≤

(
E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ1, θt♯µ2)

]) 1
p

+

(
E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ2, θt♯µ3)

]) 1
p

= MSWp,T (µ1, µ2) + MSWp,T (µ2, µ3),

where the first inequality is due to the triangle inequality of Wasserstein distance and the second
inequality is due to the Minkowski inequality. We complete the triangle inequality proof.

(iv) We need to show that MSWp,T (µ, ν) = 0 if and only if µ = ν. First, from the definition of MSW,
we obtain directly µ = ν implies MSWp,T (µ, ν) = 0. For the reverse direction, we use the same proof
technique in [8]. If MSWp,T (µ, ν) = 0, we have

∫
S(d−1)⊗T

1
T

∑T
t=1 Wp (θt♯µ, θt♯ν) dσ(θ1:T ) = 0.

If A1 holds, namely, the prior distribution σ1(θ1) is supported on all the unit-hypersphere or exists a
transition distribution σt(θt|θt−1) is supported on all the unit-hypersphere, we have Wp(θ♯µ, θ♯ν) =
0 for all θ ∈ Sd−1 where σ denotes the prior or the transition distribution that satisfies the assumption
A1. From the identity property of the Wasserstein distance, we obtain θ♯µ = θ♯ν for σ-a.e θ ∈ Sd−1.
Therefore, for any t ∈ R and θ ∈ Sd−1, we have:

F [µ](tθ) =
∫
Rd

e−it⟨θ,x⟩dµ(x) =

∫
R
e−itzdθ♯µ(z) = F [θ♯µ](t)

= F [θ♯ν](t) =
∫
R
e−itzdθ♯ν(z) =

∫
Rd

e−it⟨θ,x⟩dν(x) = F [ν](tθ),

where F [γ](w) =
∫
Rd′ e

−i⟨w,x⟩dγ(x) denotes the Fourier transform of γ ∈ P(Rd′). By the injectiv-
ity of the Fourier transform, we obtain µ = ν which concludes the proof.

B.2 Proof of Theorem 2

Our goal is to show that for any sequence of probability measures (µk)k∈N and µ in Pp(Rd),
limk→+∞ MSWp,T (µk, µ) = 0 if and only if for any continuous and bounded function f : Rd → R,
limk→+∞

∫
f dµk =

∫
f dµ. The proof follows the techniques in [41]. We first state the following

lemma.

Lemma 1. For any T ≥ 1, and dimension d ≥ 1, if A1 holds and a sequence of probability measures
(µk)k∈N satisfies limk→+∞ MSW1,T (µk, µ) = 0 with µ in P(Rd), there exists an increasing function
ϕ : N→ N such that the subsequence

(
µϕ(k)

)
k∈N converges weakly to µ.

Proof. We are given that limk→+∞ MSW1,T (µk, µ) = 0, therefore
limk→∞

∫
S(d−1)⊗T

1
T

∑T
t=1 W1 (θt♯µk, θt♯µ) dσ(θ1:T ) = 0. If A1 holds, namely, the prior
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distribution σ1(θ1) is supported on all the unit-hypersphere or exists a transition distribution
σt(θt|θt−1) is supported on all the unit-hypersphere, we have

lim
k→∞

∫
Sd−1

W1 (θ♯µk, θ♯µ) dσ(θ) = 0,

where σ denotes the prior or the transition distribution that satisfies the assumption A1. From Theorem
2.2.5 in [3], there exists an increasing function ϕ : N→ N such that limk→∞ W1(θ♯µϕ(k), θ♯ν) = 0

for σ-a.e θ ∈ Sd−1. Since the Wasserstein distance of implies weak convergence [58],
(
θ♯µϕ(k)

)
k∈N

converges weakly to θ♯µ for σ-a.e θ ∈ Sd−1.

Let Φµ =
∫
Rd e

i⟨v,w⟩dµ(w) be the characteristic function of µ ∈ P(Rd), we have the weak conver-
gence implies the convergence of characteristic function (Theorem 4.3 [24]): limk→∞ Φθ♯µϕ(k)

(s) =

Φθ♯µ(s), ∀s ∈ R, for σ-a.e θ ∈ Sd−1. Therefore, limk→∞ Φµϕ(k)
(z) = Φµ(z), for almost most

every z ∈ Rd.

For any γ > 0 and a continuous function f : Rd → R with compact support, we denote fγ(x) =

f ∗ gγ(x) =
(
2πγ2

)−d/2 ∫
Rd f(x− z) exp

(
−∥z∥2/

(
2γ2
))

dz where gγ is the density function of
N (0, γId). We have:∫

Rd

fγ(z)dµϕ(k)(z) =

∫
Rd

∫
Rd

f(w)gγ(z − w)dw dµϕ(k)(z)

=

∫
Rd

∫
Rd

f(w)
(
2πγ2

)−d/2
exp(−||z − w||2/(2γ2))dw dµϕ(k)(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)

∫
Rd

ei⟨z−w,x⟩g1/γ(x)dx dw dµϕ(k)(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)

∫
Rd

e−i⟨w,x⟩ei⟨z,x⟩g1/γ(x)dx dw dµϕ(k)(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)e−i⟨w,x⟩g1/γ(x)

∫
Rd

ei⟨z,x⟩ dµϕ(k)(z)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)e−i⟨w,x⟩g1/γ(x)Φµϕ(k)
(x)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµϕ(k)
(x)dx,

where the third equality is due to the fact that
∫
Rd e

i⟨z−w,x⟩g1/γ(x)dx = exp(−||z−w||2/(2γ2)) and
F [f ](w) =

∫
Rd′ f(x)e

−i⟨w,x⟩dx denotes the Fourier transform of the bounded function f . Similarly,
we have∫

Rd

fγ(z)dµ(z) =

∫
Rd

∫
Rd

f(w)gγ(z − w)dw dµ(z)

=

∫
Rd

∫
Rd

f(w)
(
2πγ2

)−d/2
exp(−||z − w||2/(2γ2))dw dµ(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)

∫
Rd

ei⟨z−w,x⟩g1/γ(x)dx dw dµ(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)

∫
Rd

e−i⟨w,x⟩ei⟨z,x⟩g1/γ(x)dx dw dµ(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)e−i⟨w,x⟩g1/γ(x)

∫
Rd

ei⟨z,x⟩ dµ(z)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd

f(w)e−i⟨w,x⟩g1/γ(x)Φµ(x)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµ(x)dx.

Since f is assumed to have compact support, F [f ] exists and is bounded by
∫
Rd |f(w)|dw <

+∞. Hence, for any k ∈ R and x ∈ Rd, we have
∣∣F [f ](x)g1/γ(x)Φµϕ(k)

(x)
∣∣ ≤
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g1/γ(x)
∫
Rd |f(w)|dw and

∣∣F [f ](x)g1/γ(x)Φµ(x)∣∣ ≤ g1/γ(x)
∫
Rd |f(w)|dw. Using the proved

result of limk→∞ Φµϕ(k)
(z) = Φµ(z) and Lebesgue’s Dominated Convergence Therefore, we obtain

lim
k→∞

∫
Rd

fγ(z)dµϕ(k)(z) = lim
k→∞

(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµϕ(k)
(x)dx

=
(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµϕ(k)
(x)dx

=

∫
Rd

fγ(z)dµ(z).

Moreover, we have:

lim
γ→0

lim sup
k→+∞

∣∣∣∣∫
Rd

f(z)dµϕ(k)(z)−
∫
Rd

f(z)dµ(z)

∣∣∣∣
≤ lim
γ→0

lim sup
k→+∞

[
2 sup
z∈Rd

|f(z)− fγ(z)|+
∣∣∣∣∫

Rd

fγ(z)dµϕ(k)(z)−
∫
Rd

fγ(z)dµ(z)

∣∣∣∣]
= lim
γ→0

2 sup
z∈Rd

|f(z)− fγ(z)| = 0,

which implies
(
µϕ(k)

)
k∈N converges weakly to µ.

We now continue the proof of Theorem 2. We first show that if limk→∞ MSWp,T (µk, µ) =
0, (µk)k∈N converges weakly to µ. We consider a sequence

(
µϕ(k)

)
k∈N such that

limk→∞ MSWp,T (µk, µ) = 0 and we suppose
(
µϕ(k)

)
k∈N does not converge weakly to µ. There-

fore, let dP be the Lévy-Prokhorov metric, limk→∞ dP(µk,µ) ̸= 0 that implies there exists ε > 0

and a subsequence
(
µψ(k)

)
k∈N with an increasing function ψ : N → N such that for any k ∈ N:

dP(µψ(k), µ) ≥ ε. However, we have

MSWp,T (µ, ν) =

(
E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ, θt♯ν)

]) 1
p

≥ E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

Wp (θt♯µ, θt♯ν)

]

≥ E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W1 (θt♯µ, θt♯ν)

]
= MSW1,T (µ, ν),

by the Holder inequality with µ, ν ∈ Pp(Rd). Therefore, limk→∞ MSW1,T (µψ(k), µ) = 0 which
implies that there exists s a subsequence

(
µϕ(ψ(k))

)
k∈N with an increasing function ϕ : N → N

such that
(
µϕ(ψ(k))

)
k∈N converges weakly to µ by Lemma 1. Hence, limk→∞ dP

(
µϕ(ψ(k)), µ

)
= 0

which contradicts our assumption. We conclude that if limk→∞ MSWp,T (µk, µ) = 0, (µk)k∈N
converges weakly to µ.

Now, we show that if (µk)k∈N converges weakly to µ, we have limk→∞ MSWp,T (µk, µ) = 0. By
the continuous mapping theorem, we obtain (θ♯µk)k∈N converges weakly to θ♯µ for any θ ∈ Sd−1.
Since the weak convergence implies the convergence under the Wasserstein distance [58], we obtain
limk→∞Wp(θ♯µk, µ) = 0. Moreover, the Wasserstein distance is also bounded, hence the bounded
convergence theorem:

lim
k→∞

MSWp
p,T (µk, µ) = E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µk, θt♯µ)

]

= E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

0

]
= 0.

By the continuous mapping theorem with function x→ x1/p, we obtain limk→∞ MSWp,T (µk, µ)→
0 which completes the proof.
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B.3 Proof of Proposition 1

(i) We recall the definition of Max-SW:

Max-SWp(µ, ν) = max
θ∈Sd−1

Wp(θ♯µ, θ♯ν).

Let θ∗ = argmaxθ∈Sd−1Wp(θ♯µ, θ♯ν), from Definition 1, for any p ≥ 1, T ≥ 1, dimension d ≥ 1,
and µ, ν ∈ Pp(Rd) we have:

MSWp,T (µ, ν) =

(
E(θ1:T )∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ, θt♯ν)

]) 1
p

≤

(
1

T

T∑
t=1

W p
p (θ∗♯µ, θ∗♯ν)

) 1
p

=Wp (θ
∗♯µ, θ∗♯ν) = Max-SWp(µ, ν).

Furthermore, by applying the Cauchy-Schwartz inequality, we have:

Max-SWp
p(µ, ν) = max

θ∈Sd−1

(
inf

π∈Π(µ,ν)

∫
Rd

∣∣θ⊤x− θ⊤y∣∣p dπ(x, y))
≤ max
θ∈Sd−1

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

∥θ∥p∥x− y∥pdπ(x, y)
)

= inf
π∈Π(µ,ν)

∫
Rd×Rd

∥θ∥p∥x− y∥pdπ(x, y)

= inf
π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥pdπ(x, y)

=W p
p (µ, ν),

which completes the proof.

(ii) This result can be directly obtained from the definitions of MSW and SW.

B.4 Proof of Proposition 2

In this proof, we denote Θ ⊂ Rd as the compact set of the probability measure µ. From Proposition 1,
we find that

E[MSWp,T (µn, µ)] ≤ E [Max-SWp(µn, µ)] .

Therefore, the proposition follows as long as we can demonstrate that

E[Max-SWp(µn, µ)] ≤ C
√

(d+ 1) log2 n/n

where C > 0 is some universal constant and the outer expectation is taken with respect to the data.
The proof for this result follows from the proof of Proposition 3 in [43]. Here, we provide the proof
for the completeness. By defining Fn,θ and Fθ as the cumulative distributions of θ♯µn and θ♯µ, the
closed-form expression of the Wasserstein distance in one dimension leads to the following equations
and inequalities:

Max-SWp
p(µn, µ) = max

θ∈Sd−1

∫ 1

0

|F−1
n,θ(u)− F

−1
θ (u)|pdu

= max
θ∈Rd:∥θ∥=1

∫ 1

0

|F−1
n,θ(u)− F

−1
θ (u)|pdu

≤ diam(Θ) max
θ∈Rd:∥θ∥≤1

|Fn,θ(x)− Fθ(x)|p.

We can check that

max
θ∈Rd:∥θ∥≤1

|Fn,θ(x)− Fθ(x)| = sup
B∈B
|µn(B)− µ(B)|,
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where B is the set of half-spaces {z ∈ Rd : θ⊤z ≤ x} for all θ ∈ Rd such that ∥θ∥ ≤ 1. From VC
inequality (Theorem 12.5in [16]), we have

P
(
sup
B∈B
|µn(B)− µ(B)| > t

)
≤ 8S(B, n)e−nt

2/32.

with S(B, n) is the growth function which is upper bounded by (n + 1)V C(B) due to the Sauer
Lemma (Proposition 4.18 in [59]). From Example 4.21 in [59], we get V C(B) = d+ 1.

Let 8S(B, n)e−nt2/32 ≤ δ, we have t2 ≥ 32
n log

(
8S(B,n)

δ

)
. Therefore, we obtain

P

(
sup
B∈B
|µn(B)− µ(B)| ≤

√
32

n
log

(
8S(B, n)

δ

))
≥ 1− δ,

Now we convert the probability statement to inequality with expectation. Using the Jensen inequality

and the tail sum expectation for non-negative random variable, we have:

E
[
sup
B∈B
|µn(B)− µ(B)|

]

≤

√
E
[
sup
B∈B
|µn(B)− µ(B)|

]2
=

√√√√∫ ∞

0

P

((
sup
B∈B
|µn(B)− µ(B)|

)2

> t

)
dt

=

√√√√∫ u

0

P

((
sup
B∈B
|µn(B)− µ(B)|

)2

> t

)
dt+

∫ ∞

u

P

((
sup
B∈B
|µn(B)− µ(B)|

)2

> t

)
dt

≤

√∫ u

0

1dt+

∫ ∞

u

8S(B, n)e−nt/32dt =
√
u+ 256S(B, n)e

−nu/32

n
.

Let f(u) = u + 256S(B, n) e
−nu/32

n , we have f ′(u) = 1 + 8S(B, n)e−nu/32, hence the minima
u⋆ = 32 log(8S(B,n))

n . Since the inequality holds for any u, we have:

E
[
sup
B∈B
|µn(B)− µ(B)|

]
≤
√

32 log(8S(B, n))
n

+ 32 ≤ C
√

(d+ 1) log(n+ 1)

n
,

by using Sauer Lemma. Putting the above results together leads to

E[Max-SWp(µn, µ)] ≤ C
√

(d+ 1) log2 n/n,

where C > 0 is some universal constant. As a consequence, we obtain the conclusion of the
proposition.

B.5 Proof of Proposition 3

For any p ≥ 1, T ≥ 1, dimension d ≥ 1, and µ, ν ∈ Pp(Rd), using the Holder’s inequality, we have:

E|M̂SW
p

p,T (µ, ν)−MSWp
p,T (µ, ν)|

≤
(
E|M̂SW

p

p,T (µ, ν)−MSWp
p,T (µ, ν)|

2
) 1

2

=

E

∣∣∣∣∣ 1

TL

T∑
t=1

L∑
l=1

Wp
p(θtl♯µ, θtl♯ν)− Eθ1:T∼σ(θ1:T )

[
1

T

T∑
t=1

W p
p (θt♯µ, θt♯ν)

]∣∣∣∣∣
2
 1

2

=

(
V ar

[
1

TL

T∑
t=1

L∑
l=1

W p
p (θtl♯µ, θtl♯ν)

]) 1
2

=
1

T
√
L
V ar

[
T∑
t=1

W p
p (θt♯µ, θt♯ν)

] 1
2

,

which completes the proof.
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Algorithm 7 Gradient flow with the Euler scheme
Input. the start distribution µ = 1

n

∑n
i=1 δXi , the target distribution ν = 1

n

∑n
i=1 δYi , number of

Euler iterations T (abuse of notation), Euler step size η (abuse of notation), a metric D.
for t = 1 to T do
X = X − n · η∇XD(PX , PY )

end for
Output. µ = 1

n

∑n
i=1 δXi

SW
 L

=3
0

W2: 25.3149×10 2 (0s) W2: 0.5913×10 2 (1.07s) W2: 0.0099×10 2 (1.55s)

M
ax

-S
W

 T
=3

0

W2: 25.3149×10 2 (0s) W2: 0.1091×10 2 (2.37s) W2: 0.0098×10 2 (3.48s)

K-
SW

 L
=1

5 
K=

2

W2: 25.3149×10 2 (0s) W2: 0.5846×10 2 (1.16s) W2: 0.0098×10 2 (1.71s)

M
ax

-K
-S

W
 K

=2
 T

=1
5

W2: 25.3149×10 2 (0s) W2: 0.7388×10 2 (2.36s) W2: 0.0146×10 2 (3.35s)

steps 0

DS
W

 L
=2

 T
=5

W2: 25.3149×10 2 (0s)

steps 200

W2: 0.2716×10 2 (1.06s)

steps 300

W2: 0.011×10 2 (1.5s)
oM

SW
 L

=5
 T

=2
W2: 25.3149×10 2 (0s) W2: 0.5783×10 2 (0.59s) W2: 0.0104×10 2 (0.87s)

steps 0

iM
SW

 L
=2

 T
=5

W2: 25.3149×10 2 (0s)

steps 200

W2: 0.0483×10 2 (0.99s)

steps 300

W2: 0.0064×10 2 (1.41s)

steps 0

vi
M

SW
 L

=2
 T

=5
 

=5
0

W2: 25.3149×10 2 (0s)

steps 200

W2: 0.0512×10 2 (2.05s)

steps 300

W2: 0.0043×10 2 (2.94s)

Figure 4: The figures show the gradient flows that are from the empirical distribution over the
color points to the empirical distribution over S-shape points produced by different distances. The
corresponding Wasserstein-2 distance between the empirical distribution at the current step and the
S-shape distribution and the computational time (in second) to reach the step is reported at the top of
the figure.

C Additional Experiments

In this section, we present the detail of experimental frameworks and additional experiments on
gradient flows, color transfer, and deep generative modeling which are not in the main paper.

C.1 Gradient Flows

Framework. We have discussed in detail the framework of gradient flow in Section 4.1 in the main
paper. Here, we summarize the Euler scheme for solving the gradient flow in Algorithm 7.

Visualization of gradient flows. We show the visualization of gradient flows from all distances
(Table 1) in Figure 4. Overall, we observe that the quality of the flows is consistent with the
quantitative Wasserstein-2 score which is computed using [18]. From the figures, we see that iMSW
and viMSW help the flows converge very fast. Namely, Wasserstein-2 scores at steps 200 of iMSW
and viMSW are much lower than other distances. For oMSW, with L = 5, T = 2, it achieves a
comparable result to SW, K-SW, and Max-SW while being faster.

Studies on hyper-parameters. We run gradient flows with different values of hyper-parameters and
report the Wasserstein-2 scores and computational time in Table 3. From the table and Figure 4, we
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Table 3: Summary of Wasserstein-2 scores, computational time in second (s) of different distances in gradient
flow application.

Distances Wasserstein-2 (↓) Time (↓) Distances Wasserstein-2 (↓) Time (↓)
SW (L=10) 0.0113× 10−2 0.85 SW (L=100) 0.0096× 10−2 4.32

Max-SW (T=5) 0.0231× 10−2 1.02 Max-SW (T=100) 0.0083× 10−2 10.46

K-SW (L=5,K=2) 0.0104× 10−2 0.92 K-SW (L=20,K=2) 0.0096× 10−2 1.97

Max-K-SW (K=2,T=5) 0.0152× 10−2 1.41 Max-K-SW (K=2,T=100) 0.0083× 10−2 10.46

iMSW (L=1,T=5) 0.0109× 10−2 1.07 iMSW (L=5,T=5) 0.0055× 10−2 2.44
iMSW (L=2,T=10) 0.0052× 10−2 2.79 iMSW (L=5,T=2) 0.0071× 10−2 1.14
iMSW (L=2,T=5,M=4) 0.0101× 10−2 1.2 iMSW (L=2,T=5,M=2) 0.0055× 10−2 1.25
iMSW (L=2,T=5,M=0,N=2) 0.0066× 10−2 1.28 iMSW (L=2,T=5,M=2,N=2) 0.0072× 10−2 1.19

viMSW (L=2,T=5,κ=10) 0.0052× 10−2 3.12 viMSW (L=2,T=5,κ=100) 0.0053× 10−2 2.76

Source SW (L=45), 41.77(s), W2 = 414.51 Max-SW (T=45), 59.13(s), W2 = 449.42 K-SW (L=15,K=3), 38.86(s), W2 = 411.74 Max-K-SW (K=3,T=15), 53.95(s), W2 = 479.43

oMSW (L=3,T=5), 13.69(s), W2 = 415.06 iMSW (L=3,T=5), 25.91(s), W2 = 16.97 viMSW (L=3,T=5, =50), 29.14(s), W2 = 16.48 viMSW (L=3,T=5, =100), 29.06(s), W2 = 17.09 Target

Figure 5: The figures show the source image, the target image, and transferred images from
different distances. The corresponding Wasserstein-2 distance between the empirical distribution
over transferred color palates and the empirical distribution over the target color palette and the
computational time (in second) is reported at the top of the figure. The color palates are given below
the corresponding images.

see that SW with L = 10 is worse than oMSW, iMSW, and viMSW with L = 2, T = 5 (10 total
projections). Increasing the number of projections to 100, SW gets better, however, its Wasserstein-2
score is still higher than the scores of iMSW and viMSW while its computational time is bigger.
Similarly, Max-(K)-SW with T = 100 is better than Max-(K)-SW with T = 5 and T = 10, however,
it is still worse than iMSW and viMSW in terms of computation and performance. For burning
and thinning, we see that the technique can help improve the computation considerably. More
importantly, the burning and thinning techniques do not reduce the performance too much. For
iMSW, increasing L and T leads to a better flow. For the same number of total projections e.g., 10,
L = 2, T = 5 is better than L = 5, T = 2. For viMSW, it usually performs better than iMSW,
however, its computation is worse due to the sampling complexity of the vMF distribution. We vary
the concentration parameter κ ∈ {10, 50, 100} and find that κ = 50 is the best. Hence, it might
suggest that a good balance between heading to the “max" projecting direction and exploring the
space of projecting directions is the best strategy.

C.2 Color Transfer

Framework. In our experiments, we first compress the color palette of the source image and the
target image to 3000 colors by using K-Mean clustering. After that, the color transfer application is
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Source SW (L=45), 40.48(s), W2 = 68.09 Max-SW (T=45), 59.98(s), W2 = 207.12 K-SW (L=15,K=3), 39.09(s), W2 = 67.88 Max-K-SW (K=3,T=15), 54.23(s), W2 = 65.52

oMSW (L=3,T=5), 13.78(s), W2 = 68.51 iMSW (L=3,T=5), 26.12(s), W2 = 22.35 viMSW (L=3,T=5, =50), 29.16(s), W2 = 22.1 viMSW (L=3,T=5, =100), 29.15(s), W2 = 22.04 Target

Figure 6: The figures show the source image, the target images, and transferred images from
different distances. The corresponding Wasserstein-2 distance between the empirical distribution
over transferred color palates and the empirical distribution over the target color palette and the
computational time (in second) is reported at the top of the figure. The color palates are given below
the corresponding images.

Algorithm 8 Color Transfer
Input. source color palette X ∈ {0, . . . , 255}n×3, target color palette Y ∈ {0, . . . , 255}n×3,
number of Euler iterations T (abuse of notation), Euler step size η (abuse of notation), a metric D.
for t = 1 to T do
X = X − n · η∇XD(PX , PY )

end for
X = round(X, {0, . . . , 255})
Output. X

conducted by using Algorithm 8 which is a modified version of the gradient flow algorithm since the
color palette contains only positive integer in {0, . . . , 255}. The flow can be seen as an incomplete
transportation map that maps from the source color palette to a color palette that is close to the target
color palette. This is quite similar to the iterative distribution transfer algorithm [8], however, the
construction of the iterative map is different.

Visuallization of transferred images. We show the source image, the target image, and the
corresponding transferred images from distances in Figure 5 and Figure 6. The color palates are given
below the corresponding images. The corresponding Wasserstein-2 distance between the empirical
distribution over transferred color palates and the empirical distribution over the target color palette
and the computational time (in second) is reported at the top of the figure. First, we observe that
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Table 4: Summary of Wasserstein-2 scores, computational time in second (s) of different distances in the color
transfer application.

Distances Wasserstein-2 (↓) Time (↓) Distances Wasserstein-2 (↓) Time (↓)
SW (L=45) 414.51 41.77 SW (L=15) 421.5 12.96

Max-SW (T=45) 449.42 59.13 Max-SW (T=15) 450.37 19.03

K-SW (L=15,K=3) 411.74 38.86 K-SW (L=5,K=3) 413.16 14.2

Max-K-SW (K=3,T=15) 479.43 53.95 Max-K-SW (K=3,T=5) 510.43 17.46

oMSW (L=3,T=5) 415.06 13.69 oMSW (L=3,T=15) 414.29 38.51

iMSW (L=3,T=5) 16.97 25.91 iMSW (L=3,T=15) 15.23 79.47
iMSW (L=5,T=5) 21.63 39.82 iMSW (L=5,T=3) 24.02 22.27
iMSW (L=3,T=15,M=14) 26.23 48.08 iMSW (L=3,T=15,M=10) 18.67 55.55
iMSW (L=3,T=15,M=0,N=2) 16.6 62.66 iMSW (L=3,T=15,M=10,N=2) 19.2 50.1

viMSW (L=3,T=5,κ=50) 16.48 29.14 viMSW (L=3,T=5,κ=100) 16.49 29.06

the qualitative comparison (transferred images and color palette) is consistent with the Wasserstein
scores. We observe that iMSW and viMSW have their transferred images closer to the target image
in terms of color than other distances. More importantly, iMSW and viMSW are faster than other
distances. Max-SW and Max-K-SW do not perform well in this application, namely, they are slow
and give high Wasserstein distances. For oMSW, it is comparable to SW and K-SW while being
faster.

Studies on hyper-parameters. In addition to result in Figure 5, we run color transfer with other
settings of distances in Table 4. From the table, increasing the number of projections L lead to
a better result for SW and K-SW. However, they are still worse than iMSW and viMSW with a
smaller number of projections. Similarly, increasing T helps Max-SW, Max-K-SW, and iMSW better.
As discussed in the main paper, the burning and thinning technique improves the computation and
sometimes enhances the performance.

C.3 Deep Generative Models

Framework. We follow the generative modeling framework from [20, 42]. Here, we state an
adaptive formulation of the framework. We are given a data distribution µ ∈ P(X ) through its
random samples (data). Our goal is to estimate a parametric distribution νϕ that belongs to a family of
distributions indexed by parameters ϕ in a parameter space Φ. Deep generative modeling is interested
in constructing νϕ via pushforward measure. In particular, νϕ is implicitly represented by pushing
forward a random noise ν0 ∈ P(Z) e.g., standard multivariable Gaussian, through a parametric
function Gϕ : Z → X (a neural network with weights ϕ). To estimate ϕ (νϕ), the expected distance
estimator [54, 41] is used:

argminϕ∈ΦE(X,Z)∼µ⊗m⊗ν⊗m
0

[D(PX , PGϕ(Z))],

where m ≥ 1, D can be any distance on space of probability measures, µ⊗ is the product measures,
namely, X = (x1, . . . , xm) ∼ µ⊗ is equivalent to xi ∼ µ for i = 1, . . . ,m, and PX = 1

m

∑m
i=1 δxi

.
Similarly, Z = (z1, . . . , zm) with zi ∼ ν0 for i = 1, . . . ,m, and Gϕ(Z) is the output of the neural
work given the input mini-batch Z.

By using Wasserstein distance, sliced Wasserstein distance, and their variants as the distance D, we
obtain the corresponding estimators. However, applying directly those estimators to natural image
data cannot give perceptually good results [20, 15]. The reason is that Wasserstein distance, sliced
Wasserstein distances, and their variants require a ground metric as input e.g., L2, however, those
ground metrics are not meaningful on images. Therefore, previous works propose using a function
that maps the original data space X to a feature space F where the L2 norm is meaningful [52]. We
denote the feature function Fγ : X → F . Now the estimator becomes:

argminϕ∈ΦE(X,Z)∼µ⊗m⊗ν⊗m
0

[D(PFγ(X), PFγ(Gϕ(Z)))].

27



SW Max-K-SW K-SW

oMSW iMSW viMSW

Figure 7: Random generated images of distances on CIFAR10.

The above optimization can be solved by stochastic gradient descent algorithm with the following
stochastic gradient estimator:

∇ϕE(X,Z)∼µ⊗m⊗ν⊗m
0

[D(PFγ(X), PFγ(Gϕ(Z)))] = E(X,Z)∼µ⊗m⊗ν⊗m
0

[∇ϕD(PFγ(X), PFγ(Gϕ(Z)))]

≈ 1

K

K∑
k=1

∇ϕD(PFγ(Xk), PFγ(Gϕ(Zk))),

where X1, . . . , XK are drawn i.i.d from µ⊗m and Z1, . . . , ZK are drawn i.i.d from ν⊗m0 . There are
several ways to estimate the feature function Fγ in practice. In our experiments, we use the following
objective [15]:

min
γ

(
EX∼µ⊗m [min(0,−1 +H(Fγ(X)))] + EZ∼ν⊗m

0
[min(0,−1−H(Fγ(Gϕ(Z)))))]

)
,

where H : F → R. The above optimization problem is also solved by the stochastic gradient descent
algorithm with the following gradient estimator:

∇γ
(
EX∼µ⊗m [min(0,−1 +H(Fγ(X)))] + EZ∼ν⊗m

0
[min(0,−1−H(Fγ(Gϕ(Z)))))]

)
= EX∼µ⊗m [∇γ min(0,−1 +H(Fγ(X)))] + EZ∼ν⊗m

0
[∇γ min(0,−1−H(Fγ(Gϕ(Z)))))]

≈ 1

K

K∑
k=1

[∇γ min(0,−1 +H(Fγ(Xk)))] +
1

K

K∑
k=1

[∇γ min(0,−1−H(Fγ(Gϕ(Zk)))))],

where X1, . . . , XK are drawn i.i.d from µ⊗m and Z1, . . . , ZK are drawn i.i.d from ν⊗m0 .

Settings. We use the following neural networks for Gϕ and Fγ :

• CIFAR10:
– Gϕ: z ∈ R128(∼ ν0 : N (0, 1)) → 4 × 4 × 256(Dense, Linear) →

ResBlock up 256 → ResBlock up 256 → ResBlock up 256 → BN, ReLU, →
3× 3 conv, 3 Tanh .

– Fγ1 : x ∈ [−1, 1]32×32×3 → ResBlock down 128 → ResBlock down 128 →
ResBlock down 128→ ResBlock 128→ ResBlock 128.
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Table 5: Summary of FID and IS scores of methods on CIFAR10 (32x32), and CelebA (64x64)

Method CIFAR10 (32x32) CelebA (64x64)

FID (↓) IS (↑) FID (↓)
iMSW (L=100,T=10,M=0,N=1) 14.61±0.72 8.15±0.15 9.73±0.33
iMSW (L=100,T=10,M=9,N=1) 14.16±1.11 8.17±0.07 9.10±0.34
iMSW (L=100,T=10,M=5,N=1) 13.93±0.21 8.15±0.05 9.49±0.52
iMSW (L=100,T=10,M=0,N=2) 14.33±0.32 8.15±0.06 8.99±0.64

iMSW (L=10,T=100,M=0,N=1) 14.26±0.74 8.15±0.07 8.89±0.23
iMSW (L=10,T=100,M=99,N=1) 14.50±0.70 8.12±0.08 9.55±0.35
iMSW (L=10,T=100,M=50,N=1) 14.41±0.58 8.12±0.06 9.46±0.73
iMSW (L=10,T=100,M=0,N=2) 14.65±0.01 8.11±0.06 9.49±0.39

– Fγ2 : x ∈ R128×8×8 → ReLU → Global sum pooling(128) →
1(Spectral normalization).

– Fγ(x) = (Fγ1(x), Fγ2(Fγ1(x))) and H(Fγ(x)) = Fγ2(Fγ1(x)).
• CelebA.

– Gϕ: z ∈ R128(∼ ν0 : N (0, 1)) → 4 × 4 × 256(Dense, Linear) →
ResBlock up 256 → ResBlock up 256 → ResBlock up 256 →
ResBlock up 256→ BN, ReLU, → 3× 3 conv, 3 Tanh .

– Fγ1 : x ∈ [−1, 1]32×32×3 → ResBlock down 128 → ResBlock down 128 →
ResBlock down 128→ ResBlock 128→ ResBlock 128.

– Fγ2 : x ∈ R128×8×8 → ReLU → Global sum pooling(128) →
1(Spectral normalization).

– Fγ(x) = (Fγ1(x), Fγ2(Fγ1(x))) and H(Fγ(x)) = Fγ2(Fγ1(x)).

For all datasets, the number of training iterations is set to 50000. We update the generator Gϕ each
5 iterations while we update the feature function Fγ every iteration. The mini-batch size m is set
128 in all datasets. The learning rate for Gϕ and Fγ is 0.0002 and the optimizer is Adam [25] with
parameters (β1, β2) = (0, 0.9). We use the order p = 2 for all sliced Wasserstein variants. We use
50000 random samples from estimated generative models Gϕ for computing the FID scores and the
Inception scores. In evaluating FID scores, we use all training samples for computing statistics of
datasets2.

Generated images. We show generated images on CIFAR10 and CelebA from different generative
models trained by different distances in Figure 7 and in Figure 8 in turn. Overall, images are visually
consistent with the quantitative FID scores in Table 2.

Studies on hyperparameters. We run some additional settings of iMSW to investigate the perfor-
mance of the burning thinning technique and to compare the role of L and T in Table 5. First, we
see that burning and thinning helps to improve FID score and IS score on CIFAR10 and CelebA in
the settings of L = 100, T = 10. It is worth noting that the original purpose of burning and thinning
is to reduce computational complexity and memory complexity. The side benefit of improving
performance requires more investigation that is left for future work. In addition, we find that for the
same number of total projections 1000 without burning and thinning, the setting of L = 10, T = 100
is better than the setting of L = 100, T = 10 on CIFAR10. However, the reverse direction happens
on CelebA. Therefore, on different datasets, it might require hyperparameter tunning for finding the
best setting of the number of projections L and the number of timesteps T .

2We evaluate the scores based on the code from https://github.com/GongXinyuu/sngan.pytorch.

29

https://github.com/GongXinyuu/sngan.pytorch


SW Max-K-SW K-SW

oMSW iMSW viMSW

Figure 8: Random generated images of distances on CelebA.
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