
A Existence and uniqueness of global minimiser511

In this section, we discuss assumptions under which the global minimiser of the optimisation prob-512

lem513

L(Q) =

Z
`(✓) dQ(✓) + �D(Q,P ) (8)

over P(RJ) exists and is unique. We assume throughout that the optimisation problem is not patho-514

logical, in the sense that there exists a measure bQ 2 P(RJ) such that L( bQ) < 1. This is in515

applications often trivial to verify. A good candidate for bQ is typically the reference measure P .516

Loss assumptions Let ` : RJ ! R be a loss satisfying the following assumptions:517

(L1) The loss ` is bounded from below which means that518

c := inf
�
`(✓) : ✓ 2 RJ

 
> �1. (9)

(L2) The loss is norm-coercive which means that519

`(✓) ! 1 (10)

if k✓k ! 1.520

(L3) The loss ` is lower semi-continuous which means that521

lim inf
✓!✓0

`(✓) � `(✓0) (11)

for all ✓0 2 RJ .522

Regulariser assumptions Let D : P(RJ) ⇥ P(RJ) ! [0,1] be a regulariser and P 2 P(RJ)523

a reference measure. We define DP (·) := D(·, P ) for notational convenience. We assume the524

following for DP :525

(D1) The function DP is lower semi-continuous w.r.t. to the topology of weak-convergence, i.e.526

for all sequences
�
Qn

�
n2N ⇢ P(RJ) and all Q with DP (Q) < 1, it holds that Qn

D�! Q527

implies528

lim inf
n!1

DP (Qn) � DP (Q). (12)

Here, D�! denotes convergence in distribution.529

(D2) DP is strictly convex, i.e. for all Q1 6= Q2 2 P(RJ) with DP (Q1) < 1 and DP (Q2) <530

1, it holds that531

DP

�
↵Q1 + (1� ↵)Q2

�
< ↵DP (Q1) + (1� ↵)DP (Q2) (13)

with ↵ 2 (0, 1).532

The next theorem provides an existence result for the optimisation problem (8). The result is similar533

in spirit to Lemma 2.1 in Knoblauch (2021) with the important difference that our assumptions are534

easier to verify, since they are formulated in terms of ` and DP .535

Theorem 3 (Existence of global minimiser). Under the assumptions (L1)-(L3) and (D1) there exists536

a probability measure Q
⇤ 2 P(RJ) with537

L(Q⇤) = inf
�
L(Q) : Q 2 P(RJ)

 
. (14)

Proof. Let c > �1 be the lower bound for `. It follows immediately that L(Q) � c for all538

Q 2 P(RJ) since D(P,Q) � 0. As a consequence we know that539

1 > L
⇤ := inf

�
L(Q) : Q 2 P(RJ)

 
� c > �1. (15)

By definition of the infimum we can construct a sequence ln = L(Qn) 2 R in the image of L such540

ln ! L
⇤ (16)
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for n ! 1. We now show by contradiction that the corresponding sequence
�
Qn

�
⇢ P(RJ) is541

tight3. Assume that
�
Qn

�
is not tight. By definition we can then find an ✏ > 0 such that for each542

k 2 N there exists n = nk 2 N with Qnk([�k, k]J)  1 � ✏. We set Ak := [�k, k]J ⇢ RJ and543

obtain544

lnk = L(Qnk) (17)

=

Z

Ak

`(✓) dQnk(✓) +

Z

RJ\Ak

`(✓) dQnk(✓) + �D(Q,P ) (18)

�
Z

Ak

`(✓) dQnk(✓) +

Z

RJ\Ak

`(✓) dQnk(✓) (19)

� cQnk(Ak) + inf
�
`(✓) : ✓ 2 RJ\Ak

 
Qnk(RJ\Ak) (20)

� cQnk(Ak) + ✏ inf
�
`(✓) : ✓ 2 RJ\Ak

 
. (21)

Due to the coerciveness of `, we know that inf
�
`(✓) : ✓ 2 RJ\Ak

 
! 1 for k ! 1 and there-545

fore lnk ! 1 for k ! 1. However, this is a contradiction: The sequence (ln) is convergent and546

therefore in particular bounded. As a consequence, it cannot contain the unbounded sub-sequence547

(lnk). It follows that the sequence (Qn) is tight. By Prokhorov’s theorem we can now extract a sub548

sequence (Qnk) of (Qn) and a measure Q
⇤ 2 P(RJ) such that549

Qnk

D�! Q
⇤ (22)

for k ! 1. Due to Lemma 5.1.7 in Ambrosio et al. (2005) the lower semi-continuity of ` implies550

that Q 7!
R
`(✓) dQ(✓) is lower semi-continuous. This combined with the lower semi-continuity of551

DP gives552

lim inf
k!1

L(Qnk) � L(Q⇤). (23)

From this it immediately follows that553

L(Q⇤)  lim inf
k!1

L(Qnk) = L
⇤
, (24)

but by definition L
⇤ is the global minimum of L which implies L⇤  L(Q⇤). We therefore conclude554

that L(Q⇤) = L
⇤.555

Theorem 3 only shows the existence of a global minimiser. In order to show uniqueness we use556

the convexity assumption (D2). The proof is the same as in finite dimensions and only included for557

completeness.558

Theorem 4 (Uniqueness of global minimiser). Assume that (D2) holds. Then, the global minimiser559

of L is unique (whenever it exists).560

Proof. Assume there exits two probability measures Q1, Q2 2 P(RJ) such that561

L(Q1) = L
⇤ = L(Q2). (25)

where 1 > L
⇤ := inf

�
L(Q) : Q 2 P(RJ)

 
> �1. We define the probability measure562

Q3 := 1
2Q1 +

1
2Q3. By strict convexity we obtain563

L(Q3) <
1

2
L(Q1) +

1

2
L(Q3) = L

⇤
, (26)

which is a contradiction to Q1 and Q2 being global minimisers.564

Note that in the literature on GVI (Knoblauch et al., 2022) it is common to assume that the regulariser565

is definite, i.e.566

D(P,Q) = 0 () P = Q (27)

for all P,Q 2 P(RJ). We did not use this assumption in neither Theorem 3 nor Theorem 4.567

However, the next lemma shows that it is basically implied by strict convexity.568

3A sequence of probability measures (Qn) is called tight if and only if for every ✏ > 0 there exists a
compact set K 2 RJ such that for all n 2 N holds: Qn(K) > 1� ✏.

14



Lemma 1. Let DP : P(RJ) ! [0,1] be strictly convex and assume further D(Q,Q) =569

0 for all Q 2 P(RJ). Then it follows that D(Q,P ) = 0 implies P = Q.570

Proof. We prove the claim by contradiction. Assume that there exists P 6= Q such that D(P,Q) =571

0. The strict convexity and D(P, P ) = 0 imply combined that572

D(
1

2
P +

1

2
Q,P ) <

1

2
D(P, P ) +

1

2
D(Q,P ) (28)

= 0. (29)

However, we know that D( 12P + 1
2Q,P ) � 0 by assumption. This is a contradiction.573

Discussion on loss assumptions The assumptions on the loss ` in (L1) and (L3) are rather weak.574

Typically loss functions in machine learning are bounded from below and continuous (and there-575

fore in particular lower semi-continuous). However, norm-coercivity can be violated. Consider for576

example the squared loss577

`(✓) :=
NX

n=1

�
yn � f✓(xn)

�2
, (30)

where f✓ is the parametrisation of a neural network with one hidden layer, i.e. ✓ = (w,A) and578

f✓(x) = w
T
�(Ax), (31)

where � : R ! R is an activation function which is applied pointwise to the vector Ax and has the579

property that �(0) = 0. It is now possible to find a sequence of parameters (✓k)k2N ⇢ RJ with580

k✓kk ! 1 such that `(✓k) does not converge to infinity. Define wk := k
�
1 . . . 1

�
, Ak := 0 and581

✓k = (wk Ak) for k 2 N. Then we obviously have that582

k✓kk = kwkk ! 1 (32)

for k ! 1 but583

`(✓k) =
NX

n=1

�
yn � f✓k(xn)

�2 (33)

=
NX

n=1

�
yn � w

T
�(0)

�2 (34)

=
NX

n=1

y
2
n, (35)

which is constant and therefore does not converge to 1. A similar, but notationally more involved,584

construction can be made for neural networks with more than one hidden layer. However, this is an585

issue that can be easily resolved by adding what is known as weight decay to the loss. For example,586

consider for � > 0 the loss587

`(✓) :=
NX

n=1

�
yn � f✓(xn)

�2
+ �k✓k2 (36)

with weight decay. This loss is by construction norm-coercive and therefore the previous existence588

proof applies.589

Discussion on regulariser assumptions The assumptions (D1) and (D2) are quite weak. The KL-590

divergence for example is known to be lower semi-continuous (Polyanskiy and Wu, 2014, Theorem591

3.7) and strictly convex (Polyanskiy and Wu, 2014, Theorem 4.1). This immediately implies lower592

semi-continuity and convexity of KL(·, P ) for any fixed P . The MMD is also known to be strictly593

convex (Arbel et al., 2019, Lemma 25), whenever it is well-defined, which can be guaranteed under594

weak assumptions on  (Muandet et al., 2017, Lemma 3.1). The lower semi-continuity properties595

also depend on the kernel . However, for bounded kernels it is trivial to verify. We include the596

proof for completeness, but assume this has been shown before elsewhere.597
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Lemma 2. Let the kernel  : RJ ⇥ RJ be continuous and bounded: kk1 :=598

sup✓,✓02RJ |k(✓, ✓0)| < 1 and P be fixed. Then MMD(·, P ) is continuous and therefore, in partic-599

ular, lower semi-continuous.600

Proof. Let (Qn)n2N and Q
⇤ be such that601

Qn
D�! Q

⇤ (37)

for n ! 1. This immediately implies that602

Qn ⌦Qn
D�! Q

⇤ ⌦Q
⇤ (38)

for n ! 1, where Q
⇤ ⌦ Q

⇤ denotes the product measure of Q
⇤ with itself. Further, note that603

the kernel mean embedding µP is continuous as integral with respect to the second component of a604

continuous function and bounded since605

|µP (✓)| = |
Z

(✓, ✓0) dP (✓0)| (39)


Z

|(✓, ✓0)|dP (✓0) (40)

 kk1. (41)

By the definition of weak convergence for measures, we therefore have606

ZZ
(✓, ✓0) d(Qn ⌦Qn)(✓, ✓

0) �!
ZZ

(✓, ✓0) d(Q⇤ ⌦Q
⇤)(✓, ✓0) (42)

Z
µP (✓) dQn(✓) �!

Z
µP (✓) dQ

⇤(✓) (43)

for n ! 1. This immediately implies continuity of MMD(·, P ) with respect to the topology of607

weak convergence.608

Notice that most kernels common in machine learning, such as the squared exponential or the Matérn609

kernel, are continuous and bounded and therefore Lemma 2 applies.610

Remark 1. The astute reader may have noticed that our existence proof only guarantees the ex-611

istence of measure Q
⇤ 2 P(RJ). However, the Wasserstein gradient flow is by definition only612

formulated in the space of probability measures with finite second moment, denoted P2(RJ). As-613

sumptions which guarantee that Q⇤ 2 P2(RJ) are easy to formulate. For example, we can require614

that there exists C > 0 and R > 0 such that the loss ` satisfies615

|`(✓)| > Ck✓k2 (44)

for all k✓k > R. This immediately implies that Q⇤ 2 P2(RJ) since otherwise616

Z
|`(✓)| dQ⇤(✓) = 1 (45)

gives a contradiction to the finiteness of L(Q⇤). However, even if (44) is violated, the reference617

measure P may still guarantee that Q⇤ 2 P2(RJ). For example, if P 2 P2(RJ), then DP (Q⇤) will618

typically be large if Q⇤
/2 P2(RJ) and the global minimiser is therefore in a sense unlikely to have619

fat tails. We therefore assume Q
⇤ 2 P2(RJ) throughout the paper and consider it to be a minor620

practical concern.621

B Realising the Wasserstein gradient flow622

In this section, we identify a suitable stochastic process that allows us to follow the WGF.623

Let Lfe : P(RJ) ! (�1,1] be the free energy discussed in Section 3.2 given as624

L
fe(Q) :=

Z
V (✓) dQ(✓) +

�1

2

Z
(✓, ✓0) dQ(✓)dQ(✓0) + �2

Z
log

�
q(✓)

�
q(✓) d✓, (46)
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where �1,�2 � 0 are constants, V : RJ ! R is the potential,  : RJ ⇥ RJ ! R is symmetric. We625

will write L for Lfe from now on to simplify notation. The Wasserstein gradient of L is given as (cf.626

Chapter 9.1 Villani, 2003, Equation 9.4)627

rWL[Q](✓) = rV (✓) + �1(r1 ⇤Q)(✓) + �2r log
�
q(✓)

�
, (47)

where r1 : RJ ⇥ RJ ! RJ is the (vector-valued) derivative of  with respect to the first compo-628

nent, r denotes the euclidean gradient with respect to ✓ and (r1 ⇤Q)(✓) :=
R
r1(✓, ✓0) dQ(✓0)629

for ✓ 2 RJ . The corresponding Wasserstein gradient flow is therefore given as (cf. Chapter 9.1630

Villani, 2003, Equation 9.3)631

@tq(t, ✓) = r ·
⇣
q(t, ✓)

�
rV (✓) + �1(r1 ⇤Q)(✓) + �2r log

�
qt(✓)

��⌘
. (48)

In general the probability density evolution of a stochastic process is—via the Fokker-Planck632

equation—associated with the adjoint of the (infinitesimal) generator of the stochastic process. We633

will therefore try to identify the generator associated to the density evolution in (48). To this end634

let h 2 C
2
c (RJ

,R) where C
2
c (RJ

,R) denotes the space of twice continuously differentiable func-635

tions with compact support. We multiply both sides of (48) with h, integrate, and apply the partial636

integration rule to obtain637

d

dt

Z
h(✓)q(t, ✓) d✓ = �

Z
rWL

⇥
Q(t)

⇤
(✓) ·rh(✓) q(t, ✓) d✓. (49)

= �
Z �

rV (✓) + �1(r1 ⇤Qt)(✓)
�
·rh(✓) dQt(✓) (50)

� �2

Z
r log

�
qt(✓)

�
·rh(✓) dQt(✓). (51)

By chain-rule and partial integration, (51) can be rewritten as638

��2

Z
r log

�
qt(✓)

�
·rh(✓) dQt(✓) = ��2

Z
rqt(✓) ·rh(✓) d✓ (52)

= �2

Z
�h(✓) dQt(✓). (53)

Putting everything together, we obtain639

d

dt

Z
h(✓)q(t, ✓) d✓ =

Z �
A[Q(t)]h

�
(✓) dQt(✓), (54)

where
�
A[Q]

 
Q2P(RJ )

is a family of operators defined as640

�
A[Q]h

�
(✓) := �

⇣
rV (✓) + �1(r1 ⇤Q)(✓)

⌘
·rh(✓) + �2�h. (55)

for h 2 C
2
c (RJ

,R). The reader may recognize this operator family as the generator of a so called641

nonlinear Markov processes (Kolokoltsov, 2010, Chapter 1.4). The nonlinearity in this case refers642

to the dependency on the measure Q. Linear Markov processes have no measure-dependency. This643

family of generators corresponds to a McKean-Vlasov process of the form644

d✓(t) = �
⇣
rV (✓(t)) + �1(r1 ⇤Qt)(✓(t))

⌘
dt+

p
2�2dB(t), (56)

where
�
B(t)

�
t>0

is a Brownian motion and Qt the law of ✓(t). In other words: The solution to645

(56) has the time marginals Q(t) such that (54) holds for every h 2 C
2
c (RJ

,R). Furthermore, the646

corresponding pdfs
�
q(t)

�
satisfy the nonlinear Fokker-Planck equation given as647

@tqt = A
⇤[Qt]qt, (57)

where A
⇤[Q] denotes the L

2-adjoint of the operator A[Q] and is given as648

�
A

⇤[Q]h
�
(✓) = r ·

⇣
h(✓)

�
rV (✓) + �1(r1 ⇤Q)(✓) + �2r log

�
h(✓)

��⌘
(58)

17



for h 2 C
2
c (RJ

,R)(Barbu and Röckner, 2020, cf. equation (1.1)-(1.4)). Note that (57) corresponds649

exactly to the Wasserstein gradient flow equation in (48). We can therefore follow the WGF by650

simulating solutions to (56).651

The standard approach to simulate solutions to (56) (Veretennikov, 2006) is to use an ensemble of652

interacting particles. Formally, we replace Q(t) by 1
NE

PNE

n=1 �✓n(t) and obtain653

d✓n(t) = �
⇣
rV

�
✓n(t)

�
+

�1

NE

NEX

j=1

(r1)
�
✓n(t), ✓j(t)

�⌘
dt+

p
2�2dBn(t) (59)

for n = 1, . . . , NE where NE 2 N denotes the number of particles. The Euler-Maruyama approxi-654

mation of (59) leads to the final algorithm:655

Step 1: Initialise NE 2 N particles ✓1,0, . . . , ✓NE ,0 from a use chosen initial distribution Q0.656

Step 2: Evolve the particles forward in time according to657

✓n,k+1 = ✓n,k � ⌘

⇣
rV

�
✓n,k

�
+

�1

NE

NEX

j=1

(r1)
�
✓n,k, ✓j,k

�⌘
+
p
2⌘�2Zn,k (60)

for n = 1, . . . , NE , k = 0, . . . , T � 1 with Zn,k ⇠ N (0, IJ⇥J).658

Note that ✓n,k is thought of as approximation of ✓n(t) at position t = k⌘. Furthermore, as dis-659

cussed in Section 4, various choices of V , �1 and �2 allow us to implement the WGF for different660

regularised optimisation problems in the space of probability measures. This is summarised below:661

• Deep ensembles: V (✓) = `(✓), �1 = 0, �2 = 0662

• Deep Langevin ensembles: V (✓) = `(✓)� � log p(✓), �1 := 0, � := �2663

• Deep repulsive Langevin ensembles: V (✓) = `(✓)� �1 log p(✓)� �2µP (✓)664

C Asymptotic distribution of particles: unregularised objective665

In this section, we investigate the asymptotic distribution of the WGF for the objective666

L(Q) :=

Z
`(✓) dQ(✓) (61)

for Q 2 P(RJ). The associated particle method is:667

• Sample ✓1(0), . . . , ✓NE (0) independently from Q0.668

• Simulate (deterministically) ✓0n(t) = �r`
�
✓n(t)

�
for n = 1, . . . , NE .669

We start by introducing some notation for the deterministic gradient system. Let �t(✓0) denote the670

solution to the ordinary differential equation (ODE)671

✓(0) = ✓0 2 RJ (62)
✓
0(t) = �r`

�
✓(t)

�
(63)

at time t > 0. In a first step, we show the following lemma, which is a simple application of the672

famous Lojasiewicz theorem (Colding and Minicozzi II, 2014), and the fact that Lebesgue almost673

every initialisation leads to a local minimum (Lee et al., 2016).674

Lemma 3. Assume ` : RJ ! R is norm-coercive and satisfies the Lojasiewicz inequality, i.e. for675

every ✓ 2 RJ exists an environment U of ✓ and constants 0 < � < 1 and C > 0 such that676

|`(✓)� `(✓̄)|� < C|r`(✓)|. (64)

for all ✓̄ 2 U . Then we know that �t(✓0) converges for t ! 1 to a local minimum of ` for Lebesgue677

almost every ✓0 2 RJ .678
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Proof. First we show that t 7! �
t(✓0) is bounded. We proof this by contradiction. Assume that679

�
t(✓0) is unbounded. Then there exists a subsequence (tn)n2N ⇢ [0,1) with tn ! 1 for n ! 1680

such that681

|�tn(✓0)| ! 1 (65)

for n ! 1. The norm-coercivity immediately implies that682

`
�
�
tn(✓0)

�
! 1 (66)

for n ! 1. However, this contradicts683

`
�
�
t(✓0)

�
 `

�
�
0(✓0)

�
= `(✓0) < 1, (67)

where the first inequality follows from the fact that t 7! `
�
�
t(✓0)

�
is decreasing, which is a conse-684

quence of685

d

dt
`
�
�
t(✓0)

�
= r`

�
�
t(✓0)

� d
dt

�
t(✓0) (68)

= �|r`
�
�
t(✓0)

�
|2  0. (69)

Hence t 7! �
t(✓0) is bounded. By the Bolzano-Weierstrass theorem we can find a sequence686

(tn)n2N ⇢ [0,1) with tn ! 1 and a point ✓1 2 RJ such that687

�
tn(✓0) ! ✓1 (70)

for n ! 1. Hence
�
�
t(✓0)

�
t>0

has the accumulation point ✓1. The Lojasiewicz theorem (Colding688

and Minicozzi II, 2014) allows us to deduce that689

�
t(✓0) ! ✓1 (71)

for t ! 1, and that ✓1 satisfies r`(✓1) = 0.690

It remains to show that ✓1 is not a saddle point for Lebesgue almost every initial value ✓0. However,691

this is very similar to the proof in Lee et al. (2016). The only difference is that one would need to use692

a continuous-time version of the stable manifold theorem, which is readily available, for example in693

Bressan (2003).694

Let {mi}i2N denote the local minima of ` which are by assumption countable. Denote further by695

⇥i :=
�
✓0 2 RJ : lim

t!1
�
t(✓0) ! mi

 
(72)

the domain of attraction for the minimum mi. The next theorem is then an easy consequence of696

Lemma 3.697

Theorem 5. Assume that the loss function ` only has countably many local minima, is norm coer-698

cive, and satisfies the Lojasiewicz inequality. Let further ✓0 ⇠ Q0 for some Q0 2 P(RJ) such that699 P1
i=1 Q0(⇥i) = 1. Then,700

�
t(✓0)

D�!
1X

i=1

Q0(⇥i) �mi =: Q1 (73)

for t ! 1. Here D�! denotes convergence in distribution.701

Proof. Let ✓0 2 RJ be fixed. Due to Lemma 3, we know that702

�
t(✓0) !

1X

i=1

mi {✓0 2 ⇥i} (74)

for Lebesgue almost every ✓0 for t ! 1. Here, {·} denotes the indicator function. Let Y now703

be a random variable with law Q0. By assumption, we know that Y 2 ⇥i for some i 2 N with704

probability 1. Hence,705

�
t(Y ) !

1X

i=1

mi {Y 2 ⇥i} (75)
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almost surely for t ! 1. Since almost sure convergence implies convergence in distribution, we706

conclude that707

�
t(Y )

D�! L
� 1X

i=1

mi {Y 2 ⇥i}
�
, (76)

where L(·) denotes the law of a random variable. However, the law of the RHS is easily recognised708

as709

L
� 1X

i=1

mi {Y 2 ⇥i}
�
=

1X

i=1

Q0(⇥i)�mi , (77)

which concludes the proof.710

Remark 2. Note that the condition711

1X

i=1

Q0(⇥i) = 1 (78)

in Theorem 5 is easy to satisfy. According to Lemma 3 the set712

RJ\
n[

i=1

⇥i (79)

has Lebesgue measure zero. Therefore, any Q0 which has a density w.r.t. the Lebesgue measure713

will satisfy (78).714

D Asymptotic distribution for deep Langevin ensembles715

In this section, we analyse the objective716

L(Q) :=

Z
`(✓) dQ(✓) + �KL(Q,P ) (80)

for Q 2 P(RJ). The corresponding particle method is given as:717

• Sample ✓1(0), . . . , ✓NE (0) independently from Q0.718

• Simulate the SDE d✓n(t) = �rV
�
✓n(t)

�
dt+

p
2�dBn(t) for each n = 1, . . . , NE .719

Recall that V (✓) = `(✓) � � log p(✓). This case is well-studied in the literature and known as720

Langevin diffusion. Under mild assumptions (Chiang et al., 1987; Roberts and Tweedie, 1996),721

✓n(t)
D�! Q1 (81)

for t ! 1 and each particle n = 1, . . . , NE independently. The probability measure Q1 has the722

density723

q1(✓) =
1

Z
exp

�
� V (✓)

�

�
(82)

=
1

Z
exp

�
� `(✓)

�

�
p(✓), (83)

where Z > 0 is the normalising constant. As a consequence, the WGF asymptotically produces724

samples from Q1. However, it is a priori unclear that Q1 is in fact the same as the global minimiser725

Q
⇤ of L.726

We investigate this question by relating invariant measures to stationary points of the Wasserstein727

gradient.728

Definition 1. (Liggett, 2010, Thm. 3.3.7) A measure Q is called an invariant measure (for a given729

Feller-process) if730
Z

Ah(✓) dQ(✓) = 0 (84)

for all h 2 C
2
c (RJ). Here A is the infinitesimal generator of the corresponding Feller-process.731
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Recall that the infinitesimal generator of the Langevin diffusion for h 2 C
2
c (RJ) is given as732

Ah = �rV ·rh+ ��h. (85)

Definition 2. A measure Q 2 P2(RJ) is called a stationary point of the Wasserstein gradient if733

rWL[Q](✓) = 0 (86)

for Q�almost every ✓ 2 RJ .734

In finite dimensions, it is well-known that a local minimiser is a stationary point of the gradient.735

This carries over to the infinite-dimensional case, with a similar proof. Since we could not find this736

result anywhere in the literature we included it for completeness.737

Lemma 4. Let bQ be a local minimiser of L, i.e. there exits and ✏ > 0 such that738

L( bQ)  L(Q) (87)

for all Q with W2( bQ,Q)  ✏. Then bQ is a stationary point of the Wasserstein gradient in the sense739

of Definition 2.740

Proof. Let h 2 C
2
c (RJ) be arbitrary and bQ 2 P2(RJ) be a local minimum of L. Further, let �t(✓0)741

be the solution to the initial value problem742

✓(0) = ✓0 (88)
✓
0(t) = rh(✓(t)) (89)

for t 2 (�✏, ✏) for some ✏ > 0. We now define Q(t) := �
t# bQ for t 2 (�✏, ✏) where f#µ denotes743

the push-forward of the measures µ through the function f . In the Riemannian interpretation of the744

Wasserstein space,
�
Q(t)

�
t2(�✏,✏)

is a curve in P2(RJ) with tangent vector h at point bQ (Ambrosio745

et al., 2005, Chapter 8). We, further, define f : (�✏, ✏) ! R as f(t) := L(Q(t)). Application of the746

chain-rule (Ambrosio et al., 2005, p. 233) gives747

f
0(0) =

d

dt
L(Q(t))

��
t=0

(90)

= hrWL[Q(0)],rhiL2(Q(0)) (91)

=

Z
rWL[ bQ](✓) ·rh(✓) d bQ(✓). (92)

We know that f has a local minimum at t = 0 and, therefore, f 0(0) = 0 which gives748

0 =

Z
rWL[ bQ](✓) ·rh(✓) d bQ(✓). (93)

Since (93) holds for arbitrary test functions h 2 C
2
c (RJ) and as C

2
c (RJ) is dense in L

2( bQ), we749

obtain that rWL[ bQ](✓) = 0 for bQ-a.e ✓ 2 RJ .750

The next lemma relates invariant measures and stationary points of the Wasserstein gradient for751

infinitesimal generators of the form (85). It will prove extremely useful to translate between the752

Langevin diffusion literature and our optimisation perspective.753

Lemma 5. Let Q 2 P2(RJ) be such that Q has a density q with respect to the Lebesgue measure.754

Then, the following two statements are equivalent:755

• Q is a stationary point of the Wasserstein gradient.756

• Q is an invariant measure.757

Proof. Let Q be a measure with density q. Recall that the generator of the Langevin diffusion is for758

h 2 C
2
c (RJ) given as759

Ah = �rV ·rh+ ��h. (94)
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By partial integration, it is easy to verify that the L
2- adjoint (w.r.t the Lebesgue measure) is given760

as761

A
⇤
h = r · (h ·rV ) + ��h. (95)

We, therefore, conclude that762
Z

Ah(✓) dQ(✓) =

Z
Ah(✓)q(✓) d✓ (96)

=

Z
h(✓)A⇤

q(✓) d✓ (97)

=

Z
h(✓)

⇣
r · (q(✓) ·rV (✓)) + ��q(✓)

⌘
d✓. (98)

Furthermore, we have rWL[Q] = rV + �r log q, and therefore763
Z

rWL[Q](✓) ·rh(✓) dQ(✓) =

Z
rWL[Q](✓) ·rh(✓)q(✓) d✓ (99)

=

Z ⇣
rV (✓)q(✓) + �rq(✓)

⌘
·rh(✓) d✓ (100)

= �
Z

h(✓)
⇣
r · (q(✓)rV (✓)) + ��q(✓)

⌘
d✓, (101)

where the last line follows from applying partial integration. This allows us to conclude that764
Z

Ah(✓) dQ(✓) = �
Z

rWL[Q](✓) ·rh(✓) dQ(✓) (102)

whenever Q has a density. As a consequence we have that Q is invariant if and only if it is a765

stationary point of the Wasserstein gradient.766

Lemma 5 allows us to move between the optimisation and stochastic differential equation perspec-767

tive. In Appendix A, we discussed the existence and uniqueness of a global minimiser Q⇤ of L.768

We know that Q⇤ has a density since the Kullback-Leibler divergence would be infinite otherwise769

(assuming P has a Lebesgue-density which we assume throughout the paper). Lemma 4 guarantees770

that Q⇤ is a stationary point of the Wasserstein gradient. Due to Lemma 5, we can infer that Q⇤771

must be an invariant measure. However, due to the uniqueness of the invariant measure under the772

previously mentioned mild assumptions (Chiang et al., 1987; Roberts and Tweedie, 1996), we can773

conclude that Q⇤ = Q1.774

E Asymptotic distribution of deep repulsive Langevin ensembles775

In this section, we consider776

L(Q) =

Z
`(✓) dQ(✓) +

�1

2
MMD(Q,P )2 + �2 KL(Q,P ) (103)

=

Z
V (✓) dQ(✓) +

�1

2

Z
(✓, ✓0) dQ(✓)dQ(✓0)� �2H(Q) + const, (104)

as optimisation objective. Here, H(Q) = �
R
log q(✓)q(✓) d✓ denotes the differential entropy.777

Recall that in this case V (✓) = `(✓)��1µP (✓)��2 log p(✓). We already discussed in Appendix B778

that the McKean-Vlasov process of the form779

✓(0) ⇠ Q0 (105)

d✓(t) = �
⇣
rV (✓(t)) + �1(r1 ⇤Qt)(✓(t))

⌘
dt+

p
2�2dB(t), (106)

with
�
B(t)

�
t�0

being a Brownian motion achieves the desired density evolution. Furthermore, the780

particle approximation of (105) is given as781

d✓n(t) = �
⇣
rV

�
✓n(t)

�
+

�1

NE

NEX

j=1

(r1)
�
✓n(t), ✓j(t)

�⌘
dt+

p
2�2dBn(t) (107)
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for n = 1, . . . , NE where NE 2 N denotes the number of particles.782

The approach follows the same procedure as in Appendix D. We show the notions of invariant783

measures and stationary points of the Wasserstein gradient are the same for measures with Lebesgue784

density. We start by introducing the concept of an invariant measure for a nonlinear Markov process785

(Ahmed and Ding, 1993, Definition 1).786

Definition 3. A measure Q is called an invariant measure for a nonlinear Markov process with the787

family of infinitesimal generators
�
A[Q]

 
Q2P(RJ )

if788

Z
A[Q]h(✓) dQ(✓) = 0 (108)

for all h 2 C
2
c (RJ).789

Recall that the family of infinitesimal generators in our case is given as790

�
A[Q]h

�
(✓) := �

⇣
rV (✓) + �1(r1 ⇤Q)(✓)

⌘
·rh(✓) + �2�h. (109)

for h 2 C
2
c (RJ

,R). In analogy to Lemma 5, we obtain the following result.791

Lemma 6. Let Q 2 P2(RJ) be such that Q has a density q with respect to the Lebesgue measure.792

Then, the following two statements are equivalent:793

• Q is a stationary point of the Wasserstein gradient for L in (103) in the sense of Def. 2.794

• Q is an invariant measure for the McKean-Vlasov process with infinitesimal generator795

defined in (109)796

Proof. First, we notice that797
Z

A[Q]h(✓)dQ(✓) =

Z
A[Q]h(✓)q(✓) d✓ (110)

=

Z
h(✓)

�
A

⇤[Q]q
�
(✓) d✓. (111)

Recall, that A⇤[Q] denotes the L
2-adjoint of the operator A[Q] and that it is given as798

�
A

⇤[Q]h
�
(✓) = r ·

⇣
h(✓)

�
rV (✓) + �1(r1 ⇤Q)(✓) + �2r log

�
h(✓)

��⌘
(112)

for h 2 C
2(RJ

,R) with compact support. This implies799

�
A

⇤[Q]q
�
(✓) = r ·

⇣
q(✓)

�
rV (✓) + �1(r1 ⇤Q)(✓)

�⌘
+ �2�q(✓). (113)

We plug this into (111) to obtain800
Z

A[Q]h(✓) dQ(✓) (114)

=

Z
h(✓)r ·

⇣
q(✓)

�
rV (✓) + �1(r1 ⇤Q)(✓)

�⌘
d✓ +

Z
�2h(✓)�q(✓) d✓. (115)

On the other hand, we have that801

rWL[Q](✓) = rV (✓) + �1(r1 ⇤Q)(✓) + �2r log q(✓), (116)

and therefore802 Z
rL[Q](✓) ·rh(✓) dQ(✓) (117)

=

Z ⇣
rV (✓) + �1(r1 ⇤Q)(✓) + �2r log q(✓)

⌘
·rh(✓) dQ(✓) (118)

=

Z
q(✓)

�
rV (✓) + �1(r1 ⇤Q)(✓)

�
·rh(✓) d✓ + �2

Z
rq(✓) ·rh(✓) d✓ (119)

= �
Z

r ·
⇣
q(✓)

�
rV (✓) + �1(r1 ⇤Q)(✓)

�⌘
h(✓) d✓ � �2

Z
q(✓)�h(✓) d✓, (120)
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where the last line follows from partial integration. Comparing (115) to (120) gives803
Z

A[Q]h(✓) dQ(✓) = �
Z

rL[Q](✓) ·rh(✓) dQ(✓) (121)

for all h 2 C
2
c (RJ) whenever Q has a density. This immediately implies that Q is invariant iff it is804

a stationary point.805

Again, we leverage this correspondence between stationary point and invariant measures. There is806

a rich literature on ergodicity of nonlinear Markov processes. For example, Theorem 2 of Vereten-807

nikov (2006) specifies conditions on  and V such that808

Q
n,NE (t)

D�! Q1 (122)

for NE , t ! 1. Here Q
n,NE (t) denotes the law of a fixed particle ✓n(t), n = 1, . . . , NE , whose809

distribution is characterised by the SDE (59). The measure Q1 is the unique invariant measure of810

the nonlinear Markov process. By Lemma 6 every invariant measure is a stationary point of the811

Wasserstein gradient and vice versa. Hence, existence and uniqueness of the stationary point of the812

Wasserstein gradient is immediately implied. However, since the global minimiser Q⇤ is a stationary813

point of the Wasserstein gradient (cf. Lemma 4), we conclude by uniqueness that Q1 = Q
⇤.814

F Asymptotic analysis of deep repulsive ensembles815

In this section, we consider the objective816

L(Q) :=

Z
`(✓) dQ(✓) + �MMD(Q,P ) (123)

for Q 2 P(RJ). The corresponding McKean-Vlasov process is of the form817

d✓(t) = �
⇣
rV (✓(t)) + �(r1 ⇤Qt)(✓(t))

⌘
dt, (124)

where Qt denotes the distribution of ✓(t) and V (✓) = `(✓)�µP (✓) with µP (✓) =
R
(✓, ✓0) dP (✓)818

the kernel mean-embedding of P . We call the particle method in this case deep repulsive ensembles819

(DRE).820

The existence of the global minimiser Q⇤ is still guaranteed under the assumptions in Appendix A.821

Lemma 4 guarantees that Q⇤ is a stationary point of the Wasserstein gradient, i.e.822

rV (✓) + �(r1 ⇤Q⇤)(✓) = 0 (125)

for Q⇤-a.e. ✓ 2 RJ . Recall that the infinitesimal generator in this case is given as823

�
A[Q]h

�
(✓) := �

⇣
rV (✓) + �(r1 ⇤Q)(✓)

⌘
·rh(✓) (126)

for Q 2 P(RJ), h 2 C
2
c (RJ). It immediately follows from the definition that824

�
A[Q]h

�
(✓) = �rWL[Q](✓) ·rh(✓) (127)

for all h 2 C
2
c (RJ), ✓ 2 RJ . As in Lemma 5 & 6, this implies that each stationary point of825

the Wasserstein gradient is an invariant measure of the McKean-Vlasov process and vice versa. In826

Appendix D & E, we cite relevant literature that guarantees uniqueness of the invariant measure,827

which is a necessary (but not sufficient) condition for convergence to the invariant measure. The828

next theorem shows that uniqueness will in general not hold without the presence of the diffusion829

term.830

Theorem 6. The invariant measure for the McKean-Vlasov process with the family of generators831 �
A[Q]

�
Q2P(RJ )

defined in (127) is (in general) not unique.832

Proof. Let NE 2 N and define eL :
�
RJ

�NE ! R as833

eL(✓1, . . . , ✓NE ) :=
NEX

i=1

V (✓i) +
�

2NE

NEX

i,j=1

(✓i, ✓j). (128)
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Assume that V is bounded from below and norm-coercive. Then eL is bounded from below and834

norm-coercive and therefore we can find a global minimiser ✓⇤ :=
�
✓
⇤
1 , . . . , ✓

⇤
NE

�
2
�
RJ

�NE of eL.835

Since eL is differentiable, we know that ✓⇤ is a stationary point of the gradient which implies836

rV (✓⇤i ) +
�

NE

NEX

j=1

(r1)(✓
⇤
i , ✓

⇤
j ) = 0 (129)

for all i = 1, . . . , NE . Here, we assume that the kernel  is symmetric, which is standard in the837

MMD literature. Note that (129) is equivalent to838

rV (✓) + �(r1 ⇤ bQ)(✓) = 0 (130)

for bQ-a.e. ✓ 2 RJ where839

bQ(d✓) :=
1

NE

NEX

j=1

�✓⇤
j
(d✓). (131)

This means that bQ) is a stationary point of the Wasserstein gradient, and therefore an invariant mea-840

sure for the McKean-Vlasov process. Since NE 2 N was arbitrary, we have constructed countably841

many invariant measures and therefore uniqueness can’t hold in general.842

The reason that non-uniqueness of the invariant measure is an immediate contradiction to conver-843

gence is the following: If we initialise with any of the invariant measures constructed in the proof of844

Theorem 6, then the particle distribution of the McKean-Vlasov process will remain unchanged over845

time. Convergence to the global minimiser can therefore surely not hold for arbitrary initialisation846

Q0. It may be possible to construct conditions on Q0 under which convergence still holds. For847

example, for Stein variational gradient descent a similar issue occurs. However, in this case one can848

guarantee convergence (Lu et al., 2019, Theorem 2.8) if Q0 has a Lebesgue-density (and if the ker-849

nel satisfies further restrictive assumptions). The existence of conditions that guarantee convergence850

for DRE remains an open problem.851

G Implementation details852

In Appendix A, we derived the following algorithm:853

Step 1: Simulate NE 2 N particles ✓1,0, . . . , ✓NE ,0 from a use chosen initial distribution Q0.854

Step 2: Evolve the particles forward in time according to855

✓n,k+1 = ✓n,k � ⌘

⇣
rV

�
✓n,k

�
+

�1

NE

NEX

j=1

(r1)
�
✓n,k, ✓j,k

�⌘
+
p
2⌘�2Zn,k (132)

for n = 1, . . . , NE , k = 0, . . . ,K � 1 with Zn,k ⇠ N (0, IJ⇥J).856

We can generate samples from DE, DLE and DRLE by setting the potential and regularisation857

parameters as described below:858

• Deep ensembles: V (✓) = `(✓), �1 = 0, �2 = 0859

• Deep Langevin ensembles: V (✓) = `(✓)� � log p(✓), �1 = 0, � = �2860

• Deep repulsive Langevin ensembles: V (✓) = `(✓)� �1 log p(✓)� �2µP (✓)861

Due to Appendix D & E, we can think of ✓1,K , . . . , ✓NE ,K as approximately sampled from the862

global minimiser Q⇤ for DLE and DRLE if K is large enough. All experiments use the SE kernel863

given as864

(✓, ✓0) = exp
�
� k✓ � ✓

0k2

2�2


�
(133)

with lengthscale parameter � > 0. The kernel mean embedding µP can easily be approximated as865

µP (✓) =
1

M

MX

i=1

(✓, ✓i), ✓ 2 RJ
, (134)

where ✓1, . . . , ✓M ⇠ P independently. We chose M = 20.866
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G.1 Toy example: global minimiser867

We describe details regarding the experiments conducted to produce Figure 2 below.868

We generate NE = 300 particles and make the following choices:869

• Loss: `(✓) := 3
2 (

1
4✓

4 + 1
3✓

3 � ✓
2)� 3

8870

• Prior: P ⇠ N (0, 1) and therefore log p(✓) = � 1
2✓

2871

• Initialisation: Q0 = P872

• Reg. parameter: �DLE = 1, �DRLE = 1, �0
DRLE = 1873

• Step size: ⌘ = 10�4, Iterations: K = 100, 000874

• Kernel lengthscale, �, is chosen according to the median heuristic (Garreau et al., 2017)875

based on samples from the prior P876

The loss is constructed such that we have a global minimum at ✓ = �2, a turning point at ✓ = 0,877

and a local minimum at ✓ = 1.878

• Deep ensembles: The optimal Q⇤ is a Dirac measure located at the global minimiser ✓ =879

�2. However, as we proved in Theorem 1, the WGF produce samples from880

Q1(d✓) =
1

2
��2(d✓) +

1

2
�1(d✓), (135)

as (�1, 0) is the region of attraction for the global minimum and (0,1) for the local881

minimum which both have probability 0.5 under Q0 = P = N (0, 1). In particular, Q1 6=882

Q
⇤ as expected.883

• Deep Langevin ensembles: The optimal measure has the pdf884

q
⇤(✓) / exp

�
� `(✓)

�

�
p(✓) (136)

for ✓ 2 R. As expected the WGF produces samples from Q
⇤.885

• Deep repulsive Langevin ensembles: The optimal q⇤ for deep repulsive ensembles is harder886

to determine. From the condition that q⇤ is a stationary point of the Wasserstein gradient,887

we can derive that u(✓) := log q⇤(✓) satisfies the integro-differential equation888

u
0(✓) = � 1

�2
V

0(✓)� �1

�2

Z
(r1)(✓, ✓

0) exp(u(✓0)) d✓0 (137)

with some initial value u(0) = u0. In principle, we could choose u0 such that q(✓) :=889

exp(u(✓)) integrates to 1. However, since we do not know the appropriate initial condition890

a priori, we choose an arbitrary u0 and normalise the pdf afterwards. We use an numerical891

solver to evaluate u(✓) on a fixed grid. As expected, the WGF produces samples from Q
⇤892

in this case.893

G.2 Toy example: multimodal loss894

The details below correspond to the experimental results presented in Figure 3.895

DE, DLE, DRLE We generate NE = 300 particles and make the following choices:896

• Loss: `(✓) = � log
P4

i=1
1
4N (✓;µi, I2), ✓ 2 R2, µi = (±3,±3)T , i = 1, . . . , 4897

• Prior: P flat and therefore log p(✓) = 0898

• Initialisation: Q0 ⇠ N (0, I2)899

• Reg. parameter: �DLE = 0.2, �DRLE = 0.2, �0
DRLE = 0.6900

• Step size: ⌘ = 0.1, Iterations: K = 10, 000901

• Kernel lengthscale, �, is chosen according to the median heuristic (Garreau et al., 2017)902

based on samples from the prior P903
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Note that for a translation-invariant kernel such as the SE kernel we obtain for the flat prior P that904

µP (✓) =

Z 1

�1
(✓, ✓0) d✓0 (138)

=

Z 1

�1
�(✓ � ✓

0) d✓0 (139)

=

Z 1

�1
�(⇠) d⇠, (140)

where the second line follows from the fact that we can write any translation-invariant kernel as905

(✓, ✓0) = �(✓ � ✓
0) for some function � : RJ ! R and the second line is simple variable substitu-906

tion. If (140) is finite, the above expression is well-defined and therefore µP constant. Note that in907

particular for the SE kernel, we have �(⇠) = exp(�k⇠k2/(2�2
)) and therefore (140) is finite. As a908

consequence, we have that for a flat prior P the gradient of the potential V is the same for all three909

methods. This means that the loss ` isn’t adjusted and the only difference between the three methods910

is the presence of repulsion and noise effects.911

Remark 3. The astute reader may have noticed that a flat prior P is in fact not covered by our theory912

in Appendix A. The problem is that KL(·,L), where L denotes the Lebesgue measure, is not positive913

(and not even bounded from below). To see this, choose Q = N (0,⌃) with ⌃ = diag(�2
1 , �

2
2) and914

note that915

KL(Q,L) =
Z

log q(✓) q(✓) d✓ = �H(Q), (141)

where H(Q) denotes the differential entropy. For a Gaussian, it is known that916

H(Q) =
1

2
log

�
(2⇡e)J det(⌃)

�
=

1

2

�
log(2⇡e)J + log(�2

1) + log(�2
2)
�

(142)

and therefore if either �
2
1 ! 1 or �

2
2 ! 1 then KL(Q,L) ! �1. However, note that this917

difficulty is rather technical in nature and can easily be remedied. Instead of L, we could have chosen918

the uniform prior P ⇠ U(�10100, 10100). In this case, the positivity of KL(·, P ) is guaranteed by919

Jensen’s inequality. This choice of P gives—up to an additive constant—the same objective as920

a flat prior and up to machine precision the same kernel mean embedding µP . It is, therefore,921

algorithmically irrelevant if P is flat or uniform on a very large set.922

FD-GVI We use the same prior and loss as for DE, DLE and DRLE. We parameterise the variational923

family as independent Gaussian, i.e.924

Q =
�
N (µ,⌃) |µ 2 R2

, ⌃ = diag
�
exp(�1), exp(�2)

�
,� := (�1,�2)

2 2 R2
 
. (143)

We learn the variational parameters ⌫ := (µ,�) 2 R4 by minimising925

eL(⌫) =
Z

`(✓) dQ⌫(✓) + �KL(Q⌫ , P ) (144)

=

Z
`(✓) dQ⌫(✓)� �H

�
N (µ,⌃)

�
(145)

⇡ 1

200

200X

j=1

`(µ+ ⌃0.5
Zj)�

�

2
log

�
(2⇡e)2 exp(�1) exp(�2)

�
(146)

=
1

200

200X

j=1

`(µ+ ⌃0.5
Zj)�

�

2

�
�1 + �2

�
+ const, (147)

where Z1, . . . , Z200 ⇠ N (0, I2) and H
�
N (µ,⌃)

�
denotes the differential entropy of the normal926

distribution. For the regularisation parameter, we chose � = 0.5.927

G.3 Toy example: more modes than particles928

We generate NE = 20 particles and make the following choices:929

27



• Loss: `(✓) = �| sin(✓)|, ✓ 2 [�M⇡,M⇡], with M = 1000930

• Prior: P flat and therefore log p(✓) = 0 and µP = const. (cf. Appendix G.2)931

• Initialisation: Q0 ⇠ U(�M⇡,M⇡)932

• Reg. parameter: �DLE = 0.001, �DRLE = 0.001, �0
DRLE = 0.6933

• Step size: ⌘ = 0.01, Iterations: K = 1.000934

• Kernel lengthscale, �, is chosen according to the median heuristic (Garreau et al., 2017)935

based on samples from the prior P936

Note that ` has 2M = 2000 local minima at locations937

mi :=
⇡

2
+ i⇡, i 2 {�M, . . . , 0, . . . , (M � 1)}. (148)

Due to the flat prior rV = r` for all three methods. We observe that it is hard to distinguish the938

methods since most particles are in their local modes by themselves.939

G.4 UCI Regression940

The UCI data sets are licensed under Creative Commons Attribution 4.0 International license (CC941

BY 4.0). Following Lakshminarayanan et al. (2017), we train 5 one-hidden-layer neural networks942

f✓ with 50 hidden nodes for 40 epochs. We split each data set into train (81% of samples), validation943

(9% of samples), and test set (10% of samples). Based on the best hyperparameter runs (according944

to a Gaussian NLL) found via grid search on a validation data set, we make the following choices:945

• Loss: `(✓) = 1
N

PN
n=1(f✓(xn)� yn)2 where

�
xn, yn

 N

n=1
are paired observations.946

• Prior: P ⇠ N (0, 1)947

• Initialisation: Kaiming intilisation, i.e. for each layer l 2 {1, ...L} that maps features with948

dimensionality nl�1 into dimensionality nl, we sample Ql,0 ⇠ N (0, 2/nl)949

• Reg. parameter: �DLE = 10�4, �DRLE = 10�4, �0
DRLE = 10�2950

• Step size: ⌘ = 0.1, Iterations: K = 10, 000951

• Kernel lengthscale, �, is chosen according to the median heuristic (Garreau et al., 2017)952

based on samples from the prior P953

G.5 Compute954

While the final experimental results can be run within approximately an hour on a single GeForce955

RTX 3090 GPU, the complete compute needed for the final results, debugging runs, and sweeps956

amounts to around 9 days.957

References958

Ahmed, N. and Ding, X. (1993). On invariant measures of nonlinear Markov processes. Journal of959

Applied Mathematics and Stochastic Analysis, 6(4):385–406.960

Alquier, P. (2021a). Non-exponentially weighted aggregation: regret bounds for unbounded loss961

functions. In International Conference on Machine Learning, pages 207–218. PMLR.962

Alquier, P. (2021b). User-friendly introduction to PAC-Bayes bounds. arXiv preprint963

arXiv:2110.11216.964

Alquier, P. and Guedj, B. (2018). Simpler PAC-Bayesian bounds for hostile data. Machine Learning,965

107(5):887–902.966

Altamirano, M., Briol, F.-X., and Knoblauch, J. (2023). Robust and scalable Bayesian online967

changepoint detection. arXiv preprint arXiv:2302.04759.968
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