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Abstract

We establish the first mathematically rigorous link between Bayesian, variational
Bayesian, and ensemble methods. A key step towards this is to reformulate the
non-convex optimisation problem typically encountered in deep learning as a
convex optimisation in the space of probability measures. On a technical level,
our contribution amounts to studying generalised variational inference through
the lens of Wasserstein gradient flows. The result is a unified theory of various
seemingly disconnected approaches that are commonly used for uncertainty quan-
tification in deep learning—including deep ensembles and (variational) Bayesian
methods. This offers a fresh perspective on the reasons behind the success of deep
ensembles over procedures based on standard variational inference, and allows the
derivation of new ensembling schemes with convergence guarantees. We show-
case this by proposing a family of interacting deep ensembles with direct parallels
to the interactions of particle systems in thermodynamics, and use our theory to
prove the convergence of these algorithms to a well-defined global minimiser on
the space of probability measures.

1 Introduction

A major challenge in modern deep learning is the accurate quantification of uncertainty. To develop
trustworthy AI systems, it will be crucial for them to recognize their own limitations and to convey
the inherent uncertainty in the predictions. Many different approaches have been suggested for this.
In variational inference (VI), a prior distribution for the weights and biases in the neural network is
assigned and the best approximation to the Bayes posterior is selected from a class of parameterised
distributions (Graves, 2011; Blundell et al., 2015; Gal and Ghahramani, 2016; Louizos and Welling,
2017). An alternative approach is to (approximately) generate samples from the Bayes posterior via
Monte Carlo methods (Welling and Teh, 2011; Neal, 2012). Deep ensembles are another approach,
and rely on a train-and-repeat heuristic to quantify uncertainty (Lakshminarayanan et al., 2017).

Much ink has been spilled over whether one can see deep ensembles as a Bayesian procedure (Wil-
son, 2020; Izmailov et al., 2021; D’Angelo and Fortuin, 2021) and over how these seemingly dif-
ferent methods might relate to each other. Building on this discussion, we shed further light on
the connections between Bayesian inference and deep ensemble techniques by taking a different
vantage point. In particular, we show that methods as different as variational inference, Langevin
sampling (Ermak, 1975), and deep ensembles can be derived from a well-studied generally infinite-
dimensional regularised optimisation problem over the space of probability measures (see e.g. Guedj
and Shawe-Taylor, 2019; Knoblauch et al., 2022). As a result, we find that the differences between
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these algorithms map directly onto different choices regarding this optimisation problem. Key dif-
ferences between the algorithms boil down to different choices of regularisers, and whether they im-
plement a finite-dimensional or infinite-dimensional gradient descent. Here, finite-dimensional gra-
dient descent corresponds to parameterised VI schemes, whilst the infinite-dimensional case maps
onto ensemble methods.

The contribution of this paper is a new theory that generates insights into existing algorithms and
provides links between them that are mathematically rigorous, unexpected, and useful. On a techni-
cal level, our innovation consists in analysing them as algorithms that target an optimisation problem
in the space of probability measures through the use of a powerful technical device: the Wasser-
stein gradient flow (see e.g. Ambrosio et al., 2005). While the theory is this paper’s main concern,
its potentially substantial methodological payoff is demonstrated through the derivation of a new
inference algorithm based on gradient descent in infinite dimensions and regularisation with the
maximum mean discrepancy. We use our theory to show that this algorithm—unlike standard deep
ensembles—is derived from a strictly convex objective defined over the space of probability mea-
sures. Thus, it targets a unique minimum, and is capable of producing samples from this global
minimiser in the infinite particle and time horizon limit. This makes the algorithm provably con-
vergent; and we hope that it can help plant the seeds for renewed innovations in theory-inspired
algorithms for (Bayesian) deep learning.

The paper proceeds as follows: Section 2 discusses the advantages of lifting losses defined on Eu-
clidean spaces into the space of probability measures through a generalised variational objective.
Section 3 introduces the notion of Wasserstein gradient flows, while Section 4 links them to the
aforementioned objective and explains how they can be used to construct algorithms that bridge
Bayesian and ensemble methods. The paper concludes with Section 5, where the findings of the
paper are illustrated numerically.

2 Convexification through probabilistic lifting

One of the most technically challenging aspects of contemporary machine learning theory is that the
losses ℓ : RJ → R we wish to minimise are often highly non-convex. For instance, one could wish
to minimise ℓ(θ) := 1

N

∑N
n=1

(
yn − fθ(xn)

)2
where {(xn, yn)}Nn=1 is a set of paired observations

and fθ a neural network with parameters θ. While deep learning has shown that non-convexity is
often a negligible practical concern, it makes it near-impossible to prove many basic theoretical
results that a good learning theory is concerned with, as ℓ has many local (or global) minima (Fort
et al., 2019; Wilson and Izmailov, 2020). We reintroduce convexity by lifting the problem onto
a computationally more challenging space. In this sense, the price we pay for the convenience of
convexity is the transformation of a finite-dimensional problem into an infinite-dimensional one,
which is numerically more difficult to tackle. Figure 1 illustrates our approach:

Figure 1: Illustration of convexification through probabilistic lifting.

First, we transform a non-convex optimisation minθ∈Θ ℓ(θ) into an infinite-dimensional optimisa-
tion over the set of probability measures P(RJ), yielding minQ∈P(RJ )

∫
ℓ(θ)dQ(θ). As an integral,

this objective is linear in Q. However, linear functions are not strictly convex. We therefore need
to add a strictly convex regulariser to ensure uniqueness of the minimiser.2 We prove in Appendix
A that indeed—for a regulariser D : P(RJ) × P(RJ) → [0,∞] such that (Q,P ) 7→ D(Q,P ) is
strictly convex and P ∈ P(RJ) a fixed measure—existence and uniqueness of a global minimiser
can be guaranteed. Given a scaling constant λ > 0, we can now put everything together to obtain

2To illustrate why this is necessary, assume that there are θA and θB in RJ so that ℓ(θA) = ℓ(θB) =
minθ∈Θ ℓ(θ). Due to linearity, each measure Qt ∈ P(RJ), t ∈ [0, 1], defined as Qt := (1 − t)δθA + tδθB
provides one (of the infinitely many) global minima in the set argminQ∈P(RJ )

∫
ℓ(θ) dQ(θ).
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the loss L and the unique minimiser Q∗ as

L(Q) :=

∫
ℓ(θ) dQ(θ) + λD(Q,P ), Q∗ := argmin

Q∈P(RJ )

L(Q). (1)

Throughout, whenever Q and Q∗ have an associated Lebesgue density, we write them as q and q∗.
Moreover, all measures, densities, and integrals will be defined on the parameter space RJ of θ.
Similarly, the gradient operator ∇ will exclusively denote differentiation with respect to θ ∈ RJ .

2.1 One objective with many interpretations

In the current paper, our sole focus lies on resolving the difficulties associated with non-convex
optimisation of ℓ on Euclidean spaces. Through probabilistic lifting and convexification, we can
identify a unique minimiser Q∗ in the new space, which minimises the θ-averaged loss θ 7→ ℓ(θ)
without deviating too drastically from some reference measure P . In this sense, Q∗ summarises the
quality of all (local and global) minimisers of ℓ(θ) by assigning them a corresponding weight. The
choices for λ, D and P determine the trade-off between the initial loss ℓ and reference measure P
and therefore the weights we assign to different solutions.

Yet, (1) is not a new problem form: it has various interpretations, depending on the choices for
D,λ, ℓ and the framework of analysis (see e.g. Knoblauch et al., 2022, for a discussion). For ex-
ample, if ℓ(θ) is a negative log likelihood, D is the Kullback-Leibler divergence (KL), and λ = 1,
Q∗ is the standard Bayesian posterior, and P is the Bayesian prior. This interpretation of P as a
prior carries over to generalised Bayesian methods, in which we can choose ℓ(θ) to be any loss,
D to be any divergence on P(RJ), and λ to regulate how fast we learn from data (see e.g. Bissiri
et al., 2016; Jewson et al., 2018; Knoblauch et al., 2018; Miller and Dunson, 2019; Knoblauch,
2019; Alquier, 2021a; Husain and Knoblauch, 2022; Matsubara et al., 2022; Wild et al., 2022; Wu
and Martin, 2023; Altamirano et al., 2023). In essence, the core justification for these general-
isations is that the very assumptions justifying application of Bayes’ Rule are violated in modern
machine learning. In practical terms, this results in a view of Bayes’ posteriors as one—of many
possible—measure-valued estimators Q∗ of the form in (1). Once this vantage point is taken, it is
not clear why one should be limited to using only one particular type of loss and regulariser for
every possible problem. Seeking a parallel with optimisation on Euclidean domains, one may then
compare the orthodox Bayesian view with the insistence on only using quadratic regularisation for
any problem. While it is beyond the scope of this paper to cover these arguments in depth, we refer
the interested reader to Knoblauch et al. (2022).

A second line of research featuring objectives as in (1) are PAC-Bayes methods, whose aim is to
construct generalisation bounds (see e.g. Shawe-Taylor and Williamson, 1997; McAllester, 1999b,a;
Grünwald, 2011). Here, ℓ is a general loss, but P only has the interpretation of some reference
measure that helps us measure the complexity of our hypotheses via Q 7→ λD(Q,P ) (Guedj and
Shawe-Taylor, 2019; Alquier, 2021b). Classic PAC-Bayesian bounds set D to be KL, but there has
been a recent push for different complexity measures (Alquier and Guedj, 2018; Bégin et al., 2016;
Haddouche and Guedj, 2023).

2.2 Generalised variational inference (GVI) in finite and infinite dimensions

In line with the terminology coined in Knoblauch et al. (2022), we refer to any algorithm aimed at
solving (1) as a generalised variational inference (GVI) method. Broadly speaking, there are two
ways one could design such algorithms: in finite or infinite dimensions. Finite-dimensional GVI:
This is the original approach advocated for in Knoblauch et al. (2022): instead of trying to compute
Q∗, approximate it by solving Qν∗ = argminQν∈Q L(Q) for a set of measures Q := {Qν : ν ∈
Γ} ⊂ P(RJ) parameterised by a parameter ν ∈ Γ ⊆ RI . To find Qν , one now simply performs
(finite-dimensional) gradient descent with respect to the function ν 7→ L(Qν). For the special case
where P is a Bayesian prior, λ = 1, ℓ(θ) is a negative log likelihood parametrised by θ, and D = KL,
this recovers the well-known standard VI algorithm. To the best of our knowledge, all methods that
refer to themselves as VI or GVI in the context of deep learning are based on this approach (see e.g.
Graves, 2011; Blundell et al., 2015; Louizos and Welling, 2017; Wild et al., 2022). Since procedures
of this type solve a finite-dimensional version of (1), we refer to them as finite-dimensional GVI
(FD-GVI) methods throughout the paper. While such algorithms can perform well, they have some
obvious theoretical problems: First of all, the finite-dimensional approach typically forces us to
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choose Q and P to be simple distributions such as Gaussians to ensure that L(Qν) is a tractable
function of ν. This often results in a Q that is unlikely to contain a good approximation to Q∗; raising
doubt if Qν∗ can approximate Q∗ in any meaningful sense. Secondly, even if Q 7→ L(Q) is strictly
convex on P(RJ), the parameterised objective ν ∈ Γ 7→ L(Qν) is usually not. Hence, there is no
guarantee that gradient descent leads us to Qν∗ . This point also applies to very expressive variational
families (Rezende and Mohamed, 2015; Mescheder et al., 2017) which may be sufficiently rich that
Q∗ ∈ Q, but whose optimisation problem ν ∈ Γ 7→ L(Qν) is typically non-convex and hard to
solve, so that no guarantee for finding Q∗ can be provided. While this does not necessarily make
FD-GVI impractical, it does make it exceedingly difficult to provide a rigorous theoretical analysis
outside of narrowly defined settings.

FD-GVI in function space: A collection of approaches formulated as infinite-dimensional prob-
lems are GVI methods on an infinite-dimensional function space (Ma et al., 2019; Sun et al., 2018;
Ma and Hernández-Lobato, 2021; Rodriguez-Santana et al., 2022; Wild et al., 2022). Here, the loss
is often convex in function space. In practice however, the variational stochastic process still re-
quires parameterization to be computationally feasible—and in this sense, function space methods
are FD-GVI approaches. The resulting objectives require a good approximation of the functional
KL-divergence (which is often challenging), and lead to a typically highly non-convex variational
optimization problem in the parameterised space.

Infinite-dimensional GVI: Instead of minimising the (non-convex) problem ν 7→ L(Qν), we want
to exploit the convex structure of Q 7→ L(Q). Of course, a priori it is not even clear how to compute
the gradient for a function Q 7→ L(Q) defined on an infinite-dimensional nonlinear space such as
P(RJ). However, in the next part of this paper we will discuss that it is possible to implement a
gradient descent in infinite dimensions by using gradient flows on a metric space of probability
measures (Ambrosio et al., 2005). More specifically, one can solve the optimisation problem (1) by
following the curve of steepest descent in the 2-Wasserstein space. As it turns out, this approach
is not only theoretically sound, but also conceptually elegant: it unifies existing algorithms for
uncertainty quantification in deep learning, and even allows us to derive new ones. We refer to
algorithms based on some form of infinite-dimensional gradient descent as infinite-dimensional
GVI (ID-GVI). Infinite-dimensional gradient descent methods have recently gained attention in the
machine learning community. For existing methods of this kind, the goal is to generate samples
from a target Q̂ that has a known form (such as the Bayes posterior) by applying a gradient flow
to Q ∈ P(RJ) 7→ E(Q, Q̂) where E(·, ·) is a discrepancy measure. Some methods apply the
Wasserstein gradient flow (WGF) for different choices of E (Arbel et al., 2019; Korba et al., 2021;
Glaser et al., 2021), whilst other methods like Stein variational gradient descent (SVGD) (Liu and
Wang, 2016) stay within the Bayesian paradigm (E = KL, Q̂ = Bayes posterior) but use a gradient
flow other than the WGF (Liu, 2017). D’Angelo and Fortuin (2021) exploit the WGF in the standard
Bayesian context and combine it with different gradient estimators (Li and Turner, 2017; Shi et al.,
2018) to obtain repulsive deep ensembling schemes. Note that this is different from the repulsive
approach we introduce later in this paper: Our repulsion term is the consequence of a regulariser,
not a gradient estimator. Since our focus is on tackling the problems associated with non-convex
optimisation in Euclidean space, the approach we propose is inherently different from all of these
existing methods: our target Q∗ is only implicitly defined via (1), and not known explicitly.

3 Gradient flows in finite and infinite dimensions

Before we can realise our ambition to solve (1) with an ID-GVI scheme, we need to cover the rele-
vant bases. To this end, we will discuss gradient flows in finite and infinite dimensions, and explain
how they can be used to construct infinite-dimensional gradient descent schemes. In essence, a gra-
dient flow is the limit of a gradient descent whose step size goes to zero. While the current section
introduces this idea for the finite-dimensional case for ease of exposition, its use in constructing
algorithms within the current paper will be for the infinite-dimensional case.

Gradient descent finds local minima of losses ℓ : RJ → R by iteratively improving an initial guess
θ0 ∈ RJ through the update θk+1 := θk − η∇ℓ(θk), k ∈ N, where η > 0 is a step-size and ∇ℓ
denotes the gradient of ℓ. For sufficiently small η > 0, this update can equivalently be written as

θk+1 = argmin
θ∈RJ

{
ℓ(θ) +

1

2η
∥θ − θk∥22

}
. (2)
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Gradient flows formalise the following logic: for any fixed η, we can continuously interpolate the
corresponding gradient descent iterates

{
θk
}
k∈N0

. To do this, we simply define a function θη :

[0,∞) → R as θη(t) := θt/η for t ∈ ηN0 := {0, η, 2η, ...}. For t /∈ ηN0 we linearly interpolate3.
As η → 0, the function θη converges to a differentiable function θ∗ : [0,∞) → R called the
gradient flow of ℓ, because it is characterised as solution to the ordinary differential equation (ODE)
θ′∗(t) = −∇ℓ(θ∗(t)) with initial condition θ∗(0) = θ0. Intuitively, θ∗(t) is a continuous-time
version of discrete-time gradient descent; and navigates through the loss landscape so that at time t,
an infinitesimally small step in the direction of steepest descent is taken. Put differently: gradient
descent is nothing but an Euler discretisation of the gradient flow ODE (see also Santambrogio,
2017). The result is that for mathematical convenience, one often analyses discrete-time gradient
descent as though it were a continuous gradient flow—with the hope that for sufficiently small η,
the behaviour of both will essentially be the same.

Our results in the infinite-dimensional case follow this principle: we propose an algorithm based on
discretisation, but use continuous gradient flows to guide the analysis. To this end, the next section
generalises gradient flows to the nonlinear infinite-dimensional setting.

3.1 Gradient flows in Wasserstein spaces

Let P2(RJ) be the space of probability measures with finite second moment equipped with the
2-Wasserstein metric given as

W2(P,Q)2 = inf

{∫
||θ − θ′||22 dπ(θ, θ′) : π ∈ C(P,Q)

}
where C(P,Q) ⊂ P(RJ × RJ) denotes the set of all probability measure on RJ × RJ such that
π(A × RJ) = P (A) and π(RJ × B) = Q(B) for all A,B ⊂ RJ (see also Chapter 6 of Villani
et al., 2009). Further, let L : P2(RJ) → (−∞,∞] be some functional—for example L in (1). In
direct analogy to (2), we can improve upon an initial guess Q0 ∈ P2(RJ) by iteratively solving

Qk+1 := argmin
Q∈P2(RJ )

{
L(Q) +

1

2η
W2(Q,Qk)

2
}

for k ∈ N0 and small η > 0 (see Chapter 2 of Ambrosio et al., 2005, for details). Again, for η → 0,
an appropriate limit yields a continuously indexed family of measures {Q(t)}t≥0. If L is sufficiently
smooth and Q0 = Q(0) has Lebesgue density q0, the time evolution for the corresponding pdfs
{q(t)}t≥0 is given by the partial differential equation (PDE)

∂tq(t, θ) = ∇ ·
(
q(t, θ)∇WL

[
Q(t)

]
(θ)

)
, (3)

with q(0, ·) = q0 (Villani, 2003, Section 9.1). Here ∇ · f :=
∑J

j=1 ∂jfj denotes the divergence
operator and ∇WL[Q] : RJ → RJ the Wasserstein gradient (WG) of L at Q. For the purpose of this
paper, it is sufficient to think of the WG as a gradient of the first variation; i.e. ∇WL[Q] = ∇L′[Q]
where L′[Q] : RJ → RJ is the first variation of L at Q (Villani et al., 2009, Exercise 15.10). The
Wasserstein gradient flow (WGF) for L is then the solution q† to the PDE (3). If L is chosen as in (1),
our hope is that the logic of finite-dimensional gradient descent carries over; and that limt→∞ q†(t, ·)
is in fact the density q∗ corresponding to Q∗.

Following this reasoning, this paper applies the WGF for (1) to obtain an ID-GVI algorithm. In
Section 4 and Appendices C–F, we formally show that the WGF indeed yields Q∗ (in the limit as
t → ∞) for a number of regularisers of practical interest.

3.2 Realising the Wasserstein gradient flow

In theory, the PDE in (3) could be solved numerically in order to implement the infinite-dimensional
gradient descent for (1). In practice however, this is impossible: numerical solutions to PDEs be-
come computationally infeasible for the high-dimensional parameter spaces which are common in
deep learning applications. Rather than trying to first approximate the q solving (3) and then sam-
pling from its limit in a second step, we will instead formulate equations which replicate how the

3This means θη(t) := θs+1−θs
η

(
t− sη

)
+ θs, for t ∈ [sη, (s+ 1)η) and s ∈ N0.
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samples from the solution to (3) evolve in time. This leads to tractable inference algorithms that can
be implemented in high dimensions.

Given the goal of producing samples directly, we focus on a particular form of loss that is well-
studied in the context of thermodynamics (Santambrogio, 2015, Chapter 7), and which recovers var-
ious forms of the GVI problem in (1) (see Section 4). In thermodynamics, Q ∈ P2(RJ) describes
the distribution of particles located at specific points in RJ . The overall energy of a collection of
particles sampled from Q is decomposed into three parts: (i) the external potential V (θ) which
acts on each particle individually, (ii) the interaction energy κ(θ, θ′) describing pairwise interac-
tions between particles, and (iii) an overall entropy of the system measuring how concentrated the
distribution Q is. Taking these components together, we obtain the so called free energy

Lfe(Q) :=

∫
V (θ) dQ(θ) +

λ1

2

∫∫
κ(θ, θ′) dQ(θ)dQ(θ′) + λ2

∫
log q(θ)q(θ) dθ, (4)

for Q ∈ P2(RJ) with Lebesgue density q, λ1 ≥ 0, λ2 ≥ 0. Note that for λ2 > 0 we implicitly
assume that Q has a density. Following Section 9.1 in Villani et al. (2009), its WG is

∇WLfe[Q](θ) = ∇V (θ) + λ1

∫
(∇1κ)(θ, θ

′) dQ(θ′) + λ2∇ log q(θ),

where θ ∈ RJ , and ∇1κ denotes the gradient of κ with respect to the first variable. We plug this
into (3) to obtain the desired density evolution. Importantly, this time evolution has the exact form
of a nonlinear Fokker-Planck equation associated with a stochastic process of McKean-Vlasov type
(see Appendix B for details). Fortunately for us, it is well-known that such processes can be approx-
imated through interacting particles (Veretennikov, 2006) generated by the following procedure:

Step 1: Sample NE ∈ N particles θ1(0), . . . , θNE
(0) independently from Q0 ∈ P2(RJ).

Step 2: Evolve the particle θn by following the stochastic differential equation (SDE)

dθn(t) = −
(
∇V

(
θn(t)

)
+

λ1

NE

NE∑
j=1

(∇1κ)
(
θn(t), θj(t)

))
dt+

√
2λ2dBn(t), (5)

for n = 1, . . . , NE , and {Bn(t)}t>0 stochastically independent Brownian motions.

As NE → ∞, the distribution of θ1(t), . . . , θNE
(t) evolves in t in the same way as the sequence of

densities q(t, ·) solving (3). This means that we can implement infinite-dimensional gradient descent
by following the WGF and simulating trajectories for infinitely many interacting particles according
to the above procedure. In practice, we can only simulate finitely many trajectories over a finite time
horizon. This produces samples θ1(T ), . . . , θNE

(T ) for NE ∈ N and T > 0. Our intuition and
Section 4 tell us that, as desired, the distribution of θ1(T ), . . . , θNE

(T ) will be close to the global
minimiser of Lfe.

In the next section, we will use the above algorithm to construct an ID-GVI method producing
samples approximately distributed according to Q∗ defined in (1). Since NE and T are finite, and
since we need to discretise (131), there will be an approximation error. Given this, how good are
the samples produced by such methods? As we shall demonstrate in Section 5, the approximation
errors are small, and certainly should be expected to be much smaller than those of standard VI and
other FD-GVI methods.

4 Optimisation in the space of probability measures

With the WGF on thermodynamic objectives in place, we can now finally show how it yields ID-GVI
algorithms to solve (1). We put particular focus on the analysis of the regulariser D; providing new
perspectives on heuristics for uncertainty quantification in deep learning in the process. Specifically,
we establish formal links explaining how they may (not) be understood as a Bayesian procedure. Be-
yond that, we derive the WGF associated with regularisation using the maximum mean discrepancy,
and provide a theoretical analysis of its convergence properties.
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4.1 Unregularised probabilistic lifting: Deep ensembles

We start the analysis with the base case of an unregularised functional L(Q) =
∫
ℓ(θ)dQ(θ), corre-

sponding to λ = 0 in (1). This is also a special case of (4) with λ1 = λ2 = 0. As λ1 = 0, there is
no interaction term, and all particles can be simulated independently from one another as

θ1(0), . . . , θNE
(0) ∼ Q0, θ′n(t) = −∇ℓ

(
θn(t)

)
, n = 1, . . . , NE .

This simple algorithm happens to coincide exactly with how deep ensembles (DEs) are constructed
(see e.g. Lakshminarayanan et al., 2017). In other words: the simple heuristic of running gradient
descent algorithm several times with random initialisations sampled from Q0 is an approximation
of the WGF for the unregularised probabilistic lifting of the loss function ℓ.

Following the WGF in this case does not generally produce samples from a global minimiser of L.
Indeed, the fact that L generally does not even have a unique global minimiser was the motivation
for regularisation in (1). Even if L had a unique minimiser however, a DE would not find it. The
result below proves this formally: unsurprisingly, deep ensembles simply sample the local minima
of ℓ with a probability that depends on the domain of attraction and the initialisation distribution Q0.
Theorem 1. If ℓ has countably many local minima {mi : i ∈ N}, then it holds independently for
each n = 1, . . . , NE that

θn(t)
D−→

∞∑
i=1

Q0(Θi) δmi
=: Q∞

for t → ∞. Here D−→ denotes convergence in distribution and Θi = {θ ∈ RJ : limt→∞ θ∗(t) =
mi and θ∗(0) = θ} denotes the domain of attraction for mi with respect to the gradient flow θ∗.

A proof with technical assumptions—most importantly a version of the famous Lojasiewicz
inequality—is in Appendix C. Theorem 1 derives the limiting distribution for θ1(T ), . . . , θNE

(T ),
which shows that—unless all local minima are global minima—the WGF does not generate samples
from a global minimum of Q 7→ L(Q) for the unregularised case λ = 0. Note that the condi-
tions of this result simplify the situation encountered in deep learning, where the set of minimisers
would typically be uncountable (Liu et al., 2022). While one could derive a very similar result
for the case of uncountable minimisers, this becomes notationally cumbersome and would obscure
the main point of the Theorem—that Q∞ strongly depends on the initialisation Q0. Importantly,
the dependence of Q∞ on Q0 remains true for all losses constructed via deep learning architec-
tures. However, despite these theoretical shortcomings, DEs remain highly competitive in practice
and typically beat FD-GVI methods like standard VI (Ovadia et al., 2019; Fort et al., 2019). This
is perhaps not surprising: DEs implement an infinite-dimensional gradient descent, while FD-GVI
methods are parametrically constrained. Perhaps more surprisingly, we observe in Section 5 that
DEs can even easily compete with the more theoretically sound and regularised ID-GVI methods
that will be discussed in Section 4.2 and 4.3. We study this phenomenon in Section 5, and find that
it is a consequence of the fact that in deep learning, NE is small compared to the number of local
minima (cf. Figure 4).

4.2 Regularisation with the Kullback-Leibler divergence: Deep Langevin ensembles

In Section 2, we argued for regularisation by D to ensure a unique minimiser Q∗. The Kullback-
Leibler divergence (D = KL) is the canonical choice for (generalised) Bayesian and PAC-Bayesian
methods (Bissiri et al., 2016; Knoblauch et al., 2022; Guedj and Shawe-Taylor, 2019; Alquier,
2021b). Now, Q∗ has a known form: if P has a pdf p, it has an associated density given by
q∗(θ) ∝ exp(− 1

λℓ(θ))p(θ) (Knoblauch et al., 2022, Theorem 1).

Notice that the KL-regularised version of L in (1) can be rewritten in terms of the objective Lfe in (4)
by setting V (θ) = ℓ(θ)− λ log p(θ), λ1 = 0 and λ2 = λ. Compared to the unregularised objective
of the previous section (where λ = 0), the external potential is now adjusted by −λ log p(θ), forcing
Q∗ to allocate more mass in regions where p has high density. Beyond that, the presence of the
negative entropy term has three effects: it ensures that the objective is strictly convex, that Q∗ is
more spread out, and that it has a density q∗. Since λ1 = 0, the corresponding particle method still
does not have an interaction and is given as

θ1(0), . . . , θNE
(0) ∼ Q0 dθn(t) = −∇V

(
θn(t)

)
dt+

√
2λdBn(t), n = 1, . . . , NE . (6)
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Clearly, this is just the Langevin SDE and we call this approach the deep Langevin ensemble
(DLE). While the name may suggest that DLE is equivalent to the unadjusted Langevin algorithm
(ULA) (Roberts and Tweedie, 1996), this is not so: for T discretisation steps t1, t2, . . . tT , DLE
approximates measures using the end-points of NE trajectories given by {θn(tT )}NE

n=1. In contrast,
ULA would use a (sub)set of the samples {θ1(ti)}Ti=1 generated from one single particle’s trajectory.
To analyse DLEs, we build on the Langevin dynamics literature: in Appendix D, we show that
θn(t)

D−→ Q∗ as t → ∞, independently for each n = 1, . . . , NE . Hence θ1(T ), . . . , θNE
(T ) will

for large T > 0 be approximately distributed according to Q∗. Comparing DE and DLE in this
light, we note several important key differences: Q∗ as defined per (1) is unique, has the form of a
Gibbs measure, and can be sampled from using (6). In contrast, unregularised DE produces samples
from Q∞ in Theorem 1 which is not the global minimiser. Specifically neither Q∞ nor Q∗ for
DEs correspond to the Bayes posterior. It is therefore not a Bayesian procedure in any commonly
accepted sense of the word.

4.3 Regularisation with maximum mean discrepancy: Deep repulsive Langevin ensembles

Regularising with KL is attractive because Q∗ has a known form. However, in our theory, there
is no reason to restrict attention to a single type of regulariser: we introduced D to convexify our
objective. It is therefore of theoretical and practical interest to see which algorithmic effects are
induced by other regularisers. We illustrate this by first considering regularisation using the squared
maximum-mean discrepancy (MMD) (see e.g. Gretton et al., 2012) only, and then a combination of
MMD and KL.

For a kernel κ : RJ × RJ → R, the squared MMD between measures Q and P is

MMD(Q,P )2 =

∫∫
κ(θ, θ′)dQ(θ)dQ(θ′)− 2

∫∫
κ(θ, θ′)dQ(θ)dP (θ′)

+

∫∫
κ(θ, θ′)dP (θ)dP (θ′).

MMD measures the difference between within-sample similarity and across-sample similarity, so
it is smaller when samples from P are similar to samples from Q, but also larger when samples
within Q are similar to each other. This means that regularising (1) with D = MMD2 introduces
interactions characterised precisely by the kernel κ, and we can show this explicitly by rewriting L of
(1) into the form of Lfe in (4). In other words, inclusion of MMD2 makes particles repel each other,
making it more likely that they fall into different (rather than the same) local minima. Writing the
kernel mean embedding as µP (θ) :=

∫
κ(θ, θ′) dP (θ′), we see that up to a constant not depending

on Q, L(Q) = Lfe(Q) for V (θ) = ℓ(θ) − λ1µP (θ), λ = λ1

2 , and λ2 = 0. While we can show that
a global minimiser Q∗ exists, and while we could produce particles using the algorithm of Section
3.2, we cannot guarantee that they are distributed according to Q∗ (see Appendix F). Essentially,
this is because in certain situations, we cannot guarantee that Q∗ has a density for D = MMD2.

To remedy this problem, we additionally regularise with the KL: since KL(Q,P ) = ∞ if P has a
Lebesgue density but Q has not, this now guarantees that Q∗ has a density q∗. In terms of (1), this
means that D = λMMD2 +λ′ KL. Adding regularisers like this has a long tradition, and is usually
done to combine the different strengths of various regularisers (see e.g. Zou and Hastie, 2005). Here,
we follow this logic: the KL ensures that Q∗ has a density, and the MMD makes particles repel each
other. With this, we can rewrite L(Q) in terms of Lfe(Q) up to a constant not depending on Q by
taking λ = λ1

2 , λ′ = λ2, and V (θ) = ℓ(θ) − λ1µP (θ) − λ2 log p(θ). Using the same algorithmic
blueprint as before, we evolve particles according to (5). As these particles follow an augmented
Langevin SDE that incorporates repulsive particle interactions via κ, we call this method the deep
repulsive Langevin ensemble (DRLE). We show in Theorem (2) (cf. Appendix E for details and
assumptions) that DRLEs generate samples from the global minimiser Q∗ in the infinite particle and
infinite time horizon limit.
Theorem 2. Let Qn,NE (T ) be the distribution of θn(T ), n = 1, . . . , NE , generated via (5). Then

Qn,NE (T )
D−→ Q∗ for each n = 1, . . . , NE and as NE → ∞, T → ∞.

This is remarkable: we have constructed an algorithm that generates samples from the global min-
imiser Q∗—even though a formal expression for what exactly Q∗ looks like is unknown! This
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Figure 2: We generate NE = 300 particles from DE, DLE and DRLE. The theoretically optimal
global minimisers Q∗ are depicted with dashed line strokes, and the generated samples are displayed
via histograms. We use P = Q0 = N (0, 1) for DLE and DRLE. Notice that the optimal Q∗ differs
slightly between DLE and DRLE.

demonstrates how impressively powerful the WGF is as tool to derive inference algorithms. Note
that this is completely different from sampling methods employed for Bayesian methods, for which
the form of Q∗ is typically known explicitly up to a proportionality constant.

A notable shortcoming of Theorem 2 is its asymptotic nature. A more refined analysis could quantify
how fast the convergence happens in terms of NE , T , the SDE’s discretisation error, and maybe even
the estimation errors due to sub-sampling of losses for constructing gradients. While the existing
literature could be adapted to derive the speed of convergence for DRLE in T (Ambrosio et al.,
2005, Section 11.2), this would require a strong convexity assumption on the potential V , which
will not be satisfied for any applications in deep learning. This is perhaps unsurprising: even for
the Langevin algorithm—probably the most thoroughly analysed algorithm in this literature—no
convergence rates have been derived that are applicable to the highly multi-modal target measures
encountered in Bayesian deep learning (Wibisono, 2019; Chewi et al., 2022). That being said,
for the case of deep learning, FD-GVI approaches fail to provide even the most basic asymptotic
convergence guarantees. Thus, the fact that it is even possible for us to provide any asymptotic
guarantees derived from realistic assumptions marks a significant improvement over the available
theory for FD-GVI methods, and—by virtue of Theorem 1—over DEs as well.

5 Experiments

Since the paper’s primary focus is on theory, we use two experiments to reinforce some of the pre-
dictions it makes in previous sections, and a third experiment that shows why–in direct contradiction
to a naive interpretation of the presented theory–it is typically difficult to beat simple DEs. More
details about the conducted experiments can be found in Appendix G. The code is available on
https://github.com/sghalebikesabi/GVI-WGF.

Global minimisers: Figure 2 illustrates the theory of Sections 4 and Appendices C–F: DLE and
DRLE produce samples from their respective global minimisers, while DE produces a distribution
which—-in accordance with Theorem 1—does not correspond to the global minimiser of Q 7→∫
ℓ(θ) dQ(θ) over P(RJ) (which is given as Dirac measure located at θ = −2).

FD-GVI vs ID-GVI: Figure 3 illustrates two aspects. First, the effect of regularisation for DLE and
DRLE is that particles spread out around the local minima. In comparison, DE particles fall directly
into the local minima. Second, FD-GVI (with Gaussian parametric family) leads to qualitatively
poorer approximations of Q∗. This is because the ID-GVI methods explore the whole space P2(RJ),
whilst FD-GVI is limited to learning a unimodal Gaussian.

DEs vs D(R)LEs, and why finite NE matters: Table 1 compares DE, DLE and DRLE on a number
of real world data sets, and finds a rather random distribution of which method performs best. This
seems to contradict our theory, and suggests there is essentially no difference between regularised
and unregularised ID-GVI. What explains the discrepancy? Essentially, it is the fact that NE is
not only finite, but much smaller than the number of minima found in the loss landscape of deep
learning. In this setting, each particle moves into the neighbourhood of a well-separated single local
minimum and typically never escapes, even for very large T . We illustrate this in Figure 4 with a
toy example. We choose a uniform prior P and initialisation Q0 and the loss ℓ(θ) := −| sin(θ)|,
θ ∈ [−1000π, 1000π], which has 2000 local minima. Correspondingly Q∗ will have many local
modes for all methods. Note that ∇V is the same for all approaches since log p and µP are constant.
The difference between the methods boils down to repulsive and noise effects. However, these noise
effects are not significant if each particle is stuck in a single mode: the particles will bounce around
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Figure 3: We generate NE = 300 particles from DE, DLE, DRLE and FD-GVI with Gaussian
parametrisation. The multimodal loss ℓ is plotted in grey and the particles of the different methods
are layered on top. The prior in this example is flat, i.e. log p and µP are constant. The initialisation
Q0 is standard Gaussian.
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Figure 4: We generate NE = 20 samples from the three infinite-dimensional gradient descent
procedures discussed in Section 4. The x-axis shows the location of the particles after training.
Since the same initialisation θn(0) is chosen for all methods, we observe that particles fall into the
same local modes. Further, 16/20 particles are alone in their respective local modes and the location
of the particles varies only very little between the different methods (which is why they are in the
same bucket in the above histogram). See also Figure 5 in the Appendix for an alteration of Figure
3 with only 4 particles which emphasizes the same point.

their local modes, but not explore other parts of the space. This implies that they will not improve
the approximation quality of Q∗. Note that this problem is a direct parallel to multi-modality—a
well-known problem for Markov Chain Monte Carlo methods (see e.g. Syed et al., 2022).

6 Conclusion

In this paper, we used infinite-dimensional gradient descent via Wasserstein gradient flows (WGFs)
(see e.g. Ambrosio et al., 2005) and the lens of generalised variational inference (GVI) (Knoblauch
et al., 2022) to unify a collection of existing algorithms under a common conceptual roof. Arguably,
this reveals the WGF to be a powerful tool to analyse ensemble methods in deep learning and beyond.
Our exposition offers a fresh perspective on these methodologies, and plants the seeds for new
ensemble algorithms inspired by our theory. We illustrated this by deriving a new algorithm that
includes a repulsion term, and use our theory to prove that ensembles produced by the algorithm
converge to a global minimum. A number of experiments showed that the theory developed in the
current paper is useful, and showed why the performance difference between simple deep ensembles
and more intricate schemes may not be numerically discernible for loss landscapes with many local
minima.

KIN8NM CONCRETE ENERGY NAVAL POWER PROTEIN WINE YACHT

DE 0.33±0.1 6.10±0.3 2.83±0.2 −0.40±0.3 13.70±2.6 11.22±2.2 14.65±1.9 2.20±0.4

DLE 13.25±4.3 5.11±0.2 2.43±0.1 3.46±2.4 13.87±2.3 43.20±12.5 13.73±1.4 1.64±0.1

DRLE 0.46±0.1 8.30±0.6 4.01±0.3 −3.04±0.2 23.21±2.0 48.80±2.1 7.13±0.6 7.80±2.7

Table 1: Table compares the average (Gaussian) negative log likelihood in the test set for the three
ID-GVI methods on some UCI-regression data sets (Lichman, 2013). We observe that no method
consistently outperforms any of the others.
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A Existence and uniqueness of global minimiser

In this section, we discuss assumptions under which the global minimiser of the optimisation prob-
lem

L(Q) =

∫
ℓ(θ) dQ(θ) + λD(Q,P ) (7)

over P(RJ) exists and is unique. We assume throughout that the optimisation problem is not patho-
logical, in the sense that there exists a measure Q̂ ∈ P(RJ) such that L(Q̂) < ∞. This is in
applications often trivial to verify. A good candidate for Q̂ is typically the reference measure P .

Loss assumptions Let ℓ : RJ → R be a loss satisfying the following assumptions:

(L1) The loss ℓ is bounded from below which means that

c := inf
{
ℓ(θ) : θ ∈ RJ

}
> −∞. (8)

(L2) The loss is norm-coercive which means that

ℓ(θ) → ∞ (9)

if ∥θ∥ → ∞.
(L3) The loss ℓ is lower semi-continuous which means that

lim inf
θ→θ0

ℓ(θ) ≥ ℓ(θ0) (10)

for all θ0 ∈ RJ .

Regulariser assumptions Let D : P(RJ) × P(RJ) → [0,∞] be a regulariser and P ∈ P(RJ)
a reference measure. We define DP (·) := D(·, P ) for notational convenience. We assume the
following for DP :

(D1) The function DP is lower semi-continuous w.r.t. to the topology of weak-convergence, i.e.
for all sequences

(
Qn

)
n∈N ⊂ P(RJ) and all Q with DP (Q) < ∞, it holds that Qn

D−→ Q
implies

lim inf
n→∞

DP (Qn) ≥ DP (Q). (11)

Here, D−→ denotes convergence in distribution.
(D2) DP is strictly convex, i.e. for all Q1 ̸= Q2 ∈ P(RJ) with DP (Q1) < ∞ and DP (Q2) <

∞, it holds that

DP

(
αQ1 + (1− α)Q2

)
< αDP (Q1) + (1− α)DP (Q2) (12)

with α ∈ (0, 1).

The next theorem provides an existence result for the optimisation problem (7). The result is similar
in spirit to Lemma 2.1 in Knoblauch (2021) with the important difference that our assumptions are
easier to verify, since they are formulated in terms of ℓ and DP .
Theorem 3 (Existence of global minimiser). Under the assumptions (L1)-(L3) and (D1) there exists
a probability measure Q∗ ∈ P(RJ) with

L(Q∗) = inf
{
L(Q) : Q ∈ P(RJ)

}
. (13)

Proof. Let c > −∞ be the lower bound for ℓ. It follows immediately that L(Q) ≥ c for all
Q ∈ P(RJ) since D(P,Q) ≥ 0. As a consequence we know that

∞ > L∗ := inf
{
L(Q) : Q ∈ P(RJ)

}
≥ c > −∞. (14)

By definition of the infimum we can construct a sequence ln = L(Qn) ∈ R in the image of L such

ln → L∗ (15)
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for n → ∞. We now show by contradiction that the corresponding sequence
(
Qn

)
⊂ P(RJ) is

tight4. Assume that
(
Qn

)
is not tight. By definition we can then find an ϵ > 0 such that for each

k ∈ N there exists n = nk ∈ N with Qnk
([−k, k]J) ≤ 1 − ϵ. We set Ak := [−k, k]J ⊂ RJ and

obtain

lnk
= L(Qnk

) (16)

=

∫
Ak

ℓ(θ) dQnk
(θ) +

∫
RJ\Ak

ℓ(θ) dQnk
(θ) + λD(Q,P ) (17)

≥
∫
Ak

ℓ(θ) dQnk
(θ) +

∫
RJ\Ak

ℓ(θ) dQnk
(θ) (18)

≥ cQnk
(Ak) + inf

{
ℓ(θ) : θ ∈ RJ\Ak

}
Qnk

(RJ\Ak) (19)

≥ cQnk
(Ak) + ϵ inf

{
ℓ(θ) : θ ∈ RJ\Ak

}
. (20)

Due to the coerciveness of ℓ, we know that inf
{
ℓ(θ) : θ ∈ RJ\Ak

}
→ ∞ for k → ∞ and there-

fore lnk
→ ∞ for k → ∞. However, this is a contradiction: The sequence (ln) is convergent and

therefore in particular bounded. As a consequence, it cannot contain the unbounded sub-sequence
(lnk

). It follows that the sequence (Qn) is tight. By Prokhorov’s theorem we can now extract a sub
sequence (Qnk

) of (Qn) and a measure Q∗ ∈ P(RJ) such that

Qnk

D−→ Q∗ (21)

for k → ∞. Due to Lemma 5.1.7 in Ambrosio et al. (2005) the lower semi-continuity of ℓ implies
that Q 7→

∫
ℓ(θ) dQ(θ) is lower semi-continuous. This combined with the lower semi-continuity of

DP gives

lim inf
k→∞

L(Qnk
) ≥ L(Q∗). (22)

From this it immediately follows that

L(Q∗) ≤ lim inf
k→∞

L(Qnk
) = L∗, (23)

but by definition L∗ is the global minimum of L which implies L∗ ≤ L(Q∗). We therefore conclude
that L(Q∗) = L∗.

Theorem 3 only shows the existence of a global minimiser. In order to show uniqueness we use
the convexity assumption (D2). The proof is the same as in finite dimensions and only included for
completeness.
Theorem 4 (Uniqueness of global minimiser). Assume that (D2) holds. Then, the global minimiser
of L is unique (whenever it exists).

Proof. Assume there exits two probability measures Q1, Q2 ∈ P(RJ) such that

L(Q1) = L∗ = L(Q2). (24)

where ∞ > L∗ := inf
{
L(Q) : Q ∈ P(RJ)

}
> −∞. We define the probability measure

Q3 := 1
2Q1 +

1
2Q3. By strict convexity we obtain

L(Q3) <
1

2
L(Q1) +

1

2
L(Q3) = L∗, (25)

which is a contradiction to Q1 and Q2 being global minimisers.

Note that in the literature on GVI (Knoblauch et al., 2022) it is common to assume that the regulariser
is definite, i.e.

D(P,Q) = 0 ⇐⇒ P = Q (26)

for all P,Q ∈ P(RJ). We did not use this assumption in neither Theorem 3 nor Theorem 4.
However, the next lemma shows that it is basically implied by strict convexity.

4A sequence of probability measures (Qn) is called tight if and only if for every ϵ > 0 there exists a
compact set K ∈ RJ such that for all n ∈ N holds: Qn(K) > 1− ϵ.
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Lemma 1. Let DP : P(RJ) → [0,∞] be strictly convex and assume further D(Q,Q) =
0 for all Q ∈ P(RJ). Then it follows that D(Q,P ) = 0 implies P = Q.

Proof. We prove the claim by contradiction. Assume that there exists P ̸= Q such that D(P,Q) =
0. The strict convexity and D(P, P ) = 0 imply combined that

D(
1

2
P +

1

2
Q,P ) <

1

2
D(P, P ) +

1

2
D(Q,P ) (27)

= 0. (28)

However, we know that D( 12P + 1
2Q,P ) ≥ 0 by assumption. This is a contradiction.

Discussion on loss assumptions The assumptions on the loss ℓ in (L1) and (L3) are rather weak.
Typically loss functions in machine learning are bounded from below and continuous (and there-
fore in particular lower semi-continuous). However, norm-coercivity can be violated. Consider for
example the squared loss

ℓ(θ) :=

N∑
n=1

(
yn − fθ(xn)

)2
, (29)

where fθ is the parametrisation of a neural network with one hidden layer, i.e. θ = (w,A) and

fθ(x) = wTσ(Ax), (30)

where σ : R → R is an activation function which is applied pointwise to the vector Ax and has the
property that σ(0) = 0. It is now possible to find a sequence of parameters (θk)k∈N ⊂ RJ with
∥θk∥ → ∞ such that ℓ(θk) does not converge to infinity. Define wk := k

(
1 . . . 1

)
, Ak := 0 and

θk = (wk Ak) for k ∈ N. Then we obviously have that

∥θk∥ = ∥wk∥ → ∞ (31)

for k → ∞ but

ℓ(θk) =

N∑
n=1

(
yn − fθk(xn)

)2
(32)

=

N∑
n=1

(
yn − wTσ(0)

)2
(33)

=

N∑
n=1

y2n, (34)

which is constant and therefore does not converge to ∞. A similar, but notationally more involved,
construction can be made for neural networks with more than one hidden layer. However, this is an
issue that can be easily resolved by adding what is known as weight decay to the loss. For example,
consider for γ > 0 the loss

ℓ(θ) :=

N∑
n=1

(
yn − fθ(xn)

)2
+ γ∥θ∥2 (35)

with weight decay. This loss is by construction norm-coercive and therefore the previous existence
proof applies.

Discussion on regulariser assumptions The assumptions (D1) and (D2) are quite weak. The KL-
divergence for example is known to be lower semi-continuous (Polyanskiy and Wu, 2014, Theorem
3.7) and strictly convex (Polyanskiy and Wu, 2014, Theorem 4.1). This immediately implies lower
semi-continuity and convexity of KL(·, P ) for any fixed P . The MMD is also known to be strictly
convex (Arbel et al., 2019, Lemma 25), whenever it is well-defined, which can be guaranteed under
weak assumptions on κ (Muandet et al., 2017, Lemma 3.1). The lower semi-continuity properties
also depend on the kernel κ. However, for bounded kernels it is trivial to verify. We include the
proof for completeness, but assume this has been shown before elsewhere.
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Lemma 2. Let the kernel κ : RJ × RJ be continuous and bounded: ∥κ∥∞ :=
supθ,θ′∈RJ |k(θ, θ′)| < ∞ and P be fixed. Then MMD(·, P ) is continuous and therefore, in partic-
ular, lower semi-continuous.

Proof. Let (Qn)n∈N and Q∗ be such that

Qn
D−→ Q∗ (36)

for n → ∞. This immediately implies that

Qn ⊗Qn
D−→ Q∗ ⊗Q∗ (37)

for n → ∞, where Q∗ ⊗ Q∗ denotes the product measure of Q∗ with itself. Further, note that
the kernel mean embedding µP is continuous as integral with respect to the second component of a
continuous function and bounded since

|µP (θ)| = |
∫

κ(θ, θ′) dP (θ′)| (38)

≤
∫

|κ(θ, θ′)|dP (θ′) (39)

≤ ∥κ∥∞. (40)

By the definition of weak convergence for measures, we therefore have∫∫
κ(θ, θ′) d(Qn ⊗Qn)(θ, θ

′) −→
∫∫

κ(θ, θ′) d(Q∗ ⊗Q∗)(θ, θ′) (41)∫
µP (θ) dQn(θ) −→

∫
µP (θ) dQ

∗(θ) (42)

for n → ∞. This immediately implies continuity of MMD(·, P ) with respect to the topology of
weak convergence.

Notice that most kernels common in machine learning, such as the squared exponential or the Matérn
kernel, are continuous and bounded and therefore Lemma 2 applies.
Remark 1. The astute reader may have noticed that our existence proof only guarantees the ex-
istence of measure Q∗ ∈ P(RJ). However, the Wasserstein gradient flow is by definition only
formulated in the space of probability measures with finite second moment, denoted P2(RJ). As-
sumptions which guarantee that Q∗ ∈ P2(RJ) are easy to formulate. For example, we can require
that there exists C > 0 and R > 0 such that the loss ℓ satisfies

|ℓ(θ)| > C∥θ∥2 (43)

for all ∥θ∥ > R. This immediately implies that Q∗ ∈ P2(RJ) since otherwise∫
|ℓ(θ)| dQ∗(θ) = ∞ (44)

gives a contradiction to the finiteness of L(Q∗). However, even if (43) is violated, the reference
measure P may still guarantee that Q∗ ∈ P2(RJ). For example, if P ∈ P2(RJ), then DP (Q

∗) will
typically be large if Q∗ /∈ P2(RJ) and the global minimiser is therefore in a sense unlikely to have
fat tails. We therefore assume Q∗ ∈ P2(RJ) throughout the paper and consider it to be a minor
practical concern.

B Realising the Wasserstein gradient flow

In this section, we identify a suitable stochastic process that allows us to follow the WGF.

Let Lfe : P(RJ) → (−∞,∞] be the free energy discussed in Section 3.2 given as

Lfe(Q) :=

∫
V (θ) dQ(θ) +

λ1

2

∫
κ(θ, θ′) dQ(θ)dQ(θ′) + λ2

∫
log

(
q(θ)

)
q(θ) dθ, (45)
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where λ1, λ2 ≥ 0 are constants, V : RJ → R is the potential, κ : RJ × RJ → R is symmetric. We
will write L for Lfe from now on to simplify notation. The Wasserstein gradient of L is given as (cf.
Chapter 9.1 Villani, 2003, Equation 9.4)

∇WL[Q](θ) = ∇V (θ) + λ1(∇1κ ∗Q)(θ) + λ2∇ log
(
q(θ)

)
, (46)

where ∇1κ : RJ × RJ → RJ is the (vector-valued) derivative of κ with respect to the first compo-
nent, ∇ denotes the euclidean gradient with respect to θ and (∇1κ ∗Q)(θ) :=

∫
∇1κ(θ, θ

′) dQ(θ′)
for θ ∈ RJ . The corresponding Wasserstein gradient flow is therefore given as (cf. Chapter 9.1
Villani, 2003, Equation 9.3)

∂tq(t, θ) = ∇ ·
(
q(t, θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ) + λ2∇ log

(
qt(θ)

)))
. (47)

In general the probability density evolution of a stochastic process is—via the Fokker-Planck
equation—associated with the adjoint of the (infinitesimal) generator of the stochastic process. We
will therefore try to identify the generator associated to the density evolution in (47). To this end
let h ∈ C2

c (RJ ,R) where C2
c (RJ ,R) denotes the space of twice continuously differentiable func-

tions with compact support. We multiply both sides of (47) with h, integrate, and apply the partial
integration rule to obtain

d

dt

∫
h(θ)q(t, θ) dθ = −

∫
∇WL

[
Q(t)

]
(θ) · ∇h(θ) q(t, θ) dθ. (48)

= −
∫ (

∇V (θ) + λ1(∇1κ ∗Qt)(θ)
)
· ∇h(θ) dQt(θ) (49)

− λ2

∫
∇ log

(
qt(θ)

)
· ∇h(θ) dQt(θ). (50)

By chain-rule and partial integration, (50) can be rewritten as

−λ2

∫
∇ log

(
qt(θ)

)
· ∇h(θ) dQt(θ) = −λ2

∫
∇qt(θ) · ∇h(θ) dθ (51)

= λ2

∫
∆h(θ) dQt(θ). (52)

Putting everything together, we obtain

d

dt

∫
h(θ)q(t, θ) dθ =

∫ (
A[Q(t)]h

)
(θ) dQt(θ), (53)

where
{
A[Q]

}
Q∈P(RJ )

is a family of operators defined as(
A[Q]h

)
(θ) := −

(
∇V (θ) + λ1(∇1κ ∗Q)(θ)

)
· ∇h(θ) + λ2∆h. (54)

for h ∈ C2
c (RJ ,R). The reader may recognize this operator family as the generator of a so called

nonlinear Markov processes (Kolokoltsov, 2010, Chapter 1.4). The nonlinearity in this case refers
to the dependency on the measure Q. Linear Markov processes have no measure-dependency. This
family of generators corresponds to a McKean-Vlasov process of the form

dθ(t) = −
(
∇V (θ(t)) + λ1(∇1κ ∗Qt)(θ(t))

)
dt+

√
2λ2dB(t), (55)

where
(
B(t)

)
t>0

is a Brownian motion and Qt the law of θ(t). In other words: The solution to
(55) has the time marginals Q(t) such that (53) holds for every h ∈ C2

c (RJ ,R). Furthermore, the
corresponding pdfs

(
q(t)

)
satisfy the nonlinear Fokker-Planck equation given as

∂tqt = A∗[Qt]qt, (56)

where A∗[Q] denotes the L2-adjoint of the operator A[Q] and is given as(
A∗[Q]h

)
(θ) = ∇ ·

(
h(θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ) + λ2∇ log

(
h(θ)

)))
(57)
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for h ∈ C2
c (RJ ,R)(Barbu and Röckner, 2020, cf. equation (1.1)-(1.4)). Note that (56) corresponds

exactly to the Wasserstein gradient flow equation in (47). We can therefore follow the WGF by
simulating solutions to (55).

The standard approach to simulate solutions to (55) (Veretennikov, 2006) is to use an ensemble of
interacting particles. Formally, we replace Q(t) by 1

NE

∑NE

n=1 δθn(t) and obtain

dθn(t) = −
(
∇V

(
θn(t)

)
+

λ1

NE

NE∑
j=1

(∇1κ)
(
θn(t), θj(t)

))
dt+

√
2λ2dBn(t) (58)

for n = 1, . . . , NE where NE ∈ N denotes the number of particles. The Euler-Maruyama approxi-
mation of (58) leads to the final algorithm:

Step 1: Initialise NE ∈ N particles θ1,0, . . . , θNE ,0 from a use chosen initial distribution Q0.

Step 2: Evolve the particles forward in time according to

θn,k+1 = θn,k − η
(
∇V

(
θn,k

)
+

λ1

NE

NE∑
j=1

(∇1κ)
(
θn,k, θj,k

))
+

√
2ηλ2Zn,k (59)

for n = 1, . . . , NE , k = 0, . . . , T − 1 with Zn,k ∼ N (0, IJ×J).

Note that θn,k is thought of as approximation of θn(t) at position t = kη. Furthermore, as dis-
cussed in Section 4, various choices of V , λ1 and λ2 allow us to implement the WGF for different
regularised optimisation problems in the space of probability measures. This is summarised below:

• Deep ensembles: V (θ) = ℓ(θ), λ1 = 0, λ2 = 0

• Deep Langevin ensembles: V (θ) = ℓ(θ)− λ log p(θ), λ1 := 0, λ := λ2

• Deep repulsive Langevin ensembles: V (θ) = ℓ(θ)− λ1 log p(θ)− λ2µP (θ)

C Asymptotic distribution of particles: unregularised objective

In this section, we investigate the asymptotic distribution of the WGF for the objective

L(Q) :=

∫
ℓ(θ) dQ(θ) (60)

for Q ∈ P(RJ). The associated particle method is:

• Sample θ1(0), . . . , θNE
(0) independently from Q0.

• Simulate (deterministically) θ′n(t) = −∇ℓ
(
θn(t)

)
for n = 1, . . . , NE .

We start by introducing some notation for the deterministic gradient system. Let ϕt(θ0) denote the
solution to the ordinary differential equation (ODE)

θ(0) = θ0 ∈ RJ (61)

θ′(t) = −∇ℓ
(
θ(t)

)
(62)

at time t > 0. In a first step, we show the following lemma, which is a simple application of the
famous Lojasiewicz theorem (Colding and Minicozzi II, 2014), and the fact that Lebesgue almost
every initialisation leads to a local minimum (Lee et al., 2016).

Lemma 3. Assume ℓ : RJ → R is norm-coercive and satisfies the Lojasiewicz inequality, i.e. for
every θ ∈ RJ exists an environment U of θ and constants 0 < γ < 1 and C > 0 such that

|ℓ(θ)− ℓ(θ̄)|γ < C|∇ℓ(θ)|. (63)

for all θ̄ ∈ U . Then we know that ϕt(θ0) converges for t → ∞ to a local minimum of ℓ for Lebesgue
almost every θ0 ∈ RJ .
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Proof. First we show that t 7→ ϕt(θ0) is bounded. We proof this by contradiction. Assume that
ϕt(θ0) is unbounded. Then there exists a subsequence (tn)n∈N ⊂ [0,∞) with tn → ∞ for n → ∞
such that

|ϕtn(θ0)| → ∞ (64)

for n → ∞. The norm-coercivity immediately implies that

ℓ
(
ϕtn(θ0)

)
→ ∞ (65)

for n → ∞. However, this contradicts

ℓ
(
ϕt(θ0)

)
≤ ℓ

(
ϕ0(θ0)

)
= ℓ(θ0) < ∞, (66)

where the first inequality follows from the fact that t 7→ ℓ
(
ϕt(θ0)

)
is decreasing, which is a conse-

quence of

d

dt
ℓ
(
ϕt(θ0)

)
= ∇ℓ

(
ϕt(θ0)

) d

dt
ϕt(θ0) (67)

= −|∇ℓ
(
ϕt(θ0)

)
|2 ≤ 0. (68)

Hence t 7→ ϕt(θ0) is bounded. By the Bolzano-Weierstrass theorem we can find a sequence
(tn)n∈N ⊂ [0,∞) with tn → ∞ and a point θ∞ ∈ RJ such that

ϕtn(θ0) → θ∞ (69)

for n → ∞. Hence
(
ϕt(θ0)

)
t>0

has the accumulation point θ∞. The Lojasiewicz theorem (Colding
and Minicozzi II, 2014) allows us to deduce that

ϕt(θ0) → θ∞ (70)

for t → ∞, and that θ∞ satisfies ∇ℓ(θ∞) = 0.

It remains to show that θ∞ is not a saddle point for Lebesgue almost every initial value θ0. However,
this is very similar to the proof in Lee et al. (2016). The only difference is that one would need to use
a continuous-time version of the stable manifold theorem, which is readily available, for example in
Bressan (2003).

Let {mi}i∈N denote the local minima of ℓ which are by assumption countable. Denote further by

Θi :=
{
θ0 ∈ RJ : lim

t→∞
ϕt(θ0) → mi

}
(71)

the domain of attraction for the minimum mi. The next theorem is then an easy consequence of
Lemma 3.
Theorem 5. Assume that the loss function ℓ only has countably many local minima, is norm coer-
cive, and satisfies the Lojasiewicz inequality. Let further θ0 ∼ Q0 for some Q0 ∈ P(RJ) such that∑∞

i=1 Q0(Θi) = 1. Then,

ϕt(θ0)
D−→

∞∑
i=1

Q0(Θi) δmi
=: Q∞ (72)

for t → ∞. Here D−→ denotes convergence in distribution.

Proof. Let θ0 ∈ RJ be fixed. Due to Lemma 3, we know that

ϕt(θ0) →
∞∑
i=1

mi1{θ0 ∈ Θi} (73)

for Lebesgue almost every θ0 for t → ∞. Here, 1{·} denotes the indicator function. Let Y now
be a random variable with law Q0. By assumption, we know that Y ∈ Θi for some i ∈ N with
probability 1. Hence,

ϕt(Y ) →
∞∑
i=1

mi1{Y ∈ Θi} (74)
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almost surely for t → ∞. Since almost sure convergence implies convergence in distribution, we
conclude that

ϕt(Y )
D−→ L

( ∞∑
i=1

mi1{Y ∈ Θi}
)
, (75)

where L(·) denotes the law of a random variable. However, the law of the RHS is easily recognised
as

L
( ∞∑
i=1

mi1{Y ∈ Θi}
)
=

∞∑
i=1

Q0(Θi)δmi
, (76)

which concludes the proof.

Remark 2. Note that the condition
∞∑
i=1

Q0(Θi) = 1 (77)

in Theorem 5 is easy to satisfy. According to Lemma 3 the set

RJ\
n⋃

i=1

Θi (78)

has Lebesgue measure zero. Therefore, any Q0 which has a density w.r.t. the Lebesgue measure
will satisfy (77).

D Asymptotic distribution for deep Langevin ensembles

In this section, we analyse the objective

L(Q) :=

∫
ℓ(θ) dQ(θ) + λKL(Q,P ) (79)

for Q ∈ P(RJ). The corresponding particle method is given as:

• Sample θ1(0), . . . , θNE
(0) independently from Q0.

• Simulate the SDE dθn(t) = −∇V
(
θn(t)

)
dt+

√
2λdBn(t) for each n = 1, . . . , NE .

Recall that V (θ) = ℓ(θ) − λ log p(θ). This case is well-studied in the literature and known as
Langevin diffusion. Under mild assumptions (Chiang et al., 1987; Roberts and Tweedie, 1996),

θn(t)
D−→ Q∞ (80)

for t → ∞ and each particle n = 1, . . . , NE independently. The probability measure Q∞ has the
density

q∞(θ) =
1

Z
exp

(
− V (θ)

λ

)
(81)

=
1

Z
exp

(
− ℓ(θ)

λ

)
p(θ), (82)

where Z > 0 is the normalising constant. As a consequence, the WGF asymptotically produces
samples from Q∞. However, it is a priori unclear that Q∞ is in fact the same as the global minimiser
Q∗ of L.

We investigate this question by relating invariant measures to stationary points of the Wasserstein
gradient.
Definition 1. (Liggett, 2010, Thm. 3.3.7) A measure Q is called an invariant measure (for a given
Feller-process) if ∫

Ah(θ) dQ(θ) = 0 (83)

for all h ∈ C2
c (RJ). Here A is the infinitesimal generator of the corresponding Feller-process.
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Recall that the infinitesimal generator of the Langevin diffusion for h ∈ C2
c (RJ) is given as

Ah = −∇V · ∇h+ λ∆h. (84)

Definition 2. A measure Q ∈ P2(RJ) is called a stationary point of the Wasserstein gradient if

∇WL[Q](θ) = 0 (85)

for Q−almost every θ ∈ RJ .

In finite dimensions, it is well-known that a local minimiser is a stationary point of the gradient.
This carries over to the infinite-dimensional case, with a similar proof. Since we could not find this
result anywhere in the literature we included it for completeness.

Lemma 4. Let Q̂ be a local minimiser of L, i.e. there exits and ϵ > 0 such that

L(Q̂) ≤ L(Q) (86)

for all Q with W2(Q̂,Q) ≤ ϵ. Then Q̂ is a stationary point of the Wasserstein gradient in the sense
of Definition 2.

Proof. Let h ∈ C2
c (RJ) be arbitrary and Q̂ ∈ P2(RJ) be a local minimum of L. Further, let ϕt(θ0)

be the solution to the initial value problem

θ(0) = θ0 (87)

θ′(t) = ∇h(θ(t)) (88)

for t ∈ (−ϵ, ϵ) for some ϵ > 0. We now define Q(t) := ϕt#Q̂ for t ∈ (−ϵ, ϵ) where f#µ denotes
the push-forward of the measures µ through the function f . In the Riemannian interpretation of the
Wasserstein space,

(
Q(t)

)
t∈(−ϵ,ϵ)

is a curve in P2(RJ) with tangent vector h at point Q̂ (Ambrosio
et al., 2005, Chapter 8). We, further, define f : (−ϵ, ϵ) → R as f(t) := L(Q(t)). Application of the
chain-rule (Ambrosio et al., 2005, p. 233) gives

f ′(0) =
d

dt
L(Q(t))

∣∣
t=0

(89)

= ⟨∇WL[Q(0)],∇h⟩L2(Q(0)) (90)

=

∫
∇WL[Q̂](θ) · ∇h(θ) dQ̂(θ). (91)

We know that f has a local minimum at t = 0 and, therefore, f ′(0) = 0 which gives

0 =

∫
∇WL[Q̂](θ) · ∇h(θ) dQ̂(θ). (92)

Since (92) holds for arbitrary test functions h ∈ C2
c (RJ) and as C2

c (RJ) is dense in L2(Q̂), we
obtain that ∇WL[Q̂](θ) = 0 for Q̂-a.e θ ∈ RJ .

The next lemma relates invariant measures and stationary points of the Wasserstein gradient for
infinitesimal generators of the form (84). It will prove extremely useful to translate between the
Langevin diffusion literature and our optimisation perspective.
Lemma 5. Let Q ∈ P2(RJ) be such that Q has a density q with respect to the Lebesgue measure.
Then, the following two statements are equivalent:

• Q is a stationary point of the Wasserstein gradient.

• Q is an invariant measure.

Proof. Let Q be a measure with density q. Recall that the generator of the Langevin diffusion is for
h ∈ C2

c (RJ) given as

Ah = −∇V · ∇h+ λ∆h. (93)
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By partial integration, it is easy to verify that the L2- adjoint (w.r.t the Lebesgue measure) is given
as

A∗h = ∇ · (h · ∇V ) + λ∆h. (94)

We, therefore, conclude that∫
Ah(θ) dQ(θ) =

∫
Ah(θ)q(θ) dθ (95)

=

∫
h(θ)A∗q(θ) dθ (96)

=

∫
h(θ)

(
∇ · (q(θ) · ∇V (θ)) + λ∆q(θ)

)
dθ. (97)

Furthermore, we have ∇WL[Q] = ∇V + λ∇ log q, and therefore∫
∇WL[Q](θ) · ∇h(θ) dQ(θ) =

∫
∇WL[Q](θ) · ∇h(θ)q(θ) dθ (98)

=

∫ (
∇V (θ)q(θ) + λ∇q(θ)

)
· ∇h(θ) dθ (99)

= −
∫

h(θ)
(
∇ · (q(θ)∇V (θ)) + λ∆q(θ)

)
dθ, (100)

where the last line follows from applying partial integration. This allows us to conclude that∫
Ah(θ) dQ(θ) = −

∫
∇WL[Q](θ) · ∇h(θ) dQ(θ) (101)

whenever Q has a density. As a consequence we have that Q is invariant if and only if it is a
stationary point of the Wasserstein gradient.

Lemma 5 allows us to move between the optimisation and stochastic differential equation perspec-
tive. In Appendix A, we discussed the existence and uniqueness of a global minimiser Q∗ of L.
We know that Q∗ has a density since the Kullback-Leibler divergence would be infinite otherwise
(assuming P has a Lebesgue-density which we assume throughout the paper). Lemma 4 guarantees
that Q∗ is a stationary point of the Wasserstein gradient. Due to Lemma 5, we can infer that Q∗

must be an invariant measure. However, due to the uniqueness of the invariant measure under the
previously mentioned mild assumptions (Chiang et al., 1987; Roberts and Tweedie, 1996), we can
conclude that Q∗ = Q∞.

E Asymptotic distribution of deep repulsive Langevin ensembles

In this section, we consider

L(Q) =

∫
ℓ(θ) dQ(θ) +

λ1

2
MMD(Q,P )2 + λ2 KL(Q,P ) (102)

=

∫
V (θ) dQ(θ) +

λ1

2

∫
κ(θ, θ′) dQ(θ)dQ(θ′)− λ2H(Q) + const, (103)

as optimisation objective. Here, H(Q) = −
∫
log q(θ)q(θ) dθ denotes the differential entropy.

Recall that in this case V (θ) = ℓ(θ)−λ1µP (θ)−λ2 log p(θ). We already discussed in Appendix B
that the McKean-Vlasov process of the form

θ(0) ∼ Q0 (104)

dθ(t) = −
(
∇V (θ(t)) + λ1(∇1κ ∗Qt)(θ(t))

)
dt+

√
2λ2dB(t), (105)

with
(
B(t)

)
t≥0

being a Brownian motion achieves the desired density evolution. Furthermore, the
particle approximation of (104) is given as

dθn(t) = −
(
∇V

(
θn(t)

)
+

λ1

NE

NE∑
j=1

(∇1κ)
(
θn(t), θj(t)

))
dt+

√
2λ2dBn(t) (106)
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for n = 1, . . . , NE where NE ∈ N denotes the number of particles.

The approach follows the same procedure as in Appendix D. We show the notions of invariant
measures and stationary points of the Wasserstein gradient are the same for measures with Lebesgue
density. We start by introducing the concept of an invariant measure for a nonlinear Markov process
(Ahmed and Ding, 1993, Definition 1).
Definition 3. A measure Q is called an invariant measure for a nonlinear Markov process with the
family of infinitesimal generators

{
A[Q]

}
Q∈P(RJ )

if∫
A[Q]h(θ) dQ(θ) = 0 (107)

for all h ∈ C2
c (RJ).

Recall that the family of infinitesimal generators in our case is given as(
A[Q]h

)
(θ) := −

(
∇V (θ) + λ1(∇1κ ∗Q)(θ)

)
· ∇h(θ) + λ2∆h. (108)

for h ∈ C2
c (RJ ,R). In analogy to Lemma 5, we obtain the following result.

Lemma 6. Let Q ∈ P2(RJ) be such that Q has a density q with respect to the Lebesgue measure.
Then, the following two statements are equivalent:

• Q is a stationary point of the Wasserstein gradient for L in (102) in the sense of Def. 2.

• Q is an invariant measure for the McKean-Vlasov process with infinitesimal generator
defined in (108)

Proof. First, we notice that∫
A[Q]h(θ)dQ(θ) =

∫
A[Q]h(θ)q(θ) dθ (109)

=

∫
h(θ)

(
A∗[Q]q

)
(θ) dθ. (110)

Recall, that A∗[Q] denotes the L2-adjoint of the operator A[Q] and that it is given as(
A∗[Q]h

)
(θ) = ∇ ·

(
h(θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ) + λ2∇ log

(
h(θ)

)))
(111)

for h ∈ C2(RJ ,R) with compact support. This implies(
A∗[Q]q

)
(θ) = ∇ ·

(
q(θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ)

))
+ λ2∆q(θ). (112)

We plug this into (110) to obtain∫
A[Q]h(θ) dQ(θ) (113)

=

∫
h(θ)∇ ·

(
q(θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ)

))
dθ +

∫
λ2h(θ)∆q(θ) dθ. (114)

On the other hand, we have that

∇WL[Q](θ) = ∇V (θ) + λ1(∇1κ ∗Q)(θ) + λ2∇ log q(θ), (115)

and therefore∫
∇L[Q](θ) · ∇h(θ) dQ(θ) (116)

=

∫ (
∇V (θ) + λ1(∇1κ ∗Q)(θ) + λ2∇ log q(θ)

)
· ∇h(θ) dQ(θ) (117)

=

∫
q(θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ)

)
· ∇h(θ) dθ + λ2

∫
∇q(θ) · ∇h(θ) dθ (118)

= −
∫

∇ ·
(
q(θ)

(
∇V (θ) + λ1(∇1κ ∗Q)(θ)

))
h(θ) dθ − λ2

∫
q(θ)∆h(θ) dθ, (119)
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where the last line follows from partial integration. Comparing (114) to (119) gives∫
A[Q]h(θ) dQ(θ) = −

∫
∇L[Q](θ) · ∇h(θ) dQ(θ) (120)

for all h ∈ C2
c (RJ) whenever Q has a density. This immediately implies that Q is invariant iff it is

a stationary point.

Again, we leverage this correspondence between stationary point and invariant measures. There is
a rich literature on ergodicity of nonlinear Markov processes. For example, Theorem 2 of Vereten-
nikov (2006) specifies conditions on κ and V such that

Qn,NE (t)
D−→ Q∞ (121)

for NE , t → ∞. Here Qn,NE (t) denotes the law of a fixed particle θn(t), n = 1, . . . , NE , whose
distribution is characterised by the SDE (58). The measure Q∞ is the unique invariant measure of
the nonlinear Markov process. By Lemma 6 every invariant measure is a stationary point of the
Wasserstein gradient and vice versa. Hence, existence and uniqueness of the stationary point of the
Wasserstein gradient is immediately implied. However, since the global minimiser Q∗ is a stationary
point of the Wasserstein gradient (cf. Lemma 4), we conclude by uniqueness that Q∞ = Q∗.

F Asymptotic analysis of deep repulsive ensembles

In this section, we consider the objective

L(Q) :=

∫
ℓ(θ) dQ(θ) + λMMD(Q,P ) (122)

for Q ∈ P(RJ). The corresponding McKean-Vlasov process is of the form

dθ(t) = −
(
∇V (θ(t)) + λ(∇1κ ∗Qt)(θ(t))

)
dt, (123)

where Qt denotes the distribution of θ(t) and V (θ) = ℓ(θ)−µP (θ) with µP (θ) =
∫
κ(θ, θ′) dP (θ)

the kernel mean-embedding of P . We call the particle method in this case deep repulsive ensembles
(DRE).

The existence of the global minimiser Q∗ is still guaranteed under the assumptions in Appendix A.
Lemma 4 guarantees that Q∗ is a stationary point of the Wasserstein gradient, i.e.

∇V (θ) + λ(∇1κ ∗Q∗)(θ) = 0 (124)

for Q∗-a.e. θ ∈ RJ . Recall that the infinitesimal generator in this case is given as(
A[Q]h

)
(θ) := −

(
∇V (θ) + λ(∇1κ ∗Q)(θ)

)
· ∇h(θ) (125)

for Q ∈ P(RJ), h ∈ C2
c (RJ). It immediately follows from the definition that(

A[Q]h
)
(θ) = −∇WL[Q](θ) · ∇h(θ) (126)

for all h ∈ C2
c (RJ), θ ∈ RJ . As in Lemma 5 & 6, this implies that each stationary point of

the Wasserstein gradient is an invariant measure of the McKean-Vlasov process and vice versa. In
Appendix D & E, we cite relevant literature that guarantees uniqueness of the invariant measure,
which is a necessary (but not sufficient) condition for convergence to the invariant measure. The
next theorem shows that uniqueness will in general not hold without the presence of the diffusion
term.
Theorem 6. The invariant measure for the McKean-Vlasov process with the family of generators(
A[Q]

)
Q∈P(RJ )

defined in (126) is (in general) not unique.

Proof. Let NE ∈ N and define L̃ :
(
RJ

)NE → R as

L̃(θ1, . . . , θNE
) :=

NE∑
i=1

V (θi) +
λ

2NE

NE∑
i,j=1

κ(θi, θj). (127)
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Assume that V is bounded from below and norm-coercive. Then L̃ is bounded from below and
norm-coercive and therefore we can find a global minimiser θ∗ :=

(
θ∗1 , . . . , θ

∗
NE

)
∈
(
RJ

)NE of L̃.
Since L̃ is differentiable, we know that θ∗ is a stationary point of the gradient which implies

∇V (θ∗i ) +
λ

NE

NE∑
j=1

(∇1κ)(θ
∗
i , θ

∗
j ) = 0 (128)

for all i = 1, . . . , NE . Here, we assume that the kernel κ is symmetric, which is standard in the
MMD literature. Note that (128) is equivalent to

∇V (θ) + λ(∇1κ ∗ Q̂)(θ) = 0 (129)

for Q̂-a.e. θ ∈ RJ where

Q̂(dθ) :=
1

NE

NE∑
j=1

δθ∗
j
(dθ). (130)

This means that Q̂ is a stationary point of the Wasserstein gradient, and therefore an invariant mea-
sure for the McKean-Vlasov process. Since NE ∈ N was arbitrary, we have constructed countably
many invariant measures and therefore uniqueness can’t hold in general.

The reason that non-uniqueness of the invariant measure is an immediate contradiction to conver-
gence is the following: If we initialise with any of the invariant measures constructed in the proof of
Theorem 6, then the particle distribution of the McKean-Vlasov process will remain unchanged over
time. Convergence to the global minimiser can therefore surely not hold for arbitrary initialisation
Q0. It may be possible to construct conditions on Q0 under which convergence still holds. For
example, for Stein variational gradient descent a similar issue occurs. However, in this case one can
guarantee convergence (Lu et al., 2019, Theorem 2.8) if Q0 has a Lebesgue-density (and if the ker-
nel satisfies further restrictive assumptions). The existence of conditions that guarantee convergence
for DRE remains an open problem.

G Implementation details

In Appendix A, we derived the following algorithm:

Step 1: Simulate NE ∈ N particles θ1,0, . . . , θNE ,0 from a use chosen initial distribution Q0.
Step 2: Evolve the particles forward in time according to

θn,k+1 = θn,k − η
(
∇V

(
θn,k

)
+

λ1

NE

NE∑
j=1

(∇1κ)
(
θn,k, θj,k

))
+

√
2ηλ2Zn,k (131)

for n = 1, . . . , NE , k = 0, . . . ,K − 1 with Zn,k ∼ N (0, IJ×J).

We can generate samples from DE, DLE and DRLE by setting the potential and regularisation
parameters as described below:

• Deep ensembles: V (θ) = ℓ(θ), λ1 = 0, λ2 = 0

• Deep Langevin ensembles: V (θ) = ℓ(θ)− λ log p(θ), λ1 = 0, λ = λ2

• Deep repulsive Langevin ensembles: V (θ) = ℓ(θ)− λ1 log p(θ)− λ2µP (θ)

Due to Appendix D & E, we can think of θ1,K , . . . , θNE ,K as approximately sampled from the
global minimiser Q∗ for DLE and DRLE if K is large enough. All experiments use the SE kernel
given as

κ(θ, θ′) = exp
(
− ∥θ − θ′∥2

2σ2
κ

)
(132)

with lengthscale parameter σκ > 0. The kernel mean embedding µP can easily be approximated as

µP (θ) =
1

M

M∑
i=1

κ(θ, θi), θ ∈ RJ , (133)

where θ1, . . . , θM ∼ P independently. We chose M = 20.
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G.1 Toy example: global minimiser

We describe details regarding the experiments conducted to produce Figure 2 below.

We generate NE = 300 particles and make the following choices:

• Loss: ℓ(θ) := 3
2 (

1
4θ

4 + 1
3θ

3 − θ2)− 3
8

• Prior: P ∼ N (0, 1) and therefore log p(θ) = − 1
2θ

2

• Initialisation: Q0 = P

• Reg. parameter: λDLE = 1, λDRLE = 1, λ′
DRLE = 1

• Step size: η = 10−4, Iterations: K = 100, 000

• Kernel lengthscale, σκ, is chosen according to the median heuristic (Garreau et al., 2017)
based on samples from the prior P

The loss is constructed such that we have a global minimum at θ = −2, a turning point at θ = 0,
and a local minimum at θ = 1.

• Deep ensembles: The optimal Q∗ is a Dirac measure located at the global minimiser θ =
−2. However, as we proved in Theorem 1, the WGF produce samples from

Q∞(dθ) =
1

2
δ−2(dθ) +

1

2
δ1(dθ), (134)

as (−∞, 0) is the region of attraction for the global minimum and (0,∞) for the local
minimum which both have probability 0.5 under Q0 = P = N (0, 1). In particular, Q∞ ̸=
Q∗ as expected.

• Deep Langevin ensembles: The optimal measure has the pdf

q∗(θ) ∝ exp
(
− ℓ(θ)

λ

)
p(θ) (135)

for θ ∈ R. As expected the WGF produces samples from Q∗.

• Deep repulsive Langevin ensembles: The optimal q∗ for deep repulsive ensembles is harder
to determine. From the condition that q∗ is a stationary point of the Wasserstein gradient,
we can derive that u(θ) := log q∗(θ) satisfies the integro-differential equation

u′(θ) = − 1

λ2
V ′(θ)− λ1

λ2

∫
(∇1κ)(θ, θ

′) exp(u(θ′)) dθ′ (136)

with some initial value u(0) = u0. In principle, we could choose u0 such that q(θ) :=
exp(u(θ)) integrates to 1. However, since we do not know the appropriate initial condition
a priori, we choose an arbitrary u0 and normalise the pdf afterwards. We use an numerical
solver to evaluate u(θ) on a fixed grid. As expected, the WGF produces samples from Q∗

in this case.

G.2 Toy example: multimodal loss

The details below correspond to the experimental results presented in Figures 3 and 5. Figure 5 is an
alteration of Figure 3 with only 4 particles with the goal of stressing the importance of the number
of particles relative to the number of local minima.

DE, DLE, DRLE We generate NE = 300 particles and make the following choices:

• Loss: ℓ(θ) = − log
∑4

i=1
1
4N (θ;µi, I2), θ ∈ R2, µi = (±3,±3)T , i = 1, . . . , 4

• Prior: P flat and therefore log p(θ) = 0

• Initialisation: Q0 ∼ N (0, I2)

• Reg. parameter: λDLE = 0.2, λDRLE = 0.2, λ′
DRLE = 0.6

• Step size: η = 0.1, Iterations: K = 10, 000
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Figure 5: We generate NE = 4 particles from DE, DLE, DRLE and FD-GVI with Gaussian
parametrisation. The multimodal loss ℓ is plotted in grey and the particles of the different methods
are layered on top. The prior in this example is flat, i.e. log p and µP are constant. The initialisation
Q0 is standard Gaussian.

• Kernel lengthscale, σκ, is chosen according to the median heuristic (Garreau et al., 2017)
based on samples from the prior P

Note that for a translation-invariant kernel such as the SE kernel we obtain for the flat prior P that

µP (θ) =

∫ ∞

−∞
κ(θ, θ′) dθ′ (137)

=

∫ ∞

−∞
ϕ(θ − θ′) dθ′ (138)

=

∫ ∞

−∞
ϕ(ξ) dξ, (139)

where the second line follows from the fact that we can write any translation-invariant kernel as
κ(θ, θ′) = ϕ(θ − θ′) for some function ϕ : RJ → R and the second line is simple variable substitu-
tion. If (139) is finite, the above expression is well-defined and therefore µP constant. Note that in
particular for the SE kernel, we have ϕ(ξ) = exp(−∥ξ∥2/(2σ2

κ)) and therefore (139) is finite. As a
consequence, we have that for a flat prior P the gradient of the potential V is the same for all three
methods. This means that the loss ℓ isn’t adjusted and the only difference between the three methods
is the presence of repulsion and noise effects.

Remark 3. The astute reader may have noticed that a flat prior P is in fact not covered by our theory
in Appendix A. The problem is that KL(·,L), where L denotes the Lebesgue measure, is not positive
(and not even bounded from below). To see this, choose Q = N (0,Σ) with Σ = diag(σ2

1 , σ
2
2) and

note that

KL(Q,L) =
∫

log q(θ) q(θ) dθ = −H(Q), (140)

where H(Q) denotes the differential entropy. For a Gaussian, it is known that

H(Q) =
1

2
log

(
(2πe)J det(Σ)

)
=

1

2

(
log(2πe)J + log(σ2

1) + log(σ2
2)
)

(141)

and therefore if either σ2
1 → ∞ or σ2

2 → ∞ then KL(Q,L) → −∞. However, note that this
difficulty is rather technical in nature and can easily be remedied. Instead of L, we could have chosen
the uniform prior P ∼ U(−10100, 10100). In this case, the positivity of KL(·, P ) is guaranteed by
Jensen’s inequality. This choice of P gives—up to an additive constant—the same objective as
a flat prior and up to machine precision the same kernel mean embedding µP . It is, therefore,
algorithmically irrelevant if P is flat or uniform on a very large set.

FD-GVI We use the same prior and loss as for DE, DLE and DRLE. We parameterise the variational
family as independent Gaussian, i.e.

Q =
{
N (µ,Σ) |µ ∈ R2, Σ = diag

(
exp(β1), exp(β2)

)
, β := (β1, β2)

2 ∈ R2
}
. (142)
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We learn the variational parameters ν := (µ, β) ∈ R4 by minimising

L̃(ν) =

∫
ℓ(θ) dQν(θ) + λKL(Qν , P ) (143)

=

∫
ℓ(θ) dQν(θ)− λH

(
N (µ,Σ)

)
(144)

≈ 1

200

200∑
j=1

ℓ(µ+Σ0.5Zj)−
λ

2
log

(
(2πe)2 exp(β1) exp(β2)

)
(145)

=
1

200

200∑
j=1

ℓ(µ+Σ0.5Zj)−
λ

2

(
β1 + β2

)
+ const, (146)

where Z1, . . . , Z200 ∼ N (0, I2) and H
(
N (µ,Σ)

)
denotes the differential entropy of the normal

distribution. For the regularisation parameter, we chose λ = 0.5.

G.3 Toy example: more modes than particles

We generate NE = 20 particles and make the following choices:

• Loss: ℓ(θ) = −| sin(θ)|, θ ∈ [−Mπ,Mπ], with M = 1000

• Prior: P flat and therefore log p(θ) = 0 and µP = const. (cf. Appendix G.2)
• Initialisation: Q0 ∼ U(−Mπ,Mπ)

• Reg. parameter: λDLE = 0.001, λDRLE = 0.001, λ′
DRLE = 0.6

• Step size: η = 0.01, Iterations: K = 1.000

• Kernel lengthscale, σκ, is chosen according to the median heuristic (Garreau et al., 2017)
based on samples from the prior P

Note that ℓ has 2M = 2000 local minima at locations

mi :=
π

2
+ iπ, i ∈ {−M, . . . , 0, . . . , (M − 1)}. (147)

Due to the flat prior ∇V = ∇ℓ for all three methods. We observe that it is hard to distinguish the
methods since most particles are in their local modes by themselves.

G.4 UCI Regression

The UCI data sets are licensed under Creative Commons Attribution 4.0 International license (CC
BY 4.0). Following Lakshminarayanan et al. (2017), we train 5 one-hidden-layer neural networks
fθ with 50 hidden nodes for 40 epochs. We split each data set into train (81% of samples), validation
(9% of samples), and test set (10% of samples). Based on the best hyperparameter runs (according
to a Gaussian NLL) found via grid search on a validation data set, we make the following choices:

• Loss: ℓ(θ) = 1
N

∑N
n=1(fθ(xn)− yn)

2 where
{
xn, yn

}N

n=1
are paired observations.

• Prior: P ∼ N (0, 1)

• Initialisation: Kaiming intilisation, i.e. for each layer l ∈ {1, ...L} that maps features with
dimensionality nl−1 into dimensionality nl, we sample Ql,0 ∼ N (0, 2/nl)

• Reg. parameter: λDLE = 10−4, λDRLE = 10−4, λ′
DRLE = 10−2

• Step size: η = 0.1, Iterations: K = 10, 000

• Kernel lengthscale, σκ, is chosen according to the median heuristic (Garreau et al., 2017)
based on samples from the prior P

G.5 Compute

While the final experimental results can be run within approximately an hour on a single GeForce
RTX 3090 GPU, the complete compute needed for the final results, debugging runs, and sweeps
amounts to around 9 days.
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