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Abstract

In the era of extensive intersection between art and Artificial Intelligence (AI),
such as image generation and fiction co-creation, AI for music remains relatively
nascent, particularly in music understanding. This is evident in the limited work on
deep music representations, the scarcity of large-scale datasets, and the absence of
a universal and community-driven benchmark. To address this issue, we introduce
the Music Audio Representation Benchmark for universaL Evaluation, termed
MARBLE. It aims to provide a benchmark for various Music Information Retrieval
(MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels,
including acoustic, performance, score, and high-level description. We establish a
unified protocol based on 18 tasks on 12 public-available datasets, providing a fair
and standard assessment of representations of all open-sourced pre-trained models
developed on music recordings as baselines. MARBLE offers an easy-to-use,
extendable, and reproducible suite for the community, with clear statements on
dataset copyright. Results suggest that recently proposed large-scale pre-trained
musical language models perform the best in most tasks, with room for further
improvement. The leaderboard and toolkit repository are published34 to promote
future music AI research.

1 Introduction

Despite Artificial Intelligence (AI) rapid advancement in the field of art, it has not yet made significant
progress in music, particularly in music understanding. To address this, researchers are studying the
interdisciplinary field of Music Information Retrieval (MIR) to develop a general music understanding
model. MIR focuses on automatically extracting information from raw music audio [40], which
enables a variety of tasks such as music classification, emotion recognition, pitch estimation, and the
analysis of musical features such as rhythm, melody, and harmony. Due to issues such as copyright
and annotation costs, labelled music datasets are usually small, which limits the performances of
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supervised models. Given that self-supervised learning (SSL) is useful for various tasks (e.g., NLP
[23, 18, 51] and CV [41]) with limited annotated datasets, there have been works on SSL-based audio
representation learning [26, 33, 32, 2, 20, 49, 58] and music pre-trained models [43, 35, 69, 62, 31, 11,
29, 53, 66, 37]. The existing benchmarks, GLUE [57], SuperGLUE [56], and ERASER [10] in NLP,
along with VTAB [68] and VISSL [16] in CV, all play an active role in promoting the development
of SSL-related research topics in the corresponding domains. However, there are only scattered and
fragmented evaluations of the existing music models rather than comprehensive benchmarks, making
it difficult to objectively compare and draw insights across techniques.

In the current context, the SSL music systems are evaluated with downstream task datasets, including
genre classification [26, 35, 69, 62, 31, 8, 29, 66, 37, 34], emotion classification [35, 31, 8, 29, 37, 34],
instrument classification [35, 62, 49, 37, 34], music tagging [69, 31, 8, 53, 43, 29, 66, 37, 34], key
detection [31, 8, 29, 37, 34], music detection [49], beat tracking [34] and cover song detection [66].
Existing works usually conduct evaluations with different experimental setups, and few of them
explore sequential tasks such as beat tracking and source separation. Although in similar domains,
SUPERB [65] and HEAR [54] are proposed to facilitate unified analysis of the learned representations
of speech and sound events, the distribution of musical audio is significantly different. Thus, there
is an urgent need to construct comparable, extensive, and easy-to-use benchmarks to enhance the
development of music SSL.

In this paper, we propose a Music Audio Representation Benchmark for universaL Evaluation (MAR-
BLE) to address this problem. MARBLE aims to examine the full spectrum of model capabilities,
and thus proposes a taxonomy adapted from Dai et al. [9] to categorise MIR tasks, including acous-
tic, performance, score, and high-level description. The four-level hierarchy aligned to musician
consensus serves as a guideline to further organise the datasets and helps to identify a diversified
set of downstream tasks. We select popular tasks in the (now defunct) Music Information Retrieval
Evaluation eXchange (MIREX) Challenge5, and use the corresponding public datasets with limited
annotations. As demonstrated in Tab. 1, the current version of MARBLE contains 18 downstream
tasks, spread over 13 task categories on 12 publicly or commercially available datasets. Except for the
common classification tasks, we also integrate the missing piece of the puzzle – sequence labelling
tasks that require frame-wise prediction, including source separation and beat tracking. The datasets
used in MARBLE are ensured easy-to-access: all datasets are available for download directly from
the official repository or an external website for downloading a specific version.

In addition, we design a unified protocol and build tool-kits to evaluate the generalisation ability
of the models. In MARBLE protocol, the models are regarded as backbones to provide universal
representations for all tasks, and task-specific prediction heads are concatenated to further trained
under unconstrained, semi-constrained, and constrained settings, which is defined by whether the
training hyperparameters are restricted and whether the backbone model is frozen (cf. § 3.2). The
evaluation suite provides codes for dataset preprocessing and examples of evaluating existing popular
SSL models in the benchmark. We select 7 representative music SSL models as our baselines (cf.
§ 3.1) and release the evaluation results at our publicly available leaderboards6 as a reference.

Our key contributions are listed as follows: (1) providing a diversified music understanding benchmark
with well-defined taxonomy of the MIR tasks; (2) incorporating and organising a wide range of
datasets to facilitate comprehensive music model evaluation; (3) designing a unified assessment
protocol and building corresponding evaluation suites for processing, training, and benchmarking.

2 Benchmark Tasks

As demonstrated in Tab. 1, we collect datasets in MARBLE to provide the community with a standard,
general-purpose, easy-to-use benchmark for various tasks covering all aspects of music. Generally,
music processing involves discriminative and generative tasks. The discriminative tasks either classify
or regress musical recordings as a whole or use a seq2seq model to make frame-by-frame decisions on
entire sequences. The generative tasks include audio synthesis and music composition. For the initial
release of MARBLE, we focus on discriminative tasks, and generative tasks are currently outside
our scope. The task collection is guided by the principles of (1) receiving a high level of interest

5https://www.music-ir.org/mirex/wiki/MIREX_HOME
6Considering potential legal constraints, MARBLE allows to submit results on the tasks partially (e.g., tasks

on commercially available datasets) for the future participants.
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in the MIR community, (2) having publicly available datasets allowing everyone to participate, and
(3) limited labelled data to effectively measure the universality of the model. Four aspects of music
are studied through 18 proposed tasks: High-level description tasks including key detection, music
tagging, classification gender, and emotion recognition; Score-level tasks including estimating the
pitch of a musical note, tracking beats, extracting melody, estimating the chords, and transcribing the
lyrics; Performance-level tasks including detecting musical ornaments or techniques; and Acoustic-
level tasks including singer identification, instrument classification, and source separation that focus
more on raw audio information.

Table 1: The Dataset, Commercial License, and Prediction Head of Each Task Used for the MARBLE
Benchmark. SDR refers Source-to-distortion Ratio.

Taxonomy Task Type Task & Annotation Prediction
Type

Evaluation
Metrics

Commercially
Available

Key Detection Giantsteps key [25] Multi-class Weight Score [45] Yes

High-level
Description

Music Tagging
MagnaTagATune [28] Multi-label ROC-AUC & PR-AUC/AP -
MTG Top50 [7] Multi-label ROC-AUC & PR-AUC/AP -

Genre Classification
GTZAN [55] Multi-class Accuracy -
MTG Genre [7] Multi-label ROC-AUC & PR-AUC/AP -

Emotion Detection
Emomusic [52] Regression R2Valence & R2Arousal -
MTG MoodTheme [7] Multi-label ROC-AUC & PR-AUC/AP -

Score-level Pitch Classification Nsynth [14] Multi-class Accuracy Yes
Beat Tracking GTZAN Rhythm [55] Seq2Seq, Binary-class F-measure (Threshold 20ms) -
Melody Extraction MelodyDB [4] Seq2Seq, Multi-class Accuracy -
Chord Estimation GuitarSet [63] Seq2Seq, Multi-class 8 different mir_eval score MIT
Lyrics Transcription MulJam2.0 Seq2Seq, Multi-class CER, WER -

Jamendo [12] Seq2Seq, Multi-class CER, WER MIT

Performance-level Vocal Technique Detection VocalSet [61] Multi-class Accuracy Yes

Acoustic-level

Singer Identification VocalSet [61] Multi-class Accuracy Yes

Instrument Classification
Nsynth [14] Multi-class Accuracy Yes
MTG Instrument [7] Multi-label ROC-AUC & PR-AUC/AP -

Source Separation MUSDB18 [46] Seq2Seq, Regression SDR -

2.1 High-level Description Tasks

Key detection involves predicting the scale and key pitch levels of a song. MARBLE solves this task
using the Giantsteps [25] and a subset of the Giantsteps-MTG-keys dataset [27]. Giantsteps dataset
contains 604 songs and is taken as our dedicated test set. Additionally, we leverage a subset of the
Giantsteps-MTG-keys dataset, which contains 1077 music pieces with single-key annotations, for
training and validation. Since no standardised split is available for Giantsteps-MTG, we adopt the
dataset split strategy employed in [8]. Both datasets contain 2 minutes of electronic dance music
covering all 12 pitch classes in major and minor, resulting in a 24-class classification task. For
performance evaluation, we employ accuracy with an error tolerance metric, a weighted score metric.
This metric grants partial credit for reasonable errors, such as predicting relative secondary keys
when the primary key is the ground truth [45].

Music Tagging refers to assigning a predefined set of tags to a given song. These tags encompass
various aspects such as genre, instrumentation, mood, and tempo (e.g., fast), making music tagging
somewhat overlap with genre classification, emotion recognition, and instrument classification. To
conduct our study, we utilise two extensive datasets: MagnaTagATune (MTT) [28] and MTG-Jamendo
(MTG) [7]. The MTT dataset comprises 30-second audio clips with manual annotations for tags.
It consists of 25.9k clips, amounting to a total duration of 170 hours. For MARBLE, we use the
Top50 tags, and adopt a conventional (12:1:3) training, validation, and test split, aligning with all
baseline approaches’ practices. Besides, the MTG dataset contains 55k clips, corresponding to nearly
2k hours of music. As the audio clips in this dataset may exceed 30 seconds in length, we compute
multiple embeddings using a sliding window of 30 seconds and then average them to obtain an overall
embedding representation. While both datasets encompass a large number of tags, we follow the
customary to limit the vocabulary to the 50 most common tags in each dataset. The evaluation metrics
employed for this task are the macro-average of all tag ROC-AUCs (receiver operating characteristic
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- area under the curve) and the average precision (AP) / PR-AUC (precision-recall - area under the
curve). These metrics provide comprehensive insights into the model’s performance across all tags.

Genre classification aims to assign each song the most suitable genre label. This study uses two
distinct datasets: GTZAN [55] and MTG-Genre. GTZAN consists of 30-second audio clips from
10 genres, making it suitable for a multi-class classification task. To assess the performance of this
dataset, we report the accuracy metric. To ensure consistent evaluation, we utilise the "fail-filtered"
split as described in [24] for GTZAN. The filtered dataset comprises 930 audio tracks corresponding
to approximately 8 hours of music. Besides, MTG-Genre, derived from MTG-Jamendo, contains
55k tracks but focuses solely on 95 genre tags, resulting in a multi-label classification problem. We
employ the ROC and AP metrics to evaluate the performance of MTG-Genre.

Emotion Recognition in music aims to determine the emotional content of music pieces. In our
study, we utilise two distinct datasets to evaluate the performance of emotion recognition: Emomusic
[52] and MTG-MoodTheme [7]. Emomusic contains 744 pieces of 45-second music clips and
is annotated with valence and arousal scores. The valence represents the positivity of emotional
responses, while arousal indicates emotional intensity. The official evaluation metrics for this dataset
is the determination coefficient (r2) between the model’s regression results and human annotations
of arousal and valence [52]. During inference, we split the 45-second clips into 5-second sliding
windows and computed the average prediction probability as the final prediction. Since no standard
dataset split is available for Emomusic, we adopt the same partitioning as [8]. It is important to note
that direct comparison of the SoTA model’s results with the benchmark may be challenging due to
the different dataset splits. Additionally, we utilise MTG-MoodTheme, a subset of MTG-Jamendo
consisting of 18.5k audio tracks annotated with 59 human emotion labels. This is a multi-label task
with ROC and AP as evaluation metrics.

2.2 Score-level Tasks

Pitch Classification in Music (Monophonic) involves determining the appropriate pitch category for
a given audio sample, ranging from MIDI note numbers 0 to 127 on a semitone scale. In this study,
we perform pitch classification using the Nsynth dataset [14] within the music information retrieval
benchmark. It comprises 340 hours of music, with each excerpt lasting 4 seconds. Since the audio
recordings in this dataset are monophonic, the pitch classification task is formulated as a 128-class
classification problem, covering all possible MIDI pitch categories (fundamental frequencies from
8Hz to 12.5kHz). The evaluation metric used for this task is the accuracy achieved across all audio
clips.

Beat Tracking determines the presence of a beat and a downbeat in each frame of a given music
piece. In this benchmark, we only focus on beat tracking, making it a binary-classification task7. An
offline approach is employed for beat tracking, allowing the model to utilise frame-level information
during inference. The model generates frame-by-frame predictions at a specific frequency, which are
then post-processed using a dynamic Bayesian network (DBN) [6] implemented with madmom [5] to
obtain the final result. The GTZAN Rhythm dataset [36] is used in this study. The dataset provides
frame-level annotations for each music clip in GTZAN. To enhance model performance and ensure a
fair comparison with the SOTA model, adjacent frames of each beat label are also labelled as beats
using a label smoothing technique commonly employed in beat tracking. The model is evaluated
using the f_measure metric implemented in mir_eval [45]. A prediction is considered correct if
the difference between the predicted event and the ground truth does not exceed 20ms. It is important
to note that while some models may have been trained on other datasets, the GTZAN-train subset is
used as the training set, and GTZAN-test is used as the test set for all MARBLE submissions.

Chord Estimation is to recognise the temporal music chord of a given piece of music. We imple-
mented this task as a 421-class classification including 35 types of chords on 12 different root notes,
and none. More information on the chord vocabulary can be found in Appendix D. The probing
model consists of an MLP with a hidden size of 512 and concludes with a fully connected output layer.
There is no post-processing involved from frame-level prediction to event-level. The predictions are
aligned with the token rate of the pre-trained model. Performances are measured as by 6 measures
in SOTA model [22] including root, majmin, mirex, thirds, triads, and sevenths. We have

7Due to the limitation of time and the size of the dataset, tracking the time signature (e.g., 4/4 metre) and
downbeat is deferred to future versions with other datasets.
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added two additional evaluation metrics inspired by MIREX: majmin_inv and sevenths_inv, to
assess the performance of chord recognition at the level of inversions. The metrics are implemented
by mir_eval[45]. We use the GuitarSet [63] dataset for this task. The dataset comprises 360
excerpts, each around 30 seconds, recorded by 6 players performing 30 lead sheets in two versions
(comping and soloing) across 5 styles, 3 progressions, and 2 different tempos. Four audio versions
are provided, and we selected the “mix” (a monophonic mixture of the original 6-channel file) for
our audio collection. The dataset offers two types of chord annotations for selection, and we chose
“performed chord” as our primary annotation and used “instructed chord” to substitute specific colour
chords. We divided the audio into 5-second segments and allocated 5 singers into the validation and
training sets while designating one singer for the test set. Out of the 5 singers, we allocated 30% to
the validation set and 70% to the training set. Segments from the same song are assigned to the same
set, for instance, all 5-second segments from a particular song are grouped into the training set.

Melody Extraction is to recognise the pitch of melody for a given music, typically pop songs.
Adhering to the methodology in [59], we divided the frequency spectrum between 0 and 8000 Hz into
360 bins, treating our task as a classification problem. The probing model consists of a single-layer
bidirectional LSTM with a hidden size of 512, followed by a linear layer. The predictions are aligned
with the token rate of the pre-trained model, which is then resampled to match the label rate using the
nearest interpolation. Performances are measured as the Overall Accuracy metric from the mir_eval
[45] library. We use the MedleyDB [4] dataset for this task. It has 108 full tracks, collectively lasting
7.3 hours. All tracks come with three types of melody labels given at intervals of roughly 5.8 ms. For
our study, we focused on the second annotation, which indicates the fundamental frequency of mixed
stems. For data splitting, we followed the partitioning strategy of [59] giving 67, 15 and 26 tracks for
training, validation and testing sets respectively which was achieved after omitting a redundant track
from the test set in the popular split.

Lyrics Transcription aims to identify the linguistic content in audio recordings of singing. In
MARBLE, we focus on the evaluation of multilingual lyrics transcription, an aspect that has been
under-explored in the field of lyrics transcription. We perform the task using the MulJam dataset
[70], which comprises 6031 songs in 6 languages: English, French, Spanish, Italian, German,
and Russian. This dataset offers a rich repository of around 153k lines with lyrics annotations.
The training, validation and testing sets contain 147k, 3k and 2k lines, respectively. We set a
standard train/valid/test splitting and re-labelled the MulJam dataset as MulJam2.0 with more human
annotation. More information can be found in Appendix E. We also use Jamendo [12] as a test
set which includes English, French, German and Spanish pop songs. There are 20 songs for each
language and the dataset comes with line-level human annotation for lyrics. In line with recent
literature [15, 42], the backend adopts a hybrid CTC/Attention architecture design [60]. Given the
task’s complexity and the necessity to capture long-term dependencies, we use a transformer with
3 encoder layers and 3 decoder layers. The output from the encoder is further processed by a fully
connected layer to map it to the target dimension for the CTC loss computation [17]. We also calculate
a sequence-to-sequence (S2S) loss between the output from the decoder and the true lyrics text. The
final loss is a balanced combination of the CTC loss and the S2S loss. For validation and testing, we
employ beam search on the transformer decoder to iteratively select the best predictions. Additionally,
a transformer language model is trained from the same data split to incorporate language knowledge
at test time. Performance evaluation is conducted using Character Error Rate (CER) and Word Error
Rate (WER). Different from all the metrics in other tasks, WER and CER values are the less the
better.

2.3 Performance-level Tasks

Vocal Technique Detection task involves identifying different singing techniques within an audio clip.
For this task, the MARBLE benchmark utilises the VocalSet dataset [61], the sole publicly available
dataset specifically designed for studying singing techniques. This dataset comprises recordings of
20 professional singers (9 female and 11 male) performing 17 distinct singing techniques in various
contexts, amounting to a total duration of 10.1 hours. Given that the audio clips are segmented into
3-second intervals, the task focuses on determining the type of technique (e.g.Vibrato, Straight) rather
than the precise start and end times. To evaluate the performance of models, we employ Accuracy as
the evaluation metric. We use a subset of 10 different singing techniques used in Yamamoto et al.
[64], which contains 15 singers in the training and validation set, and 5 for the test set. Since there is
no predetermined division between the training and validation sets, we assign 9 singers to the training
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set and 6 singers to the validation set. It is important to note that all 3-second segments originate
from the same audio recording file within the same part of the split, such as being exclusively part of
the training set. Detailed data partitioning can be found in our provided code.

2.4 Acoustic-level Tasks

Instrument Classification refers to the multi-label or multi-class identification of instruments present
in a given audio recording. In the MARBLE benchmark, we utilise two datasets: Nsynth and MTG-
instrument. The Nsynth dataset comprises 306,000 audio tracks, each corresponding to one of
11 different instruments. The evaluation metric for this dataset is accuracy. On the other hand,
MTG-instrument is a subset of MTG-Jamendo, containing 25,000 audio tracks and 41 instrument
tags. Each track can have multiple instrument tags and is evaluated based on ROC and AP.

Singer Identification involves recognizing the singer or vocal performer from an audio recording. In
previous work on Singer Identification using the VocalSet dataset [61], different splits are employed.
For the MARBLE benchmark, we randomly split the dataset into training, validation, and test sets,
maintaining a ratio of 12:8:5. All sets contain the same 20 singers. The specific data divisions can be
found in the provided code.

Source Separation aims to separate different components of a music recording, such as vocals,
drums, bass, and others. In MARBLE, we adopt the widely-used MUSDB18 dataset [46] for this task.
MUSDB18 consists of 150 full-length music tracks, totalling approximately 10 hours of audio and
multiple isolated stems. Our training set consists of 86 tracks, the validation set contains 14 tracks,
and the evaluation set comprises 50 tracks, following the official MUSDB18 setting. During training,
we randomly sample 6-second segments and apply random track mixing for data augmentation. Due
to the complexity of this task, we utilise the baseline architecture from the Music Demixing Challenge
(MDX) 2021 [38]. This architecture consists of three linear layers and three bi-directional LSTM
layers. The optimization is performed by directly computing the l2-loss between the predicted and
ground-truth spectrograms. The evaluation metric for this task is the Source-to-Distortion Ratio
(SDR) as defined in [38], which is calculated as the mean across the SDR scores of all songs.

3 Evaluation Framework

We aim to explore the generality and standardisation of the framework. Therefore, we freeze the
parameters of the pre-trained model to extract pre-trained features as fixed depth embeddings fed to
each downstream task-specific prediction head. This allows for as lightweight a solution as possible
for all tasks, thus testing whether the representations are easily reusable across different downstream
tasks. We describe pre-trained baseline models, downstream models, and protocols in the following
sections.

3.1 Pre-trained baseline systems

The audio pre-training models explored in this paper are summarised in Table. 2. Note that we do
not cover models designed entirely for speech or not open source models. We also examine all the
open-source SSL systems specifically designed from music audio, in total 9 different versions of 7
pre-trained features; see Table. 2 for information on pre-trained models.

MusiCNN [43] is a convolutional model pre-trained on the music audio tagging task using the MSD
dataset [3]. We use the default configuration of the method, which is to concatenate the mean pooling
of the CNN features for a 3-second input with the output of the maximum pool.

Contrastive learning of musical representations (CLMR) [53] leverages a 9-layer 1-D convolu-
tional kernel as the feature extractor, employing a number of data augmentation, and is trained on
both MSD and MTT. Both are trained with a contrastive learning approach. The model extracts an
embedding every 2.69 seconds.

Jukebox [11] is a music generation model trained using codified audio language modelling (CALM).
It is trained on 1.2 million private songs, and the size of the training set is difficult to estimate the
exact number of hours. However, assuming an average song length of 3-6 minutes, the total length
could be 60k-120k hours, which is large and diverse to allow Jukebox to learn patterns and structures
of different musical genres and styles. We use the same mid-layer representation as [8] to improve
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Table 2: Information of Baseline Systems.

Method
MusiCNN

CLMR Jukebox MULE MAP-Music2Vec
MAP-MERT-v0 MAP-MERT-v1

MSD-big base base-public base large

Network CNN 9-Conv
3-Conv, 22-Conv, 7-Conv, 7-Conv, 7-Conv, 7-Conv, 7-Conv,

36-Trans 2-Trans 12-Trans 12-Trans 12-Trans 12-Trans 12-Trans

#Params 8M 2.5M 5B 62.4M 95M 95M 95M 95M 330M

Input log-mel waveform waveform log-mel waveform waveform waveform waveform waveform

Stride 3s 2.69s 23.78s 2s 20ms 20ms 20ms 13.3ms 13.3ms

Context Length 3s 2.69s 23.78s 3s 30s 5s 5s 5s 5s

Data (hour) 10~20k 1.7k 60~120k 117.5k 1k 1k 0.9k 17k 160k

Pre-training
Task

Music
Tagging

Contrastive
Learning CALM Contrastive

Learning
MLM

Boostrapping
MLM

Clustering
MLM

Clustering
MLM

Clustering
MLM

Clustering

computational efficiency. Unlike other representations that run on short context windows, JUKEBOX
is trained on a long window of 8192 sample points (23.78 seconds) of audio. We use the same strategy
as [8] to extract the audio features on the downstream dataset.

MULE (Musicnet-ULarge) [37] is a SSL system based on SF NFNet-F0 [58], SlowFast Normalizer-
Free ResNet. It combines a SlowFast (SF) part (including a slower pathway that captures spatial
information and a faster pathway that captures temporal information) with a more efficient and
scalable variant of the Normalizer-Free ResNet (NFNet). MULE is contrastively pre-trained on
the whole MusicSet dataset [37] and provides promising results on classification tasks. The model
extracts an embedding with a 3-second window length and a 2-second hop length.

MAP-Music2Vec [31] is a self-supervised learning (SSL) model specifically based on a bootstrapping
mask prediction pre-training strategy. It consists of two main components: the student and teacher
models. Both share the same architecture with 12 transformer layers, with the teacher model’s
parameters being exponential moving averages of the student model’s parameters. The student
model takes in masked input, and during training, it aims to learn deep features from the teacher
model based on the output of the unmasked input. Specifically, it computes the average of the top
8 layers of the Transformer’s output in the teacher model. To train the MAP-Music2Vec model, a
private dataset comprising approximately 1,000 hours of music data was used. The input length
of the MAP-Music2Vec model is set to 30 seconds, producing 50 embeddings per second. These
embeddings capture essential features of the music data and can be utilised for various downstream
tasks, including sequential tasks such as source separation and beat tracking.

MAP-MERT-v0, also referred to as MERT-95MK-means in the work by Li et al. [29], is a pre-trained
model built upon the speech self-supervised learning (SSL) system HUBERT [20]. It undergoes
pre-training for masked prediction, with discrete pseudo-labels obtained from K-Means clustering
on music features. The pre-training task of MAP-MERT-v0 involves two pseudo-labels based on
logmel and Chroma, along with a CQT reconstruction task that emphasises pitch information. Two
versions of the MAP-MERT-v0 model are included: MAP-MERT-v08, trained on a private dataset
of 1,000 hours, and MAP-MERT-v0-public9, trained on Music4ALL [50]. The input length of the
MAP-MERT-v0 model is set to 5 seconds, generating 50 embeddings per second. This design
facilitates fine-tuning for sequential tasks, enabling efficient and effective processing of music data.

MAP-MERT-v1 encompasses two variants: (MAP-)MERT-v1-base10 and (MAP-)MERT-v1-large11.
These models, also known as MERT-95MRVQ-VAE and MERT-330MRVQ-VAE in the work by Li et
al. [29], employ EnCodec, a pre-trained discrete deep feature, as a replacement for the K-means
feature. This modification facilitates the scaling up of the model. Similar to MAP-MERT-v0, the
input length of the MAP-MERT-v1 models is 5 seconds, but they produce 75 embeddings per second.

8https://huggingface.co/m-a-p/MERT-v0
9https://huggingface.co/m-a-p/MERT-v0-public

10https://huggingface.co/m-a-p/MERT-v1-95M
11https://huggingface.co/m-a-p/MERT-v1-330M
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This configuration enables effective fine-tuning for sequential tasks, making the models suitable for
processing music data in a variety of applications.

3.2 Downstreams and Training Strategies

To evaluate the relevance of representations for downstream MIR tasks, we design evaluation
frameworks: the unconstrained track, semi-constrained track and the constrained track. In the
unconstrained track, researchers are invited to submit their systems with any hyperparameter and
structure configuration, including the option to fine-tune pre-trained models. This track encourages
flexibility and exploration, enabling researchers to investigate a wide range of approaches. On the
other hand, the semi-constrained track requires the submissions to use frozen pre-trained backbones.
Finally, the constrained track employs a standardised setting with limited hyper-parameter search
space (cf. Appendix A), where frozen models are used as feature extractors for training a one-layer
512-unit MLP (or 1/3-layer 512-unit LSTM for melody extraction or source separation, or 3-encoder-
3-decoder layers transformer for lyrics transcription) on each task. In addition, we set a computational
wall for MARBLE. The systems need to finish each task within a week on our machine equipped with
a single consumer GPU (RTX3090). By offering these three evaluation tracks, we aim to provide
researchers with a comprehensive platform to assess the performance and relevance of representations
in MIR tasks, encouraging innovative approaches and fostering advancements in the field. For the
same task with a uniform dataset, if there are different evaluation metrics (e.g., emotion regression,
source separation, and tagging), we will average the two evaluation metrics. We select the checkpoints
regarding to the best validation results for final testing and submission.

Table 3: Performances of Baselines Evaluated on MARBLE with constrained settings (1/3). We
include previous SOTAs for reference. Note that MARBLE imposes strict constraints on downstream
structures and hyper-parameter search spaces, while previous SOTAs are not subject to such limita-
tions. Best scores on MARBLE are bold, and best scores among all systems are underlined.

Dataset MTT GS GTZAN GTZAN EMO Nsynth Nsynth VocalSet VocalSet
Task Tagging Key Genre Rhythm Emotion Instrument Pitch Tech Singer

Metrics ROC AP AccRefined Acc F1beat R2V R2A Acc Acc Acc Acc

MusiCNN [43] 90.3 37.8 14.4 73.5 - 44.4 68.8 72.6 64.1 70.3 57.0
CLMR [53] 89.5 36.0 14.8 65.2 - 44.4 70.3 67.9 47.0 58.1 49.9
Jukebox-5B [8, 67] 91.4 40.6 63.8 77.9 - 57.0 73.0 70.4 91.6 76.7 82.6
MULE [37] 91.2 40.1 64.9 75.5 - 60.7 73.1 74.6 88.5 75.5 87.5
MAP-Music2Vec [31] 90.0 36.2 50.6 74.1 68.2 52.1 71.0 69.3 93.1 71.1 81.4
MAP-MERT-v0-95M [30] 90.7 38.2 64.1 74.8 88.3 52.9 69.9 70.4 92.3 73.6 77.0
MAP-MERT-v0-95M-public [30] 90.7 38.4 67.3 72.8 88.1 59.1 72.8 70.4 92.3 75.6 78.0
MAP-MERT-v1-95M [29] 91.0 39.3 63.5 74.8 88.3 55.5 76.3 70.7 92.6 74.2 83.7
MAP-MERT-v1-330M [29] 91.1 39.5 61.7 77.6 87.9 59.0 75.8 72.6 94.4 76.9 87.1

Previous SOTA 92.0 [21] 41.4 [8] 74.3 [27] 83.5 [37] 80.6 [19] 61.7 72.1 [8] 78.2 [58] 89.2 [37] 65.6 [64] 80.3 [39]

Table 4: Performances of Baselines Evaluated on MARBLE with constrained settings (2/3). Note that
we denote the scores of Jukebox-5B on MTG tasks with asterisks(*), because it hit the computational
wall of MARBLE, meaning that the system was unable to complete the corresponding task within a
week on our machine equipped with a single consumer GPU (RTX3090).

Dataset MTG MTG MTG MTG MUSDB
Task Instrument MoodTheme Genre Top50 Source Separation

Metrics ROC AP ROC AP ROC AP ROC AP SDRvocals SDRdrums SDRbass SDRother

MusiCNN [43] 74.0 17.2 74.0 12.6 86.0 17.5 82.0 27.5 - - - -
CLMR [53] 73.5 17.0 73.5 12.6 84.6 16.2 81.3 26.4 - - - -
Jukebox-5B [8, 67] 78.5* 22.0* 77.6* 15.3* 88.0* 20.5* 83.4* 30.4* - - - -
MULE [37] 76.6 19.2 78.0 15.4 88.0 20.4 83.7 30.6 - - - -
MAP-Music2Vec [31] 76.1 19.2 76.7 14.3 87.1 18.8 83.0 29.2 5.5 5.5 4.1 3.0
MAP-MERT-v0-95M [30] 76.6 18.7 75.9 13.7 86.9 18.5 82.8 28.8 5.6 5.6 4.0 3.0
MAP-MERT-v0-95M-public [30] 77.5 19.6 76.2 13.3 87.2 18.8 83.0 28.9 5.5 5.5 3.7 3.0
MAP-MERT-v1-95M [29] 77.5 19.4 76.4 13.4 87.1 18.8 83.0 29.0 5.5 5.5 3.8 3.1
MAP-MERT-v1-330M [29] 78.1 19.8 76.5 14.0 86.7 18.6 83.4 29.9 5.3 5.6 3.6 3.0

Previous SOTA 78.8 20.2 [1] 78.6 16.1 [37] 87.7 20.3 [1] 84.3 32.1 [37] 9.3 10.8 10.4 6.4 [48]

4 Results and Discussion

According to Table 3, 4 and Fig 1, all pre-trained baseline representations on MARBLE have achieved
decent results. Despite strict constraints on downstream structures and hyper-parameter search spaces,
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Table 5: Performances of Baselines Evaluated on MARBLE with constrained settings (3/3). The
overall average scores are calculated on the systems applicable to all tasks.

Dataset MelodyDB Muljam Jamendo GuitarSet
Task Melody Lyrics Lyrics Chord Estimation

Metrics Acc CER WER CER WER root majmin mirex thirds triads sevenths majmin_inv sevenths_inv

MAP-Music2Vec [31] 36.1 56.4 87.8 55.7 89.6 13.7 11.1 10.4 10.4 10.4 11.1 9.4 9.4
MAP-MERT-v0-95M [30] 60.0 52.6 82.3 54.8 87.6 48.7 38.9 36.7 36.6 36.5 37.5 30.3 29.0
MAP-MERT-v0-95M-public [30] 36.1 52.5 82.7 52.6 85.2 49.1 38.7 36.4 36.6 36.4 37.5 29.9 28.6
MAP-MERT-v1-95M [29] 60.8 49.4 77.9 49.6 82.2 50.5 38.8 36.5 36.7 36.4 36.5 31.2 28.9
MAP-MERT-v1-330M [29] 62.5 48.5 77.0 50.3 83.1 56.3 44.8 45.1 44.0 44.0 40.7 27.9 26.5

Previous SOTA 65.3[59] 39.5 54.8[44] 25.4 44.4[44] 34.8 33.3 33.6 33.3 33.2 24.0 33.1 23.9[22]

Multi-Label Tagging
(MTT, MTG)

Key
(GS)

Genre
(GTZAN, MTG)

Beat Tracking
(GTZAN)

Emotion
(EMO, MTG)

Instrument
(Nsynth, MTG)

Pitch
(Nsynth)

Vocal Tech. Det.
(VocalSet)

Singer Id.
(VocalSet)

Source Seperation
(MUSDB)

CLMR
Jukebox-based
MULE
Music2Vec
MERT-v1-95M
MERT-v1-330M
Previous SOTA

Figure 1: SSL Baselines Compared to previous SOTA. The performances of the tasks are merged
according to the task types demonstrated in Tab. 1. Results not applicable are set to 0.
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Figure 2: Results Analysis Regarding to Training Data Size. Since some models are not applicable
to the sequence labelling tasks, the performances of source separation and beat tracking tasks are
excluded on acoustic-level and score-level average score calculation correspondingly. The radii of
the scatter points are isometrically log scaling with the parameter sizes.

they are able to approach, if not surpass, the previous state-of-the-art (SOTA) in many tasks. For
instance, the best performance on NSynth Pitch classification have achieved up to 94.4% accuracy.
Nonetheless, the majority of tasks are still far from being solved, including music tagging and source
separation tasks. Notably, the performance on MUSDB18 is merely half of the previous SOTAs.
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The MAP family achieves balanced results, successfully performing tasks including sequence la-
belling, which other models fail to accomplish (as they do not provide frame-level representations or
are too cumbersome to train). This series of models excel at multiple taxonomy levels. On certain
tasks, MAP-MERTs achieve results close to or surpass the previous state-of-the-art. However, music
tagging tasks are dominated by Jukebox-5B and MULE. Jukebox may benefit from its massive
parameter size and generative modelling of detailed information, as well as the introduction of
metadata during the pre-training period. Conversely, MULE benefits from its proprietary large-scale,
high-quality dataset, MusicSet, and the highly discriminative representations learned by contrastive
pre-training.

Based on Fig. 2a and 2b, excluding sequence labelling tasks (as some baselines do not support
them), we observe a general trend: as the volume of data and the size of model parameters increase,
the performance of tasks across four levels correspondingly improves. The choice of pre-training
method and model size significantly influences the performance. For instance, MAP-Music2Vec-95M,
utilizing only 1k hours of data for self-supervised learning, outperforms both supervised pre-trained
MusiCNN-8M and contrastive pre-trained CLMR-2.5M on the same scale of data. More analysis
could be referred to Appendix B.

5 Conclusion

In this work, we introduce the Music Audio Representation Benchmark for universaL Evaluation
(MARBLE) as a comprehensive benchmark for evaluating pre-trained music features. It encompasses
a hierarchy taxonomy that covers acoustic, performance, score, and high-level description levels, and
utilises publicly available datasets for 18 MIR tasks. We establish a standardised preprocessing and
data splitting protocol, along with a unified evaluation framework, to ensure fair and reproducible
assessment. We report the results of all 9 open-sourced pre-trained models developed on music
recordings, showcasing their performance across multiple tasks. The results demonstrate that several
pre-trained models achieve comparable or even superior performance to the state-of-the-art models
on various tasks within MARBLE. However, there is still ample room for improvement, particularly
in music tagging and source separation. With the release of the toolkit, we hope to facilitate future
research by providing easy access, reproducibility, and fair comparison of SSL pre-trained models for
music understanding. We encourage engagement from researchers in the audio and AI communities
to contribute to the advancement of representation learning for music information retrieval.

Discussion and Future Work

Our benchmark has some shortcomings that can be further improved. To begin with, some of the
tasks, such as beat tracking and piano transcription, typically use multiple evaluation metrics, but we
only include one or two for each of the tasks due to the copyright issues preventing many datasets
from being publicly available, lack of standard pre-processing or maintenance, and the limitation
of time. Although the selected metric is fundamental and a good indicator, an average of all the
metrics might be a better choice. Besides, some of the datasets are not sufficient for a single task. For
example, the GTZAN dataset does not have a commercially-available license, and it only includes
less than 10 hours of music recordings, making the evaluation more subject to bias. We will include
more commercially-available larger datasets on the same tasks. Moreover, we do not include some
MIR tasks that lack a common dataset currently, such as cover song detection and query-by-humming.
In the future version, we will include more datasets and tasks. Last but not least, MIR on symbolic
music is not included in the first version of our benchmark as well.

Apart from the traditional MIR tasks, some interesting tasks deserve more attention for benchmark
development in the computer music and AIGC communities. With the benchmark and pre-trained
models in MIR, developing an evaluation score on music generation and synthesis might be possible.
There may not exist a perfect solution on the subject metrics for music generation to build a bench-
mark; otherwise, composing musical art will simply search for the waveform with the highest scores.
But one can expect such a benchmark can be helpful for the music industry or music education to
preclude some bad music generation. Besides, multi-modal approaches that combine music audio
with symbolic music and language (e.g., lyrics and music description) also deserve a benchmark.
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Appendix A Evaluation Protocol Details

The hyper-parameter search range of the constrained evaluation track is given as follow:

1. Layer: {every single layer, weighted sum}
2. Model: {one-layer 512-units MLP, one-layer 512-unit LSTM (melody extraction only),

3-layer 512-unit LSTM (source separation only), 3-encoder-3-decoder layers transformer
(lyrics transcription only)}

3. Batch size: {64}
4. Learning rate: {5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}
5. Dropout probability: {0.2}

Appendix B Detail Analysis

What have the music audio pre-trained representations learned? We observe that all the rep-
resentations have learned multiple levels of knowledge in Fig. 1. Most of the selected baselines
are particularly good at high-level music description tasks, such as genre classification and emotion
recognition. However, when pre-trained with a full supervision paradigm, the representations may
not be able to model pitch and key well, as they could overfit the supervision signal less relevant to
pitch-related information. On the contrary, SSL methods usually mitigate this issue by providing
more generalisable representations. Some representations do not support frame-level representations,
which makes it difficult to evaluate their performance on tasks such as source-separation and beat
tracking. Therefore, it is unclear how well these models have learned such information.

How can we design better pre-training strategies for music audio representation learning? As
mentioned in the above paragraph, we suggest that a good pre-training strategy needs to prevent
overfitting the supervision signal, which makes self-supervised learning a more promising approach.
Moreover, we argue that an optimal method for music pre-training should be able to scale up to larger
data and model size. Based on observations from Figure 2, it appears that larger data and model size
have a greater impact on performance than the training paradigm (generative, contrastive, or mask
prediction) at the current stage of research. Besides, stacked transformer models are good candidates
for future pre-training architecture, as they can be easily scaled up, and usually provide frame-level
representations in a well-considered design.
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Figure 3: Results Analysis Regarding Training Context Length. The performances of source separa-
tion and beat tracking tasks are ignored similar to Fig. 2.

How does context length affect performance? According to Fig. 3, the relationship between
context length and performance exhibits a rather complex and irregular pattern, for which it is
currently difficult to draw any conclusive insights. This is due to the limited number of music audio
representations available at the moment, coupled with challenges in controlling variables. However,
we are able to derive some preliminary observations when considering factors such as data size (D)
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and parameter size (N). We observe that within a context length (L) of approximately 3 to 5 seconds,
scaling up N and D can be effective, but the performance quickly saturates. Furthermore, according
to MAP-Music2Vec-95M, solely increasing the L without scaling the N and D may also lead to
performance saturation. Interestingly, when scaling up all three aspects, according to Jukebox-5B
with 23 seconds context and 60~120khr data, the performance still saturates. The underlying cause of
this saturation may be associated with the training paradigm.

Appendix C Website and Leaderboard

To accompany the MARBLE benchmark with leaderboard data and detailed resources presentation,
we build a website, which can be found at https://marble-bm.shef.ac.uk. All the resources
and comprehensible introduction of the benchmark and submission guideline are indexed on the
homepage as shown in Fig. 4. The participants can easily find the process of submitting their results
according to the guidelines. As demonstrated in Fig. 5, we provide a well-organised leaderboard for
MARBLE, where the evaluated results can be re-ranked according to different metrics and filtered by
tasks.

Figure 4: Website for the Proposed MARBLE Benchmark.
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Figure 5: Music Understanding Model Leaderboard Hosted on the MARBLE Website.
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Appendix D Details on Chord Estimation

D.1 Chord Vocabulary

Our chord vocabulary includes “none” and 35 different chords on each of the 12 root notes, 421 in
total. The root notes are listed as follows: {C Db D Eb E F Gb G Ab A Bb B}. We do not distinguish
between equal notes under the twelve equal temperaments. For example, we think that C# and Db are
the same note and have the essentially equivalent function in chord prediction. We use sharp in the
code implementation for identification but use flat in the following tables.

The following Tables of the 35 types of chords with examples and a number of samples in the datasets.

chord name maj min aug maj6 min6 7 maj7 min7 dim7 hdim7

example C:maj C:min C:aug C:maj6 C:min6 C:7 C:maj7 C:min7 C:dim7 C:hdim7

chord tones 1,3,5 1,b3,5 1,3,#5 1,3,5,6 1,b3,5,7 1,3,5,b7 1,3,5,7 1,b3,5,b7 1,b3,b5,bb7 1,b3,b5,b7

chord number 1120 368 16 70 12 374 292 204 2 106

chord name 9 maj9 min9 11 sus2 sus4 maj/3 maj/5 min/b3 min/5 7/3 7/5 7/b7

example C:9 C:maj9 C:min9 C:11 C:sus2 C:sus4 C:maj/3 C:maj/5 C:min/b3 C:min/5 C:7/3 C:7/5 C:7/b7

chord tones 1,3,5,b7,9 1,3,5,7,9 1,b3,5,b7,9 1,3,5,b7,9,11 1,2,5 1,4,5 3,5,1 5,1,3 b3,5,1 5,1,b3 3,5,b7,1 5,b7,1,3 b7,1,3,5

chord number 78 22 48 8 88 44 82 264 10 82 10 44 46

chord name maj7/3 maj7/5 maj7/7 min7/b3 min7/5 min7/b7 dim7/b3 dim7/b5 dim7/bb7 hdim7/b3 hdim7/b5 hdim7/b7 N

example C:maj7/3 C:maj7/5 C:maj7/7 C:min7/b3 C:min7/5 C:min7/b7 C:dim7/b3 C:dim7/b5 C:dim7/bb7 C:hdim7/b3 C:hdim7/b5 C:hdim7/b7 No chord

chord tones 3,5,7,1 5,7,1,3 7,1,3,5 b3,5,b7,1 5,b7,1,b3 b7,1,b3,5 b3,b5,bb7,1 b5,bb7,1,b3 bb7,1,b3,b5 b3,b5,b7,1 b5,b7,1,b3 b7,1,b3,b5 No chord

chord number 6 66 14 6 30 42 0 0 0 0 6 2

These are some special or rare chords in the dataset and we use some Chord Substitutions based on
similar chords or the chord annotation for the music score instead of the ground truth chord annotation
the musician actually plays.

1. majmin7 was substituted with 7: The “majmin7” chord is equivalent to the “7” chord, so
we are making a replacement to standardize the notation.

2. minmaj7 was substituted with min7: Both chords share the root, minor third, and perfect
fifth. When mapping minmaj7 to min7, the major seventh is altered to a minor seventh,
ensuring the “minor” character of both chords remains consistent.

3. min11 was substituted with 11: Both chords are minor chords composed of the seventh and
eleventh tones. Given their infrequent occurrences, we map “min11” to the “11” chord.

4. Substitution for out-of-vocabulary colour chords: The performed chord annotations
in the GuitarSet also contain out-of-vocabulary colour chords such as (1,5)/1, (1,5,b7)/1,
(5,2,b7,4)/4. For such chords, we identify the corresponding standard chords in the instructed
chord annotations and substitute them.

5. Special Transposition Handling for Standard Chords: Map to the standard transposition
that is closest to the corresponding transposed note.

D.2 Chord Recognition Metric Definition

1. root: Evaluating chord recognition algorithms based on the root notes of the identified
chords. Only compares the root of the chords.

2. majmin: Only compares major, minor, and “no chord” labels. Any other chord types or
variations, such as 7th chords, augmented, diminished, and so on, are not considered in this
specific evaluation.

3. mirex: Compare chords along MIREX rules. A estimated chord is considered correct if it
shares at least three pitch classes in common.

4. thirds: Chords are compared at the level of major or minor thirds (root and third). For
example, both (‘A:7’, ‘A:maj’) and (‘A:min’, ‘A:dim’) are equivalent, as the third is major
and minor in quality, respectively.
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5. traids: Chords are considered at the level of triads (major, minor, augmented, diminished,
suspended). In addition to the root, the quality is only considered through #5th scale degree
(for augmented chords). For example, (‘A:7’, ‘A:maj’) are equivalent, while (‘A:min’,
‘A:dim’) and (‘A:aug’, ‘A:maj’) are not.

6. sevenths: Compares according to MIREX “sevenths” rules. Only major, major seventh,
seventh, minor, minor seventh and no chord labels are compared.

7. majmin_inv: Compares major/minor chords, with inversions. The bass note must exist in
the triad.

8. sevenths_inv: Compares according to MIREX “sevenths” rules, with inversions. The bass
note must exist in the chord.

During the evaluation process, frame-level predictions are directly merged to event-level by the
mir_eval function so we do not apply any post-processing to the prediction.

Appendix E Details on Lyrics Transcription

E.1 MulJam2.0 dataset

MulJam2.0 is derived from MulJam, featuring larger and more refined human annotation on the test
set. We select 34 songs from the training set and obtain human lyrics annotation to expand the test
set. For each language, 20 songs are randomly selected from the original training set to form the
validation set. A few songs are excluded due to poor alignment for obtaining the line-level annotations
(For details, please refer to [70]). We also exclude the songs in the training and validation sets that
were present in Jamendo (3 songs in training and 1 song in validation), ensuring that the songs in the
evaluation datasets remain unseen during training. The numbers of songs by language can be found
in Tab. 6.

The human annotation is performed at the song level. We applied similar procedures to obtain
line-level annotations, as was done for the training set in MulJam. We use the timestamps provided
by Whisper [44], and align the lines predicted by Whisper with the human annotation. As in [70]
, lines with unusually high character rates (exceeding 37.5 Hz) are removed. However, for the test
set we choose not to filter by the similarity between the aligned text pairs, to prevent introducing
excessive bias in favor of Whisper predictions.

Table 6: Number of songs in MulJam2.0 and Jamendo datasets.

Dataset MulJam2.0 Jamendo
Split Train Valid Test Test

English (en) 3557 20 28 20
French (fr) 977 19 19 20
Spanish (es) 584 19 13 20
German (de) 107 20 3 20
Italian (it) 278 20 7 -
Russian (ru) 106 16 4 -

Total 5609 114 74 80

E.2 Language Model and Tokenizer

The language model (LM) is trained using a speechbrain [47] language model recipe 12. The model
comprises of 12 transformer encoder layers, with an attention dimension of 768, 12 attention heads,
and a position-wise feed-forward layer dimension of 3072. The LM is trained using cross-entropy
loss for 20 epochs, and the model with the lowest loss is selected.

The target character set is the union of the character sets from 6 languages, resulting in a total of 91
tokens: ϵ, <bos>, <eos>, <unk>, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W,
X, Y, Z, À, Á, Â, Ä, Æ, Ç, È, É, Ê, Ë, Ì, Í, Î, Ï, Ñ, Ò, Ó, Ô, Ö, Ù, Ú, Û, Ü, Œ, Ÿ, È, A, B, V, G, D, E,
�, Z, I, �, K, L,M, N, O, P, R, S, T, U,F, H, C, Q,X,W,_,Y, ^, �,�, �.

12https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/LM/hparams/transformer.yaml
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E.3 Training Details

The beam search used for validation and testing incorporates a combination of CTC probabilities, LM
probabilities (applied only at test time), and S2S probabilities. We assign a weight of 0.4 to the CTC
probabilities and 0.3 to the LM probabilities. During validation, we utilize a beam size of 10 and
calculate Word Error Rate every 5 epochs to optimize processing efficiency. For thorough evaluation,
we scale up the beam size to 40 during the testing phase. The accuracy of the S2S branch output
is continually monitored to determine whether early stopping should be triggered and to facilitate
model selection.

E.4 Results and Discussion

The results of multilingual lyrics transcription using different pretrained features can be found in
Tab. 7. In addition to MulJam, we also present WERs on the Multilingual Jamendo evaluation set [13].
This dataset consists of 80 songs in 4 languages: English, French, Spanish, and German. While Italian
and Russian songs are not included, Jamendo’s human-annotated line-level annotation aligns well
with our evaluation setting. For comparison, we reference the state-of-the-art model Whisper [44], a
robust model designed for speech recognition but also performs effectively on singing voice. Whisper
has been trained on an extensive corpus of multilingual and multitask supervised data collected from
the internet. It is also the foundation of the MulJam dataset.

Lyrics transcription is a challenging task that involves detecting vocal pronunciations in the presence
of background music and making the most probable predictions based on linguistic knowledge. The
multilingual context makes this task even more demanding. When performing lyrics transcription
with SSL features, it is essential that these features capture clear vocal information, and that the
backend provides robust inference to generate coherent text from the vocal pronunciations. Achieving
this with SSL features is indeed a significant challenge. The results presented in Table 7 indicate that
there is room for improvement in this task.

Among the six languages we considered, English, French, and Spanish, which have a larger number
of songs than the other three, yield better results. This suggests that there may be an impact from the
imbalanced training data. Russian, on the other hand, produces the worst result for two main reasons:
1. Russian employs the Cyrillic writing system, which has its own set of characters. 2. The training
data for Russian is insufficient for the model to establish a connection between the pronunciation
rules of Cyrillic and Latin alphabets.

The MulJam test set is human-annotated at the song level but relies on the alignment with Whisper
results to derive line-level annotations. Therefore, it is worth noting that bias is introduced, as the
alignment is reliable only when the human annotation closely matches the Whisper’s prediction.

Table 7: Multilingual lyrics transcription results on MulJam and Jamendo.

Language English French Spanish German Italian Russian Whole
Metric CER WER CER WER CER WER CER WER CER WER CER WER CER WER

MulJam2.0 test

MAP-Music2Vec [31] 54.7 79.2 58.3 90.9 43.2 83.7 63.4 99.5 53.0 91.9 101.6 125.6 56.4 87.8
MAP-MERT-v0-95M [30] 48.7 71.2 55.5 85.4 41.0 80.1 65.9 100.9 49.1 86.3 99.5 124.9 52.6 82.3
MAP-MERT-v0-95M-public [30] 49.0 71.2 55.3 85.4 39.0 76.6 63.5 99.9 50.3 90.3 104.7 129.3 52.5 82.7
MAP-MERT-v1-95M [29] 45.5 66.5 52.5 81.9 38.2 73.9 58.8 93.2 44.4 81.6 96.1 117.8 49.4 77.9
MAP-MERT-v1-330M [29] 45.5 65.9 50.7 79.6 35.9 71.9 58.3 93.1 42.4 80.3 100.5 125.5 48.5 77.0

SOTA [44] 33.2 44.8 52.9 70.1 29.9 43.8 36.5 53.0 38.1 58.5 34.7 53.7 39.5 54.8

Jamendo

MAP-Music2Vec [31] 49.0 73.6 55.3 87.1 50.3 90.7 67.8 108.8 - - - - 55.7 89.6
MAP-MERT-v0-95M [30] 48.5 71.8 54.0 85.1 49.3 87.6 67.6 108.1 - - - - 54.8 87.6
MAP-MERT-v0-95M-public [30] 46.9 71.5 52.0 81.5 44.8 82.8 66.3 106.8 - - - - 52.6 85.2
MAP-MERT-v1-95M [29] 43.6 67.2 49.4 79.6 43.2 80.6 62.1 103.3 - - - - 49.6 82.2
MAP-MERT-v1-330M [29] 45.7 68.8 50.2 80.1 44.1 82.8 61.0 102.3 - - - - 50.3 83.1

SOTA [44] 24.9 39.3 29.2 49.9 21.2 41.7 25.8 46.6 - - - - 25.4 44.4
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