
Provably Efficient Offline Reinforcement Learning
in Regular Decision Processes

Roberto Cipollone
Sapienza University of Rome

cipollone@diag.uniroma1.it

Anders Jonsson
Universitat Pompeu Fabra

anders.jonsson@upf.edu

Alessandro Ronca
University of Oxford

alessandro.ronca@cs.ox.ac.uk

Mohammad Sadegh Talebi
University of Copenhagen

m.shahi@di.ku.dk

Abstract

This paper deals with offline (or batch) Reinforcement Learning (RL) in episodic
Regular Decision Processes (RDPs). RDPs are the subclass of Non-Markov Deci-
sion Processes where the dependency on the history of past events can be captured
by a finite-state automaton. We consider a setting where the automaton that under-
lies the RDP is unknown, and a learner strives to learn a near-optimal policy using
pre-collected data, in the form of non-Markov sequences of observations, without
further exploration. We present RegORL, an algorithm that suitably combines au-
tomata learning techniques and state-of-the-art algorithms for offline RL in MDPs.
RegORL has a modular design allowing one to use any off-the-shelf offline RL al-
gorithm in MDPs. We report a non-asymptotic high-probability sample complexity
bound for RegORL to yield an ε-optimal policy, which makes appear a notion of
concentrability relevant for RDPs. Furthermore, we present a sample complexity
lower bound for offline RL in RDPs. To our best knowledge, this is the first work
presenting a provably efficient algorithm for offline learning in RDPs.

1 Introduction

Most reinforcement learning (RL) algorithms hinge on the Markovian assumption, i.e. that the
underlying system transitions and rewards are Markovian in some natural notion of (observable)
state, and hence, the distribution of future observations depends only on the current state-action of
the system. This fundamental assumption allows one to model decision making using the powerful
framework of Markov Decision Processes (MDPs) [1]. However, there are many application scenarios
where rewards are issued according to temporal conditions over histories (or trajectories), and
others where the environment itself evolves in a history-dependent manner. As a result, Markovian
approaches may prove unsuitable for modeling such situations. These scenarios can be appropriately
modeled as Non-Markovian Decision Processes (NMDPs) [2, 3].

NMDPs describe environments where the distribution on the next observation and reward is a function
of the history. In these environments, behaving optimally may also require to take histories into
account. For example, a robot may receive a reward for delivering an item only if the item was
previously requested, and a self-driving car is more likely to skid and lose control if it previously
rained. Also, consider a mobile robot that has to track an object which may disappear from its field
of view. The object is likely to be found again in the same place where it was seen last time. This
requires the agent to remember, hence to act according to information in its interaction history. In
general, an NMDP can show an arbitrary dependency on the history or trace, preventing efficient
learning. Consequently, recent research has focused on tractable sub-classes of NMDPs. In Regular

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Decision Processes (RDPs) [3], the next observation and reward distributions depend on regular
properties of the history, which can be captured by a deterministic finite-state automaton. This
determines the existence of a finite state space where states are determined by histories, and where
the Markov property is regained.

In this paper, we investigate offline RL in episodic RDPs, where the goal is to find a near-optimal
policy using a pre-collected dataset, with minimal possible size, generated by a fixed behavior policy
(and without further exploration). Offline RL in MDPs has received extensive attention recently, and
provably sample efficient algorithms have been proposed for various settings. Despite the extensive
and rich literature on MDPs, comparatively little work exists on offline RL in NMDPs. The scarcity
of results may likely be attributed to the difficult nature of the problem rather than the lack of interest.

Partially-Observable Markov Decision Processes (POMDPs) [4] are also NMDPs, and RDPs can
be seen as the subclass of POMDPs that enjoy the property of having hidden states determined by
the history of observations. This is a key property that allows one to take advantage of a set of
planning and learning techniques that do not apply to arbitrary POMDPs. Planning in POMDPs
is computationally intractable [5], and two common approaches to solve (and learn) them rely on
maintaining either a belief state or a finite history of observations. Maintaining and updating a belief
state is worst-case exponential in the size of the original observation space, while the latter approach
yields a space whose size is exponential in the history length. State-of-the-art work on offline RL
in POMDPs considers restricted classes of POMDPs such as undercomplete POMDPs (e.g., [6, 7]),
which cannot be used to model all RDP instances. General POMDPs are only considered under
assumptions such as the possibility of reaching every belief state in a few steps [8] or ergodicity [9].
While existing offline RL algorithms for solving POMDPs cannot guarantee provable learning in a
generic RDP, the structural properties of RDPs indicate that they can be solved more efficiently using
techniques that are carefully tailored to their structure. Exploiting the structure in RDPs is thus key in
designing provably sample-efficient learning algorithms.

1.1 Summary of Contributions

We formalize offline RL in RDPs (Section 2), and establish a first, to the best of our knowledge,
sample complexity lower bound thereof (Section 5). We introduce an algorithm, called RegORL,
that learns ε-optimal policies for any RDP, in the episodic setting. At the core of RegORL, there is
a component called ADACT–H, which is a variant of ADACT [10], carefully tailored to episodic
RDPs. ADACT–H learns a minimal automaton that underlies the unknown RDP without prior
knowledge. The output automaton is further used to derive a Markov abstraction of data to be used
by any off-the-shelf algorithm for offline RL in episodic MDPs. We present a sample-complexity
bound for ADACT–H to return a minimal underlying automaton with high probability. This bound
substantially improves the existing bound for the original ADACT, and can be of independent interest.
In view of the modular design of RegORL, the total sample complexity is controlled by twice that
of ADACT–H (Theorem 6) and that for the incorporated off-the-shelf algorithm. We also present
another variant of ADACT–H, called ADACT–H–A. In contrast to ADACT–H that learns a complete
RDP, ADACT–H–A only reconstructs a subset of states that are likely under the behavior policy,
in relation to an input accuracy parameter. As such, ADACT–H–A renders more aligned with the
practice of RL than ADACT–H. Furthermore, we provide a first lower-bound for offline RL in RDPs
that involves relevant parameters for the problem, such as the RDP single-policy concentrability,
which extends an analogous notion for MDPs from the literature. Finally, if contrasted to both
online learning in RDPs and automata learning, our results suggest possible improvements in sample
complexity results for both areas.

1.2 Related Work

Offline RL in MDPs. There is a rich and growing literature on offline RL, and provably sample
efficient algorithms have been proposed for various settings of MDPs; see, e.g., [11, 12, 13, 14, 15,
16, 17, 18, 19, 20]. For example, in the case of episodic MDPs, it is established that the optimal
sample size in offline RL depends on the size of state-space, episode length, as well as some notion
of concentrability, reflecting the distribution mismatch between the behavior and optimal policies. A
closely related problem is off-policy learning; see, e.g., [21, 22, 23] and the recent survey [24].

2

Online RL in RDPs. Several algorithms for online RL in RDPs exist [25, 26, 27] but complexity
bounds are only given in [26] for the infinite-horizon discounted setting. The sample complexity
bounds in [26] are not immediately comparable to ours, due to the different setting. Importantly, the
algorithm in [26] uses the uniform policy for learning, and it therefore might be adapted to our setting
only under the assumption that the behaviour policy is uniform. Even in this case, our bounds show an
improved dependency on several key quantities. Furthermore, we provide a sample complexity lower
bound, whereas their results are limited to showing that a dependency on the quantities occurring in
their upper bounds is necessary.

The online RL algorithms in [28, 29, 30, 31] have been developed for formalisms that are closely
related to RDPs, and such algorithms can be applied to RDPs. However, these algorithms are not
proven to be sample efficient.

POMDPs. Every RDP can be seen as a POMDP whose hidden dynamics evolves according to
its finite-state automaton. However, RL in POMDPs is a largely open problem. Even for a known
POMDP, computing a near-optimal policy is PSPACE-complete [5]. For unknown dynamics, which
is the setting considered here, favourable bounds have been obtained for the class of undercomplete
POMDPs [6, 7], which does not include all RDPs, or alternatively, under other assumptions such as
few-step reachability [8] or ergodicity [9]. This relationship between RDPs and POMDPs can be also
seen from the notion of state. In fact, the automaton state of an RDP is an instance of information
state, as defined in [32], and of belief, as in classic POMDP literature [33].

PSRs. Predictive State Representations (PSRs) [34, 35, 36, 37] are general descriptions of dynami-
cal systems that capture POMDPs and hence RDPs. There exist polynomial PAC bounds for online
RL in PSRs [38]. Nonetheless, these bounds are looser than the one we show here, since they must
necessarily consider a wider class of models. Moreover, although a minimum core set for PSRs is
similar to a minimal RDP, the bounds feature a number of quantities that are specific to PSRs (e.g.,
regularity parameter) and do not immediately apply to RDPs.

Other Non-Markovian Settings. Feature MDPs and state representations both share the idea
of having a map from histories to a state space. This is analogous to the map determined by the
transition function of the automaton underlying an RDP. Algorithmic solutions for feature MDPs
are based on suffix trees, and they cannot yield optimal performance in our setting [29, 30]. The
automaton of an RDP can be seen as providing one kind of state representation [39, 40, 41, 42].
The existing bounds for state representations show a linear dependency on the number of candidate
representations, which is exponential in the number of states in our case. A similar dependency is
also observed in [43]. RL with non-Markovian rewards is considered in [44, 45, 46, 47, 48, 49]. The
idea of a map from histories to states is also found in [32]. Non-Markovianity is also introduced by
logical specifications that the agent is required to satisfy [50, 51, 52, 53, 54]; however, it is resolved
a priori from the known specification. The convergence properties of Q-learning over a (known)
underlying state space such as the one of an RDP are studied in [55].

Learning PDFA. Our algorithms for learning an RDP borrow and improve over techniques for
learning Probabilistic-Deterministic Finite Automata (PDFA) [56, 57, 58, 10, 59, 60]. Our algorithm
builds upon the state-of-the-art algorithm ADACT [10], and we derive bounds that are a substantial
improvement over the ones that would be obtained from a straightforward application of any existing
PDFA-learning algorithm to the offline RL setting.

We provide additional literature review in Appendix A.

2 Preliminaries and Problem Formulation

Notations. Given a set Y , ∆(Y) denotes the set of probability distributions over Y . For a function
f : X → ∆(Y), f(x, y) is the probability of y given x. Further, we write y ∼ f(x) to abbreviate
y ∼ f(x, ·). For y ∈ Y , we use 1y ∈ ∆(Y) to denote the Kronecker delta defined as 1y(y) = 1 and
1y(y

′) = 0 for each y′ ∈ Y such that y′ ̸= y. Given an event E, I(E) denotes the indicator function
of E, which equals 1 if E is true, and 0 otherwise, e.g. 1y(y

′) = I(y = y′). For any integer Z≥0,
we let [Z] := {0, . . . , Z}. Given a set X , for k ∈ N, X k represents the set of sequences of length k

whose elements are from X . Also, X ∗ = ∪∞
k=0X k. The notation Õ(·) hides poly-logarithmic terms.

3

2.1 Episodic Regular Decision Processes

We first introduce generic episodic decision processes. An episodic decision process is a tuple
P = ⟨O,A,R, T̄ , R̄,H⟩, where O is a finite set of observations, A is a finite set of actions,
R ⊂ [0, 1] is a finite set of rewards and H ≥ 1 is a finite horizon. As is common in automata
theory, we use sequences amrmom · · · anrnon to denote traces of actions, rewards and observations,
and concatenation ARO = {aro : a ∈ A, r ∈ R, o ∈ O} to denote sets of sequences. Let
Et = (ARO)t+1 be the set of traces of length t + 1, and let em:n ∈ En−m denote a trace from
time m to time n, included. A trajectory e0:T is the full trace generated until time T . We assume
that a trajectory e0:T can be partitioned into episodes eℓ:ℓ+H ∈ EH of length H + 1, and that the
dynamics at time T = k(H +1)+ t, t ∈ [H], are conditionally independent of the previous episodes
and all rewards, i.e. the dynamics only depend on ak(H+1)ok(H+1) · · · aT oT . For t ∈ [H], let
Ht = (AO)t+1 denote the relevant part of the trajectory for decision making, and let H = ∪H

t=0Ht.
We refer to elements in H as histories, even though they are not complete trajectories. In each episode
e0:H , a0 = a⊥ is a dummy action used to initialize the distribution on H0. The transition function
T̄ : H×A → ∆(O) and the reward function R̄ : H×A → ∆(R) only depend on the history of the
current episode. Given P , a generic policy is a function π : (AO)∗ → ∆(A) that maps trajectories
to distributions over actions. The value function V π : [H]×H → R of a policy π is a mapping that
assigns real values to histories. For h ∈ H, it is defined as V π(H,h) := 0 and

V π(t, h) := E

[
H∑

i=t+1

ri

∣∣∣∣∣h, π
]
, ∀t < H, ∀h ∈ Ht. (1)

For brevity, we write V π
t (h) := V π(t, h). The optimal value function V ∗ is defined as V ∗

t (h) :=
supπ V

π
t (h),∀t ∈ [H],∀h ∈ Ht, where sup is taken over all policies π : (AO)∗ → ∆(A). Any

policy achieving V ∗ is called optimal, which we denote by π∗; namely V π∗
= V ∗. Solving P

amounts to finding π∗. In what follows we consider simpler policies of the form π : H → ∆(A)
mapping histories to distributions over actions. Let ΠH denote the set of such policies. It can be shown
that ΠH always contains an optimal policy, i.e. V ∗

t (h) := maxπ∈ΠH V π
t (h),∀t ∈ [H],∀h ∈ Ht. An

episodic MDP is an episodic decision process whose dynamics at each timestep t only depends on
the last observation and action [1].

Episodic RDPs. An episodic Regular Decision Process (RDP) [3, 25] is an episodic decision process
R = ⟨O,A,R, T̄ , R̄,H⟩ described by a finite transducer (Moore machine) ⟨Q,Σ,Ω, τ, θ, q0⟩, where
Q is a finite set of states, Σ = AO is a finite input alphabet composed of actions and observations,
Ω is a finite output alphabet, τ : Q × Σ → Q is a transition function, θ : Q → Ω is an output
function, and q0 ∈ Q is a fixed initial state [61, 62, 63]. The output space Ω = Ωo × Ωr consists
of a finite set of functions that compute the conditional probabilities of observations and rewards,
meaning Ωo ⊂ A → ∆(O) and Ωr ⊂ A → ∆(R). For simplicity, we use two output functions,
θo : Q×A → ∆(O) and θr : Q×A → ∆(R), to denote the individual conditional probabilities.
Let τ−1 denote the inverse of τ , i.e. τ−1(q) ⊆ Q×AO is the subset of state-symbol pairs that map
to q ∈ Q. In this context, an input symbol is an element of AO. We use A,R,O,Q to denote the
cardinality of A,R,O,Q, respectively, and assume A ≥ 2.

An RDP R implicitly represents a function τ̄ : H → Q from histories in H to states in Q, recursively
defined as τ̄(h0) := τ(q0, a0o0) and τ̄(ht) := τ(τ̄(ht−1), atot). The dynamics and of R are defined
as T̄ (h, a, o) = θo(τ̄(h), a, o) and R̄(h, a, r) = θr(τ̄(h), a, r), ∀h ∈ H,∀aro ∈ ARO. Episodic
RDPs are acyclic, i.e. the states can be partitioned as Q = Q0 ∪ · · · ∪ QH+1, where each Qt+1 is
the set of states generated by histories in Ht for each t ∈ [H]. An RDP is minimal if its Moore
machine is minimal. Since there is nothing to predict at time H + 1, a minimal RDP contains a
single state qH+1 in QH+1. To ensure that an acyclic RDP R is minimal, we introduce a designated
termination observation o⊥ in O and define τ(qH+1, ao⊥) = qH+1 and θo(qH+1, a) = 1o⊥ for each
a ∈ A. Hence, qH+1 is absorbing and the states in Q implicitly count how many steps are left until
we observe o⊥. Without o⊥, a Moore machine could potentially represent all episodes using fewer
than H + 2 states.

Since the conditional probabilities of observations and rewards are fully determined by the current
state-action pair (q, a), an RDP R adheres to the Markov property over its states, but not over the
observations. Given a state qt ∈ Q and an action at ∈ A, the probability of the next transition is

P(rt, ot, qt+1 | qt, at,R) = θr(qt, at, rt) θo(qt, at, ot) I(qt+1 = τ(qt, atot)).

4

(a) Cookie domain.

? ?

?

(b) Agent’s view.

Figure 1: The cookie domain: The agent can only see what is in the current room [28].

Evidently, in the special case where an RDP is Markovian in both observations and rewards, it reduces
to an episodic MDP. More precisely, any episodic MDP with actions A, states O and horizon H can
be represented by some episodic RDP with states Q ⊆ O × [H + 1] and inputs AO.

An important class of policies for RDPs are the regular policies. Given an RDP R, a policy
π : H → ∆(A) is called regular if π(h1) = π(h2) whenever τ̄(h1) = τ̄(h2), for all h1, h2 ∈ H.
Let ΠR denote the set of regular policies for R. Regular policies exhibit powerful properties. First,
under a regular policy, suffixes have the same probability of being generated for histories that map to
the same RDP state. Second, there exists at least one optimal policy that is regular.

Proposition 1. Consider an RDP R, a regular policy π ∈ ΠR and two histories h1 and h2 in Ht,
t ∈ [H], such that τ̄(h1) = τ̄(h2). For each suffix et+1:H ∈ EH−t−1, the probability of generating
et+1:H is the same for h1 and h2, i.e. P(et+1:H | h1, π,R) = P(et+1:H | h2, π,R).

Proposition 2. Each RDP R has at least one optimal policy π∗ ∈ ΠR.

Due to Proposition 2, when solving an RDP R, we can restrict our search to the set of regular
policies ΠR. A regular policy can be compactly defined as π : Q → ∆(A), where π(q0) = 1a⊥
always selects the dummy action a⊥, and its value function as V π : [H]×Q → R.

Next, we define occupancy measures for RDPs. Given a regular policy π : Q → ∆(A) and t ∈ [H],
let dπt ∈ ∆(Qt ×AO) be the induced probability distribution over states in Qt and input symbols in
AO, recursively defined as dπ0 (q0, a0o0) := θo(q0, a0, o0) and

dπt (qt, atot) :=
∑

(q,ao)∈τ−1(qt)

dπt−1(q, ao)π(qt, at) θo(qt, at, ot) t > 0.

We also overload the notation by writing dπt (qt, at) =
∑

o∈O dπ(qt, ato). Of particular interest is
the occupancy distribution d∗t := dπ

∗

t , associated with an optimal policy π∗.

Example 1 (The cookie domain [28]). The cookie domain (Figure 1a) has three rooms connected
by a hallway. The agent (purple triangle) can move in the four cardinal directions. When pressing a
button in the orange room, a cookie randomly appears in either the green or the blue room. The agent
receives a reward of +1 for eating the cookie and it may then press the button again. This domain
is partially observable since the agent can only see what is in the room that it currently occupies
(Figure 1b). The cookie domain can be modelled as an episodic RDP with states Q = [H+1]×O×U ,
with U = {u1, u2, u3, u4}. The value of U is u1 when the button has not been pressed yet (or not
pressed since the last cookie was eaten). The value is u2 when the button has been pressed, but the
agent has not visited the blue or green room yet. In this state, the environment has a 50% probability
of generating the observation of a cookie when the agent enters either room for the first time. If the
agent visits the green room and finds no cookie, the value becomes u3, meaning that the cookie is in
the blue room. The meaning of u4 is dual to that of u3.

2.2 Offline RL in RDPs

We are now ready to formally present the offline RL problem in episodic RDPs. Assume that we
have access to a batch dataset D collected through interacting with an unknown (but fixed) episodic
RDP R using a regular behavior policy πb. We assume that D comprises N episodes, where the k-th
episode is of the form ek0:H = ak0r

k
0o

k
0 · · · akHrkHokH , where qk0 = q0 and where, for each t ∈ [H],

akt ∼ πb(qkt), rkt ∼ θr(q
k
t , a

k
t), okt ∼ θo(q

k
t , a

k
t), qkt+1 = τ(qkt , a

k
t o

k
t).

5

The goal is to compute a near-optimal policy π̂ using the dataset D (and without further exploration).
More precisely, for a pre-specified accuracy ε ∈ (0, H], we aim to find an ε-optimal policy π̂, using
the smallest dataset D possible. A policy π̂ is ε-optimal iff Eh0 [V

∗
0 (h0) − V π̂

0 (h0)] ≤ ε, where
h0 = a⊥o0, for some random o0 ∈ O.

By virtue of Proposition 2, one may expect that it is sufficient to search for regular ε-optimal policies,
which is indeed the case. In order to learn an ε-optimal policy from D, some assumption is necessary
regarding the policy πb that was used to collect the episodes. Let dbt := dπ

b

t be the occupancy
distribution of πb. The following assumption requires that the behavior policy assigns a positive
probability to all actions, which ensures that πb explores the entire RDP.
Assumption 1. mint∈[H],q∈Qt,a∈A dbt (q, a) > 0.

Assumption 1 is only needed by Theorem 6, which reconstructs the full unknown RDP. Theorem 8,
instead, relies on a weaker assumption that can be expressed with the coefficient introduced in
Definition 1.

The second assumption we require concerns the richness of πb and its capability to allow us to
distinguish the various RDP states. This is perfectly captured by notions of distiguishability arising
in automata theory, such as in Balle et al. [10]. We apply these concepts in our context, where such
discrete distributions are generated from an RDP and a policy. Consider a minimal RDP R with states
Q = ∪t∈[H+1]Qt. Given some policy π, at each timestep t ∈ [H], every RDP state q ∈ Qt defines a
unique probability distribution over the episode suffixes EH−t = (ARO)H−t+1. Then, the states
in each Qt can be compared through the probability distributions they induce over EH−t. Consider
any L = {Lℓ}Hℓ=0, where each Lℓ is a metric over ∆(Eℓ). We define the L-distinguishability of R
and π as the maximum µ0 such that, for any t ∈ [H] and any two distinct q, q′ ∈ Qt, the probability
distributions over suffix traces et:H ∈ Eℓ from the two states satisfy

LH−t(P(et:H | qt = q, π),P(et:H | qt = q′, π)) ≥ µ0 .

We will often omit the remaining length of the episode ℓ = H − t from Lℓ and simply write L. We
consider the Lp

∞-distinguishability, instantiating the definition above with the metric Lp
∞(p1, p2) =

maxu∈[ℓ],e∈Eu
|p1(e ∗) − p2(e ∗)|, where pi(e ∗) represents the probability of the trace prefix e ∈

Eu, followed by any trace e′ ∈ Eℓ−u−1. The Lp
1-distinguishability is defined analogously using

Lp
1(p1, p2) =

∑
u∈[ℓ],e∈Eu

|p1(e ∗)− p2(e ∗)|. We can now require a positive distinguishability with
our second assumption.
Assumption 2. The behavior policy πb has Lp

∞-distinguishability of at least µ0 > 0.

Finally, in order to capture the mismatch in occupancy measure between the optimal policy and the
behavior policy, we introduce a key quantity called single-policy RDP concentrability coefficient,
which extends the single-policy concentrability coefficient in MDPs to RDPs:
Definition 1. The single-policy RDP concentrability coefficient of an RDP R with episode horizon
H and with respect to a policy πb is defined as:

C∗
R = max

t∈[H],q∈Qt,ao∈AO

d∗t (q, ao)

dbt (q, ao)
. (2)

The concentrability coefficient in Definition 1 resembles the notions of concentrability in MDPs (e.g.,
[14, 15]). It should be stressed, however, that those in MDPs are defined in terms of observation-
action pairs (o, a), whereas C∗

R is defined in terms of hidden RDP states and actions-observations,
(q, ao). It is worth remarking that C∗

R could be equivalently defined in terms of state-action pairs
(q, a). Finally, in the special case where the RDP is Markovian – in which case it coincides with
an episodic MDP – we have Q ⊆ O × [H + 1] and C∗

R coincides with the standard single-policy
concentrability coefficient for MDPs in [15]. This fact is shown in the proof of Corollary 17.

3 RegORL: Learning an Episodic RDP

In this section we present an algorithm for learning the transition function of an RDP R from a
dataset D of episodes generated by a regular behavior policy πb. To simplify the presentation, we
treat D as a multiset of traces in EH . The learning agent only has access to the non-Markovian traces

6

Function ADACT–H(D, δ)
Input: Dataset D containing N traces in EH , failure probability 0 < δ < 1
Output: SetQ of RDP states, transition function τ : Q×AO → Q

1 Q0 ← {q0}, X (q0)← D // initial state
2 for t = 0, . . . , H do
3 Qc,t+1 ← {qao | q ∈ Qt, ao ∈ AO} // get candidate states
4 foreach qao ∈ Qc,t+1 do X (qao)← {et+1:H | aroet+1:H ∈ X (q)} // compute suffixes
5 qmamom ← argmaxqao∈Qc,t+1 |X (qao)| // most common candidate
6 Qt+1 ← {qmamom}, τ(qm, amom) = qmamom // promote candidate
7 Qc,t+1 ← Qc,t+1 \ {qmamom} // remove from candidate states
8 for qao ∈ Qc,t+1 do
9 Similar ← {q′ ∈ Qt+1 | not TESTDISTINCT(t,X (qao),X (q′), δ)} // confidence test

10 if Similar = ∅ then Qt+1 ← Qt+1 ∪{qao}, τ(q, ao) = qao // promote candidate
11 else q′ ← element in Similar, τ(q, ao) = q′, X (q′)← X (q′) ∪ X (qao) // merge states
12 end
13 end
14 returnQ0 ∪ · · · ∪ QH+1, τ

15 Function TESTDISTINCT(t, X1, X2, δ)
16 return Lp

∞(X1,X2) ≥
√

2 log(8(ARO)H−t/δ)/min(|X1|, |X2|)

in D, and needs prior knowledge of A, R and O, but no prior knowledge of πb and R. Our algorithm
is an adaptation of ADACT [10] to episodic RDPs, and we thus refer to the algorithm as ADACT–H.

The intuition behind ADACT–H is that due to Proposition 1, two histories h1 and h2 should map to
the same RDP state if they induce the same probability distribution on suffixes. ADACT–H starts by
adding an initial RDP state q0 to Q0, whose suffixes are the full traces in D (line 1). The algorithm
then iteratively constructs the state sets Q1, . . . ,QH+1. In each iteration t ∈ [H], ADACT–H creates
a set of candidate states Qc,t+1 by extending all states in Qt with symbols in AO (line 3). We use
qao to simultaneously refer to a candidate state and its state-symbol prefix (q, ao). We associate each
candidate state qao with a multiset of suffixes X (qao), i.e. traces in EH−t−1, obtained by selecting
all suffixes in X (q) that start with action a and observation o (line 4).

Next, ADACT–H finds the candidate state whose suffix multiset has maximum cardinality, and
promotes this candidate to Qt+1 by defining the transition function τ accordingly (lines 5-7). The
algorithm then iterates over each remaining candidate state qao ∈ Qc,t+1, comparing the distribution
on suffixes in X (qao) to those of states in Qt+1 (line 9). If the suffix distribution is different from that
of each state in Qt+1, qao is promoted to Qt+1 (line 10), else qao is merged with a state q′ ∈ Qt+1

that has a similar suffix distribution (line 11). Finally, ADACT–H returns the set of RDP states Q
and the associated transition function τ . The function TESTDISTINCT compares two multisets X1

and X2 of traces in EH−t−1 using the metric Lp
∞. For i ∈ {1, 2} and each trace e ∈ EH−t−1, let

p̂i(e) =
∑

x∈Xi
I(x = e)/|Xi| be the empirical estimate of pi, as the proportion of elements in Xi

equal to e. TESTDISTINCT compares Lp
∞(X1,X2) := Lp

∞(p̂1, p̂2) to a confidence threshold.

Markov transformation. We are now ready to connect the RDP learning phase with the MDP
learning phase. RDPs do not respect the Markov property over their observations and rewards, if
automaton states remain hidden. However, we can use the reconstructed transition function τ returned
by ADACT–H, extended over histories as τ̄ : H → Q, to recover the Markov property. In what
follows we formalize the notion of Markov transformation and the properties that its outputs satisfy.

Definition 2. Let e0:H ∈ EH be an episode collected from an RDP R and a policy πb that is
regular in R. The Markov transformation of eH with respect to R is the episode constructed
as a0r0q1 . . . aHrHqH+1, where qt+1 = τ̄(ht) and ht = a0o0 · · · atot, t ∈ [H]. The Markov
transformation of a dataset D is the Markov transformation of all the episodes it contains.

A Markov transformation discards all observations from D and replaces them with RDP states output
by τ̄ . The dataset so constructed can be seen as generated from an MDP, which we define next.

Definition 3. The episodic MDP associated to an episodic RDP R is MR = ⟨Q,A,R, T, θr, H⟩,
where T (q, a, q′) =

∑
o∈O I(q′ = τ(q, ao)) θo(q, a, o) for each (q, a, q′) ∈ Q×A×Q.

7

The associated MDP in Definition 3 is the decision process that corresponds to the Markov transfor-
mation of Definition 2, i.e. any episode produced with the Markov transformation can be equivalently
seen as being generated from the associated MDP, in the sense of the following proposition.
Proposition 3. Let e0:H be an episode sampled from an episodic RDP R under a regular policy
π ∈ ΠR, with π(h, a) = πr(τ̄(h), a). If e′H is the Markov transformation of eH with respect to R,
then P(e′H | R, π) = P(e′H | MR, πr) , where MR is the MDP associated to R.

Rewards are not affected by the Markov transformation, only observations, implying the following.
Proposition 4. Let π ∈ ΠR be a regular policy in R such that π(h, a) = πr(τ̄(h), a). Then
E[V π

0,R] = E[V πr

0,MR
], where V π

0,R and V πr

0,MR
are the values in the respective decision process, and

E[V ∗
0,R] = E[V ∗

0,MR
], where expectations are with respect to randomness in o0.

Corollary 5. Given ε ∈ (0, H], if πr : Q → ∆(A) is an ε-optimal policy of MR, the MDP
associated to some RDP R, then, π(h, a) = πr(τ̄(h), a) is ε-optimal in R.

In summary, from Proposition 3, if Dm is the Markov transformation of a dataset D with respect to an
RDP R, then, Dm can be seen as being generated from the associated MDP MR. Hence, any offline
RL algorithm for MDPs can be used for learning in Dm. Moreover, according to Corollary 5, any
solution for MR can be translated via τ̄ into a policy for the original RDP, with the same guarantees.

Complete algorithm. The complete procedure is illustrated in Algorithm 1. Initially, the input
dataset D is separated in two halves. The first portion is used for learning the transition function of the
unknown RDP with ADACT–H (Section 3). If an upper bound Q on |Q| is available, it can optionally
be provided to compute a more appropriate failure parameter for ADACT–H. If not available, we
adopt the upper bound of 2(AO)H states, which is valid for any instance, due to histories having finite
length. As we will see in Theorem 6, this would only contribute linearly in H to the required dataset
size. The output function computed by ADACT–H is then used to compute a Markov transformation
of the second phase, as specified in Definition 2. The resulting dataset, now Markovian, can be passed
to a generic offline RL algorithm, which we represent with the function OFFLINERL(D, ε, δ). In
Appendix D, we instantiate it for a specific state-of-the-art offline RL algorithm.

Algorithm 1: Full procedure (RegORL)

Input: Dataset D, accuracy ε ∈ (0, H], failure probability 0 < δ < 1, (optionally) upper bound Q on |Q|
Output: Policy π̂ : H → ∆(A)

1 D1,D2 ← separate D into two datasets of the same size
2 Q, τ ← ADACT–H(D1, δ/(4AOQ)), where Q = 2(AO)H if not provided
3 D′

2 ←Markov transformation of D2 with respect to τ̄ as in Definition 2
4 π̂m ← OFFLINERL(D′

2, ε, δ/2)
5 return π̂ : h 7→ π̂m(τ̄(h))

4 Theoretical Guarantees

We now turn to theoretical performance guarantees of RegORL. Our main performance result is a
sample complexity bound in Theorem 7, ensuring that, for any accuracy ε ∈ (0, H], RegORL finds an
ε-optimal policy. We also report a sample complexity bound for ADACT–H in Theorem 6, and an
alternative bound in Theorem 8. In comparison, the sample complexity bound for ADACT [10] is

Õ
(
Q4A2O2H5 log(1/δ)

ε2
max

{
1

µ2
0

,
H4O2A2

ε4

})
.

We achieve a tighter bound by using Bernstein’s inequalities and exploiting the finiteness of histories.
Theorem 6. Consider a dataset D of episodes sampled from an RDP R and a regular policy
πb ∈ ΠR. With probability 1− δ, the output of ADACT–H(D, δ/(2QAO)) is the transition function
of the minimal RDP equivalent to R, provided that |D| ≥ Nδ , where

Nδ :=
21 log(8QAO/δ)

dbmin µ0

√
H log(2ARO) ∈ Õ

(√
H

dbmin µ0

)
,

8

dbmin := min{dbt (q, ao) | t ∈ [H], q ∈ Qt, ao ∈ AO, dbt (q, ao) > 0} is the minimal occupancy
distribution, and µ0 is the Lp

∞-distinguishability.

The proof appears in Appendix C.2. Theorem 6 tells us that the sample complexity of ADACT–H,
to return a minimal RDP, is inversely proportional to µ0, the Lp

∞-distinguishability of R and πb,
and the minimal occupancy dbmin. Note that dbmin ≤ 1/(QOA). The bound also depends on Q, the
number of RDP states, implicitly through dbmin and explicitly via a logarithmic term. In the absence
of prior knowledge of Q, one may use in the argument of Algorithm 1 the worst-case upper bound
Q = 2(AO)H . The sample complexity would then have an additional linear term in H , since Q is
only used in the logarithmic term to set the appropriate value of δ. However, this will not impact the
value of the dbmin term.

Theorem 6 is a sample complexity guarantee for the first phase of the algorithm, which learns τ , the
structure of the minimal RDP that is equivalent to the underlying RDP. If δ is the desired failure
probability of the complete algorithm, RegORL executes ADACT–H so that its success probability is
at least 1− δ/2. This means that with the same probability, D′

2 is an MDP dataset with the properties
listed in Section 3. As a consequence, provided that OFFLINERL is some generic (ε, δ/2)-PAC
offline RL algorithm for MDPs, the output of RegORL is an ε-optimal policy with probability 1− δ.

Theorem 7. Consider a dataset D of episodes sampled from an RDP R and a regular policy
πb ∈ ΠR. For any ε ∈ (0, H] and 0 < δ < 1, if OFFLINERL is an (ε, δ/2)-PAC offline algorithm
for MDPs with sample complexity Nm, then, the output of RegORL(D, ε, δ) is an ε-optimal policy
in R, with probability at least 1− δ, provided that |D| ≥ 2max{Nδ/2, Nm}.

As we can see, the sample complexity requirement separates for the two phases. While Nδ/2 is
due to the RDP learning component, defined in Theorem 6, the quantity Nm completely depends
on the offline RL algorithm for MDPs that is adopted. Among other terms, the performance
guarantees of offline algorithms can often be characterized through the single-policy concentrability
for MDPs C∗. However, since states become observations in the associated MDP, due to the properties
of Proposition 3, C∗ coincides with C∗

R, the RDP single-policy concentrability of Definition 1.

In Appendix D, we demonstrate a specific instantiation of RegORL with an off-the-shelf offline RL
algorithm from the literature by Li et al. [16]. This yields the following requirement for Nm:

Nm ≥
cH3QC∗

R log 2HNm

δ

ε2
,

for a constant c > 0.

To eliminate the dependence that Theorem 6 has on dbmin, we develop a variant of ADACT–H which
does not learn a complete RDP. Rather, it only reconstructs a subset of states that are likely under the
behavior policy. The algorithm, which we call ADACT–H–A (with ‘A’ standing for “approximation”),
is defined in Appendix C.3. Theorem 8 is an upper bound on the sample complexity of ADACT–H–A
that takes the accuracy ε as input and returns the transition function of an ε/2-approximate RDP R′,
whose optimal policy is ε/2-optimal for the original RDP R. By performing a Markov transformation
for R′ and using an (ε/2, δ/2)-PAC offline algorithm for MDPs, we can compute an ε-optimal policy
for R. The total sample complexity can be combined in the same way as in Theorem 7.

Theorem 8. Consider a dataset D of episodes sampled from an RDP R and a regular policy πb ∈ ΠR.
With probability 1 − δ, the output of ADACT–H–A, called with D, δ/(2QAO) and ε ∈ (0, H] in
input, is the transition function of an ε/2-approximate RDP R′, provided that |D| ≥ N ′

δ , where

N ′
δ :=

504HQAOC∗
R′ log(16QAO/δ)

ε µ0

√
H log(2ARO) ∈ Õ

(
H3/2QAOC∗

R′

ε µ0

)
.

This theorem does not rely on Assumption 1, because a finite C∗
R suffices.

5 Sample Complexity Lower Bound

The main result of this section is Theorem 9, a sample complexity lower bound for offline RL in
RDPs. It shows that the dataset size required by any RL algorithm scales with the relevant parameters.

9

q01

∗.u

q02

∗.u

q03

a′
0.vξ

a′
1.v−ξ

qs

∗.s
q11

∗.u

q12

∗.u

q13

a′
0.v−ξ

a′
1.vξ

qb1

∗.1+

qb2

∗.1+

qb3

a′
0.u+

a′
1.vη

q+4 q+5

q−4 q−5

qo⊥

0

1

∗

∗

0

1

0
1

−

+

+
∗ ∗

+

−

∗

∗

∗

∗

∗

Figure 2: One episodic RDP instance R101,1 ∈ R(L,H, ξ, η), associated to the parity function f101,
with code 101, and the optimal arm a′1. The length is L = |101| = 3, the horizon H = 5, the
noise parameter ξ and the bandit bonus parameter is η. The transition function only depends on
the observations, not the actions. The output distributions are: u = unif{0, 1}, u+ = unif{+,−},
vα(+) = (1 + α)/2, vα(−) = (1− α)/2. The star denotes any symbol. If the label of a state q is
a.d, then the observation function is θo(q, a) = d. Refer to Appendix E for details.

Theorem 9. For any (C∗
R, H, ε, µ0) satisfying C∗

R ≥ 2, H ≥ 2 and ε ≤ Hµ0/64, there exists
an RDP with horizon H , Lp

1-distinguishability µ0 and a regular behavior policy πb with RDP
single-policy concentrability C∗

R, such that if D has been generated using πb and R, and

|D| /∈ Ω

(
H

µ0
+

C∗
RH2

ε2

)
(3)

then, for any algorithm A : D 7→ π̂ returning non-Markov deterministic policies, the probability that
π̂ is not ε-optimal is at least 1/4.

The proof relies on worst-case RDP instances that carefully combine two-armed bandits with noisy
parity functions. This last component allows to capture the difficulty of learning in presence of
temporal dependencies. Figure 2 shows an RDP in this class. At the beginning of each episode,
the observation causes a transition towards either the bandit component (bottom branch) or the
noisy parity function (top branches). Acting optimally in the two parity branches requires to predict
the output of a parity function, which depends on some unknown binary code (of length 3, in the
example). The first term in Theorem 9 is due to this component, because the code scales linearly with
H , or Q, while the amount of information revealed about the code is controlled by µ0. The second
term is caused by the required optimality in the bandit.

Differently from this lower bound, the parameter µ0, appearing in the upper bounds of Theorems
6 and 8, is a Lp

∞-distinguishability. However, the two are related, since Lp
1(q, q

′) ≥ Lp
∞(q, q′).

Intuitively, the Lp
1-distinguishability accounts for all the information that is available as differences

in episode probabilities. The Lp
∞-distinguishability, on the other hand, quantifies the maximum the

difference in probability associated to specific suffixes. This is the information used by the algorithm
and the one appearing in the two upper bounds.

6 Conclusion

In this paper we propose an algorithm for Offline RL in episodic Regular Decision Processes. Our
algorithm exploits automata learning techniques to reduce the problem of RL in RDPs, in which
observations and rewards are non-Markovian, into standard offline RL for MDPs. We provide the first
high-probability sample complexity guarantees for this setting, as well as a lower bound that shows
how its complexity relates to the parameters that characterize the decision process and the behavior
policy. We identify the RDP single-policy concentrability as an analogous quantity to the one used for
MDPs in the literature. Our sample complexity upper bound depends on the Lp

∞-distinguishability of
the behavior policy. As a future work, we plan to investigate if any milder notion of distinguishability
also suffices. This is motivated by our lower bound which only involves the Lp

1-distinguishability
over the same policy. Finally, our results have strong implications for online learning in RDPs, which
is a relevant setting to be explored.

10

Acknowledgments

Roberto Cipollone is partially supported by the EU H2020 project AIPlan4EU (No. 101016442), the
ERC-ADG White-Mech (No. 834228), the EU ICT-48 2020 project TAILOR (No. 952215), the PRIN
project RIPER (No. 20203FFYLK), and the PNRR MUR project FAIR (No. PE0000013). Anders
Jonsson is partially supported by the EU ICT-48 2020 project TAILOR (No. 952215), AGAUR SGR,
and the Spanish grant PID2019-108141GB-I00. Alessandro Ronca is partially supported by the
ERC project WhiteMech (No. 834228), and the ERC project ARiAT (No. 852769). Mohammad
Sadegh Talebi is partially supported by the Independent Research Fund Denmark, grant number
1026-00397B.

References
[1] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

1994.

[2] Fahiem Bacchus, Craig Boutilier, and Adam J. Grove. Rewarding behaviors. In AAAI, pages 1160–1167,
1996.

[3] Ronen I. Brafman and Giuseppe De Giacomo. Regular decision processes: A model for non-markovian
domains. In IJCAI, pages 5516–5522, 2019.

[4] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artif. Intell., 101(1–2):99–134, 1998.

[5] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision processes. Mathe-
matics of Operations Research, 12(3):441–450, 1987.

[6] Chi Jin, Sham M. Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforcement
learning of undercomplete POMDPs. In NeurIPS, 2020.

[7] Hongyi Guo, Qi Cai, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Provably efficient offline
reinforcement learning for partially observable Markov decision processes. In ICML, pages 8016–8038,
2022.

[8] Zhaohan Daniel Guo, Shayan Doroudi, and Emma Brunskill. A PAC RL algorithm for episodic POMDPs.
In AISTATS, pages 510–518, 2016.

[9] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning of
POMDPs using spectral methods. In COLT, pages 193–256, 2016.

[10] Borja Balle, Jorge Castro, and Ricard Gavaldà. Learning probabilistic automata: A study in state distin-
guishability. Theor. Comput. Sci., 473:46–60, 2013.

[11] Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. In ICLR, 2022.

[12] Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with pessimism.
In NeurIPS, pages 4065–4078, 2021.

[13] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
ICML, pages 1042–1051, 2019.

[14] Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging sample-
efficient offline and online reinforcement learning. In NeurIPS, pages 27395–27407, 2021.

[15] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. In NeurIPS, pages 11702–11716, 2021.

[16] Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of model-based
offline reinforcement learning. CoRR, abs/2204.05275, 2022.

[17] Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement learning
with realizability and single-policy concentrability. In COLT, pages 2730–2775, 2022.

[18] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In ICML,
pages 5084–5096, 2021.

[19] Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline
reinforcement learning. In NeurIPS, pages 15621–15634, 2021.

[20] Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline RL in
low-rank MDPs. In ICLR, 2022.

[21] Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning.
In International Conference on Machine Learning, pages 2139–2148. PMLR, 2016.

11

[22] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S Sutton. Toward off-policy learning
control with function approximation. In ICML, pages 719–726, 2010.

[23] Nathan Kallus and Masatoshi Uehara. Double reinforcement learning for efficient off-policy evaluation in
Markov decision processes. The Journal of Machine Learning Research, 21(1):6742–6804, 2020.

[24] Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A review of off-policy evaluation in reinforcement
learning. arXiv preprint arXiv:2212.06355, 2022.

[25] Eden Abadi and Ronen I. Brafman. Learning and solving regular decision processes. In IJCAI, pages
1948–1954, 2020.

[26] Alessandro Ronca and Giuseppe De Giacomo. Efficient PAC reinforcement learning in regular decision
processes. In IJCAI, pages 2026–2032, 2021.

[27] Alessandro Ronca, Gabriel Paludo Licks, and Giuseppe De Giacomo. Markov abstractions for PAC
reinforcement learning in non-Markov decision processes. In IJCAI, pages 3408–3415, 2022.

[28] Rodrigo Toro Icarte, Ethan Waldie, Toryn Q. Klassen, Richard Anthony Valenzano, Margarita P. Castro,
and Sheila A. McIlraith. Learning reward machines for partially observable reinforcement learning. In
NeurIPS, pages 15497–15508, 2019.

[29] Marcus Hutter. Feature reinforcement learning: Part I. Unstructured MDPs. J. Artif. Gen. Intell., 1(1):
3–24, 2009.

[30] Joel Veness, Kee Siong Ng, Marcus Hutter, William T. B. Uther, and David Silver. A Monte-Carlo AIXI
approximation. J. Artif. Intell. Res., 40:95–142, 2011.

[31] M. M. Hassan Mahmud. Constructing states for reinforcement learning. In ICML, pages 727–734, 2010.

[32] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate information
state for approximate planning and reinforcement learning in partially observed systems. The Journal of
Machine Learning Research, 23(1):483–565, 2022.

[33] Karl Johan Åström. Optimal control of Markov processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174–205, 1965.

[34] Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter Stone. Learning predictive
state representations. In ICML, pages 712–719, 2003.

[35] Michael R. James and Satinder Singh. Learning and discovery of predictive state representations in
dynamical systems with reset. In ICML, 2004.

[36] Michael H. Bowling, Peter McCracken, Michael James, James Neufeld, and Dana F. Wilkinson. Learning
predictive state representations using non-blind policies. In ICML, pages 129–136, 2006.

[37] Alex Kulesza, Nan Jiang, and Satinder Singh. Spectral learning of predictive state representations with
insufficient statistics. In AAAI, pages 2715–2721, 2015.

[38] Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D. Lee. PAC reinforcement learning for predictive
state representations. In ICLR, 2023.

[39] Odalric-Ambrym Maillard, Rémi Munos, and Daniil Ryabko. Selecting the state-representation in rein-
forcement learning. In NeurIPS, pages 2627–2635, 2011.

[40] Phuong Nguyen, Odalric-Ambrym Maillard, Daniil Ryabko, and Ronald Ortner. Competing with an
infinite set of models in reinforcement learning. In AISTATS, pages 463–471, 2013.

[41] Odalric-Ambrym Maillard, Phuong Nguyen, Ronald Ortner, and Daniil Ryabko. Optimal regret bounds for
selecting the state representation in reinforcement learning. In ICML, pages 543–551, 2013.

[42] Ronald Ortner, Matteo Pirotta, Alessandro Lazaric, Ronan Fruit, and Odalric-Ambrym Maillard. Regret
bounds for learning state representations in reinforcement learning. In NeurIPS, pages 12717–12727, 2019.

[43] Tor Lattimore, Marcus Hutter, and Peter Sunehag. The sample-complexity of general reinforcement
learning. In ICML, pages 28–36, 2013.

[44] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith. Using
reward machines for high-level task specification and decomposition in reinforcement learning. In ICML,
pages 2112–2121, 2018.

[45] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu. Joint
inference of reward machines and policies for reinforcement learning. In ICAPS, pages 590–598, 2020.

[46] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Foundations for restraining bolts:
Reinforcement learning with LTLf/LDLf restraining specifications. In ICAPS, pages 128–136, 2019.

[47] Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro Ronca. Temporal logic
monitoring rewards via transducers. In KR, pages 860–870, 2020.

12

[48] Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and Daniel
Kroening. DeepSynth: Automata synthesis for automatic task segmentation in deep reinforcement learning.
In AAAI, pages 7647–7656, 2021.

[49] Hippolyte Bourel, Anders Jonsson, Odalric-Ambrym Maillard, and Mohammad Sadegh Talebi. Exploration
in reward machines with low regret. In International Conference on Artificial Intelligence and Statistics,
pages 4114–4146. PMLR, 2023.

[50] Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and control with temporal logic
constraints. In RSS, 2014.

[51] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious reinforcement learning
with logical constraints. In AAMAS, pages 483–491, 2020.

[52] Lewis Hammond, Alessandro Abate, Julian Gutierrez, and Michael J. Wooldridge. Multi-agent reinforce-
ment learning with temporal logic specifications. In AAMAS, pages 583–592, 2021.

[53] Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos, and Miroslav Pajic. Control synthesis from linear
temporal logic specifications using model-free reinforcement learning. In ICRA, pages 10349–10355,
2020.

[54] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak.
Omega-regular objectives in model-free reinforcement learning. In TACAS, pages 395–412, 2019.

[55] Sultan Javed Majeed and Marcus Hutter. On Q-learning convergence for non-Markov decision processes.
In IJCAI, pages 2546–2552, 2018.

[56] Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of acyclic probabilistic finite
automata. J. Comput. Syst. Sci., 56(2):133–152, 1998.

[57] Alexander Clark and Franck Thollard. PAC-learnability of probabilistic deterministic finite state automata.
J. Mach. Learn. Res., 5:473–497, 2004.

[58] Nick Palmer and Paul W. Goldberg. PAC-learnability of probabilistic deterministic finite state automata in
terms of variation distance. Theor. Comput. Sci., 387(1):18–31, 2007.

[59] Borja Balle. Learning Finite-State Machines: Statistical and Algorithmic Aspects. PhD thesis, Universitat
Politècnica de Catalunya, 2013.

[60] Borja Balle, Jorge Castro, and Ricard Gavaldà. Adaptively learning probabilistic deterministic automata
from data streams. Machine Learning, 96(1):99–127, 2014.

[61] Edward Forrest Moore. Gedanken-experiments on sequential machines. Automata studies, 34:129–153,
1956.

[62] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Longman Publishing Co., Inc., 2006.

[63] Jeffrey Shallit. A second course in formal languages and automata theory. Cambridge University Press,
2008.

[64] Ronen I. Brafman, Giuseppe De Giacomo, and Fabio Patrizi. LTLf/LDLf non-markovian rewards. In
AAAI, pages 1771–1778, 2018.

[65] Maor Gaon and Ronen I. Brafman. Reinforcement learning with non-markovian rewards. In AAAI, pages
3980–3987, 2020.

[66] Andrew Kachites McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD
thesis, University of Rochester, 1996.

[67] Jorma Rissanen. A universal data compression system. IEEE Transactions on information theory, 29(5):
656–664, 1983.

[68] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning probabilistic automata with
variable memory length. Mach. Learn., 25(2-3):117–149, 1996.

[69] Marcus Hutter. Extreme state aggregation beyond Markov decision processes. Theor. Comp. Sci., pages
73–91, 2016.

[70] Andreas Maurer and Massimiliano Pontil. Empirical Bernstein bounds and sample-variance penalization.
In COLT, 2009.

[71] Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC bounds for
episodic reinforcement learning. In NeurIPS, pages 5713–5723, 2017.

[72] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (2. Ed.). Wiley, 2006.

[73] Balázs Szörényi. Characterizing statistical query learning: Simplified notions and proofs. In ALT, pages
186–200, 2009.

13

[74] Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay Mansour, and Steven Rudich.
Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In STOC, pages
253–262, 1994.

[75] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learning. In
STOC, pages 990–1002, 2018.

[76] Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-sample lower bounds for learning
parity with noise. CoRR, abs/2107.02320, 2021.

14

Appendices

A Extended Discussion of Related Work 16

A.1 Offline RL in MDPs . 16

A.2 Online RL in RDPs . 16

A.3 Non-Markov Rewards and Reward Machines . 16

A.4 State Representations . 17

A.5 Feature MDPs and General RL . 17

A.6 Learning PDFA . 18

B RDP properties 18

B.1 RDPs and Regular Policies . 18

B.2 Markov Transformation . 19

C Sample Complexity of ADACT–H 20

C.1 Preliminaries . 20

C.2 Proof of Theorem 6 . 21

C.3 Proof of Theorem 8 . 23

C.4 Distinguishability Parameters . 26

D RegORL with Subsampled VI-LCB 26

E Sample Complexity Lower Bound: Proof of Theorem 9 28

E.1 Learning parity with noise . 28

E.2 Class of hard RDP instances . 29

E.3 Proof of Theorem 9 . 30

15

A Extended Discussion of Related Work

Some of the related work mentioned in the introduction requires a more extensive discussion, which
we provide below.

A.1 Offline RL in MDPs

There is a rich and growing literature on offline RL in MDPs; see, e.g., [11, 12, 13, 14, 15, 16, 17,
18, 19, 20]. A closely related line of work is off-policy learning in MDPs [21, 22, 23]; we refer to
the recent survey [24] for a discussion on how the various settings are related. For offline RL in
MDPs, the papers cited above report learning algorithms with theoretical guarantees on their sample
efficiency. The majority of these algorithms are designed based on the pessimism principle. While
most literature focuses on tabular MDPs, the case of linear function approximation is discussed
in some papers, e.g., [20]. In several settings, the presented algorithms are shown to be minimax
optimal. For instance, in the case of tabular episodic MDPs, it is established in [16] that the optimal
sample complexity depends on the size of state-space, episode length, as well as some notion of
concentrability reflecting the distribution mismatch between the behavior and optimal policy.

A.2 Online RL in RDPs

RDPs have been introduced in [3] as a formalism based on temporal logic. They admit an equivalent
formulation in terms of automata, which is favoured in the context of RL. Several algorithms for
online RL in RDPs exist [25, 26, 27] but complexity bounds are only given in [26] for the infinite-
horizon discounted setting. This work [26] shows the correspondence between RDPs and Probabilistic
Deterministic Finite Automata (PDFA), and it introduces the idea of using PDFA-learning techniques
to learn RDPs. Their sample complexity bounds are not immediately comparable to ours, due to the
different setting. Importantly, this algorithm uses the uniform policy for learning. So, the algorithm
might be adapted to our setting only under the assumption that the behaviour policy is uniform.
Even in this case, our bounds show an improved dependency on several key quantities. Furthermore,
we provide a sample complexity lower bound, whereas their results are limited to showing that a
dependency on the quantities occurring in their upper bounds is necessary.

The first RL algorithm for RDPs appears in [25] for the online discounted setting. It is automaton-
based, and in particular, it learns the RDP in the form of a Mealy machine. The algorithm is shown
in [26] to incur an exponential dependency on the length of the relevant histories. An algorithm
that achieves performance guarantees building on the techniques from [26] but also integrating an
effective exploration strategy is given in [27]. This work also introduces the idea of seeing the
transition function of a PDFA as a Markov abstraction of the histories to be passed to an RL algorithm
for MDPs, so as to employ it in a modular manner.

The algorithms in [28, 29, 30, 31] apply to RDPs even though they have not been developed specifi-
cally for RDPs. Toro Icarte et al. [28] present an RL algorithm for the subclass of POMDPs that have
a finite set of reachable belief states. Such POMDPs can be captured by finite-state automata, and are
in fact RDPs. Their algorithm is based on automata learning, but it does not come with an analysis of
its performance guarantees. The RL techniques presented in [29, 30] for feature MDPs are in fact
applicable to episodic RDPs. The techniques are based on suffix trees, rather than automata. There
are cases when the size of the smallest suffix tree is exponential in the horizon, while an automaton
of linear size exists—see section below on feature MDPs. Thus their techniques cannot yield optimal
bounds for RDPs. Mahmud [31] introduces an RL algorithm for Deterministic Markov Decision
Models (MDDs). Such MDDs are also automaton-based, and they are more general than RDPs
since the automaton is only required to predict rewards. Thus their RL algorithm applies to RDPs.
However, it is an algorithm without guarantees.

A.3 Non-Markov Rewards and Reward Machines

MDPs with non-Markov rewards are a special case of NMDPs, where only rewards are non-Markovian.
Namely, observed states satisfy the Markov property, while rewards may depend on the history of
past states. The specific kind of non-Markov rewards considered in the literature amount to the
subclass of RDPs where the automaton’s state is only needed to predict the next reward—while the
next observation (i.e., state) can be predicted from the last observation.

16

Non-Markov rewards can already be found in [2], where the reward function is specified in a temporal
logic of the past. More recently, the setting has been revisited with so-called reward machines [44]
as well as with temporal logics of the future on finite traces [64, 47]. A reward machine is a finite
automaton (or transducer) used to specify a non-Markovian reward function. Reward machines have
been introduced in [44] along with an RL algorithm that assumes the reward machine to be known.
RL algorithms with unknown reward machine, or equivalently unknown temporal specification, are
presented in [65, 45], with no performance guarantees. Reward machines have been generalised so as
to predict observations as well [28], which makes them equivalent to RDPs—as mentioned above.

The first performance bounds for RL with reward machines have been recently established in [49].
The work shows regret bounds that take into account the structure provided by a reward machine, and
hence improve over the bounds that one would obtain by naively adapting regret bounds for MDPs.

An automaton-based method for dealing with non-Markov sparse rewards is proposed in [48].

A.4 State Representations

State representations are maps from histories to a finite state space. The map defined by the transition
function of an RDP is a state representation. The studies on state representations [39, 40, 41, 42]
focus on regret bounds for RL given a candidate set of state representations. While in our case the
state representations are concretely defined by the class of finite-state automata, in their case they
are arbitrary maps. This is a challenging setting, which does not allow for taking advantage of the
properties of specific classes of state representations. The regret bounds in [39, 41, 42] are for finite
sets of state representations, and they all show a linear dependency on the cardinality of the given
set of state representations. In our case, the candidate state representations correspond to the set of
automata with at most Q = 2(AO)H states and AO input letters. Such a set contains at least QQAO

automata—the number of distinct transition functions. Thus, if we could instantiate their bounds in
our setting, they would have an exponential dependency on the number Q of RDP states, and hence a
doubly-exponential dependency on the horizon H . We avoid this dependency, obtaining polynomial
bounds in the mentioned quantities.

Nguyen et al. [40] consider the case of a countably infinite set of state representations, and present an
algorithm whose regret bound does not show a dependency such as the one discussed above. Instead,
they show a dependency on a quantity K0, which admits several interpretations, including one based
on the descriptional complexity of the candidate state representations. Thus, there may be a way
to relate K0 to the quantities we use in our bounds. However, the formal relationship between the
two, if any, renders highly non-trivial, which prevents one to use their ideas in the case of RDPs.
We believe establishing a fomal relationship between their model and RDPs is an interesting, yet
challenging, topic for future work. Furthermore, it should be stressed that even if the relationship
was clear and one could borrow ideas from [40], the resulting sample complexity bound would have
to grow as 1/ε3 in view of their regret bound scaling as T 2/3. In contrast, our bounds achieve an
optimal dependency of 1/ε2 on ε.

A.5 Feature MDPs and General RL

Hutter [29] introduces feature MDPs, where histories are mapped to states by a feature map. It relates
to our work since the map provided by the transition function of an RDP is a feature map. The
concrete feature maps considered in [29] are based on U-Trees [66]. The idea is also revisited in [30]
with Prediction Suffix Trees (PSTs) [67, 68]. Both U-Trees and PSTs are suffix trees. There are cases
when their size is exponential in the horizon, while an automaton of linear size exists. For instance,
in the case of a parity condition over the history. To see this, note that a suffix x of a bit string bx
does not suffice to establish parity of bx. In fact, the parity of 0x is different from the parity of 1x.
Thus a suffix tree for parity must encode all suffixes, and hence it will have a number of leaves that is
exponential in the maximum length of a relevant string—the horizon H in the case of episodic RL.

Hutter [69] provides several formal characterisations of feature maps. All the characterisations are less
restrictive than the one defined by an RDP. In particular, their most restrictive characterisation is given
in their Equation (6). It only requires to preserve the ability to predict rewards, not observations—this
is also adopted by Mahmud [31]. The states of our automata suffice to predict observations as well. It
is unclear whether automata techniques can be used to learn directly abstractions that do not preserve
the dynamics entirely.

17

Majeed and Hutter [55] study convergence of Q-learning when executed over the state space of an
MDP that underlies a non-Markov decision processes. Such a state space corresponds to the state
space of the RDP, but they do not consider the problem of learning the state space.

Lattimore et al. [43] consider General RL as the problem of RL when we are given a set of candidate
NMDPs, rather than assuming the decision process to belong to a fixed class. Similarly to the works
on state representations, it does not commit to specific classes of NMDPs, and their bounds have
a linear dependency on the number of candidate models. As remarked above, in our setting, it
amounts to an exponential dependency on the number of states of the candidate RDPs, and hence a
doubly-exponential dependency on the horizon; we avoid such exponential dependencies.

A.6 Learning PDFA

Our algorithms for learning an RDP borrow and improve over techniques for learning Probabilistic-
Deterministic Finite Automata (PDFA). The first PAC learning algorithm for acyclic PDFA has
been presented in [56], then followed by extensions and variants that can handle PDFA with cycles
[57, 58, 10, 59, 60]. All bounds feature some variant of a distinguishability parameter, which we
adopt in our bounds, properly adapting it to the offline RL setting. Our algorithm builds upon the
state-of-the-art algorithm ADACT [10], and we derive bounds that are a substantial improvement
over the ones that can be obtained from a straightforward application of any existing PDFA-learning
algorithm to the offline RL setting.

B RDP properties

In this section we prove several properties of RDPs that are stated in Sections 2 and 3.

B.1 RDPs and Regular Policies

In this section, we prove Propositions 1 and 2.
Proposition 1. Consider an RDP R, a regular policy π ∈ ΠR and two histories h1 and h2 in Ht,
t ∈ [H], such that τ̄(h1) = τ̄(h2). For each suffix et+1:H ∈ EH−t−1, the probability of generating
et+1:H is the same for h1 and h2, i.e. P(et+1:H | h1, π,R) = P(et+1:H | h2, π,R).

Proof. By induction on t. For t = H , all histories in HH generate the empty suffix in (ARO)0

with probability 1 (the stop symbol is omitted). For t < H , the probability of generating a suffix
aroet+2:H is

P(aroet+2:H | h1, π,R) = π(h1, a) · P(r, o | τ̄(h1), a,R) · P(et+2:H | h1ao, π,R)

= π(h2, a) · P(r, o | τ̄(h2), a,R) · P(et+2:H | h2ao, π,R) = P(aroet+2:H | h2, π,R),

where we have used the fact that π is regular, τ̄(h1) = τ̄(h2), τ̄(h1ao) = τ(τ̄(h1), ao) =
τ(τ̄(h2), ao) = τ̄(h2ao), and the induction hypothesis.

The following statement appears in the literature [3, Theorem 2], but the authors do not provide a
complete proof, so for completeness we prove the statement here.
Proposition 2. Each RDP R has at least one optimal policy π∗ ∈ ΠR.

Proof. Given R, consider any optimal policy π∗ : H → ∆(A), not necessarily regular. We prove the
statement by constructing a policy π and showing by induction on t ∈ [H] that π is both optimal and
regular. The base case is given by t = H . In this case, for an arbitrary a ∈ A, define π(h) := 1a for
each history h ∈ HH . Since V π

H(h) = 0 by definition, π is optimal for each history h ∈ HH , and
regular since it always selects the same action.

For t < H , we first construct a new policy πc which is the composition of policies π∗ and π.
Concretely, for each history h ∈ Hu such that u ≤ t, πc(h) = π∗(h) acts according to π∗, while for
each history h ∈ Hu such that u > t, πc(h) = π(h) acts according to π. Clearly, πc is an optimal
policy for R since π∗ is optimal and since by induction, π is optimal for histories in Hu, u > t.

Consider a pair of histories h1 and h2 in Ht such that τ̄(h1) = τ̄(h2) but πc(h1) ̸= πc(h2).
Define π(h1) := π(h2) := πc(h1). Since the value function can be written as an expectation

18

over suffixes, due to Proposition 1 and the fact that π is regular for histories in Hu, u > t, we
have V π

t (h1) = V π
t (h2). Since πc is the same as π for histories in Hu, u > t, this implies

V π
t (h1) = V πc

t (h1) ≤ V πc
t (h2) since πc is optimal for h2. If we were to instead define π(h1) :=

π(h2) := πc(h2), we would obtain V πc
t (h2) ≤ V πc

t (h1). The only possibility is V πc
t (h1) = V πc

t (h2),
which is the same value achieved by the policy π. Hence π is optimal for h1 and h2.

We now repeat the same procedure for each pair of histories h1 and h2 in Ht such that τ̄(h1) = τ̄(h2)
but πc(h1) ̸= πc(h2). If necessary, we complete the definition of π by copying the action choices
of πc. The resulting policy π is optimal for each history h ∈ Ht, and regular since it makes the same
action choices for each pair of histories h1 and h2 in h ∈ Ht such that τ̄(h1) = τ̄(h2).

B.2 Markov Transformation

In this section, we verify the properties of the Markov transformation, which is the intermediate step
that RegORL uses to recover the Markov property in the original dataset. This transformation has
been formalized in Definition 2. We use D and D′ to denote the original and the transformed datasets,
respectively.

Proposition 3. Let e0:H be an episode sampled from an episodic RDP R under a regular policy
π ∈ ΠR, with π(h, a) = πr(τ̄(h), a). If e′H is the Markov transformation of eH with respect to R,
then P(e′H | R, π) = P(e′H | MR, πr) , where MR is the MDP associated to R.

Proof. For t ∈ [H], let et ∈ Et = (ARO)t+1 be an episode prefix in R, ϕ(et) ∈ E ′
t = (ARQ)t+1

be its Markov transformation and e′t ∈ E ′
t be an episode of the associated MDP. The function

ϕ : E → E ′ transforms the observations according to τ̄ , and preserves actions and rewards. The
statement says that P(ϕ(et) | R, π) = P(e′t | MR, πr) (note that ϕ(et) and e′t are distinct random
variables). We prove this by induction. For t = 0, we recall that the irrelevant quantities a0, r0 are
constant and,

P(ϕ(a0r0o0) = a0r0q | R, π) =
∑
o∈O

I(τ(q0, a0o) = q) θo(q0, a0, o)

= T (q0, a0, q)

= P(e′0 = a0r0q | MR, πr) (4)

where T : Q×A → ∆(Q) is the transition function of MR, from Definition 3. Due to the role of
the dummy action, T (q0, a0) is the initial distribution of the MDP.

For the inductive step, assume that P(ϕ(et−1) | R, π) = P(e′t−1 | MR, πr). Then, for any e′ ∈ E ′
t−1,

arq ∈ ARQ, if q′ is the last element of e′, we have

P(ϕ(et) = e′arq | R, π) = P(ϕ(et−1) = e′ | R, π)P(atrtqt+1 = arq | ϕ(et−1) = e′,R, π) (5)

= P(e′t−1 = e′ | MR, πr)P(atrtqt+1 = arq | qt = q′,R, π) (6)

= P(e′t−1 = e′ | MR, πr)πr(q
′, a) θr(q

′, a, r)
∑
o∈O

θo(q
′, a, o) I(q = τ(q′, ao)) (7)

= P(e′t−1 = e′ | MR, πr)πr(q
′, a) θr(q

′, a, r)T (q′, a, q) (8)

= P(e′t = e′arq | MR, πr) (9)

where, in (6), we have used the induction hypothesis and the fact that atrtqt+1 are Markov in q′ by
regularity of the policy.

Thanks to this relation, the values of corresponding policies are also related in the following way.

Proposition 4. Let π ∈ ΠR be a regular policy in R such that π(h, a) = πr(τ̄(h), a). Then
E[V π

0,R] = E[V πr

0,MR
], where V π

0,R and V πr

0,MR
are the values in the respective decision process, and

E[V ∗
0,R] = E[V ∗

0,MR
], where expectations are with respect to randomness in o0.

Proof. The statement is composed of two parts. First, we show that E[V π
0,R] = E[V πr

0,MR
], which is a

direct consequence of Proposition 3. Following the same convention as in the proof of Proposition 3,

19

we use E ′
t = (ARQ)t+1 and ϕ for the Markov transformation. Then,

E[V π
0,R] =

∑
r1...rH∈RH+1

P(r1:H = r1 . . . rH | R, π)

H∑
i=1

ri (10)

=
∑

e′∈E′
H

P(ϕ(eH) = e′ | R, π)

H∑
i=1

ri (11)

=
∑

e′∈E′
H

P(e′H = e′ | MR, πr)

H∑
i=1

ri (12)

= E[V πr

0,MR
] (13)

For the second part of the statement, let ΠR and ΠM be the regular and the Markov policies in R
and MR, respectively. Then, using Proposition 2 and the first part of this statement,

V ∗
0,R = max

π∈ΠR

E[V π
0,R] = max

π∈ΠR

E[V πr

0,MR
] = max

πr∈ΠM

E[V πr

0,MR
] = V ∗

0,MR
(14)

Corollary 5 is a consequence of the two parts of Proposition 4. Since V π
0,R = V πr

0,MR
and the value

achieved by the optimal policy in the respective model is the same, ε-optimality of π in R implies
ε-optimality of πr in MM, and vice versa.

C Sample Complexity of ADACT–H

In this section we prove high-probability upper bounds on the sample complexity of ADACT–H.

C.1 Preliminaries

We first state Hoeffding’s inequality for Bernoulli variables. In what follows we take log to be the
natural logarithm.
Lemma 10 (Hoeffding’s inequality). Let X1, . . . , XN be N independent random Bernoulli variables
with the same expected value E[X1] = p, and let p̂N =

∑N
i=1 Xi/N be an empirical estimate of p.

Then, for any δ ∈ (0, 1),

P

(
|p̂N − p| ≥

√
log(2/δ)

2N

)
≤ δ. (15)

An alternative to Hoeffding’s inequality is the empirical Bernstein inequality, which can be expressed
as follows for Bernoulli variables [70, 71].
Lemma 11 (Empirical Bernstein inequality). Let X1, . . . , XN be N independent random Bernoulli
variables with the same expected value E[X1] = p, and let p̂N =

∑N
i=1 Xi/N be an empirical

estimate of p. Then, for any δ ∈ (0, 1),

P

(
|p̂N − p| ≥

√
2p̂ log(4/δ)

N
+

14 log(4/δ)

3N

)
≤ δ. (16)

If X ∼ pX is a discrete random variable, the entropy of X is H(X) = −
∑

x∈X pX(x) log pX(x).
Further, for x ∈ (0, 1), we define the binary entropy function as H2(x) = −x log(x) −
(1 − x) log(1 − x). If (X,Y) ∼ pXY are two discrete variables, the conditional entropy is
H(Y | X) =

∑
x∈X pX(x)H(Y | X = x). The mutual information is I(X;Y) = I(Y ;X) =

DKL(pXY ∥ pX · pY), where DKL is the Kullback–Leibler divergence. If X,Y, Z are three random
variables, we write X → Y → Z if the conditional distribution of Z does not depend on X , given Y .
With these definition, we state Fano’s inequality, as one can find in Cover and Thomas [72], (2.140).

Theorem 12 (Fano’s inequality). Let X → Y → X̂ , for X, X̂ ∈ X and Pe = P(X̂ ̸= X). Then,
H2(Pe) + Pe log(|X | − 1) ≥ H(X | Y). (17)

20

C.2 Proof of Theorem 6

In this section we prove Theorem 6, which states a high-probability upper bound on the sample
complexity of ADACT–H. The first two lemmas are adaptations of Lemmas 19 and 20 in Balle et al.
[10] to the episodic setting.
Lemma 13. For t ∈ [H], let X1 and X2 be multisets sampled from distributions p1 and p2 in
∆(EH−t−1). If p1 = p2, then TESTDISTINCT(t,X1,X2, δ) returns False with probability 1− δ.

Proof. For each i ∈ {1, 2} and each trace e ∈ EH−t−1, we can view each episode as a random
Bernoulli variable with expected value pi(e) that takes value 1 if we observe e, and 0 otherwise. Let
p̂i(e) =

∑
x∈Xi

I(x = e)/|Xi| be the empirical estimate of pi, i.e. the proportion of elements in
Xi equal to e. For each i ∈ {1, 2}, each u ∈ [H − t − 1] and each prefix e0:u ∈ Eu, Hoeffding’s
inequality yields

P

(
|p̂i(e0:u ∗)− pi(e0:u ∗)| ≥

√
log(2/δs)

2|Xi|

)
≤ δs.

The total number of non-empty prefixes of EH−t−1 equals a geometric sum:

(ARO)1 + · · ·+ (ARO)H−t =
(ARO)H+1−t − 1

ARO − 1
− 1 ≤ 2(ARO)H−t.

Choosing δs = δ/4(ARO)H−t and taking a union bound implies that the above inequality holds for
each i ∈ {1, 2} and each e0:u simultaneously with probability 1− 4(ARO)H−tδs = 1− δ, implying

Lp
∞(X1,X2) = max

u,e0:u
|p̂1(e0:u∗)− p̂2(e0:u∗)| ≤ Lp

∞(p1, p2) +

√
log(2/δs)

2|X1|
+

√
log(2/δs)

2|X2|

≤ 0 + 2

√
log(2/δs)

2min(|X1|, |X2|)
=

√
2 log(8(ARO)H−t/δ)

min(|X1|, |X2|)
,

which is precisely the condition under which TESTDISTINCT(t,X1,X2, δ) returns False.

Lemma 14. For t ∈ [H], let X1 and X2 be multisets sampled from distributions p1 and p2 in
∆(EH−t−1). If the Lp

∞-distinguishability of πb is µ0, then TESTDISTINCT(t,X1,X2, δ) returns True
with probability 1− δ provided that

min(|X1|, |X2|) ≥
8

µ2
0

(
log(2(ARO)H−t) + log(4/δ)

)
.

Proof. Using the same argument as in the proof of Lemma 13, Hoeffding’s inequality yields

P

(
|p̂i(e0:u ∗)− pi(e0:u ∗)| >

√
log(2/δs)

2|Xi|

)
≤ δs,

with the inequality holding simultaneously for i ∈ {1, 2} and each prefix e0:u with probability 1− δ

by choosing δs = δ/4(ARO)H−t. Choosing µ0 ≥ 4
√

log(2/δs)/2|Xi| for each i ∈ {1, 2} yields

|Xi| ≥ min(|X1|, |X2|) ≥
8

µ2
0

log(2/δs) =
8

µ2
0

(
log(2(ARO)H−t) + log(4/δ)

)
.

In this case we have

Lp
∞(X1,X2) = max

u,e0:u
|p̂1(e)− p̂2(e)| ≥ Lp

∞(p1, p2)−

√
log(2/δs)

2|X1|
−

√
log(2/δs)

2|X2|

≥ µ0 −
µ0

4
− µ0

4
=

µ0

2
≥ 2

√
log(2/δs)

2min(|X1|, |X2|)
=

√
2 log(8(ARO)H−t/δ)

min(|X1|, |X2|)
,

which is precisely the condition under which TESTDISTINCT(t,X1,X2, δ) returns True.

21

We are now ready to prove Theorem 6, which we restate below:
Theorem 6. Consider a dataset D of episodes sampled from an RDP R and a regular policy
πb ∈ ΠR. With probability 1− δ, the output of ADACT–H(D, δ/(2QAO)) is the transition function
of the minimal RDP equivalent to R, provided that |D| ≥ Nδ , where

Nδ :=
21 log(8QAO/δ)

dbmin µ0

√
H log(2ARO) ∈ Õ

(√
H

dbmin µ0

)
,

dbmin := min{dbt (q, ao) | t ∈ [H], q ∈ Qt, ao ∈ AO, dbt (q, ao) > 0} is the minimal occupancy
distribution, and µ0 is the Lp

∞-distinguishability.

Proof. The proof consists in choosing N and δ such that the condition in Lemma 14 is true with high
probability for each application of TESTDISTINCT. Consider an iteration t ∈ [H] of ADACT–H.
For a candidate state qao ∈ Qc,t+1, its associated probability is dbt (q, ao) with empirical estimate
p̂t(qao) = |X (qao)|/N , i.e. the proportion of episodes in D that are consistent with qao. We can
apply the empirical Bernstein inequality in (16) to show that

P

(∣∣p̂t(qao)− dbt (q, ao)
∣∣ ≥√2p̂t(qao)ℓ

N
+

14ℓ

3N
=

√
2Mℓ+ 14ℓ/3

N

)
≤ δ,

where M = |X (qao)|, ℓ = log(4/δ), and δ is the failure probability of ADACT–H. To obtain a
bound on M and N , assume that we can estimate dbt (q, ao) with accuracy dbt (q, ao)/2, which yields

dbt (q, ao)

2
≥

√
2Mℓ+ 14ℓ/3

N
(18)

p̂t(qao) ≥ dbt (q, ao)−
√
2Mℓ+ 14ℓ/3

N
≥ dbt (q, ao)−

dbt (q, ao)

2
=

dbt (q, ao)

2
. (19)

Combining these two results, we obtain

M = Np̂t(qao) ≥ Ndbt (q, ao)/2 ≥ N

2N

(√
2Mℓ+ 14ℓ/3

)
=

1

2

(√
2Mℓ+ 14ℓ/3

)
. (20)

Solving for M yields M ≥ 4ℓ, which is subsumed by the bound on M in Lemma 14 since µ0 < 1.
Hence the bound on M in Lemma 14 is sufficient to ensure that we estimate dbt (q, ao) with accuracy
dbt (q, ao)/2. We can now insert the bound on M from Lemma 14 into (18) to obtain a bound on N :

N ≥ 2(
√
2Mℓ+ 14ℓ/3)

dbt (q, ao)
≥ 2ℓ

dbt (q, ao)

(
4

µ0

√
(H − t) log(2ARO)

ℓ
+ 1 +

14

3

)
≡ N1. (21)

To simplify the bound, we can choose any value larger than N1:

N1 ≤ 2ℓ

dbt (q, ao)

(
4

µ0

√
H log(2ARO) +H log(2ARO) +

14

3µ0

√
H log(2ARO)

)
<

21ℓ

dbmin µ0

√
H log(2ARO) ≡ N0, (22)

where we have used dbt (q, ao) ≥ dbmin, µ0 < 1, ℓ = log 4+ log(1/δ) ≥ 1, H log(2ARO) ≥ log 4 ≥
1 and 4

√
2+ 14/3 < 21

2 . Choosing δ = δ0/2QAO, a union bound implies that accurately estimating
dbt (q, ao) for each candidate state qao and accurately estimating p(e0:u∗) for each prefix in the
multiset X (qao) associated with qao occurs with probability 1− 2QAOδ = 1− δ0, since there are at
most QAO candidate states. Substituting the expression for δ in N0 yields the bound in the theorem.

It remains to show that the resulting RDP is minimal. We show the result by induction. The
base case is given by the set Q0, which is clearly minimal since it only contains the initial state
q0. For t ∈ [H], assume that the algorithm has learned a minimal RDP for sets Q0, . . . ,Qt. Let
Qt+1 be the set of states at layer t + 1 of a minimal RDP. Due to Proposition 1, each pair of
histories that map to a state qt+1 ∈ Qt+1 generate the same probability distribution over suffixes.
Hence by Lemma 13, with high probability TESTDISTINCT(t,X (qao),X (q′a′o′), δ) returns false
for each pair of candidate states qao and q′a′o′ that map to qt+1. Consequently, the algorithm

22

merges qao and q′a′o′. On the other hand, by assumption, each pair of histories that map to
different states of Qt+1 have Lp

∞-distinguishability µ0. Hence by Lemma 14, with high probability
TESTDISTINCT(t,X (qao),X (q′a′o′), δ) returns true for each pair of candidate states qao and q′a′o′

that map to different states in Qt+1. Consequently, the algorithm does not merge qao and q′a′o′. It
follows that with high probability, ADACT–H will generate exactly the set Qt+1, which is that of a
minimal RDP.

C.3 Proof of Theorem 8

In this section we prove Theorem 8, which states an alternative upper bound on the sample complexity
of ADACT–H. The proof requires an alternative definition of the algorithm, which we call ADACT–
H–A (for “approximation”).

Theorem 8. Consider a dataset D of episodes sampled from an RDP R and a regular policy πb ∈ ΠR.
With probability 1 − δ, the output of ADACT–H–A, called with D, δ/(2QAO) and ε ∈ (0, H] in
input, is the transition function of an ε/2-approximate RDP R′, provided that |D| ≥ N ′

δ , where

N ′
δ :=

504HQAOC∗
R′ log(16QAO/δ)

ε µ0

√
H log(2ARO) ∈ Õ

(
H3/2QAOC∗

R′

ε µ0

)
.

Function ADACT–H–A(D, δ, ε, Q, C)
Input: Dataset D, failure probability 0 < δ < 1, accuracy ε, upper bounds Q on |Q′| and C on C∗

R′

Output: SetQ′ of RDP states, transition function τ ′ : Q′ ×AO → Q′ of an approximate RDP R′

1 Q′
0 ← {q0}, X (q0)← D // initial state

2 Q′
0 ← Q′

0 ∪ {qe0}, X (qe0)← ∅ // initial side state
3 for t = 0, . . . , H do
4 Q′

t+1 ← {qet+1} // side state
5 foreach ao ∈ AO do τ ′(qet , ao) = qet+1, X (qet+1)← {et+1:H | aroet+1:H ∈ X (qet)}
6 Q′

c,t+1 ← {qao | q ∈ Q′
t, ao ∈ AO} // get candidate states

7 foreach qao ∈ Q′
c,t+1 do X (qao)← {et+1:H | aroet+1:H ∈ X (q)} // compute suffixes

8 qmamom ← argmaxqao∈Q′
c,t+1

|X (qao)| // most common candidate
9 Q′

t+1 ← Q′
t+1 ∪ {qmamom}, τ ′(qm, amom) = qmamom // promote candidate

10 Q′
c,t+1 ← Q′

c,t+1 \ {qmamom} // remove from candidate states
11 for qao ∈ Q′

c,t+1 such that |X (qao)|/N ≥ ε/(4QAOHC) do
12 Similar ← {q′ ∈ Q′

t+1 | not TESTDISTINCT(t,X (qao),X (q′), δ)} // confidence test
13 if Similar = ∅ then Q′

t+1 ← Q′
t+1 ∪{qao}, τ ′(q, ao) = qao // promote candidate

14 else q′ ← element in Similar, τ ′(q, ao) = q′, X (q′)← X (q′)∪X (qao) // merge states
15 if |Q′

0|+ · · ·+ |Q′
t+1| > Q then return Failure

16 end
17 for qao ∈ Q′

c,t+1 such that |X (qao)|/N < ε/(4QAOHC) do
18 τ ′(q, ao) = qet+1, X (qet+1)← X (qet+1) ∪ X (qao) // merge with side state
19 end
20 end
21 returnQ′

0 ∪ · · · ∪ Q′
H+1, τ ′

Proof. ADACT–H–A returns the set of RDP states Q′ and transition function τ ′ of an approximate
RDP R′, taking as input the accuracy ε, an upper bound Q on |Q′|, and an upper bound C on the
concentrability C∗

R′ of R′. If, at any moment, the number of RDP states |Q′| exceeds Q, the algorithm
returns Failure (line 15). ADACT–H–A defines a sequence of side states qe0, . . . , q

e
H+1 (lines 2 and

4), and defines τ ′(qet , ao) = qet+1 for each t ∈ [H] and ao ∈ AO (line 5). For each candidate state
qao ∈ Q′

c,t+1 such that |X (qao)|/N ≥ ε/(4QAOHC), the definition of ADACT–H–A is the same
as that of ADACT–H, including the call to TESTDISTINCT (lines 11-14). For each candidate state
qao ∈ Q′

c,t+1 such that |X (qao)|/N < ε/(4QAOHC), instead of mapping (q, ao) to the correct
RDP state, ADACT–H–A maps (q, ao) to the side state qet+1 (lines 17-18). Once in qet+1, R′ remains
in a side state for the rest of the episode. The side states do not satisfy Proposition 1, since the

23

histories that map to side states may assign different probabilities to suffixes (and TESTDISTINCT is
never called).

We define an alternative occupancy measure d′t(q, ao) associated with the approximate RDP R′ and
the behavior policy πb. The new definition is given by d′0(q0, a0o0) = θo(q0, a0, o0) and

d′t(qt, atot) =
∑

(q,ao)∈τ ′−1(qt)

d′t−1(q, ao) · πb(qt, at) · θo(qt, at, ot), t > 0.

The only difference between d′t and dbt is that d′t is defined with respect to the transition function τ ′

of the approximate RDP R′, instead of the transition function τ associated with the original RDP R.
Note that apart from the side states, R′ will contain the same states as R, as long as the candidate
states satisfy the condition on line 11, and τ ′ will be the same as τ on those states. Since the states
and behavior policy are the same, the Lp

∞-distingishability µ0 of R′ will be the same as that of R.

First consider each candidate state qao ∈ Q′
c,t+1 such that |X (qao)|/N ≥ ε/(4QAOHC). In this

case, ADACT–H–A calls TESTDISTINCT, so Lemmas 13 and 14 apply to these candidate states.
The associated occupancy is d′t(q, ao) with empirical estimate p̂t(qao) = |X (qao)|/N . Hence the
empirical Bernstein inequality applies to d′t(q, ao) and p̂t(qao). Just as in the proof of Theorem 6,
we choose X (qao) large enough to accurately estimate d′t(q, ao) within a factor d′t(q, ao)/2 with
probability 1− δ. We thus obtain an alternative upper bound on d′t(q, ao) as follows:

d′t(q, ao) ≥
|X (qao)|

N
− d′t(q, ao)

2
⇔ 3d′t(q, ao)

2
≥ |X (qao)|

N
≥ ε

4QAOHC
.

From here, we can use the proof of Theorem 6 by substituting d′t for dbt , up until the definition of the
bound N1 on |D| in (21). Inserting the bound on d′t(q, ao) into the expression for N1 yields

N1 ≤ 2ℓ

d′t(q, ao)

(
4

µ0

√
H log(2ARO) +H log(2ARO) +

14

3µ0

√
H log(2ARO)

)
≤ 126QAOHCℓ

εµ0

√
H log(2ARO) ≡ N2. (23)

Next, consider each candidate state qao ∈ Q′
c,t+1 such that |X (qao)|/N < ε/(4QAOHC). In this

case, we instead choose X (qao) large enough to estimate d′t(q, ao) with accuracy β with probability
1− δ. From the empirical Bernstein inequality, estimating d′t(q, ao) with accuracy β implies

β ≥
√

2p̂t(qao)ℓ

N
+

14ℓ

3N
⇔ N ≥ 2ℓ

β

(
14

3
+

p̂t(qao)

β

)
≡ N3.

Choosing β = ε/(4QAOHC) implies p̂t(qao) < β, and we can thus simplify N3 as

N3 =
2ℓ

β

(
14

3
+

p̂t(qao)

β

)
<

12ℓ

β
=

48QAOHCℓ

ε
≡ N4. (24)

In addition, this choice of β yields the following bound on d′t(q, ao):

d′t(q, ao) ≤ p̂t(qao) + β <
ε

4QAOHC
+

ε

4QAOHC
=

ε

2QAOHC
.

We prove that R′ is an ε/2-approximation of the original RDP R. We briefly overload notation by
letting d∗t (q, ao) refer to the occupancy of an optimal policy π∗ with respect to the transition function
τ ′ of R′. Consider a candidate state qao ∈ Q′

c,t+1 such that |X (qao)|/N < ε/(4QAOHC). The
contribution to the expected optimal reward of R of all histories that map to qao is bounded as

d∗t (q, ao)(H − t) ≤ C∗
R′d′t(q, ao)H <

ε

2QAO
,

since (H − t) is the maximum reward obtained during the remaining time steps. Since qao is mapped
to a side state of R′, an optimal policy for R′ may not accurately estimate the expected optimal value
for qao, but the contribution of all such candidate states to the expected optimal value is at most∑

t∈[H−1]

∑
q∈Qt

∑
ao∈AO

d∗t (q, ao)(H − t) ≤
∑

t∈[H−1]

∑
q∈Qt

∑
ao∈AO

ε

2QAO
≤ ε

2
,

24

since there can be at most QAO such candidate states. Hence any optimal policy for R′ is an
ε/2-optimal policy for R, which implies that we can approximate an ε-optimal regular policy for the
exact RDP R by finding an ε/2-optimal policy for the approximate RDP R′.

It is easy to verify that the bound N4 in (24) is less than the bound N2 in (23). Hence a worst-case
bound is obtained by assuming that |X (qao)|/N ≥ ε/(4QAOHC) for each t ∈ [H] and each
candidate state qao ∈ Q′

c,t+1, which yields an upper bound N2. Note that ADACT–H–A takes as
input an upper bound Q on the number of RDP states |Q′| of R′, as well as an upper bound C of
the concentrability coefficient C∗

R′ . If the learning agent has no prior knowledge of Q and C, it
could start with small estimates of Q and C, and in the case that ADACT–H–A returns Failure or the
resulting policy has larger concentrability than C for R′, iteratively double the estimates Q and/or C
and call the algorithm again. This only increases the computational complexity of ADACT–H–A by
a factor O(logQC∗

R′), and the resulting upper bounds Q and C do not exceed 2Q and 2C∗
R′ . Since

we already have an estimate Q, in each iteration we can call ADACT–H–A with δ = δ1/(2QAO)
to ensure that the bound N2 holds for each candidate state simultaneously with probability 1− δ1.
Substituting this value of δ in the bound N2 in (23) and using Q < 2Q and C < 2C∗

R′ yields the
sample complexity bound stated in the theorem.

Lemma 15. The concentrability C∗
R′ of the approximate RDP R′ satisfies

C∗
R′ ≤ C∗

R(1 + 3QAO).

Proof. For each t > 0, let d′t(q
e
t) be the occupancy of the side state qet in the approximate RDP R′.

We prove by induction on t that d′t(q
e
t) satisfies

d′t(q
e
t) <

ε
∑t−1

u=0 |Qu|
2QHC

≤ ε

2HC
.

The base case is given by t = 1. In this case, a candidate state (q0, ao) is mapped to qe1 if dbt (q0, ao) =
d′t(q0, ao) < ε/(2QAOHC). Since there can be at most AO = |Q0|AO such candidate states, we
have

d′t(q
e
t) <

ε|Q0|AO

2QAOHC
=

ε|Q0|
2QHC

.

For t > 1, a candidate state (qt−1, ao) is mapped to qet if d′t(qt−1, ao) < ε/(2QAOHC). Again,
there can be at most |Qt−1|AO such candidate states. Since all occupancy of qet−1 is also mapped to
qet , we have

d′t(q
e
t) < d′t−1(q

e
t−1) +

ε|Qt−1|AO

2QAOHC
<

ε
∑t−2

u=0 |Qu|
2QHC

+
ε|Qt−1|
2QHC

=
ε
∑t−1

u=0 |Qu|
2QHC

,

where we have used the induction hypothesis.

Consider a candidate state (q, ao) of R at time t. Due to approximation, some histories in τ̄−1(q)
are mapped to side states in R′ instead of q, and we can therefore write dbt (q, ao) = d′t(q, ao) + ξ ≤
d′t(q, ao) + d′t(q

e
t), where ξ is the total occupancy of histories in τ̄−1(q) mapped to side states. In

turn, this implies

d∗t (q, ao) ≤ dbt (q, ao)C
∗
R ≤ (d′t(q, ao) + d′t(q

e
t))C

∗
R < (d′t(q, ao) +

ε

2HC
)C∗

R.

The concentrability of a candidate state (q, ao) in the approximate RDP R′ that is not mapped to a
side state (i.e. d′t(q, ao) ≥ ε/(6QAOHC)) can now be bounded as

d∗t (q, ao)

d′t(q, ao)
<

d′t(q, ao) + ε/(2HC)

d′t(q, ao)
C∗

R =

(
1 +

ε

2HCd′t(q, ao)

)
C∗

R ≤ C∗
R(1 + 3QAO).

This concludes the proof of the lemma.

25

C.4 Distinguishability Parameters

As defined in the main text, for t ∈ [H], we consider a metric L over distributions on the remaining
part of the episode ∆(Eℓ), for ℓ = H − t. Then, the L-distinguishability of an RDP R and a policy π
is the maximum µ0 such that, for any t ∈ [H] and any two distinct q, q′ ∈ Qt, the probability
distributions over suffix traces et:H ∈ Eℓ from the two states satisfy

L(P(et:H | qt = q, π),P(et:H | qt = q′, π)) ≥ µ0 (25)

So, µ0 is a feature of the RDP and the policy combined and it quantifies the distance between any two
distinct states of the RDP with respect to the distributions they induce over the observable quantities.
Distinguishability parameters have been first introduced in Ron et al. [56] and later generalized for
other metrics. They can be also found in Balle [59] for PDFA learning and in Ronca and De Giacomo
[26], Ronca et al. [27] for RDP learning.

According to the definition we adopt, there exists an L-distinguishability for any RDP and policy.
However, as stated in Assumption 2, we require µ0 to be strictly positive. This does not constitute a
restriction for the RDP, since it can be always minimized while preserving all conditional probabilities.
Though it implies that, in any state, the behavior policy takes with positive probability all actions that
are needed to observe episode suffixes that have different probability under the two states. Clearly if
this was not the case for two distinct q, q′ ∈ Qt at some t ∈ [H], P(et:H | qt = q, π) = P(et:H | qt =
q′, π) and no information would be available for the algorithm to distinguish q and q′. Assumption 2
is implied by Assumption 1. However, it becomes necessary for Theorem 8, since this does not rely
on Assumption 1.

The metric selected also influences the actual value of the distinguishability parameter. In this paper,
we adopt Lp

∞, as it can be seen from the TESTDISTINCT function in the two algorithms. A more
standard distance would be L∞. According to Eq. (25), an L∞-distinguishability of µ0 implies that
for any t ∈ [H] and two distinct q, q′ ∈ Qt,

max
e∈EH−t

|P(et:H = e | qt = q)− P(et:H = e | qt = q′)| ≥ µ0. (26)

This means that some sequence until the end of the episode has a different probability of being
generated from the two states. Although similar, the Lp

∞ distance, maximizes for the full trace as
well as any of its prefixes as

max
u∈[H−t],e∈Eu

|P(et:H = e ∗ | qt = q)− P(et:H = e ∗ | qt = q′)| ≥ µ0 (27)

As it has been discussed in Balle [59], Appendix A.5, the prefix Lp
∞ metric always upper bounds

the L∞ metric, up to a multiplicative factor, while there are pairs of distributions in which L∞ is
exponentially smaller than Lp

∞ with respect to the expected suffix length. This motivates our choice.
Moreover, in the specific case of our fixed horizon setting, we have that the Lp

∞-distinguishability
is never lower than L∞-distinguishability. Note that in the hard instance of Appendix E.2, the two
coincide.

The lower bound is stated in terms of the Lp
1-distinguishability of the RDP. While Lp

∞ is achieved for
one specific trace prefix maximizing the difference in probability, Lp

1 takes all traces into account
as
∑

u∈[H−t],e∈Eu
|P(et:H = e ∗ | qt = q) − P(et:H = e ∗ | qt = q′)|. Due to this relation, the

Lp
∞-distinguishability always lower bounds the Lp

1-distinguishability in the fixed horizon setting.

D RegORL with Subsampled VI-LCB

In this section we demonstrate the composition of our proposed algorithm with a specific Offline
Reinforcement Learning algorithm for MDPs. Specifically, we adopt Subsampled VI-LCB, from
Algorithm 3 of Li et al. [16] and report the combined sample complexity of this choice, through a
simple application of Theorem 7.

First, we introduce the occupancy distribution and the single-policy conentrability coefficient for
MDPs. Let M = ⟨Q,A,R, T,R,H⟩ be an MDP with states Q, horizon H , transition function
T : Q×A → Q and reward function R : Q×A → ∆(R). The state-action occupancy distribution
of a policy π : Q → ∆(A) in M at step t ∈ [H] is dπm,t(q, a) = P(qt = q, at = a | M, π). For our

26

purposes, it suffices to consider a fixed initial state q0. Finally, the MDP single-policy concentrability
of a policy πb is [15]:

C∗ = max
t∈[H],q∈Q,a∈A

dπ
∗

m,t(q, a)

dπ
b

m,t(q, a)
(28)

We can now express the sample complexity of Subsampled VI-LCB.

Theorem 16 (Li et al. [16]). Let D be a dataset of Nm episodes, sampled from an MDP M with
a Markov policy πb. For any ε ∈ (0, H] and 0 < δ < 1/12, with probability exceeding 1 − δ, the
policy π̂ returned by Subsampled VI-LCB obeys V ∗

0 (q0)− V π̂
0 (q0) ≤ ε, as long as:

Nm ≥
cH3QC∗ log NmH

δ

ε2
(29)

for a positive constant c.

The analysis in Li et al. [16] of Subsampled VI-LCB assumes that the reward function is deterministic
and known. Thus, restricting our attention to this setting, we consider any episodic RDP with
history-dependent, deterministic rewards. The reward function can be regarded as known, since it
may be easily extracted from the dataset resulting from the Markov transformation of Definition 2.

Corollary 17. Let D be a dataset of N episodes, sampled with a regular policy πb ∈ ΠR from
an RDP R with deterministic rewards. If Subsampled VI-LCB is the OFFLINERL algorithm in
Algorithm 1, then, for any ε ∈ (0, H] and 0 < δ < 1/12, with probability exceeding 1− δ, the output
of RegORL(D, ε, δ) is an ε-optimal policy of R, as long as

N ≥ 2max
{21 log(8QAO/δ)

dbmin µ0

√
H log(2ARO),

cH3QC∗
R log 2NH

δ

ε2

}
(30)

Proof. This corollary follows as a direct application of Theorem 16 to Theorem 6. It only remains to
verify that the single-policy concentrability of the MDP underlying the dataset D′ that Subsampled
VI-LCB receives is C∗

R. The dataset D′ is generated according to the Markov transformation τ̄ from
Definition 2. We only consider the cases in which ADACT–H succeeds. Let π ∈ ΠR be any regular
policy and qt, q

′
t the states reached at step t by R and MR, respectively. Then for t > 0,

dπt (q, a) := P(qt = q | R, π)πr(q, a) (31)
= P(τ̄(ht−1) = q | R, π)πr(q, a) (32)

= P(q′t = q | MR, πr)πr(q, a) (33)
= dπr

m,t(q, a) (34)

This is valid for any regular policy, and for the optimal and behavior policies in particular. Then,

C∗
R = max

t∈[H],q∈Qt,ao∈AO

d∗t (q, ao)

dbt (q, ao)
(35)

= max
t∈[H],q∈Qt,ao∈AO

dπ
∗

t (q, a) θo(q, a, o)

dπ
b

t (q, a) θo(q, a, o)
(36)

= max
t∈[H],q∈Q,a∈A

d
π∗
r

m,t(q, a)

d
πb
r

m,t(q, a)
(37)

= C∗ (38)

Similarly to the previous corollary, it is also possible to combine Theorem 16 with Theorem 8. In
this case, the sample complexity of Subsampled VI-LCB for learning an ε/2-accurate policy with
probability 1− δ/2 would be combined with N ′

δ/2 of Theorem 8.

27

E Sample Complexity Lower Bound: Proof of Theorem 9

In this section, we prove the sample complexity lower bound in Theorem 9. The proof is based on a
suitable composition of a two-armed bandit and an instance of the learning problem associated to
noisy parity functions. We first describe this latter problem and its sample-complexity lower bound
in Appendix E.1. Then, we compose a hard class of RDP instances in Appendix E.2, and prove the
final statement in Appendix E.3.

E.1 Learning parity with noise

Let B = {0, 1} and L ∈ N. For any string x ∈ BL, the parity function fx : BL → B is fx(y) =
⊕i∈[L−1]xiyi, where ⊕ is addition modulo 2. For noise parameter ξ ∈ (0, 0.5), a noisy parity
function fx,ξ returns fx(y) with probability 0.5 + ξ and 1− fx(y) otherwise. Consider the class of
parity functions F(L) = {fx}x∈BL and the class of noisy parity functions F(L, ξ) = {fx,ξ}x∈BL .
Assume that x, y1, y2, . . .∼ unif(BL) are uniformly sampled. The success probability of a streaming
algorithm A for F(L, ξ) is the probability that A recovers x, given in input a sequence of observations
(yi, fx,ξ(yi))i.

Lemma 18. Any streaming algorithm for F(L, ξ) with a success probability higher than O(2−L)
requires at least Ω(L/ξ) or 2Ω(L) input samples (yi, fx,ξ(yi))i.

Proof. Learning in F(L, ξ) is the problem of recovering x ∈ 2B from noisy data (yi, bi), where
bi = fx(yi) with probability 0.5 + ξ, and bi = 1− fx(yi) otherwise. This is the problem of learning
in F(L) with corruption rate 0.5− ξ. Hence, we focus on the problem of learning noiseless parity
first.

The Statistical Query dimension SQDIM(C, d), characterizes the complexity of learning in the class
C with respect to the prior distribution d ∈ ∆(C). As defined in [73], SQDIM(C, d) is the maximum
n ∈ N such that there exist distinct f1, . . . , fn ∈ C, such that their pairwise correlations with respect
to d are between −1/n and 1/n. For the class of parity functions, under the uniform distribution
over x, SQDIM(F(L),unif) = 2L. This was already observed in [74], for a slightly different notion
of SQ dimension. However, to verify this, we can consider a natural ordering over binary strings in
X , and represent the problem of learning F(L) as a matrix M = (mij) ∈ {1,−1}2L×2L , defined as
mij = (−1)fxj

(yi) = (−1)yi·xj , where scalar product is modulo 2. We have that M is a Hadamard
matrix. Then, since every row is orthogonal to the others, and the same is true for columns, every
couple of parity functions are uncorrelated under the uniform distribution over x.

Regarding the noisy parity problem, since SQDIM(F(L),unif) = 2L, we can apply Corollary 8 of
[75] with m = 2L, to have that the matrix M corresponding to the parity problem is a (k, l)-L2-
extractor with error 2−r, for k, l, r ∈ Ω(L). Since M is a suitable extractor, we can apply Theorem 1
of [76], which considers the problem of learning M with the additional noise parameter ξ. We obtain
that, in the streaming setting, any branching program B for F(L, ξ) whose depth is at most 2f1(k,l,r)

and width is at most 2ckl/ξ has a success probability of at most O(2−f1(k,l,r)), where c is a suitable
constant and f1 is equation (1) of [76].

Then, if the success probability is not in O(2−f1(k,l,r)), meaning it is higher, we have that the depth
of A exceeds 2f1(k,l,r) or the width of A exceeds 2ckl/ξ. Since k, l, r ∈ Ω(L), then, if the success
probability is not in O(2−L), the depth of A is 2Ω(L) or the width of A is 2Ω(L2)/ξ. Width and depth
refer to the computational model that represents A as a branching program. A branching program is a
directed acyclic graph in which internal nodes have one outgoing edge for each possible input sample,
that is |BL × B| = 2L+1 in our problem, and leaves correspond to algorithm decisions. From the
required width and depth we know that A has a leaf in layer 2Ω(L) or in a layer that contains 2Ω(L2)/ξ

nodes. The former case implies a worst case sample complexity requirement that is exponential in L.
For the latter, we observe that in order to reach that width, at least log2L+1 2Ω(L2/ξ) transitions and
input samples, are required. This is Ω(L/ξ).

28

q01

∗.u

q02

∗.u

q03

a′
0.vξ

a′
1.v−ξ

qs

∗.s
q11

∗.u

q12

∗.u

q13

a′
0.v−ξ

a′
1.vξ

qb1

∗.1+

qb2

∗.1+

qb3

a′
0.v0

a′
1.vη

q+4 q+5

q−4 q−5

qo⊥

0

1

∗

∗

0

1

0

1

−

+

+

∗ ∗

+

−

∗

∗

∗

∗

∗

Figure 3: One episodic RDP instance R101,1 ∈ R(3, 5, ξ, η), associated to the parity function f101
and optimal arm a′1. The transition function is represented by the arcs, labelled by observations
(transitions do not depend on actions). The star denotes any symbol. If the label of a state q is a.d,
then the observation function is θo(q, a) = d, where d ∈ ∆(O) (some irrelevant outputs are omitted).

E.2 Class of hard RDP instances

For our main lower bound, we define a class of hard RDP instances. Figure 3 shows one possible
instance in this class. We will soon define it formally, but we can observe that its structure is organized
in two main paths. The two branches in the top part encode a parity computation according to some
hidden code x ∈ BL, so that behaving optimally in that region requires to solve a parity problem
(the one of Lemma 18). The bottom part reaches a two-armed bandit whose optimal action is c. The
right-most states are winning or losing states that provide a positive and null reward accordingly.

Formally, we define a class of hard RDP instances as R(L,H, ξ, η) = {Rx,c}x∈BL,c∈{0,1} where
Rx,c = ⟨Q,AO,Ω, τ, θ, qs, H⟩, for Q = {qs, qo⊥}∪{q0i, q1i, qbi}i=1,...,L∪{q+,i, q−,i}i=L+1,...,H ,
A = {a′0, a′1}, O = {0, 1,+,−}. Assume L ≥ 1 and H > L. Rewards are zero everywhere, except
in the winning states

θr(q, a, r) = 11 if q = q+i with i > L, 10, otherwise (39)

where we recall that 1x represents the deterministic distribution on x. For observation probabilities,
we denote the distributions u(o) := unif {0, 1} and

vα(o) :=

1+α
2 if o = +

1−α
2 if o = −

0 otherwise
s(o) :=

1/4 if o = 0

1/4 if o = 1

1/2 if o = +

(40)

Now define observations as

θo(q, a, o) =

s(o) if q = qs
u(o) if q ∈ {q0i, q1i}i=1,...,L−1

vξ(o) if q = q0L ∧ a = a′0 or q = q1L ∧ a = a′1
v−ξ(o) if q = q0L ∧ a = a′1 or q = q0L ∧ a = a′1
1+(o) if q = qbi with i < L

v0(o) if q = qbL ∧ a = a′0
vη(o) if q = qbL ∧ a = a′1 ∧ c = 1

v−η(o) if q = qbL ∧ a = a′1 ∧ c = 0

1o⊥(o) if q = qo⊥

(41)

Finally, the transition function is defined such that τ̄(qs, hL−1) = qiL with i = fx(o0:L−1), and

τ(qkL, a+) = q+,L+1 τ(qkL, a−) = q−,L+1 for k = 1, 2 (42)
τ(qbL, a+) = q+,L+1 τ(qbL, a−) = q−,L+1 (43)

29

τ(q+i, ao) = q+,i+1 τ(q−i, ao) = q−,i+1 (44)
τ(qs, a+) = qb1 τ(qbi, ao) = qb,i+1 for i < L (45)

τ(q+H , ao) = qo⊥ τ(q−H , ao) = qo⊥ τ(qo⊥ , a, o) = qo⊥ (46)

In addition, the trnasitions τ(q0i, ao) and τ(q1i, ao), for i < L, are defined according to o ∈ {0, 1}
and the parity code x. Namely, τ(q0i, ao) equals q1,i+1 iff o ⊕ x(i) = 1, and q0,i+1, otherwise.
τ(q1i, ao) is defined analogously.

E.3 Proof of Theorem 9

Theorem 9. For any (C∗
R, H, ε, µ0) satisfying C∗

R ≥ 2, H ≥ 2 and ε ≤ Hµ0/64, there exists
an RDP with horizon H , Lp

1-distinguishability µ0 and a regular behavior policy πb with RDP
single-policy concentrability C∗

R, such that if D has been generated using πb and R, and

|D| /∈ Ω

(
H

µ0
+

C∗
RH2

ε2

)
(3)

then, for any algorithm A : D 7→ π̂ returning non-Markov deterministic policies, the probability that
π̂ is not ε-optimal is at least 1/4.

Proof. Denote with πb a regular policy in R and D ∈ D a dataset of episodes of length H , collected
from R and the behavior policy πb. For an RDP R, let Πd = AH be the set of deterministic non-
Markov policies and A = D → Πd an offline RL algorithm. For δ < 0.5, we say that an algorithm
A is (ε, δ)-PAC for the class of RDPs R under φ, if, for every R ∈ R and D ∈ D, if the condition
φ(D, πb) is verified, then the output policy A(D) is ε-optimal in R, with probability 1 − δ. One
notable case is that of φ requiring a minimum dataset size.

Since the output of a generic algorithm might be any generic non-Markov deterministic policy, we
cannot restrict our attention to regular policies. We expand the value of a policy π : H → A in a
RDP Rx,c ∈ R(L,H, ξ, η) as follows:

E[V π
0 (h0)] = E

[
H∑
i=1

ri | π

]
(47)

= (H − L)P(qL+1 = q+,L+1 | π) (48)

= (H − L)
∑
q∈QL

P(qL = q | π)P(qL+1 = q+,L+1 | qL = q, π) (49)

= (H − L) (P(qL = q0L | π)P(qL+1 = q+,L+1 | qL = q0L, π)

+ P(qL = q1L | π)P(qL+1 = q+,L+1 | qL = q1L, π))

+ (H − L) (P(qL = qbL | π)P(qL+1 = q+,L+1 | qL = qbL, π)) (50)

=
H − L

2
(P(qL = q0L | o0 ∈ {0, 1}, π)P(qL+1 = q+,L+1 | qL = q0L, π)

+ P(qL = q1L | o0 ∈ {0, 1}, π)P(qL+1 = q+,L+1 | qL = q1L, π))

+
H − L

2
P(qL+1 = q+,L+1 | qL = qbL, π) (51)

=
H − L

4
(P(qL+1 = q+,L+1 | qL = q0L, π) + P(qL+1 = q+,L+1 | qL = q1L, π))

+
H − L

2
P(qL+1 = q+,L+1 | qL = qbL, π) (52)

=
H − L

4
(P(aL = a′0 | qL = q0L, π)P(oL = + | qL = q0L, aL = a′0)

+ (1− P(aL = a′0 | qL = q0L, π))P(oL = + | qL = q0L, aL = a′1)

+ (1− P(aL = a′1 | qL = q1L, π))P(oL = + | qL = q1L, aL = a′0)

+ P(aL = a′1 | qL = q1L, π)P(oL = + | qL = q1L, aL = a′1))

+
H − L

2
(P(aL = a′0 | qL = qbL, π)P(oL = + | qL = qbL, aL = a′0)

30

+ P(aL = a′1 | qL = qbL, π)P(oL = + | qL = qbL, aL = a′1)) (53)

where in Eq. (52) we have used the uniform probability over x. Now, for any history-dependent
deterministic policy π in episodic RDPs, it is possible to identify an associated regular stochastic
policy πr : Q′ → ∆(A), where Q′ := Q \ {qo⊥} and:

πr(q, a) := P(π(h) = a | τ̄(h) = q) (54)

=
∑

h′∈τ̄−1(q)

I(π(h′) = a)
P(h = h′ | π)

P(q | π)
(55)

In other words, πr encodes the probability that π takes action a, given that some history has led to
state q. With this convention, we resume from Eq. (53)

E[V π
0 (h0)] =

H − L

4
(πr(q0L, a

′
0) vξ(+) + (1− πr(q0L, a

′
0)) vξ(−)

+ (1− πr(q1L, a
′
1)) vξ(−) + πr(q1L, a

′
1) vξ(+))

+
H − L

2
(πr(qbL, a

′
0)u(+) + πr(qbL, a

′
1) (I(c = a′1) vη(+) + I(c = a′0) vη(−))

(56)

=
H − L

8
(πr(q0L, a

′
0) (1 + ξ) + (1− πr(q0L, a

′
0)) (1− ξ)

+ (1− πr(q1L, a
′
1)) (1− ξ) + πr(q1L, a

′
1) (1 + ξ))

+
H − L

4
(πr(qbL, a

′
0) + πr(qbL, a

′
1) (I(c = a′1) (1 + η) + I(c = a′0) (1− η)))

(57)

=
H − L

4
(1− ξ + ξ πr(q0L, a

′
0) + ξ πr(q1L, a

′
1)

+ πr(qbL, a
′
0) + πr(qbL, a

′
1) (1 + η I(c = a′1)− η I(c = a′0))) (58)

For the optimal policy in particular, this becomes:

V ∗ =
H − L

4
(1 + ξ + I(c = a′0) + (1 + η) I(c = a′1)) (59)

From the ε-optimality of π = A(D), then,

ε ≥ E[V ∗
0 (h0)− V π

0 (h0)] (60)

=
H − L

4
(2ξ − ξ πr(q0L, a

′
0)− ξ πr(q1L, a

′
1)

+ η I(c = a′1) (1− πr(qbL, a
′
1)) + η I(c = a′0)πr(qbL, a

′
1)) (61)

=
H − L

4
(ξ (2− πr(q0L, a

′
0)− πr(q1L, a

′
1)) + η (1− πr(qbL, c))) (62)

≥ H − L

4
max{ξ (1− πr(q0L, a

′
0)), ξ (1− πr(q1L, a

′
1)), η (1− πr(qbL, c))} (63)

Now, assume that

min{ξ, η} ≥ 16 ε

H − L
(64)

Then, all of the following is true: πr(q0L, a
′
0) ≥ 3/4, πr(q1L, a

′
1) ≥ 3/4, πr(qbL, c) ≥ 3/4. This

means that, for small ε, any ε-optimal policy must frequently select the optimal action for both the
parity problem and the bandit. Let us represent the first two events with Bp and the third with Bb.
Since A is (ε, δ)-PAC for R(L,H, ξ, η) under φ, the probability of Bp ∧Bb is at least 1− δ, for any
D and πb satisfying φ(D, πb).

We proceed to compute the necessary data to satisfy both events with high probability. The dataset D
can be partitioned in two subsets Dp and Db, containing any episode from D whose initial observation
is {0, 1} and +, respectively. The two datasets share no information and Dp and Db are mutually
independent. To see this, we observe that the sequence aL+1rL+1oL+1 . . . oH is independent of

31

a0r0o0 . . . aL given oL, since + or − determines at step L determines the rest of the episode.
Also, for any two episodes eH , e′H , the sequence a1r1o1 . . . oL is independent of a′1r

′
1o

′
1 . . . o

′
L

given o0. Since, o0 ∼ s, that is the starting distribution, the two datasets are independent. Let
Qp = {qs, qo⊥}∪ {q0i, q1i}i=1,...,L ∪{q+,i, q−,i}i=L+1,...,H and Qb = {qs, qo⊥}∪ {qbi}i=1,...,L ∪
{q+,i, q−,i}i=L+1,...,H be the reachable states in the two datasets. Then, we consider two separate
classes R(L,H, ξ) and R(L,H, η) as the sets of RDPs in R(L,H, ξ, η), restricted to Qp and Qb,
respectively. To do so we construct Rr ∈ R(L,H, ξ) and Rc ∈ R(L,H, η) such that the initial
observation follows unif({0, 1}) in Rr and 1+ in Rc. Now, from the independence of the two
datasets and the fact that A is (ε, δ)-PAC in D, there must exists an algorithm Ap : Dp 7→ πp that
is (2ε, δ)-PAC in R(L,H, ξ) under some φp, and Ab : Db 7→ πb that is (2ε, δ)-PAC in R(L,H, η)
under some φb. If this was not the case, Bp ∧Bb could not be verified in one of the two terms.

We analyze Ap first and we show that its requirement φp is |Dp| ∈ Ω(L/ξ) ∪ 2Ω(L). For a contra-
diction, assume this is not the case and that |Dp| = g(L, ξ) ̸∈ Ω(L/ξ) ∪ 2Ω(L) is allowed. Then, we
can use Ap to solve the noisy parity problem under the streaming setting with g(L, ξ) samples (this
setting has been introduced in Appendix E.1). We proceed as follows. Consider any noisy parity
function fx,ξ with unknown x. Sample a sequence of strings {yi}i ∈ 2L from the uniform distribution
and collect g(L, ξ) pairs (yi, pi), sampling pi ∼ fx,ξ(yi). Then, for H > L, compose a dataset of
episodes {ei}i. All actions of ei are selected uniformly in {a′0, a′1}. The observations o0:L−1 are
yi and oL equals pi if aL = a′0, 1 − pi, otherwise (0 and 1 take roles of + and − symbols here).
Rewards rL+1:H are equal to one if oL = 1, null otherwise. We obtain that dataset so constructed is
equally likely under this procedure than under the uniform policy and the RDP Rx ∈ R(L,H, ξ).
Since Ap is (2ε, δ)-PAC for R(L,H, ξ), with probability 1− δ, the output policy πp satisfies:

min{πpr(q0L, a
′
0), πpr(q1L, a

′
1)} ≥ 3/4 (65)

where πpr is the stochastic regular policy for πp. This can be seen by our assumption in Eq. (64) and
doubling both ε and the sub-optimality gap of Eq. (63), due to the updated probability for the initial
observation. Then, for any sequence y ∈ 2L and associated history hL−1 with o0:L−1 = y,

fx(y) = argmax
i=0,1

πp(hL−1, a
′
i) (66)

which is the noiseless parity function based on x. This means that it is possible to reconstruct x
solely by interacting with πp, without collecting further samples. The solution we have described is
a streaming algorithm with sample complexity g(L, ξ). Since this contradicts Lemma 18, we have
proven |Dp| ∈ Ω(L/ξ) ∪ 2Ω(L).

We now consider the bandit problem, which is solved by Ab. Similarly to the previous case, from the
ε-optimality of Ab(Db), we obtain the necessary condition: πbr(qbL, c) ≥ 3/4 from Eq. (63). This
condition is expressed for the stochastic policy πbr, However, we notice that for qbL in particular, the
only possible history is hL−1 = a0+a1. . .+, where all actions must also be deterministic. Then,

πbr(qbL, c) = P(πb(h) = c | τ̄(h) = qbL) = I(πb(hL−1) = c) (67)

implying that πbr can only be deterministic for qbL. This means that Ab must solve best-arm
identification in the two arm bandit at qbL. We can compose a simplified dataset that is relevant for
the bandit as:

D′
b = {aLoL : eH ∈ Db} (68)

Since Db can be deterministically reconstructed from D′
b, we have the following conditional indepen-

dence: πb ⊥ c | D′
b, where c ∈ {a′0, a′1} is the optimal arm, and πb = Ab(Db) is the output of the

algorithm. Denoting with ĉ = πb(hL−1) the selected arm, the error probability is Pe := P(ĉ ̸= c).
Applying Fano’s inequality from Theorem 12 to the variables c → D′

b → ĉ gives:

H2(Pe) ≥ H(c | D′
b) (69)

= H(c)− I(c;D′
b) = log 2− I(c;D′

b) (70)

where we have used the fact that ĉ is a Bernoulli variable and the uniform prior over c. Now, assuming
C ≥ 2, we construct the following behavior policy: πb(qbL, a0) = 1− 1/C and πb(qbL, a1) = 1/C.
In the following, we write Nb := |Db| and omit the implicit dependency on πb.

I(c ; D′
b) = H(D′

b)−H(D′
b | c) (71)

= Nb(H(aLoL)−H(aLoL | c)) (72)

32

= NbDKL(P(aLoL, c) ∥ P(aLoL)P(c)) (73)

=
Nb

2

∑
a,c′∈A,o∈O

P(a, o | c′) log P(a, o | c′)
P(a, o)

(74)

=
Nb

2

∑
a,c′∈A,o∈O

P(a, o | c′) log P(a | c′)P(o | c′, a)∑
c′′ P(a | c′′)P(o | c′′, a)/2

(75)

=
Nb

2

∑
a,c′∈A,o∈O

P(a, o | c′) log 2P(o | c′, a)∑
c′′ P(o | c′′, a)

(76)

=
Nb

2

∑
a,c′∈A,o∈O

P(a, o | c′) log(2P(o | c′, a)) (77)

=
Nb

2

∑
c′∈A,o∈O

P(a′1, o | c′) log(2P(o | c′, a′1)) (78)

=
Nb

2

∑
o∈O

(P(a′1, o | c = a′0) log(2P(o | c = a′0, a
′
1)) + P(a′1, o | c = a′1) log(2P(o | c = a′1, a

′
1)))

(79)

= Nb(P(a′1,+ | c = a′0) log(2P(+ | c = a′0, a
′
1)) + P(a′1,+ | c = a′1) log(2P(+ | c = a′1, a

′
1)))

(80)

= Nb

(1− η

2C
log(1− η) +

1 + η

2C
log(1 + η)

)
(81)

=
Nb

C
DKL(vη ∥ v0) (82)

≤ Nb η
2

C
(83)

Then from Eq. (70), and the fact that Ab is (2ε, δ)-PAC,

H(δ) ≥ H2(Pe) ≥ log 2− Nb η
2

C
(84)

⇒ Nb ≥
C

η2
(log 2−H(δ)) (85)

Which means that this must be φb, the requirement for Ab.

Finally, to compose the results from both branches, we observe that |D| = |Dp| + |Db|. Also, for
any δ ∈ (0, 0.5), say 1/4, (log 2 −H(δ)) becomes a positive constant, and we can add both sizes
asymptotically:

|D| ∈ Ω
(H
ξ

+
C

η2

)
(86)

To relate the parameters to features of the RDP, we observe that the number of states of any RDP in
R(L,H, ξ, η) is Q ≤ 3H . Also, the behavior policy is uniform everywhere except in qbL. Assuming
C ≥ 2, the computation of the single-policy concentrability coefficient yields C∗

R = C, for any
c ∈ {a′0, a′1}. Next, we compute the Lp

1-distinguishability of any RDP in this class. The Lp
1-

distinguishability of a set of states Q is the minimum L1 distance in distribution between episodes
prefixes that are generated starting from any two states in Q. Let us consider the L1 norm for the pair
q01 and q11,

∥P(e1:H | q01, πb)− P(e1:H | q01, πb)∥1 = (87)

=
∑

e∈EH−1

|P(e1:H = e | q01)− P(e1:H = e | q11)| (88)

=
∑

earo∈EL

P(e1:L−1 = e)|P(aL = a, rL = r, oL = o | q01, e)− P(aL = a, rL = r, oL = o | q11, e)|

(89)

33

=
∑

ao∈AO
|P(aL = a, oL = o | q0L)− P(aL = a, oL = o | q1L)| (90)

= (1/2)
∑
o∈O

|P(oL = o | aL = a′0, q0L)− P(oL = o | aL = a′0, q1L)| (91)

= +(1/2)
∑
o∈O

|P(oL = o | aL = a′1, q0L)− P(oL = o | aL = a′1, q1L)| (92)

=
∑
o∈O

|P(oL = o | aL = a′0, q0L)− P(oL = o | aL = a′0, q1L)| (93)

= 2|P(oL = + | aL = a′0, q0L)− P(oL = + | aL = a′0, q1L)| (94)
= 2ξ (95)

The L1 distance of suffixes from q01, q11 that are shorter than L have also a distance of 2ξ. On the
other hand, any shorter prefix has a distance of 0. Since, Lp

1 sums all these distances, the minimum
across the q0i, q1i pairs, is attained for q0L and q1L, which determines µ0 ≥ 2ξ. Also, the distance
between any other pair of states in the same layer is strictly higher, since they differ deterministically
in some reward or observation. Hence, the Lp

1-distinguishability of the entire RDP is µ0 = 2ξ.
Now, we choose L = H/2, η = 32 ε/H and we assume ε ≤ Hµ0/64, H ≥ 2. We can verify that
these choices are consistent with the previous assumption min{ξ, η} ≥ 16 ε

H−L . Substituting, the final
requirement φ for the complete algorithm A is an exponential number of episodes in H or:

|D| ∈ Ω
(H
µ0

+
C∗

RH2

ε2

)
(96)

Now, for any H,µ0, C
∗
R, ε satisfying the previous assumptions, any algorithm cannot be (ε, 1/4)-

optimal for the instances in R(H/2, H, µ0, 32 ε/H) if Eq. (96) is not satisfied.

Note that in our RDP instance, the number of states and the horizon length scale linearly. So, we
might equivalently write HO instead of H2.

34

	Introduction
	Summary of Contributions
	Related Work

	Preliminaries and Problem Formulation
	Episodic Regular Decision Processes
	Offline RL in RDPs

	RegORL: Learning an Episodic RDP
	Theoretical Guarantees
	Sample Complexity Lower Bound
	Conclusion
	Extended Discussion of Related Work
	Offline RL in MDPs
	Online RL in RDPs
	Non-Markov Rewards and Reward Machines
	State Representations
	Feature MDPs and General RL
	Learning PDFA

	RDP properties
	RDPs and Regular Policies
	Markov Transformation

	Sample Complexity of AdaCT–H
	Preliminaries
	Proof of Theorem 6
	Proof of Theorem 8
	Distinguishability Parameters

	RegORL with Subsampled VI-LCB
	Sample Complexity Lower Bound: Proof of Theorem 9
	Learning parity with noise
	Class of hard RDP instances
	Proof of Theorem 9

