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A Proof

A.1 Proof of Lemma 1

Lemma 1 (Gradient and Importance of Training Samples): The gradient of the loss function
∇wt

L(p(wt, x), y) for a dataset S is influenced by the samples with prediction errors.

Proof of Lemma 1: Let the gradients of the loss function for these two datasets be ∇S
wt

L and ∇S¬j
wt

L,
respectively. Then, we have:
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The difference between the gradients for the two datasets is given by:
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Split the sum in the first term into two sums, one with the j-th sample and one without:
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Notice that the only difference between the sums is the absence of the j-th sample in S¬j . Simplify
the expression by using |S¬j | = |S| − 1:
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Then we have:
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B Experiment

B.1 Detailed Settings

Our work is mainly based on IDC [4], and we use the open-source code assets for our paper 2 3. In
section B.1.1 and B.1.2, we will explain the condensation process of IDC. In section B.1.3, we will
explain all the methods we compared including dataset condensation and dataset pruning.

B.1.1 Dataset and Data Augmentation

CIFAR-10. The training set of the original CIFAR-10 dataset [5] contains 10 classes, and each class
has 5,000 images with the shape of 32× 32 pixels.

CIFAR-100. The training set of the original CIFAR-100 dataset [5] contains 100 classes, and each
class contains 500 images with the shape of 32× 32 pixels.

ImageNet-10. ImageNet-10 is the subset of ImageNet-1K [3] containing only 10 classes, where each
class has on average 1, 200 images of resolution 224× 224.

The augmentations include:

• Color: adjusts the brightness, saturation, and contrast of images.
• Crop: pads the image and then randomly crops back to the original size.
• Flip: flips the images horizontally with a probability of 0.5.
• Scale: randomly scale the images by a factor according to a ratio.
• Rotate: rotates the image by a random angle according to a ratio.
• Cutout: randomly removes square parts of the image, replacing the removed parts with

black squares.
• Mixup: randomly selects a square region within the image and replaces this region with the

corresponding section from another randomly chosen image. It happens at a probability of
0.5.

Following IDC [4], we perform augmentation during training networks in condensation and evaluation,
and we use coloring, cropping, flipping, scaling, rotating, and mixup. When updating network
parameters, image augmentations are different for each image in a batch; when updating synthetic
images, the same augmentations are utilized for the synthetic images and corresponding real images
in a batch.

B.1.2 Condensation Training and Evaluation

The condensation training process contains three initial components: real images, synthetic images
(initially set as a subset of real images), and a randomly initialized network.

Condensation Training 1: inner loop for 1) image update and 2) network update. The inner loop
of the condensation process involves two parts. The first part is the update of the synthetic images.
The synthetic images are modified by matching the gradients from the network as it processes both
real and synthetic images, with consistent augmentations applied throughout a mini-batch. The
second part is the update of the network. The network that provides the gradient for images is
updated after the image update. During network updates, only real images are used for training. In
addition, the network training is limited to an early stage with just 100 epochs for both ConvNet-D3
and ResNet10-AP.

2https://github.com/snu-mllab/Efficient-Dataset-Condensation
3https://github.com/haizhongzheng/Coverage-centric-coreset-selection
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Condensation Training 2: outer loop for network re-initialization. The outer loop randomly
re-initializes the network but does not re-initialize the synthetic images. The outer loop has 2000 and
500 iterations for ConvNet-D3 and ResNet10-AP, respectively.

Condensation Evaluation. For condensation evaluation, we need a network trained on the condensed
datasets. Unlike condensation training, we fully train the network for 1000 epochs for ConvNet-D3
and ResNet10-AP.

B.1.3 Details for Other Compared Methods

Dataset Condensation. IDC [4] and DREAM [6] use multi-formation of factor = n, while KIP [7, 8],
DSA [13], and MTT [1] contain only one image in a condensed image.

Multi-
Formation

Condensed
Data

Synthetic DataReal Data

Condense

(a) CIFAR-10: factor = 2.

Multi-
Formation

Synthetic Data

Condensed
Data

Real Data.

Condense

(b) CIFAR-100: factor = 2.

(c) ImageNet-10: factor = 3.

Figure 1: Illustration of multi-formation process.

Fig. 1 illustrates the process of multi-formation (i.e., uniform formation) using a factor n. First, real
data are down-scaled to 1

n2 their size, and n2 number of real data are put together to form condensed
data. Condensed data are what we store on disk. During training and evaluation, condensed data
undergo a multi-formation process that splits the condensed data into n2 data and restores them to
the size of real data.

Dataset Pruning. Tab. 1 shows the components required for each dataset pruning method. Based on
implementations, dataset pruning baselines can be roughly put into two categories, i.e., 1) model-
based and 2) training dynamic-based methods.
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Table 1: Components required for each dataset pruning method.

Method Model Training
Dynamics

Training
Time

Label

SSP [11] ✓ Full
Entropy [2] ✓ Full ✓
AUM [10] ✓ Full ✓
Forg. [12] ✓ Full ✓
EL2N [9] ✓ Early ✓
Ours ✓ Early ✓

1) Model-based methods require a pretrained method for image importance ranking. Self-Supervised
Prototype (SSP) [11] utilizes the k-means algorithm to cluster feature spaces extracted from pretrained
models. The number of clusters is exactly the number of selected samples, and we select images
with the closest distance to the centroid in the feature space. Entropy [2] keeps samples with the
largest entropy indicating the maximum uncertainty, and we prune samples with the least entropy.
Both methods use ConvNet-D3 models pre-trained with condensed datasets.

2) Training dynamic-based methods keep track of the model training dynamics. AUM [10] keeps
hard samples by considering a small area between the correct prediction and the largest logits of
other labels. For Forgetting [12], a forgetting event of a sample occurs if the training accuracy of a
minibatch containing the sample decreases at the next epoch, and samples with the most forgetting
events are considered hard samples. We prune samples with the least forgetting events. If samples
contain the same forgetting counts, we prune samples in the order of the index. For EL2N [9],
samples with the large norm of error vector are deemed as hard samples, and we prune samples with
the least error. The first 10 epochs’ training information is averaged to compute the EL2N score. The
above methods all choose to prune easy samples when the pruning ratio is small or moderate. For
CCS, we use EL2N [9] as the pruning metric, and we prune hard samples with optimal hard cutoff
ratios suggested in the paper [14].

B.2 Main Result with Standard Deviation

Table 2: IPC means “images per class”. Flexibly resize dataset from IPCF to IPCT (IPCF→T). The
subscript ±std. denotes the standard deviation.

Dataset IPCF Acc. IPCT
Condensation Pruning Method

IDC[4] DREAM[6] SSP[11] Entropy[2] AUM[10] Forg.[12] EL2N[9] CCS[14] Ours

CIFAR-10

10 67.50
1 28.23±0.08 30.87±0.36 27.83±0.10 30.3±0.27 13.3±0.22 16.68±0.19 16.95±0.12 33.54±0.05 42.28±0.15

2 37.1±0.34 38.88±0.13 34.95±0.37 38.88±0.03 18.44±0.02 22.13±0.07 23.26±0.25 39.2±0.10 46.67±0.12

5 52.92±0.06 54.23±0.21 48.47±0.16 52.85±0.11 41.4±0.24 45.49±0.13 46.58±0.34 53.23±0.25 55.96±0.07

50 74.50

1 29.45±0.29 27.61±0.15 28.99±0.08 17.95±0.06 7.21±0.08 12.23±0.17 7.95±0.06 31.28±0.21 38.77±0.09

2 34.27±0.16 36.11±0.27 34.51±0.23 24.46±0.08 8.67±0.17 12.17±0.07 9.47±0.04 38.71±0.25 44.54±0.08

5 45.85±0.11 48.28±0.14 46.38±0.18 34.12±0.26 12.85±0.08 15.55±0.07 16.03±0.08 48.19±0.16 53.04±0.18

10 57.71±0.17 59.11±0.06 56.81±0.03 47.61±0.14 22.92±0.11 27.01±0.08 31.33±0.18 56.8±0.11 61.1±0.16

CIFAR-100

10 45.40
1 14.78±0.10 15.05±0.04 14.94±0.09 11.28±0.07 3.64±0.04 6.45±0.07 5.12±0.06 18.97±0.04 22.57±0.04

2 22.49±0.12 21.78±0.07 20.65±0.07 16.78±0.03 5.93±0.05 10.03±0.01 8.15±0.04 25.27±0.02 29.09±0.05

5 34.9±0.02 35.54±0.04 30.48±0.04 29.96±0.12 17.32±0.10 21.45±0.14 22.4±0.09 36.01±0.05 38.51±0.05

20 49.50
1 13.92±0.03 13.26±0.04 14.65±0.05 5.75±0.02 2.96±0.01 7.59±0.06 4.59±0.05 18.72±0.11 23.74±0.19

2 20.62±0.03 20.41±0.08 20.27±0.09 8.63±0.02 3.96±0.04 10.64±0.07 6.18±0.04 24.08±0.01 29.93±0.13

5 31.21±0.09 31.81±0.03 30.34±0.10 17.51±0.08 8.25±0.07 17.63±0.04 11.76±0.13 32.81±0.11 38.02±0.08

50 52.60

1 13.41±0.02 13.36±0.01 15.9±0.10 1.86±0.04 2.79±0.03 9.03±0.08 4.21±0.02 19.05±0.08 23.47±0.11

2 20.38±0.11 19.97±0.21 21.26±0.15 2.86±0.05 3.04±0.02 12.66±0.11 5.01±0.05 24.32±0.07 29.59±0.11

5 29.92±0.07 29.88±0.09 29.63±0.22 6.04±0.05 4.56±0.10 20.23±0.07 7.24±0.11 31.93±0.06 37.52±0.00

10 37.79±0.01 37.85±0.12 36.97±0.07 13.31±0.10 8.56±0.08 29.11±0.08 11.72±0.06 38.05±0.09 42.79±0.06

ImageNet
Subset-10

10 72.80
1 44.93±0.37 - 45.69±0.74 40.98±0.39 17.84±0.45 32.07±0.17 41.0±0.71 44.27±0.80 53.91±0.49

2 57.84±0.10 - 58.47±0.42 52.04±0.29 29.13±0.25 44.89±0.41 54.47±0.40 56.53±0.13 59.69±0.19

5 67.2±0.52 - 63.11±0.63 64.6±0.09 44.56±0.66 55.13±0.19 65.87±0.04 67.36±0.35 64.47±0.36

20 76.60
1 42.0±0.28 - 43.13±0.5 36.13±0.17 14.51±0.12 24.98±0.13 24.09±0.67 34.64±0.16 53.07±0.31

2 53.93±0.31 - 54.82±0.27 46.91±0.51 19.09±0.45 31.27±0.23 33.16±0.41 42.22±0.17 58.96±0.36

5 59.56±0.29 - 61.27±0.67 56.44±0.95 27.78±0.13 36.44±0.53 46.02±0.26 57.11±0.2 64.38±0.38

Tab. 2 provides the standard deviations for our main result. We note that standard deviations for
random selection are averaged over three random score selections and for each set of randomly
selected images, the accuracy is averaged over three randomly initialized networks. For dataset
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pruning methods, the reported results are averaged over three different training dynamics, and each
training dynamic is evaluated based on three different network initializations.

C Broader Impact

The broader impact of our research lies in its potential to revolutionize the efficiency of deep learning
models. By allowing for the flexible resizing of condensed datasets, our method can enable these
models to deliver optimal performance under varying computational constraints. This could lead to
more efficient use of resources, potentially making deep learning more accessible for devices with
limited computational power. As a result, our work holds significant promise in driving forward the
field of deep learning, particularly in the context of dataset efficiency.

The fact that our method has been validated only on clean datasets like CIFAR-10, CIFAR-100, and
ImageNet raises questions about its robustness in real-world scenarios where data is often noisy
and imperfect. Real-world datasets typically contain inconsistencies, outliers, or errors, which may
challenge our method’s ability to prioritize samples based on the LBPE score accurately. Such datasets
may introduce more complex patterns that could potentially be characterized as “hard” samples, and
these might be overlooked by our current method. Hence, it is essential to explore how our YOCO
method performs under such conditions. It’s also important to investigate possible modifications
or enhancements to our method that could improve its robustness to noise and variability, such as
integrating additional metrics for sample importance or developing methods to handle noisy data
effectively. This broader impact highlights the ongoing need for research that not only strives for
efficiency and adaptability in deep learning models but also robustness and resilience in real-world
scenarios.
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