
Neural Multi-Objective Combinatorial Optimization
with Diversity Enhancement (Appendix)

A Reference point and hypervolume ratio

The normalized hypervolume (HV) ratio is calculated as HV′
r(F) = HVr(F)/

∏M
i=1 |ri−zi|, where

r is a reference point satisfying ri > max{fi(x)|f(x) ∈ F} and z is an ideal point satisfying
zi < min{fi(x)|f(x) ∈ F}4, ∀i ∈ {1, . . . ,M}. The used r and z are given in Table 4.

Table 4: Reference points and ideal points

Problem Size r z

Bi-TSP

20 (20, 20) (0, 0)
50 (35, 35) (0, 0)

100 (65, 65) (0, 0)
150 (85, 85) (0, 0)
200 (115, 115) (0, 0)

Bi-CVRP
20 (30, 4) (0, 0)
50 (45, 4) (0, 0)

100 (80, 4) (0, 0)

Bi-KP
50 (5, 5) (30, 30)

100 (20, 20) (50, 50)
200 (30, 30) (75, 75)

Tri-TSP
20 (20, 20, 20) (0, 0)
50 (35, 35, 35) (0, 0)

100 (65, 65, 65) (0, 0)

B Details of NHDE-P and NHDE-M

NHDE-P, deploying NHDE to PMOCO [14], employs a hypernetwork to tackle the weight λ and
diversity factor w for the corresponding subproblem. Specifically, according to the given λ and w,
the hypernetwork generates the decoder parameters of the heterogeneous graph attention (HGA)
model θ, which is an encoder-decoder-styled architecture, i.e., θ(λ,w) = [θen,θde(λ,w)], as shown
in Figure 5. Following [14], the hypernetwork adopts a simple MLP model with two 256-dimensional
hidden layers and ReLu activation. The MLP first maps an input with M + 2 dimensions to a hidden
embedding h(λ,w), which is then used to generate the decoder parameters by linear projection.

NHDE-M, deploying NHDE to MDRL [15], consists of three processes. In the meta-learning process,
a meta-model θmeta, whose architecture is the same as the HGA model θ, is trained by sampling
tasks from the whole task space. In the fine-tuning process, according to the given λ and w, θmeta

is then fine-tuned using fine-tuning instances with a few gradient steps to derive the corresponding
submodel. In the inference process, the submodel is used to solve the corresponding subproblem.

C Node features and context embedding

The input dimensions of the node features vary with different problems. The inputs of the M -objective
TSP are n nodes with 2M -dimensional features. The inputs of Bi-CVRP are n customer nodes with
3-dimensional features and a depot node with 2-dimensional features. The inputs of Bi-KP are n
nodes with 3-dimensional features.

4ri < min{fi(x)|f(x) ∈ F} and zi > max{fi(x)|f(x) ∈ F} for maximization problems, e.g., Bi-KP.

1



Linear Projection

×L Layers

×T Steps

HGA

Add & Norm

Feed Forward

Node Features

ℎ1
(𝑙) ... ℎ𝑛

(𝑙)

ℎ1
(𝑙) ... ℎ𝑛

(𝑙)

Add & Norm

ℎ1
(𝐿) ... ℎ𝑛

(𝐿)

Compatibility

Softmax

𝑝1
𝑡 ... 𝑝𝑛

𝑡

𝜋𝑡

ℎ𝑐

DecoderEncoder

Linear Projection

𝑔1
(𝑙) ... 𝑔𝑘

(𝑙)

ො𝑔1
(𝑙) ... ො𝑔𝑘

(𝑙)

𝑔1
(𝐿) ... 𝑔𝑘

(𝐿)

Point Features

HGA

Hypernetwork

Weight 𝝀
Diversity factor w

Figure 5: Hypernetwork-based heterogeneous graph attention (HGA) model of NHDE-P.

At step t in the decoder, a context embedding hc is used to calculated the probability of node
selection. For MOTSP, hc is defined as the concatenation of the graph embedding h̄ =

∑n
u=1 hu/n,

the embedding of the first node hπ1 , and the embedding of the last node hπt−1 . For MOCVRP, hc

is defined as the concatenation of the graph embedding h̄, the embedding of the last node hπt−1
,

and the remaining vehicle capacity. For MOKP, hc is defined as the concatenation of the graph
embedding h̄ and the remaining knapsack capacity.

A masking mechanism is adopted in each decoding step to ensure the solution feasibility. For MOTSP,
the visited nodes are masked. For MOCVRP (MOKP), besides the visited nodes, those with a demand
(weight) larger than the remaining vehicle (knapsack) capacity are also masked.

D Instance augmentation

In the inference process, an instance can be transformed into other variants sharing the same optimal
solutions, so as to augment the performance. An instance of Bi-CVRP has 8 transformations,
and an instance of M -objective TSP has 8M transformations [14] due to the full transformation
permutation of M groups of 2-dimensional coordinates, where each group has 8 transformations [36],
{(x, y), (1− x, y), (x, 1− y), (1− x, 1− y), (y, x), (1− y, x), (y, 1− x), (1− y, 1− x)}.

Our NHDE can effectively enhance the performance only using partial instance augmentation, which
can reduce the solving time, since it can already achieve high diversity. Specifically, for M -objective
TSP, NHDE adopts the full permutation of the first 4 transformations and last 4 transformations,
respectively, thereby a total of 2× 4M transformations.

E Training and fine-tuning of NHDE-M

The training algorithm of NHDE-M in the meta-learning process, adapted from that of MDRL [15],
is outlined in Algorithm 2. Also, the three key adjustments based on MDRL are captured in Line 7,
Line13, and Line 18. In the fine-tuning process, for the given N weights λ as well as diversity factors
w, N submodels are fine-tuned from the well-trained meta-model to solve the MOCO problem. The
fine-tuning algorithm is presented in Algorithm 3.
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Algorithm 2 Training algorithm of NHDE-M
1: Input: weight distribution Λ, diversity-factor distribution W , instance distribution S, initial

meta-learning rate ϵ0, number of meta-iterations Tm, number of sampling steps per meta-iteration
N ′, number of sampled weights per sampling step Ñ , number of update steps of the submodel
E, batch size B, instance size n

2: Initialize the meta-model θ
3: ϵ← ϵ0
4: for tm = 1 to Tm do
5: se,i ∼ SampleInstance(S) ∀e ∈ {1, · · · , E} ∀i ∈ {1, · · · , B}
6: Initialize Fe,i ← ∅ ∀e, i
7: for n′ = 1 to N ′ do
8: for ñ = 1 to Ñ do
9: λ ∼ SampleWeight(Λ)

10: w ∼ SampleDiversityFactor(W)
11: for e = 1 to E do
12: πj

i ∼ SampleSolution(Pθñ(·|se,i, F̃r,e,i)) ∀i ∈ {1, · · · , B} ∀j ∈ {1, · · · , n}
13: Rj

i ← −w1g(π
j
i |se,i,λ) + w2HVr(F̃e,i ∪ {πj

i }) ∀i, j
14: bi ← 1

n

∑n
j=1(−R

j
i ) ∀i

15: ∇J (θñ)← 1
Bn

∑B
i=1

∑n
j=1[(−R

j
i − bi)∇θñ logPθñ(πj

i |si, F̃r,i)]

16: θñ ← Adam(θñ,∇J (θñ))
17: Gi ← {π1

i , . . . ,π
n
i } ∀i

18: Fe,i ← MPO(F̃e,i ∪ G̃i) ∀e, i
19: end for
20: end for
21: θ ← θ + ϵ( 1

Ñ

∑Ñ
ñ=1 θ

ñ − θ)

22: ϵ← ϵ− ϵ0/(Tm ×N ′)
23: end for
24: end for
25: Output: The parameter of the meta-model θ

Algorithm 3 Fine-tuning algorithm of NHDE-M
1: Input: instance distribution S, weights λ1, . . . ,λN , diversity factors w1, . . . ,wN , number of

fine-tuning steps of the submodel Ef , batch size B, instance size n, well-trained meta-model θ
2: se,i ∼ SampleInstance(S) ∀e ∈ {1, · · · , Ef} ∀i ∈ {1, · · · , B}
3: Initialize Fe,i ← ∅ ∀e, i
4: for ñ = 1 to N do
5: θñ ← θ
6: for e = 1 to E do
7: πj

i ∼ SampleSolution(Pθñ(·|se,i, F̃r,e,i)) ∀i ∈ {1, · · · , B} ∀j ∈ {1, · · · , n}
8: Rj

i ← −w1g(π
j
i |se,i,λ) + w2HVr(F̃e,i ∪ {πj

i }) ∀i, j
9: bi ← 1

n

∑n
j=1(−R

j
i ) ∀i

10: ∇J (θñ)← 1
Bn

∑B
i=1

∑n
j=1[(−R

j
i − bi)∇θñ logPθñ(πj

i |si, F̃r,i)]

11: θñ ← Adam(θñ,∇J (θñ))
12: Gi ← {π1

i , . . . ,π
n
i } ∀i

13: Fe,i ← MPO(F̃e,i ∪ G̃i) ∀e, i
14: end for
15: end for
16: Output: The parameters of the fine-tuned submodels θ1, . . . ,θN

F Hyperparameters of NHDE-M

NHDE-M trains a meta-model with 150 meta-iterations and initial meta-learning rate ϵ0 = 1. We
set N ′ = 20, Ñ = M , and E = 100. We use batch size B = 64 and the Adam [53] optimizer with
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Table 5: Results of NHDE-M compared with MDRL with close or more total solving time on 200
random instances of MOCO problems.

Bi-TSP20 Bi-TSP50 Bi-TSP100
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

MDRL (40 wt.) 0.6264 20 0.49% 2s 0.6342 33 1.35% 3s 0.6940 36 1.55% 8s
MDRL (600 wt.) 0.6287 54 0.13% 29s 0.6380 133 0.76% 64s 0.7006 185 0.61% 2.1m
NHDE-M (40 wt.) 0.6287 58 0.13% 20s 0.6393 132 0.56% 57s 0.7008 195 0.58% 2.0m

MDRL (40 wt. aug.) 0.6267 18 0.44% 21s 0.6384 34 0.70% 1.5m 0.6995 38 0.77% 3.3m
MDRL (100 wt. aug.) 0.6271 23 0.38% 1.2m 0.6408 67 0.33% 3.6m 0.7023 82 0.37% 16m
NHDE-M (40 wt. aug.) 0.6295 81 0.00% 1.5m 0.6429 273 0.00% 2.6m 0.7049 339 0.00% 5.5m

Bi-CVRP20 Bi-CVRP50 Bi-CVRP100
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

MDRL (40 wt.) 0.4284 9 0.49% 3s 0.4057 5 1.12% 5s 0.4015 0 1.45% 10s
MDRL (300 wt.) 0.4296 17 0.21% 23s 0.4089 21 0.34% 49s 0.4078 21 -0.10% 1.5m
NHDE-M (40 wt.) 0.4296 16 0.21% 23s 0.4086 20 0.41% 47s 0.4053 18 0.52% 1.4m

MDRL (40 wt. aug.) 0.4293 9 0.28% 5s 0.4073 11 0.73% 16s 0.4040 11 0.83% 1.0m
MDRL (300 wt. aug.) 0.4302 16 0.07% 1.0m 0.4103 24 0.00% 2.1m 0.4086 24 -0.29% 7.7m
NHDE-M (40 wt. aug.) 0.4305 24 0.00% 1.2m 0.4103 29 0.00% 1.6m 0.4074 26 0.00% 2.7m

Bi-KP50 Bi-KP100 Bi-KP200
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

MDRL (40 wt.) 0.3559 17 0.20% 4s 0.4528 25 0.31% 8s 0.3594 31 0.42% 24s
MDRL (300 wt.) 0.3563 29 0.08% 30s 0.4536 58 0.13% 1.0m 0.3606 95 0.08% 3.1m
NHDE-M (40 wt.) 0.3566 41 0.00% 31s 0.4542 93 0.00% 1.0m 0.3609 160 0.00% 2.8m

Tri-TSP20 Tri-TSP50 Tri-TSP100
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

MDRL (210 wt.) 0.4723 126 0.90% 14s 0.4388 199 4.46% 20s 0.4956 207 3.17% 40s
MDRL (3003 wt.) 0.4761 479 0.10% 2.6m 0.4512 1927 1.76% 5.1m 0.5104 2400 0.27% 10m
NHDE-M (210 wt.) 0.4763 783 0.06% 1.4m 0.4512 2636 1.76% 4.7m 0.4997 4056 2.36% 11m

MDRL (210 wt. aug.) 0.4727 107 0.82% 14m 0.4473 202 2.61% 53m 0.5056 209 1.21% 4.3h
MDRL (153 wt. aug.) 0.4721 92 0.94% 11m 0.4448 150 3.16% 39m 0.5022 153 1.88% 3.2h
NHDE-M (210 wt. aug.) 0.4766 748 0.00% 13m 0.4593 10850 0.00% 30m 0.5118 13216 0.00% 1.5h

learning rate 10−4. During fine-tuning and inference, the number of fine-tuning steps Ef is set to 50,
and Adam with learning rate 10−4 is used. N=40 and N=210 uniformly distributed weights are
generated and then shuffled for M=2 and M=3, respectively. N diversity factors linearly change
from (1,0) to (0,1). For the compared MDRL, the settings are the same as NHDE-M except 3000
meta-iterations are used, so that MDRL and NHDE-M execute the same number of gradient steps.

G Experimental results of NHDE-M

G.1 More results of NHDE-M

NHDE-M usually spends relatively more inference time than MDRL with the same number of
weights. Hence, we adjust the number of weights of MDRL, making its inference time close to
or longer than NHDE-M for fair comparisons, as shown in Table 5. Nonetheless, NHDE-M is
still superior to MDRL in most cases. Without instance augmentation (aug.), NHDE-M is inferior
to MDRL on Bi-CVRP50, Bi-CVRP100, and Tri-TSP100. Instance augmentation can effectively
boost the performance of NHDE-M, where NHDE-M (aug.) is only inferior to MDRL (aug.) on
Bi-CVRP100. Note that, for a given weight, MDRL needs to further fine-tune the meta-model with
Ef = 50 gradient steps to derive a submodel to the corresponding subproblem, which means that the
increasing number of weights would cause considerable extra fine-tuning costs.

G.2 Generalization study of NHDE-M

We assess the zero-shot generalization capability of NHDE-M, which is trained and fine-tuned on
Bi-TSP100, and tested on 200 random larger-scale Bi-TSP instances, i.e., Bi-TSP150/200, and three
commonly used benchmark instances, i.e., KroAB100/150/200. The results are gathered in Tables 6
and 7. The Pareto fronts of the benchmark instances obtained by various methods are also visualized
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Table 6: Results of NHDE-M on 200 random instances of larger-scale problems.

Bi-TSP150 Bi-TSP200
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

WS-LKH (40 wt.) 0.7075 39 -0.90% 5.3h 0.7435 40 -1.38% 8.5h
PPLS/D-C (200 iter.) 0.6784 473 3.25% 21h 0.7106 512 3.11% 32h
DRL-MOA (101 models) 0.6901 73 1.58% 45s 0.7219 75 1.57% 87s

MDRL (40 wt.) 0.6894 37 1.68% 23s 0.7227 38 1.46% 42s
MDRL (400 wt.) 0.6958 176 0.77% 3.7m 0.7284 190 0.68% 6.9m
NHDE-M (40 wt.) 0.6970 239 0.60% 3.0m 0.7297 268 0.50% 4.1m

MDRL (40 wt. aug.) 0.6948 39 0.91% 21m 0.7275 39 0.80% 41m
NHDE-M (40 wt. aug.) 0.7012 373 0.00% 14m 0.7334 395 0.00% 25m

Table 7: Results of NHDE-M on benchmark instances.

KroAB100 KroAB150 KroAB200
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

WS-LKH (40 wt.) 0.7007 40 -0.42% 53s 0.6989 39 -0.92% 1.9m 0.7404 40 -1.48% 2.2m
PPLS/D-C (200 iter.) 0.6785 388 2.77% 31m 0.6659 441 3.84% 1.1h 0.7100 491 2.69% 3.1h
DRL-MOA (101 models) 0.6903 67 1.07% 10s 0.6794 72 1.89% 18s 0.7185 73 1.52% 23s

MDRL (40 wt.) 0.6869 37 1.56% 5s 0.6810 36 1.66% 9s 0.7184 39 1.54% 12s
NHDE-M (40 wt.) 0.6940 183 0.54% 7s 0.6879 232 0.66% 12s 0.7253 275 0.59% 16s

MDRL (40 wt. aug.) 0.6928 37 0.72% 7s 0.6857 38 0.98% 10s 0.7234 40 0.85% 15s
NHDE-M (40 wt. aug.) 0.6978 341 0.00% 10s 0.6925 370 0.00% 12s 0.7296 393 0.00% 16s
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Figure 6: Pareto fronts of NHDE-M and compared methods on benchmark instances. (a) KroAB100.
(b) KroAB150. (c) KroAB200.

in Figure 6. As can be clearly observed, NHDE-M exhibits superior generalization capability to the
state-of-the-art MOEA and other neural methods with regard to the convergence and diversity.

H Detailed results of NHDE-P on benchmark instances

Table 8 records the detailed results of NHDE-P and other baselines on benchmark instances, which
demonstrate the superiority of NHDE-P.

I Details of compared methods in ablation study

In Figure 4(a), we compare NHDE-P with decomposition-based DRL without indicator (NHDE
w/o I) and indicator-based DRL without decomposition (NHDE w/o D) to study the effect of the
indicator-enhanced DRL. Concretely, NHDE w/o I removes the HV indicator in the reward and the
Pareto front graph in the inputs. NHDE w/o D dispenses with weights, removes the scalar objective
in the reward, and only adopts the HV indicator to guide the model. In each subproblem without a
weight, a new solution (or multiple sampled solutions) is produced to maximize the HV indicator
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Table 8: Results of NHDE-P on benchmark instances.

KroAB100 KroAB150 KroAB200
Method HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time HV↑ |NDS|↑ Gap↓ Time

WS-LKH (40 wt.) 0.7007 40 -0.47% 53s 0.6989 39 -0.92% 1.9m 0.7404 40 -1.58% 2.2m
PPLS/D-C (200 iter.) 0.6785 388 2.71% 31m 0.6659 441 3.84% 1.1h 0.7100 491 2.59% 3.1h
DRL-MOA (101 models) 0.6903 67 1.02% 10s 0.6794 72 1.89% 18s 0.7185 73 1.43% 23s

PMOCO (40 wt.) 0.6862 36 1.61% 7s 0.6802 37 1.78% 9s 0.7174 38 1.58% 12s
NHDE-P (40 wt.) 0.6926 179 0.69% 8s 0.6873 225 0.75% 12s 0.7247 246 0.58% 16s

PMOCO (40 wt. aug.) 0.6916 38 0.83% 8s 0.6861 37 0.92% 11s 0.7223 39 0.91% 16s
NHDE-P (40 wt. aug.) 0.6974 317 0.00% 11s 0.6925 365 0.00% 13s 0.7289 377 0.00% 17s

Table 9: Results with change of the number of weights.

Number of wt. Time HV |NDS|
NHDE-P PMOCO NHDE-P PMOCO NHDE-P PMOCO NHDE-P PMOCO

10 150 14s 14s 0.6334 0.6355 76 56
20 300 26s 26s 0.6373 0.6359 103 63
40 600 53s 53s 0.6388 0.6361 127 68
80 1200 1.3m 1.4m 0.6395 0.6362 146 70

Table 10: Results for the runtime proportion of each module.

Module of NHDE-P Runtime Proportion

PMOCO 13%
Indicator-enhanced inference 5%
MPO 82%

under the current Pareto front. The surrogate landscape cannot be defined due to the disuse of weights,
so the current whole Pareto front is taken as the input to the model.

Since HV can comprehensively measure convergence and diversity, indicator-based NHDE w/o D
should find a Pareto set with good overall performance in intuition. However, it is even inferior to
decomposition-based NHDE w/o I in practice. This fact reveals that it is difficult for the deep model
to learn to construct solutions to directly optimize HV due to the high complexity of HV.

With respect to NHDE w/o MPO, which is used to evaluate the impact of our MPO strategy, it still
samples multiple solutions for each subproblem, but only the solution with the maximum reward is
preserved according to the view of single-objective optimization.

J Runtime analysis

We provide the NHDE and PMOCO results on Bi-TSP50 with similar runtime, by changing the
number of weights used in both methods in Table 9. When using a few weights (short runtime),
PMOCO is slightly better than NHDE with close runtime (since the increasing number of weights
can rapidly raise the performance of PMOCO). However, when using more weights (N ≥ 300 for
PMOCO), NHDE is consistently better than PMOCO with a close runtime. This further verifies that
increasing weights may not effectively produce more Pareto solutions for existing neural solvers,
while our NHDE can boost the limitation of such decomposition-based neural solvers, especially in
diversity. The superiority is more significant for larger and more complex MOCVRP instances.

Moreover, we present the runtime proportion of each module in NHDE-P, including the original
PMOCO, indicator-enhanced DRL, and MPO. The experiment is conducted on Bi-TSP50, as shown
in Table 10. Please note that the runtime of the indicator-enhanced DRL during inference is mainly
spent by the heterogeneous graph attention (HGA). The indicator-enhanced inference costs 5%
runtime, with the complexity of the attention mechanism in PMOCO being O(n2) and the additional
complexity in HGA being O(nK). MPO costs 82% runtime, since the update of Pareto front needs
more computation, i.e., O((K + J)J).
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Table 11: Comparison on NHDE-P with NHDE w/o I when using much more weights.

Method HV |NDS| Time

NHDE-P (600 wt.) 0.6405 177 6.3m
NHDE w/o I (600 wt.) 0.6372 141 5.9m

We observe that the promising performance of NHDE comes more from MPO (see NHDE w/o MPO
with HV 0.6335 in Figure 4(a)) than the indicator-enhanced inference (see NHDE w/o I with HV
0.6361 in Figure 4(a)). As presented in Table 10, the indicator-enhanced inference only costs a very
small part of runtime, while MPO costs most of the runtime. Thus, their corresponding contributions
to performance are reasonable, considering their compurational efforts.

We also compare NHDE-P with NHDE w/o I (equivalent to PMOCO with MPO) when using much
more weights (i.e., 600) on Bi-TSP50. As shown in Table 11, our NHDE outperforms PMOCO with
MPO, where PMOCO spends similar runtime to NHDE with the extra MPO module.

K Weight assignment

Recall that we use uniformly distributed weights during inference, which is a mainstream method
for weight assignment when no information about the Pareto front is known in advance. For
decomposition-based methods, weight assignment methods may affect the solution distribution.
However, our NHDE can better alleviate this issue compared with pure decomposition-based neu-
ral heuristics for two reasons: (1) NHDE can generate more diverse solutions as verified by our
experiments. (2) NHDE can also flexibly handle arbitrary weights during inference, enabling it to
integrate seamlessly with proper weight assignment methods. When knowing the approximate scales
of different objectives beforehand, we can first normalize them into [0,1] to derive a more uniform
Pareto front. Otherwise, we can assign biased and non-uniform weights during inference to obtain
more uniformly distributed solutions.

We present the results on Tri-TSP with asymmetric Pareto fronts, as shown in Figure 7. For Tri-
TSP instances, the coordinates for the three objectives are randomly sampled from [0, 1]2, [0, 0.5]2,
[0, 0.1]2, respectively. The results show that non-uniform weights, which are obtained by multiplying
uniform weights by (1,2,10) element-wise and then normalizing them back to [0, 1]3, can produce a
relatively more uniform Pareto front. Besides, compared with PMOCO (see Figure 7(b)), NHDE-P
(see Figure 7(c)) can enhance diversity, thereby alleviating the non-uniform distribution of solutions.

L Hyperparameter study

We further study the effects of N ′ (the number of weights used in training), K (the limited size of the
surrogate landscape of the Pareto front), and J (the limited number of points from new solutions for
updating the Pareto front).

We present the results of various N ′ on Bi-TSP50 in the table below. As shown in Figure 8(a), N ′ = 5
and N ′ = 10 cause inferior performance, while proper N ′ (20 ≤ N ′ ≤ 40) results in desirable
performance. Intuitively, when limiting the same total gradient steps in training, a larger N ′ means
fewer instances used for model training. In this sense, too large N ′, i.e., with insufficient instances,
could lead to the inferior performance for solving unseen instances. On the other hand, too small N ′

could prevent the model from learning favorable weight representations and thus deteriorate the final
performance. Hence we choose N ′ = 20 in this paper.

Figure 8(b) displays the results of various values of K, where K = 20 is a desirable setting. When
K is too small, some key information of the Pareto front would be lost, thereby degrading the
performance. When K is too large, the deep model cannot cope with numerous points of the Pareto
front, also leading to deterioration of the performance.

We provide the HV and runtime of NHDE-P on Tri-TSP50 with the changed J in Figure 8(c). We
observe that by limiting J , the massive time of the update can be curtailed with only a little sacrifice
of performance. Since J = 200 is a good trade-off between HV and runtime, we use it in this paper.
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Figure 7: Solutions generated by using 105 uniform/non-uniform distributed weights on an instance
of Tri-TSP20 with asymmetric Pareto front. (a) Uniform weights. (b) PMOCO with uniform weights.
(c) NHDE-P with uniform weights. (d) Non-uniform weights. (e) PMOCO with non-uniform weights.
(f) NHDE-P with non-uniform weights.
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Figure 8: Hyperparameter study. (a) Effect of the number of weights used in training. (b) Effect of
the limited size of the surrogate landscape of the Pareto front. (c) Effect of the limited number of
points from new solutions for updating the Pareto front.

M Additional analysis

In the inference, diversity factors are linearly changed, which means different emphasis between the
scalar objective and the HV indicator. We test other settings of the diversity factors, e.g., some fixed
values. As shown in Figure 9(a), different settings of the diversity factors have almost no impact on
the performance, except w1 = · · · = wN = (1, 0) only emphasizing on HV. A possible reason is
that the deep model is not good at learning the mapping from diversity factors to the complicated
reward involving HV.

Recall that NHDE solves the subproblems dependently, and we simply use the shuffled weights. To
study the effect of the random shuffle, we execute independent 10 runs. The boxplot of the results is
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Figure 9: Additional analysis. (a) Effect of diversity factors. (b) Effect of shuffled weights.

Table 12: Results for the number of duplicated solutions.

Method |DS|
NHDE-P (40 wt.) 196
NHDE w/o I (40 wt.) 225

Table 13: Variances of the methods.

Bi-TSP20 Bi-TSP50 Bi-TSP100
Method HV Variance HV Variance HV Variance

WS-LKH (40 wt.) 0.6266 3.24× 10−4 0.6402 1.59× 10−4 0.7072 4.82× 10−5

PPLS/D-C (200 iter.) 0.6256 3.45× 10−4 0.6282 1.72× 10−4 0.6844 6.13× 10−5

DRL-MOA (101 models) 0.6257 3.31× 10−4 0.6360 1.67× 10−4 0.6970 5.09× 10−5

PMOCO (40 wt.) 0.6258 3.31× 10−4 0.6331 1.64× 10−4 0.6938 5.08× 10−5

PMOCO (600 wt.) 0.6267 3.28× 10−4 0.6361 1.55× 10−4 0.6978 4.71× 10−5

NHDE-P (40 wt.) 0.6286 3.19× 10−4 0.6388 1.58× 10−4 0.7005 4.76× 10−5

PMOCO (40 wt. aug.) 0.6266 3.26× 10−4 0.6377 1.60× 10−4 0.6993 4.99× 10−5

PMOCO (100 wt. aug.) 0.6270 3.28× 10−4 0.6395 1.54× 10−4 0.7016 4.81× 10−5

NHDE-P (40 wt. aug.) 0.6295 3.14× 10−4 0.6429 1.52× 10−4 0.7050 4.73× 10−5

presented in Figure 9(b). As shown, the random shuffle of weights only exhibits a slight impact on
the performance. A specialized order of the weights may raise the performance, but it is beyond the
scope of this paper, which would be explored in the future.

We implicitly show the reduced duplicated solutions by the metric |NDS|, i.e., the number of non-
dominated solutions. Empirically, more non-dominated solutions mean fewer duplicated solutions and
fewer dominated solutions. Thus, the larger |NDS| values of our method (especially in comparison to
the other neural solvers) indicate that our method can produce a smaller number of duplicates to some
extent. Furthermore, we add another evidence to verify that the indicator-enhanced DRL can hinder
duplicated solutions. Specifically, we directly report the average number of duplicated solutions
(|DS|) of our NHDE-P and NHDE-P without indicator (NHDE w/o I) on Bi-TSP50 in Table 12. As
can be seen, our NHDE-P using the HV indicator can effectively guide the model to generate fewer
duplicated solutions. Intuitively, our model is trained to construct new Pareto solutions different from
existing ones in the Pareto front, which could achieve higher HV in the reward.

To further verify our results are statistically significant, we have conducted a Wilcoxon rank-sum
test at a 1% significance level for the results in all groups, which means our results are statistically
significant. We additionally report the variances of the results in Table 13. All methods have small
variances of hypervolumes, where our NHDE-P achieves the stablest performance.

9


	Introduction
	Related works
	Preliminary
	MOCO
	Decomposition
	Indicator

	Methodology
	Indicator-enhanced DRL
	Heterogeneous graph attention
	Multiple Pareto optima strategy
	Training and inference

	Experiments
	Main results
	Generalization study
	Ablation Study

	Conclusion
	Reference point and hypervolume ratio
	Details of NHDE-P and NHDE-M
	Node features and context embedding
	Instance augmentation
	Training and fine-tuning of NHDE-M
	Hyperparameters of NHDE-M
	Experimental results of NHDE-M
	More results of NHDE-M
	Generalization study of NHDE-M

	Detailed results of NHDE-P on benchmark instances
	Details of compared methods in ablation study
	Runtime analysis
	Weight assignment
	Hyperparameter study
	Additional analysis



