
Instructing Goal-Conditioned Reinforcement Learning
Agents with Temporal Logic Objectives

Wenjie Qiu∗
Rutgers University

wq37@cs.rutgers.edu

Wensen Mao∗
Rutgers University

wm300@cs.rutgers.edu

He Zhu
Rutgers University

hz375@cs.rutgers.edu

Abstract

Goal-conditioned reinforcement learning (RL) is a powerful approach for learning
general-purpose skills by reaching diverse goals. However, it has limitations when
it comes to task-conditioned policies, where goals are specified by temporally
extended instructions written in the Linear Temporal Logic (LTL) formal language.
Existing approaches for finding LTL-satisfying policies rely on sampling a large
set of LTL instructions during training to adapt to unseen tasks at inference time.
However, these approaches do not guarantee generalization to out-of-distribution
LTL objectives, which may have increased complexity. In this paper, we propose a
novel approach to address this challenge. We show that simple goal-conditioned RL
agents can be instructed to follow arbitrary LTL specifications without additional
training over the LTL task space. Unlike existing approaches that focus on LTL
specifications expressible as regular expressions, our technique is unrestricted
and generalizes to ω-regular expressions. Experiment results demonstrate the
effectiveness of our approach in adapting goal-conditioned RL agents to satisfy
complex temporal logic task specifications zero-shot.

1 Introduction

Goal-conditioned learning Liu et al. [2022] is a type of reinforcement learning (RL) task where an
agent learns to achieve a specific goal in a given environment. The goal can be defined in various
ways, such as a particular state of the environment or a desired outcome, and the agent learns to map
its current observations to actions that bring it closer to the goal. By providing a high-level goal, the
agent can effectively learn to generalize its behavior and adapt to changing conditions.

However, goal-conditioned RL agents struggle with generalizing to more complex, task-oriented
policies when the goals are specified by temporally extended instructions typically written in Linear
Temporal Logic (LTL) languages, which creates a much larger task space than simple goals. In such
cases, as the LTL task space is vast and difficult to exhaustively sample, it becomes more challenging
for the agent to identify the correct sequence of actions needed to accomplish a task, which results in
slow learning and poor generalization.

We propose a novel approach that enables simple goal-conditioned RL agents to follow arbitrary
LTL specifications without any additional training over the LTL task space. This is in sharp contrast
to existing approaches for finding LTL-satisfying policies, which require sampling a large set of
LTL instructions from the task space during training as “goals" Vaezipoor et al. [2021], Kuo et al.
[2020]. Such methods have no guarantee in generalizing to unseen tasks outside their training
distribution of LTL objectives. As an example, the capability of most existing learning algorithms for
LTL-satisfying policies is restricted to specifications over regular expressions that can be modeled by
reward machines Icarte et al. [2022, 2018]. Our technique can handle ω-regular LTL specifications
∗Wenjie Qiu and Wensen Mao contributed equally to this work.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

over infinite control sequences even though the underlying goal-conditioned agents have never seen
such specifications during training.

Our main contribution lies in a policy learning algorithm for LTL satisfaction, which decouples
complex low-level environment interaction from high-level task planning. Specifically, we leverage
a goal-conditioned RL agent to interact with low-level environments to learn how to achieve basic
goals without considering higher-level tasks. The goal-conditioned RL agent has the capability of
measuring the difficulty of transitioning between goals in the goal space. To solve an unseen LTL
instruction φ, our method applies a weighted graph search algorithm that engages in high-level
planning over the difficulty of achieving the specified goals to choose the optimal sequence of sub-
goals in φ for the goal-conditioned agent to reach. We present experimental results demonstrating the
effectiveness of our technique in adapting goal-conditioned RL agents to satisfy complex LTL task
specifications of varying complexity zero-shot.

2 Background

Goal-Augmented Markov Decision Processes (MDPs) extend standard MDPs by incorporating
a set of goals G within the system state space S. We assume the existence of a state-goal labeling
function L ∶ S → 2G that maps each state to a set of atomic propositional symbols used to describe
the observation of a system state where an atomic propositional symbol g ∈ G is a variable that takes
on a truth. Throughout the paper, the terms "goals" and "propositions" are used interchangeably.

¬𝑟

¬𝑟

𝑦

𝑦

𝑤

¬𝑟𝑤

¬𝑟

Figure 1: An LTL Task for ZoneEnv.

As an example, consider ZoneEnv,
a Safety Gym environment Achiam
and Amodei [2019] adapted from
Vaezipoor et al. [2021]. The environ-
ment (Fig. 1) is a walled 2D plane
with colored zones that correspond
to task propositions. Both the zones
and the point robot are randomly po-
sitioned on the plane. In this exam-
ple, we use a set of atomic proposi-
tions G = {y,w, r, j} that represents
the four colors yellow, white, red, and jet black.

Formally, we model a goal-augmented MDP as a tuple (S,A,G, L, T,R, γ) that consists of a state
space S, an action space A, a goal space defined by a set of atomic propositions G, a transition
function T ∶ S ×A×S → [0,1] that maps each state-action-state transition to a probability, a labeling
function L, and a reward function defined with the goalsR ∶ S×G×A→ R that maps each state-action
transition to a scalar reward for a particular goal in G. γ ∈ [0,1) is a discount factor that controls the
relative importance of immediate versus future rewards.

In a goal-augmented MDP, the agent’s objective is to reach a goal via a goal-conditioned pol-
icy π ∶ S × G × A → [0,1] that maximizes the expectation of the cumulative reward: J(π) =
Eat∼π(⋅∣st,g),g∼Pg

st+1∼T (⋅∣st,at)

[∑∞t=0 γtR(st, gt, at)] where pg be a distribution over goals in G. The optimal pol-

icy π∗ = argmaxπ J(π) maximizes the expected cumulative return over all possible goals, weighted
by their probability under the goal distribution Pg. This formulation encourages the policy to be
effective at achieving a diverse set of goals, rather than simply optimizing for a single goal. For
example, in the colored zone environment in Fig. 1 (left), a goal-conditioned agent policy π(a∣s, g)
can be trained to reach a specific colored zone g ∈ G = {y,w, r, j}.
The value function for goal-conditioned reinforcement learning V π(st, g) returns the expected
cumulative discounted reward obtained by following policy π starting from state st with the goal
g as the target: V π(st, g) = E at∼π(⋅∣st,g),

st+1∼T (⋅∣st,at)

[∑∞t=0 γtR(st, g, at)] The goal-conditioned Q-function

Qπ(st, g, a) returns the expected cumulative discounted reward obtained by taking action a in state
st, and then following policy π thereafter, with the goal g as the target: Qπ(st, g, a) = r(st, g, a) +
γ∑st+1∈S T (st+1∣st, a)V π(st+1, g) The goal-conditioned Q and V functions may be learned using
model-free RL algorithms such as Q-learning or policy gradient methods. In training, we assume
goals can be uniformly sampled. We also assume that tmax is the maximum horizon and a goal-

2

conditioned agent receives a positive reward signal only when it successfully achieves the specified
goal by the end of a training episode by framing a reward function:

r(st, g, at) = 1[t = tmax] ⋅ 1[g ∈ L(st)] (1)

where 1 is the indicator function. This reward function has the following interpretation: given a state
st, will the goal-conditioned policy π get to a goal g after t time steps of attempting to reach g.

Linear Temporal Logic (LTL) is a formal language used to specify the temporal properties of a
system. LTL formulas are built from a set of temporal operators, such as X ("next"), F ("eventually"),
G ("always"), and U ("until"). LTL formulas are constructed over a finite set of atomic proposition
symbols G. Formally, the syntax of LTL formulas is defined recursively as follows:

φ ∶∶= g ∣ ¬φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ Xφ ∣ φUφ ∣ Fφ ∣ Gφ where g ∈ G

Intuitively, the formula Xφ holds if φ holds at the next time step, φ1Uφ2 holds if φ1 holds until φ2

holds, Fφ holds if φ holds at a future step, and Gφ holds if φ holds at the current and all future steps.

• si ⊧ g if g ∈ G is an atomic proposition and g ∈
L(si) holds.

• si ⊧ ¬φ if si /⊧ φ.
• si ⊧ φ1 ∧ φ2 if si ⊧ φ1 and si ⊧ φ2.
• si ⊧ φ1 ∨ φ2 if si ⊧ φ1 or si ⊧ φ2.
• si ⊧ Xφ if si+1 ⊧ φ.
• si ⊧ Fφ if there exists j ≥ i such that sj ⊧ φ.
• si ⊧ Gφ if for all j ≥ i, sj ⊧ φ.
• si ⊧ φ1Uφ2 if there exists j ≥ i such that sj ⊧ φ2,

and for all i ≤ k < j, sk ⊧ φ1.

An LTL formula φ is said to be satis-
fied by a state transition system with
state space S if and only if all infinite
sequences of states of the system sat-
isfy φ. We assume the existence of
a labeling function L ∶ S → 2G that
maps each state to the atomic proposi-
tions that are true in that state. Given
an infinite sequence of system states
τ = ⟨s0, s1, s2, . . .⟩ generated by a
system, τ ⊧ φ models the satisfaction
relation ⊧ between an LTL formula φ
and the sequence of system states τ .
Formally, τ ⊧ φ if and only if s0 ⊧ φ
which. We can define si ⊧ φ induc-
tively, as illustrated on the right.

In the ZoneEnv example in Fig. 1 (left), the robot is tasked to oscillate between yellow zones and
white zones while always avoiding red zones. Assume a set of atomic propositions G = {y,w, r, j}
that represents the four colors yellow, white, red, and jet black. The LTL objective for this task can
be specified as:

GF(y ∧XFw) ∧G(¬r) (2)

Büchi Automaton is a type of automaton used to recognize languages that consist of infinite
sequences of symbols. A Büchi automaton is defined by a tuple (Q,Σ, δ, q0, F), where Q is a finite
set of automaton states, Σ is a finite alphabet of symbols, δ ∶ Q ×Σ → 2Q is a transition function
that maps each state and symbol to a set of states, q0 ∈ Q is the initial state, and F ⊆ Q is a set
of accepting states. Informally, a Büchi automaton recognizes a language consisting of all infinite
sequences of symbols (corresponding to automaton runs) that visit an accepting state infinitely often.

Büchi Automaton Construction from LTL. Büchi automata can be used to represent temporal
specifications in LTL. Given an LTL formula φ over a set of propositional symbols in G, a Büchi
automaton B can be constructed that recognizes all infinite sequences of system states that satisfy φ.
The alphabet Σ of the Büchi automaton B is over the set of atomic propositions G of φ, i.e., Σ = 2G .
That is, an infinite sequence of system states s0, s1, s2, . . . satisfies φ if and only if there exists an
infinite sequence of automaton states q0, q1, q2, . . . in B such that q0 is the initial automaton state, for
all i ≥ 0, if si ⊧ wi where wi ∈ Σ then δ(qi,wi) contains at least one state, and the set of states that
occur infinitely often in the sequence q0, q1, q2, . . . is a subset of the accepting states of B.

For example, for the ZoneEnv task in Fig. 1 (left), the converted Büchi automaton for the LTL task in
Eq. 2 is depicted in Fig. 1 (right). The only accepting state in this machine is state 2. To reach the
accepting state, a yellow zone must be visited first. The Büchi automaton accepts when state 2 is
reached infinitely often, meaning that the agent must always make a loop back to state 2 from state 3
and then state 1 by visiting a white zone and a yellow zone. This kind of infinite looping behavior
cannot be expressed by a regular expression.

3

3 Instructing Goal-Conditioned Agents with LTL Objectives

Task-Augmented Markov Decision Processes. We now formalize the problem of instructing an
RL agent to follow LTL objectives. To this end, we generalize Goal-Augmented MDPs to Task-
Augmented MDPs (S,A,G,Φ, L, T) where the definitions for state space S, action space A, goal
space G, labeling function L (from states to atomic propositions in G), state transition function
T remain the same. Φ is the universe space of LTL formulas that can be constructed from the
propositions in G. We would like to construct a policy π(a∣s,φ) such that for any possible LTL
formula φ ∈ Φ, the policy π(a∣s,φ) has the highest probability of LTL specification satisfaction with
respect to φ:

π∗ = argmax
π

Eτ∼π(⋅∣⋅,φ) [1[τ ⊧ φ]] (3)

In this formulation, a task-augmented MDP does not have a reward function. Instead, the objective
is to generate the most number of LTL-satisfying runs for a given LTL task. The MDP does not
have a maximum horizon as the agent is expected to run over an infinite time horizon to satisfy an
(ω-regular) LTL instruction (e.g., Fig. 1).

¬𝑗

𝑤 𝑟

¬𝑦

Figure 2: Another LTL task for
ZoneEnv.

Solving task-augmented MDPs turns out to be significantly more
challenging than learning for goal-augmented MDPs due to the
extremely large task space, which grows exponentially with the
number of goals. The agent must identify the correct sequence of
sub-goals to accomplish an LTL task. For the ZoneEnv example
in Fig. 1, an agent may be instructed to accomplish a task by
reaching a white zone first and then proceeding to a red zone in
two distinct phases. In each phase, the zone to avoid changes
(avoiding jet black and then yellow). We specify this task in Eq. 4
whose Büchi automaton representation is depicted in Fig. 2.

¬jU(w ∧ (¬yUr)) (4)

The two LTL tasks in Eq. 2 and Eq. 4 express very different requirements and require distinct logic to
solve. The agent is expected to successfully fulfill both tasks during inference.

3.1 LTL Task Planning on Büchi Automata

Figure 3: An LTL Task for Ant-16rooms where the red path
is more feasible than the black path.

Our approach relies on the principle
that an accepting run of a Büchi au-
tomaton must contain an accepting
state that is reachable from the initial
state and lies on a cycle (e.g., Fig. 1).
This means that accepting runs of a
Büchi automaton can be searched on
top of a directed graph representation
of the automaton. A goal-conditioned
agent can then be used to subsequently
achieve the goals along the search
paths for task execution.

However, this simple strategy may yield suboptimal task performance. Consider a Mujoco ant
navigation task in a 16-room environment depicted in Fig. 3(left). The rooms are separated by thick
walls and are connected through bi-directional doors. The agent is initially positioned at the center of
the bottom-left room and is given the following LTL instruction to traverse through the centers of a
series of rooms with choices:

F(((0,2) ∨ (2,0)) ∧ F((2,2) ∧ F(((2,1) ∨ (3,2)) ∧ F((3,1) ∧ F(((1,1) ∨ (3,3)) ∧ F(1,3))))))
Here an atomic proposition g ∈ G is in the form of (r, c) denoting the room in the r-th row and c-th
column. The bottom-left corner is room (0,0). Given an environment state s, define s ⊧ (r, c) is true
if the position of the Mujoco ant in s is close to the center of the (r, c)-th room within a threshold.
The Büchi automaton B converted from the LTL instruction is given in Fig. 3(right). There are 8
paths on B to reach the accepting state 6. A graph search algorithm could yield any of these paths
for the Mujoco ant to traverse along the chosen route. However, not all of them are equally optimal.

4

𝑞! 𝑞"

𝜓 =∧" 𝑔"

𝜓# =∧$ ¬𝑔$

𝑞! 𝑞"

𝜓 =∧" 𝑔"

1

𝑞! 𝑞"

𝜓 =∧" 𝑔"

(a) (b) (c)

(d) (e) (f)

𝐿 𝑞! =∧! 𝑔!

Figure 4: Graphs (a), (b), and (c) are converted from the Büchi automata in Fig. 3, Fig. 1, and Fig. 2.
(d), (e), and (f) are types of transitions in a graph representation of a Büchi automaton.

Some of the routes require the ant to take a detour to avoid the black obstacles placed in certain room
centers. In the worst case, the agent may be blocked by the obstacles and cannot complete the task.

In order to optimally accomplish the sequences of tasks defined in an LTL instruction φ with atomic
propositions in G, we perform high-level reasoning by evaluating the difficulty of achieving the
specified goals (i.e. atomic propositions) in φ in the goal space G. Our technique exploits the value
function V π(s, g) of a goal-conditioned agent π(⋅∣s, g) to capture the agent’s transition capabilities.
For any pair of goals, we learn a goal value function Vπ ∶ S × G × G → R to estimate the capability of
taking the goal-conditioned policy π to go from one goal to another goal on average. The function is
parameterized by an environment state s because the agent’s capability to transition between goals
can differ depending on various environment layouts and agent states. To get the desired estimate, we
regress V towards the value function of π by minimizing:

min
V
(V (st, gk) − V(sj , gt, gk))2 where gk ∈ L(sk) ∧ gt ∈ L(st) (5)

with τ ∼ B (a replay buffer), t ∼ {0 . . . tmax}, st, at, st+1 ∼ τ , j ∼ {0, t}, k ∼ {t + 1 . . . tmax}, and L
as the state labeling function. We train V together with a goal-conditioned learning algorithm.

With the learned goal value function V of a goal-conditioned agent as a measurement to assess
its capability to transition between goals, we reduce the task of learning an LTL specification
satisfying policy to finding the optimal accepting run in the Büchi automaton representation of
the LTL specification. We convert a Büchi automaton B = (Q,Σ, δ, q0, F) as a directed graph
GB = (Q,Σ,∆,Q0,F ,L) with nodes Q, node transitions (edges) ∆ over the same alphabet Σ, a set
of initial nodes Q0 and accepting nodes F . The conversion from B to graph GB starts with setting
Q = Q, ∆ = δ, Q0 = {q0}, and F = F . The node labeling function L maps nodes in Q to atomic
propositions (or goals) in the alphabet Σ. Intuitively, L approximates the specific region in the goal
space where the agent should be positioned at a given node. For each non-self transition (qi, ψ, qj) ∈ δ
in B where ψ encodes the goal space to which the transition is enabled, we have L(qj) = ψ. As
an example, Fig. 4(a) depicts the converted graph representation GB from the Büchi automaton in
Fig. 3(right). For the transition from the initial node to node 1, the node labeling function L maps
node 1 to goal room (0,2). This transition denotes that the agent reaches room (0,2) from the
initial room. If there are several incoming transitions with different alphabet symbols to qj in B, we
duplicate qj and its outgoing transitions in GB so that each duplicated node for qj captures one of the
possible transitions to qj . For example, in Fig. 3, there are two non-self Büchi automaton transitions
to state 1 which are encoded as node transitions from the initial room to room (0,2) and (2,0)
respectively in Fig. 4(a). An exception for constructing the node labeling function L occurs when
ψ takes the form of ⋀k ¬gk on a non-self transition (qi, ψ, qj) where all atomic propositions gk are
negative, indicating a specific area in the goal space that must be avoided to activate the transition. In
this case, the designated goal area outlined by ψ for qj can be excessively large. We instead assign
L(qj) = L(qi). Intuitively, if gk does not intersect with the current state on L(qi), the agent can
trivially fulfill the avoidance requirement by making a "jumped" transition to qj . For example, the
"avoidance" transition from state 2 to state 3 on the Büchi automaton in Fig. 1(right) is encoded as
the rightmost non-self transition in the graph representation of the automaton in Fig. 4(b).

We interpret the semantics of a graph representationGB converted from a Büchi automaton B through
the different kinds of non-self transitions that GB may have, as visualized in Fig. 4(d), (e), and (f). In

5

Fig. 4(d), on a non-self transition (qi, ψ, qj), in order to transit to qj , the goal-conditioned agent is
tasked to reach the goal region ψ ≡ ⋀j gj from the goal region L(qi) ≡ ⋀i gi. The "self-transition"
on a node qi describes a goal-related constraint ψ′ = ⋀k ¬gk that must be maintained until the
goal-conditioned agent can transit to qj . The agent can take an unlimited number of steps to reach
the goal region ψ, provided that each step avoids entering any undesired region gk within ψ′. For
weighted graph search, we assign the weight of such a transition as:

W(s, (qi, ψ, qj)) =max
gi,gj

− logV(s, gi, gj) where L(qi) =⋀
i

gi and ψ =⋀
j

gj (6)

The weight encodes the capability of a goal-condition agent to transit from qi to qj from an obser-
vation at environment state s. In Fig. 4(d), we restrict L(qi), ψ, and ψ′ to conjunctions of atomic
propositions or negated propositions. In Appendix G.3, we extend this definition to include formulas
as conjunctions of propositions and their negations to support more complex LTL tasks, such as
F(g1 ∧ ¬g2).
In Fig. 4(e), the transition is similar to that of Fig. 4(d), and the agent can also take as many steps
as necessary to reach the goal region specified by ψ by utilizing the self transition on the source
node qi. However, there are no specific avoidance requirements to consider. We use Equation 6
to weigh this kind of transition. In Fig. 4(f), the goal-conditioned agent is required to reach the
goal region ψ in exactly one step as there is not any self transition that can be taken upon qi. We
setW(s, (qi, ψ, qj)) = 0 (the full capacity) if L(qi)⇔ ψ i.e. the agent can directly "jump" to qj
(e.g. see the rightmost non-self transition in Fig. 4(b)). Otherwise, we assign it the lowest capacity
W(s, (qi, ψ, qj)) =∞. This is because our approach cannot explicitly pick an action to reach a goal
region in a single step (we instead depend on the goal-conditioned agent to take as many steps as
needed for goal reaching).

3.2 Algorithm Summary

Our technique generates policies for a LTL specification φ based on a goal-conditioned RL agent π
and a learned goal value function V as follows:

1. We first convert φ to a Büchi automaton B, which is subsequently converted to a graph representa-
tion GB using the technique illustrated in Sec. 3.1.

2. Associate each transition (qi, ψ, qj) on GB with weightW(s, (qi, ψ, qj)) according to Equation 6
to measure the capability of the goal-conditioned agent to make the transition. In our implementation,
we set s as the initial state of an episode. A more advanced planning strategy may conduct task
planning every h timesteps from a current environment state for the remaining sub-goals on GB and
update the weight of any transition based on the current state before replanning.

3. Decompose GB into strongly connected components (SCCs) using Tarjan’s algorithm Tarjan
[1972].

4. To find an optimal path on GB for task execution to satisfy the LTL φ, we follow these steps:

• For each accepting state sa within a maximal SCC Geldenhuys and Valmari [2004], we use
Dijkstra’s algorithm to find the shortest path from the initial state to sa, denoted as p.

• Next, we apply Dijkstra’s algorithm to find the shortest cycle from sa back to sa in the
maximal SCC, denoted as q.

• The optimal path for the accepting state sa is pqω where ω → ∞ represents the number
of times the shortest cycle is executed. The cost of the optimal path is calculated as
w(p)+w(q)ω where w(p) or w(q) is the sum of the weights of the transitions on p or q. In
the implementation, we use ω = 5 to estimate the path cost.

• Finally, we select the optimal path on GB as the least-cost path to any accepting state of GB.

5. For task execution, on the searched optimal path pqω, we use a goal-conditioned agent to
subsequently achieve the goals along the path p and reach the goals on q iteratively in a loop to satisfy
φ. For any transition (qi, ψ, qj) on a searched path, the agent employs its goal-conditioned policy
π̃(⋅∣s,ψ) to reach the targeted goal region ψ (Fig. 4(d),(e)).

Justification. Recall that our objective of learning a LTL specification satisfying policy (Equation 3)
is finding π∗ = argmaxπ Eτ∼π(⋅∣⋅,φ) [1[τ ⊧ φ]], which generates the maximum number of LTL-
satisfying runs for a given LTL property φ. Our formalization of goal-condition RL uses a sparse

6

binary reward function (Equation 1) - a reward of 1 is provided only when the specified goal is
successfully achieved by the end of a training episode. In this setting, when the discounted factor
γ → 1, the weight w of a transition on GB, which is determined by the learned value function V (e.g.
w = − logV(⋅)), is inversely proportional to the probability of reaching the goal region represented
by the target node from that represented by the source node. As such, based on the capability of
the goal-conditioned agent (i.e. the learned value function V), the task planning algorithm seeks the
optimal path as the one the agent is most likely to succeed.

3.3 Handling Avoidance

As depicted in Fig. 4(d), our method uses the goal-conditioned agent policy π̃ to fulfill a reach-avoid
subtask defined as π̃(⋅∣s,⋀j gj ,⋀k ¬gk) - from a state s an agent is required to avoid several regions
gk (k ≥ 1) before reaching the target region ⋀j gj in the goal space. Our method only performs
avoidance in situations where there is a high likelihood of colliding with any gk. The likelihood
of a collision occurring with gk from a current state s can be assessed by evaluating the value
function V (s, gk) of the goal-conditioned agent. If V (s, gk) exceeds a threshold σ, it indicates a
high likelihood of collision. We formally define the reach-avoid policy π̃ as follows:

π̃(⋅∣s,⋀
j

gj ,⋀
k

¬gk) ≡

let k = argmax
k
V (s, gk) in

if if V (s, gk) < σ
then argmax

a
min
j
Qπ(s, gj , a)

else
let d = argmax

a
Q(s, gk, a)

let s = argmin
a
Q(s, gk, a)

let t = argmax
a≠d

min
j
Qπ(s, gj , a)

s + t

Figure 5: Handling reach-avoid subtasks by goal-
conditioned agents in GCRL-LTL.

The strategy is to find the most dangerous zone
gk to avoid. A predicted value V (s, gk) below
the threshold σ (e.g., 0.85) signifies that gk is
not considered dangerous and does not need to
be avoided. We then take a goal-reaching action
argmaxaminj Q

π(s, gj , a) Tasse et al. [2020]
for reaching the overlapped goal space covered
by ⋀j gj . Otherwise, we select a safe action
s = argminaQ(s, gk, a) that moves the agent
away from the dangerous zone gk and identify a
dangerous action d = argmaxaQ(s, gk, a) that
moves the agent directly to the dangerous zone
gk. We then select a "blocked" goal-reaching
action t = argmaxa≠dminj Q

π(s, gj , a) to elim-
inate the impact from the dangerous action d. For
continuous environments, we generate the com-
bined action s + t that accounts for both safety
and reachability. For discrete environments, we
simply return t to block the effect of unsafe ac-
tions.

4 Experiments

We implemented our algorithm in a tool called GCRL-LTL2 that extends goal-condition RL to
task-oriented RL where tasks are specified by LTL objectives.

We evaluate GCRL-LTL in the ZoneEnv environment shown in Fig. 1 and the Ant-16rooms environ-
ments depicted in Fig. 3. We also include a 7×7 discrete grid-based environment LetterWorld from
Andreas et al. [2017]. In this environment, 12 unique letters occupy 24 positions out of 49 squares,
where each letter is presented twice. This denotes the agent can satisfy an atomic proposition by
reaching any of the two. The initial positions of the robots and the zones or letters are random in
every episode. More information about these environments is provided in Appendix G.1.

Primitives. As shown in Fig. 5, our agent policy requires enumerating the action space to perform an
avoidance maneuver when a collision is imminent. To support efficient enumeration over continuous
action space, we pretrain four neural primitive skills that can move the Point robot in ZoneEnv and
Mujoco ant in Ant-16rooms along the four cardinal directions UP, DOWN, LEFT, RIGHT. Each of the
skills is trained for 0.5 million steps. More details for primitive training are given in Appendix G.2.
To ensure a fair comparison, both our learning algorithm and the baselines get access to the neural
primitives, which enable a discrete action space for both.

2GCRL-LTL is available at https://github.com/RU-Automated-Reasoning-Group/GCRL-LTL

7

https://github.com/RU-Automated-Reasoning-Group/GCRL-LTL

(a) (b) (c) (d)

Figure 6: (a) and (b) shows success rates and discounted rewards of LetterWorld on partially-
ordered tasks, respectively. (c) and (d) shows success rates and discounted rewards on avoidance
tasks, respectively. We report the average results on 5 random seeds, where each data point is acquired
by collecting results from 100 episodes.

(a) (b)

Figure 7: Comparisons of
(a) success rate and (b) dis-
counted rewards in ZoneEnv
on avoidance tasks. We re-
port the average results on
5 random seeds, where each
data point is acquired by
collecting results from 50
episodes. The initial 2 mil-
lion steps are omitted due to
the training of the dynamic
primitives.

We extend Proximal Policy Optimization (PPO) (Schulman et al. [2017]) to a goal-conditioned RL
algorithm to train the goal-conditioned agents for LetterWorld and ZoneEnv. We use an extension
of the GCSL Ghosh et al. [2021] algorithm to train a goal-conditioned agent for Ant-16rooms. More
details about the training algorithms are provided in Appendix B.

4.1 Evaluation in Multi-Task Settings

Baseline. We compared GCRL-LTL with LTL2Action (Vaezipoor et al. [2021]). This baseline
exemplifies the state-of-the-art learning algorithms for LTL-satisfying policies that use advanced
neural architectures to encode LTL task formulas for policy decision-making. In contrast, GCRL-LTL
employs weighted graph search to decompose LTL tasks into basic reach-avoid tasks that can be
accomplished by goal-conditioned agents.

We consider the following LTL task spaces to evaluate GCRL-LTL and the baseline.

Partially-Ordered Tasks. Such a task consists of multiple streams of sub-tasks. A sub-task contains
a sequence of goals that must be satisfied in a specified order. For instance, a possible task can be
F(p ∧ F(q ∧ Fr)) ∧ F(s ∧ Fq). This task can be described as "satisfy p, q, r in that order; and satisfy
s, q in that order". One valid solution is to reach s, p, q, r in order to satisfy all sub-tasks.

Avoidance Tasks. Similar to partially ordered tasks, a sequence of propositions must be satisfied in
order, while some propositions must be avoided. Visiting a prohibited position leads to failure. An
example avoidance task is ¬jU(w ∧ (¬yUr)) (Fig. 2), which can be interpreted as a two-stage task:
"reach w while avoiding j in the first stage, then reach r while avoiding y in the second stage".

During training, LTL2Action has access to a task sampler that produces a random LTL task from
the large set of possible task spaces described above for each training episode. GCRL-LTL does not
use the task sampler and is only trained to reach random goals. In evaluation, tasks are randomly
sampled in each episode for both agents. We choose σ = 0.85 in Fig. 5 and perform ablation study on
this value in Appendix G.3.

Figure 6 shows the evaluation results across training iterations on both partially ordered and avoidance
tasks in LetterWorld. Fig. 7 demonstrates the results for avoidance tasks in ZoneEnv. GCRL-LTL
outperforms LTL2Action by a large margin despite having no access to the task sampler during
training. Furthermore, we assess the generalizability of GCRL-LTL and the baseline by testing

8

(a) (b)

Figure 8: Figures (a) and
(b) depict the performance
of trained goal-conditioned
agents in satisfying the ω-
loop and ω-stability tasks
in the ZoneEnv environment.
Each data point represents
the average performance ob-
tained from evaluation on
20 episodes, and the results
are averaged over 5 random
seeds.

Environment Tasks Timeout Ours LTL2Action
Partially-Ordered 75 0.996(0.423) 0.661(0.129)

LetterWorld Partially-Ordered + Depth ⇑ 225 0.986(0.259) 0.477(0.033)
Partially-Ordered + Conjuncts ⇑ 225 0.992(0.410) 0.567(0.049)

Avoidance 1000 0.958(0.632) 0.934(0.601)
ZoneEnv F(a ∧X(¬bUc)) ∧G(¬d) 1000 0.928(0.543) 0.342(0.304)

F(a ∧ F(b ∧ F(c ∧ Fd)) 2000 0.926(0.220) 0.060(0.020)
Table 1: Performance of trained agents on original and out-of-distributions tasks. We report the
success rate and discounted return(in parentheses). Results are averaged over 1000 episodes.

them on more complex tasks that are out-of-distribution to the task sampler used in baseline training.
Specifically, for partially ordered tasks in LetterWorld, we increase the maximum depth from 5
to 15, and the number of conjunctions from 4 to 12. Similarly, we extend the avoidance tasks in
ZoneEnv to a more difficult setting where the agent needs to avoid one extra zone in the second stage
(F(a ∧X(¬bUc)) ∧G(¬d)). Additionally, we test if agents trained in ZoneEnv can efficiently solve
tasks in which a long sequence of consecutive zones must be reached (F(a ∧ F(b ∧ F(c ∧ Fd))). The
experimental results, as detailed in Table 1, indicate that GCRL-LTL significantly outperforms the
baseline in its ability to generalize to unseen tasks.

(a) (b)

Figure 9: Figures (a) and (b) illustrate agent trajec-
tories that solve the ω-loop task GF(r ∧ XFy) ∧
G(¬w) in the ZoneEnv environment. The initial
positions of the robot are represented by orange
diamonds .

ω-regular LTL Tasks. We conducted experi-
ments to evaluate the performance of GCRL-
LTL in satisfying ω-regular LTL objectives.
ω-Stability Tasks: such a task requires the
agent to satisfy a task proposition by reach-
ing a goal region and remaining in the goal
region infinitely. ω-Loop Tasks: such a task
in the form GF(a ∧ XFb) ∧ G(¬c) requires
the agent to continuously cycle between two
specific zones, a and b, while always avoid-
ing another zone, c. For example, in the task
GF(r ∧ XFy) ∧ G(¬w), the agent is expected
to traverse between the Red and Yellow zones
indefinitely, while never visiting any White zone.
We evaluate the satisfiability of ω-loop and ω-
stability tasks in the ZoneEnv environment dur-
ing the goal-conditioned agent training process.
The results are presented in Figure 8. The x-axis
represents the number of environment interaction steps, while the y-axis represents the number of
ω occurrences. In the ω-loop tasks it represents the number of rounds completed by the agent in
looping between specific zones, and in the ω-stability tasks it represents the number of transitions the
agent successfully remains in the desired zone, within the first 1500 timesteps (higher values indicate
better performance). The results confirm that GCRL-LTL can handle ω-regular LTL specifications
even though the underlying goal-conditioned agents have never seen such specifications during their
training time. Figures 9a and 9b illustrate agent trajectories that solve the above ω-LTL task. In both

9

trajectories, the robot quickly reaches the Red zone and subsequently oscillates between the Red and
Yellow zones. More examples can be found in Appendix E.

4.2 Comparison with Compositional RL

We also compare our approach with DiRL (Jothimurugan et al. [2021]), which is a state-of-the-art
compositional RL algorithm for LTL-satisfying policies. DiRL simultaneously learns a low-level
policy for each sub-goal transition and a high-level policy to plan over the sub-goal space. However,
it is restricted to a small fragment of LTL, cannot handle ω-regular LTL properties (e.g. Fig. 1), and
cannot be applied to multi-task RL because the low-level policies are specific to a single environment
setting and do not generalize across different environments. We used 8 LTL task specifications.
These tasks have increasing levels of difficulty as they require the agent to sequentially reach a
growing number of sub-goals. An example instruction is given in Fig. 3. DiRL has to train a separate
agent for each of the LTL specifications. In contrast, GCRL-LTL trains a single goal-conditioned
agent and evaluates this agent over all 8 LTL specifications. Our agent achieves a success rate of
approximately 90% in fulfilling all specifications after being trained with 3e6 environment steps,
whereas the DiRL method has to exercise 3e6 steps for each of the specifications to match the success
rate of GCRL-LTL. More comprehensive evaluation results are given in Appendix F.

5 Related Work

There exists a large amount of previous work in using linear temporal logic (LTL) for specifying or
shaping the reward functions for reinforcement learning (RL) Aksaray et al. [2016], Littman et al.
[2017], Sadigh et al. [2014], Hasanbeig et al. [2018], Cai et al. [2021], Hahn et al. [2018], Camacho
et al. [2019], Hasanbeig et al. [2020], Jothimurugan et al. [2020], Icarte et al. [2018, 2022]. These
methods primarily concentrate on learning a single, specific task defined by an LTL objective. In
contrast, our approach involves learning task-oriented policies akin to goal-conditioned RL agents
within a multitasking framework. In this setup, a new arbitrarily complex LTL task is sampled as a
goal for each episode.

Past research efforts have also aimed to empower RL agents to handle previously unseen multi-
task instructions expressed in LTL. One common solution is decomposing complex LTL tasks into
smaller, independent subtasks to simplify the learning process. For example, Araki et al. [2021]
develops a hierarchical options framework that learns various neural networks each specialized for
one subtask, and optimally composes these learned options via value iteration to solve temporal logic
specifications. However, subtask execution does not consider what the agent must do afterward and
hence might perform sub-optimally in solving the full task. León et al. [2022] progresses towards
completion of an LTL task by greedily identifying subtasks of the original LTL instruction that remain
to be addressed, which may result in myopic behaviors. Recent works show that the agents’ neural
architecture to embed LTL specifications is the key to improving the performance of RL agents in
unseen environments. Kuo et al. [2020] presents a novel network architecture framework to compose
neural networks one for each LTL operator and environment object to mirror the formula structure.
In a similar vein, Vaezipoor et al. [2021] uses neural encodings to interpret full LTL specifications
to guide an RL agent to learn task-conditioned policies in multitask settings. Voloshin et al. [2023]
developed eventual discounting that exploits the fact that optimally satisfying the LTL specification
does not depend on the length of time it takes to reach accepting states (e.g., “eventually always reach
the goal") to find LTL-satisfying policies with the highest achievable probability. We discuss the
other related work in a more general context in Appendix C.

6 Conclusion

This paper presents GCRL-LTL to learn task-oriented policies where tasks are specified by Linear
Temporal Logic (LTL) instructions. Unlike existing methods that sample a vast set of LTL instructions
during training, our approach enables simple goal-conditioned RL agents to follow arbitrary and
complex LTL specifications without the need for additional training over the LTL task space. GCRL-
LTL is capable of handling diverse and intricate LTL specifications including ω-LTL objectives
over infinite time horizons. Through extensive experiments, we demonstrated the effectiveness of
GCRL-LTL to seamlessly satisfy complex temporal logic task specifications in a zero-shot manner.

10

Acknowledgements

We thank the anonymous reviewers for their comments and suggestions. This work was supported by
NSF Award #CCF-2124155 and NSF Award #CCF-2007799.

References
Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems and

solutions. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 5502–5511. ijcai.org, 2022. doi:
10.24963/ijcai.2022/770. URL https://doi.org/10.24963/ijcai.2022/770.

Pashootan Vaezipoor, Andrew C. Li, Rodrigo Toro Icarte, and Sheila A. McIlraith. Ltl2action: Generalizing
LTL instructions for multi-task RL. CoRR, abs/2102.06858, 2021. URL https://arxiv.org/abs/2102.
06858.

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Encoding formulas as deep networks: Reinforcement learning
for zero-shot execution of LTL formulas. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021, pages 5604–5610. IEEE, 2020.
doi: 10.1109/IROS45743.2020.9341325. URL https://doi.org/10.1109/IROS45743.2020.9341325.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence Research,
73:173–208, jan 2022. doi: 10.1613/jair.1.12440. URL https://doi.org/10.1613%2Fjair.1.12440.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward machines for
high-level task specification and decomposition in reinforcement learning. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 2107–2116. PMLR, 10–15 Jul 2018. URL https:
//proceedings.mlr.press/v80/icarte18a.html.

Joshua Achiam and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning. 2019. URL
https://api.semanticscholar.org/CorpusID:208283920.

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972. doi:
10.1137/0201010. URL https://doi.org/10.1137/0201010.

Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-the-fly LTL verification more efficient. In Kurt
Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction and Analysis of Systems,
10th International Conference, TACAS 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988 of
Lecture Notes in Computer Science, pages 205–219. Springer, 2004. doi: 10.1007/978-3-540-24730-2_18.
URL https://doi.org/10.1007/978-3-540-24730-2_18.

Geraud Nangue Tasse, Steven D. James, and Benjamin Rosman. A boolean task algebra for reinforcement learn-
ing. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/6ba3af5d7b2790e73f0de32e5c8c1798-Abstract.html.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy sketches,
2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=rALA0Xo6yNJ.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforcement learning
from logical specifications. CoRR, abs/2106.13906, 2021. URL https://arxiv.org/abs/2106.13906.

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust satisfaction
of signal temporal logic specifications, 2016.

11

https://doi.org/10.24963/ijcai.2022/770
https://arxiv.org/abs/2102.06858
https://arxiv.org/abs/2102.06858
https://doi.org/10.1109/IROS45743.2020.9341325
https://doi.org/10.1613%2Fjair.1.12440
https://proceedings.mlr.press/v80/icarte18a.html
https://proceedings.mlr.press/v80/icarte18a.html
https://api.semanticscholar.org/CorpusID:208283920
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-540-24730-2_18
https://proceedings.neurips.cc/paper/2020/hash/6ba3af5d7b2790e73f0de32e5c8c1798-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6ba3af5d7b2790e73f0de32e5c8c1798-Abstract.html
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=rALA0Xo6yNJ
https://arxiv.org/abs/2106.13906

Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Lee Isbell Jr., Min Wen, and James MacGlashan. Environment-
independent task specifications via GLTL. CoRR, abs/1704.04341, 2017. URL http://arxiv.org/abs/
1704.04341.

Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, and Sanjit A. Seshia. A learning based approach
to control synthesis of markov decision processes for linear temporal logic specifications. In 53rd IEEE
Conference on Decision and Control, pages 1091–1096, 2014. doi: 10.1109/CDC.2014.7039527.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-correct reinforcement learning.
CoRR, abs/1801.08099, 2018. URL http://arxiv.org/abs/1801.08099.

Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan. Modular deep
reinforcement learning for continuous motion planning with temporal logic. IEEE Robotics and Automation
Letters, 6(4):7973–7980, oct 2021. doi: 10.1109/lra.2021.3101544. URL https://doi.org/10.1109%
2Flra.2021.3101544.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak.
Omega-regular objectives in model-free reinforcement learning. CoRR, abs/1810.00950, 2018. URL
http://arxiv.org/abs/1810.00950.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Ltl
and beyond: Formal languages for reward function specification in reinforcement learning. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 6065–6073.
International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/840.
URL https://doi.org/10.24963/ijcai.2019/840.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learning with
temporal logics. In Nathalie Bertrand and Nils Jansen, editors, Formal Modeling and Analysis of Timed
Systems, pages 1–22, Cham, 2020. Springer International Publishing. ISBN 978-3-030-57628-8.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for reinforcement
learning tasks, 2020.

Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan A. DeCastro, Micah J. Fry, and Daniela Rus. The logical
options framework. CoRR, abs/2102.12571, 2021. URL https://arxiv.org/abs/2102.12571.

Borja G. León, Murray Shanahan, and Francesco Belardinelli. In a nutshell, the human asked for this: Latent
goals for following temporal specifications. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=rUwm9wCjURV.

Cameron Voloshin, Abhinav Verma, and Yisong Yue. Eventual discounting temporal logic counterfactual
experience replay, 2023.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1312–1320, Lille, France, 07–09 Jul 2015.
PMLR. URL https://proceedings.mlr.press/v37/schaul15.html.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance: Solving sparse
reward tasks using self-balancing shaped rewards, 2019.

Soroush Nasiriany, Vitchyr H. Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned policies,
2019.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging planning
and reinforcement learning, 2019.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with imagined
subgoals, 2021.

Lunjun Zhang, Ge Yang, and Bradly C. Stadie. World model as a graph: Learning latent landmarks for planning,
2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay, 2018.

Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Juergen Schmidhuber. Hindsight policy gradients, 2019.

12

http://arxiv.org/abs/1704.04341
http://arxiv.org/abs/1704.04341
http://arxiv.org/abs/1801.08099
https://doi.org/10.1109%2Flra.2021.3101544
https://doi.org/10.1109%2Flra.2021.3101544
http://arxiv.org/abs/1810.00950
https://doi.org/10.24963/ijcai.2019/840
https://arxiv.org/abs/2102.12571
https://openreview.net/forum?id=rUwm9wCjURV
https://proceedings.mlr.press/v37/schaul15.html

Menghui Zhu, Minghuan Liu, Jian Shen, Zhicheng Zhang, Sheng Chen, Weinan Zhang, Deheng Ye, Yong Yu,
Qiang Fu, and Wei Yang. Mapgo: Model-assisted policy optimization for goal-oriented tasks, 2021.

Lewis Hammond, Alessandro Abate, Julian Gutierrez, and Michael J. Wooldridge. Multi-agent reinforcement
learning with temporal logic specifications. CoRR, abs/2102.00582, 2021. URL https://arxiv.org/abs/
2102.00582.

Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BkxUvnEYDH.

Zelin Zhao, Karan Samel, Binghong Chen, and Le Song. Proto: Program-guided transformer for program-guided
tasks, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is com-
petitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforcement Learning.
2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=6Tk2noBdvxt.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018. URL http:
//arxiv.org/abs/1801.01290.

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

13

https://arxiv.org/abs/2102.00582
https://arxiv.org/abs/2102.00582
https://openreview.net/forum?id=BkxUvnEYDH
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=6Tk2noBdvxt
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290

Appendix

Table of Contents
A GCRL-LTL Limitations 15

B Pseudo Code for Goal-Conditioned Reinforcement Learning 15
B.1 Pseudo Code for the Goal-Conditioned PPO Algorithm 15
B.2 Pseudo Code for the Goal-Conditioned Supervised Learning Algorithm 15

C Additional Related Work 16
C.1 Goal-conditioned Reinforcement Learning . 16
C.2 Reinforcement Learning Meets Logic and Specifications 17

D Demonstrations of the LTL Tasks in Sec. 4 18
D.1 Avoidance Tasks . 18
D.2 Avoiding More Tasks . 18
D.3 Goal Chaining Tasks. 19

E Demonstration on ω-LTL Tasks 20
E.1 ω-Loop Tasks . 20
E.2 ω-Stability Tasks . 20

F Demonstrations of the LTL Tasks on Ant 16-room Environments 20
F.1 Tasks: LTL Specifications . 21
F.2 Results. 22
F.3 Ablation Study . 23

G Implementation Details 24
G.1 Environment Details . 24
G.2 Primitive Policies Details . 26
G.3 Handling Transitions . 27
G.4 Hyperparameters . 28

14

A GCRL-LTL Limitations

The main limitation of our method is that we assume the atomic propositions in LTL properties can
only be goals within the goal space of the underlying goal-conditioned policy e.g. colored zones in
ZoneEnv navigation. We do not allow other sources of atomic propositions e.g. external environment
signals that are out of the agent’s control. For example, our current algorithm does not apply when
the agent needs to pursue different tasks based on an external signal.

A potential solution to the aforementioned limitation is using a task monitor, which acts as an
external memory, to maintain a record of completed sub-goals and past external environment signals.
During task execution, when receiving a new environmental signal, our task planning algorithm can
dynamically revise the high-level path for the remaining sub-goals that the goal-conditioned agent
needs to achieve. We leave it for future work.

The other limitations of GCRL-LTL include (1) the overapproximation of the true optimal probability
by our task-planning algorithm for ω-regular LTL properties by bounding ω to a finite number in
Sec. 3.2; (2) dynamic handling of avoidance during test time instead of during planning - our task-
planning algorithm does not consider the goal-conditioned agent’s ability to stay safe before reaching
a sub-goal; (3) the lack of an alarm system for unsatisfiable task specifications. We experimented
with unsatisfiable task specifications. For properties such as F(a ∧ b), when the goal regions a and b
are close but not overlapping the agent’s behavior mirrors that of GF a∧ GF b, oscillating between a
and b. However, if these goal regions are far apart, our agent does not exhibit good-looking behavior.

B Pseudo Code for Goal-Conditioned Reinforcement Learning

B.1 Pseudo Code for the Goal-Conditioned PPO Algorithm

Algorithm 1 illustrates the pseudocode for our goal-conditioned proximal policy optimization (PPO)
algorithm. This algorithm builds upon the standard PPO algorithm (Schulman et al. [2017]). Notable
variations in the training process include the following: (1) when gathering experiences from the
environment, it is crucial to synchronize the environment, goal representation, and the reward function;
(2) an extended version of the value function Vϕ(s, g) and policy πθ(s, g) is necessary, which take
both an environment state s and one of the goal representations g as inputs.

Including the goal as an input in goal-conditioned reinforcement learning algorithms enables the
agent to explicitly incorporate the desired objectives into its decision-making process and to learn a
policy that is explicitly aware of the desired goals. As such, the policy provides a mechanism for
the agent to condition its behavior on the desired outcome, allowing it to generate actions that are
tailored to the specific goal at hand. When the goal is included as an input to the value function, it
helps the agent estimate the value of being in a particular state while aiming for a specific goal. This
assists in determining the quality or potential of a state.

As discussed in the paper, we leverage goal-conditioned RL agents to interact with low-level environ-
ments to learn how to achieve basic goals without considering higher-level tasks. To solve an unseen
LTL instruction, we engage in high-level reasoning over the difficulty of achieving the specified goals
in the goal space to optimally achieve the sequences of tasks specified in the LTL objective. To this
end, we learn a function V ∶ S × G × G → R to estimate the capability of taking the goal-conditioned
policy π to go from one goal to another goal on average. We regress V towards the value function of
the a goal-conditioned agent by minimizing:

min
V
(V (st, gk) − V(sj , gt, gk))2 where gk ∈ L(sk) ∧ gt ∈ L(st)

with τ ∼ B (a replay buffer), t ∼ {0 . . . tmax}, st, at, st+1 ∼ τ , j ∼ {0, t}, k ∼ {t + 1 . . . tmax},
and L being given as the goal labeling function. In Algorithm 1, we train V together with the
goal-conditioned PPO algorithm.

B.2 Pseudo Code for the Goal-Conditioned Supervised Learning Algorithm

Algorithm 2 extends goal-conditioned supervised learning (GCSL) (Ghosh et al. [2021]), following its
iterative procedure of sampling trajectories, relabeling them, and training a policy until convergence.
It trains an agent to achieve specific goals in a given environment. The primary enhancement

15

Algorithm 1 Goal-Conditioned Proximal Policy Optimization Algorithm

Require: Initial policy parameters θ0, initial value function parameters ϕ0, initial Q function param-
eters β, initial goal value function parameters ω, goal-labeling function L ∶ S → G from state space
S to goal space G, discount factor γ, clip range ϵ

Ensure: Goal-conditioned policy πθ(s, g)
for k = 0,1,2, . . . ,N do
Dk = {}
for m = 0,1,2, . . . ,M do ▷ Collect goal-conditioned trajectories

Sample gm ∼ G, s0 ∼ S
Dm

k = {τm = (. . . , (si, gm, ai, ri), . . .)}
Dk = Dk ∪Dm

k ▷ Acquire trajectories by running policy πk(s, gm) = π(θk)
end for

Compute rewards-to-go R̂t

Compute advantage function Ât based on the current value function Vϕk

▷ Update the policy πθ

θk+1 = argmax
θ

1

∣Dk ∣T
∑

τ∈Dk

T

∑
t=0

min(πθ(at∣st, τg)
πθk(at∣st, τg)

Aπθk (st, τg, at), f(ϵ,Aπθk (st, τg, at))),

where τg is the goal of rollout τ and f(ϵ,A) = { (1 + ϵ)A, A ≥ 0(1 − ϵ)A, A < 0
▷ Update the Q function Qβ

βk+1 = argmin
β

1

∣Dk ∣T
∑

τ∈Dk

T

∑
t=0

(Qβ(st, τg, at) − (rt + γVϕk
(st+1, τg)))2

▷ Update the goal value function Vω
ωk+1 = argmin

ω

1

∣Dk ∣T
∑

τ∈Dk

T

∑
t=0

t−1

∑
j=0

T

∑
k=t+1

(Vϕk
(st, gk) − Vω(sj , gt, gk))2

where gk = L(sk), gt = L(st), and s0 is the initial state of τ
▷ Update the value function Vϕ

ϕk+1 = argmin
ϕ

1

∣Dk ∣T
∑

τ∈Dk

T

∑
t=0

(Vϕ(st, τg) − R̂t)2

end for

involves organizing past goals into a graph structure G based on their reachability to improve agent
exploration. This graph represents connections between goals, with nodes representing past goals and
edges indicating that one goal can be reached from another. Our algorithm explicitly uses the goal
value function V(s0, g1, g2) (which is learned together with the policy) to measure the capability of
reaching a goal node g2 from a goal node g1 from the viewpoint at an initial state s0.

Assume L is a goal-labeling function from state space S to goal space G. Algorithm 2 works as
follows. (1) Its samples a goal from a goal space G and an initial state from a state space S. (2)
It collects a trajectory τ = (s0, a0, s1, . . . , st) to a goal node g′ on G that is the closest node to g
(distances between goal nodes are measured by V) until either L(st) = g′ or t exceeds the maximum
horizon. During this step, at each current state s, it finds the shortest past ρ from L(s) to g′, where
ρ = L(s), gi+1, gi+2, . . . , g′ and then calling the policy π(⋅∣s, gi+1) to reach the goal gi+1. (3) It
executes the current policy π for T − t steps in the environment to collect a trajectory τ ′ to reach
the sampled goal g. (4) It concatenates τ and τ ′ and relabels the trajectory to add new expert tuples
(st, g = st+h, at, R̂t) for t, h > 0, t+h ≤ T to the training dataset. (5) It performs supervised learning
on the entire dataset to update the goal value function V and the policy π via maximum likelihood.

C Additional Related Work

C.1 Goal-conditioned Reinforcement Learning

Goal-conditioned Reinforcement Learning(GCRL) is a popular topic that has been studied for a long
time in many previous works. To characterize Goal-Augmented MDP, Schaul et al. [2015] provides a
straightforward method that extends the standard value function to a goal-conditioned value function,

16

Algorithm 2 GCSL with organizing past goals into a graph structure G

Require: Initial goal value function V(s0, g1, g2), initial policy π(⋅∣s, g)
Require: Maximal horizon T , discounted factor γ, (unknown) environment transition relation P ,

goal-labeling function L ∶ S → G from state space S to goal space G
Require: Goal graph G(G,E) with nodes in G, edges E, and edge weight We for e ∈ E

for k = 1,2,3... do
Sample g ∼ G, s0 ∼ S
g′ = argming′∈V Vk(s0, g′, g)
Log a trajectory τ = (s0, a0, s1, a1, . . . , st) until L(st) = g′ or t ≥ T with si+1 ∼ P(si, ai),
ai ∼ πk(si, gi+1) where gi+1 is on the shortest path ρ from L(si) to g′ in G w.r.t edge weight
Wg1→g2 = Vk(s0, g1, g2) for any nodes g1, g2 ∈ G, and ρ = L(si), gi+1, gi+2, . . . , g′.

Log trajectory τ ′ = (st, at, . . . , ST) where si+1 ∼ P(si, ai+1), ai+1 ∼ πk(si, g)
τ = τ @ τ ′ ▷ Concatenate τ and τ ′

▷ Update goal graph G
For each state si on τ , add L(si) to vertices V , add (L(si), L(si+1)) to edges E of G,

Dτ = {(st, g = st+h, at, R̂t) ∶ t, h > 0, t + h ≤ T} with R̂t =
h

∑
k=0

γkr(st+k, g, at+k)

Dk+1 =Dτ ∪Dk

Vk+1 = argmin
V

E
(st,g,_,R̂t)∈Dk+1

(V(s0, L(st), g) − R̂t)2 ▷ Update the goal value function

πk+1 = argmax
π

E(st,g,at,_)∈Dk+1
[logπ(at ∣ st, g)] ▷ Update the policy

end for

called universal value function approximation (UVFA). UVFA serves as a basis in many following
research works. How to define an appropriate reward is one of the basic challenges in GCRL. Some
work reshapes the reward with the distance between the achieved goal and the desired goal but
without any knowledge of the environment, i.e. Trott et al. [2019]. However, the local optimal policy
it produces cannot finish many of the tasks in different environments. To solve long-horizon tasks,
many planning methods on the abstract level above the robot control level are proposed. Nasiriany
et al. [2019] introduced a goal-conditioned value function to measure the reachability of the next
sub-goal given the previous sub-goal by analyzing how close the goal-conditioned policy gets to the
goal after a specific number of time steps. Eysenbach et al. [2019] broke apart the task of reaching
a distant goal into a sequence of way-points selected by learning a distributional Q-value function
which indicates how many steps the current state and goal are away from one another. For the data
as images, Chane-Sane et al. [2021] imagines possible sub-goals in a self-supervised fashion and
uses them to facilitate training. By embedding goals into a latent space that captures some notion of
temporal distance between goals, Zhang et al. [2021] learns a set of latent landmarks scattered across
the goal space to enable scalable planning.

More generally, motivated by the fact that human learns from failure experience, Andrychowicz et al.
[2018] provided a famous approach called Hindsight Experience Replay (HER), which can relabel
the desired goals in the replay buffer with any reached goal within the same trajectory. Moreover,
HER mitigates the sparse reward issue. In addition, many works try to extend the idea of HER.
For instance, Rauber et al. [2019] demonstrates how hindsight can be introduced to policy gradient
methods and generalize this idea to a successful class of reinforcement learning algorithms; Drawn
intuition from the observation that any trajectory is a successful trial for reaching its final state, Ghosh
et al. [2021] proposed a self-imitation algorithm named goal-conditioned supervised learning (GCSL).
To enhance the diversity of relabeled goals, Zhu et al. [2021] develop a model-based reinforcement
learning approach with a new relabeling strategy that relabels the goals by looking into the future
with a learned dynamics model.

C.2 Reinforcement Learning Meets Logic and Specifications

In recent years, instructing agents using LTL formulas has been studied in a wide range of research
works (Aksaray et al. [2016], Littman et al. [2017], Sadigh et al. [2014], Hasanbeig et al. [2018],
Cai et al. [2021], Hahn et al. [2018], Camacho et al. [2019]). Among these approaches, retrieving
information from and handling Q values in reinforcement learning is the mainstream implementation.

17

However, these Q-learning based approaches are not suitable for complex environment with continu-
ous action space, until it is extended by Hasanbeig et al. [2020]. The above methods typically analyze
a given LTL specification and then formulate a (usually sparse) reward function correspondingly.
Then it could be used by any RL algorithm to learn a policy. Specifically, Jothimurugan et al. [2020]
designed and implemented a domain-specific language for specifications called SPECRL. Users may
decompose a complex task with sequences, disjunctions and (or) conjunctions of simpler sub-tasks,
and can define the safety properties. Based on the above information, they construct a finite state
machine named task monitor that generates shaped rewards. Icarte et al. [2018] build a model based
on automaton called reward machines (RM). The RMs are used to represent and decompose complex
high-level LTL specifications, so that a curated RL algorithm called QRM may be applied to exploit
the structure of the RMs. In their following work of Icarte et al. [2022], they propose a hierarchical
RL algorithm called HRM that acquires policies using RMs. Besides research works focusing on
classic single-agent RL environments, there are a few recent works on RL with logic specifications in
multi-agent RL environments (Hammond et al. [2021]). Still, experiments show training RL agents
using classic RL algorithms without considering the formulation and semantics of LTL may lead
to sub-optimal myopic policies (Vaezipoor et al. [2021], Icarte et al. [2022]). To this end, policy
sketches may be used in achieving the LTL formula, where a sequence of sub-tasks is relatively
easier to solve than a complex task as a whole. Andreas et al. [2017] show that such sketches are
useful when solving long-horizon tasks. Sun et al. [2020] and Zhao et al. [2021] show that injecting
semantics to a programmatic agent can speed up learning for complex long-horizon tasks.

D Demonstrations of the LTL Tasks in Sec. 4

In this section, we provide a detailed explanation of the general format for each Linear Temporal
Logic (LTL) task presented in the paper. Additionally, we present specific examples of trajectories that
illustrate how our method addresses a diverse range of challenging tasks across various environments.
These trajectories serve as concrete demonstrations of our method’s effectiveness in tackling these
tasks.

D.1 Avoidance Tasks

The avoidance task follows a general format represented as ¬aU(b ∧ (¬cUd)), where a, b, c, d
correspond to propositions or goals relevant to task completion in our context. In Figures 10a and
10b, we showcase two trajectories generated by our trained agent to solve a specific avoidance task:
¬yU(j ∧ (¬wUr)). This task can be intuitively understood as a two-stage process: the agent needs
to reach the "Jetblack" zone while avoiding the "Yellow" zone in the first stage, and subsequently
reach the "Red" zone while avoiding the "White" zone in the second stage. Figures 10a and 10b
serve as clear demonstrations of the agent’s ability to reach the desired zones while never entering
the prohibited zones.

D.2 Avoiding More Tasks

The avoiding more task follows a general format represented as F(a ∧X(¬bUc)) ∧G(¬d), where
a, b, c, d are task propositions or goals in our context. Figures 10c and 10d illustrate trajectories
generated by our trained agent to solve an avoiding more task: F(j ∧X(¬yUr)) ∧G(¬w). Similar
to avoidance tasks, avoiding more tasks requires the agent to traverse a sequence of zones in two
stages while avoiding specific zones. The distinction is that avoiding more tasks require the agent to
avoid one additional zone in the second stage, making it more challenging. Informally, the example
can be interpreted as follows: in the first stage, the agent needs to reach the "Jetblack" zone while
avoiding the "White" zone; in the second stage, the agent must reach the "Red" zone while avoiding
the "White" and "Yellow" zones. The trajectories showcased in Figures 10c and 10d demonstrate the
ability of our trained agent to effectively navigate through the required zones, avoiding the designated
zones as specified by the avoiding more task.

From Figures 10a and 10c, we can observe how the presence of additional zones to avoid affects the
trajectories, given identical initial states and sequences of goals (Jetblack and Red). Specifically, in
the second stage of the avoidance task ¬yU(j∧(¬wUr)), the agent is expected to reach the Red zone
while visiting a Yellow zone is not prohibited. However, in the second stage of the avoid more task
F(j ∧X(¬yUr)) ∧G(¬w), it is not allowed to visit any Yellow zone. In order to avoid the Yellow

18

(a) (b)

(c) (d)

Figure 10: Figures (a) and (b) depict trajectories that solve the avoidance task: ¬yU(j ∧ (¬wUr)).
On the other hand, Figures (c) and (d) showcase trajectories that solve the avoiding more task:
F(j ∧X(¬yUr)) ∧G(¬w). The initial positions of the robot are represented by orange diamonds .
The different colors of the zones, namely Red, Yellow, White, and Jetblack, correspond to the task
propositions r, y, w, j, respectively. It is important to note that the initial positions of the robot and the
zones are randomized. The initial states of Figures (a) and (c) are the same, while the initial states of
Figures (b) and (d) are identical.

zones in the second stage of the avoid more task, the agent takes additional steps (as shown in Figure
10c) to bypass a Yellow zone and eventually reach a Red zone. Figures 10b and 10d demonstrate
that identical trajectories can solve different LTL tasks. This occurs when the extra zones to avoid
are located far away from the robot throughout the entire execution, rendering no impact on the
trajectories.

D.3 Goal Chaining Tasks.

The goal chaining task follows a general format expressed as F(a∧F(b∧F(c∧Fd)), where a, b, c, d
represent propositions or goals that are relevant to task completion in our context. Figures 11a and
11b display the trajectories for solving goal chaining tasks, specifically F(j ∧ F(w ∧ F(r ∧ Fy)). In
this particular LTL task, the agent is required to navigate through zones with the colors Jetblack,
White, Red, and Yellow in that specific order. The trajectories depicted in Figure 11 effectively
demonstrate how our methods enable the robot to smoothly and efficiently reach the desired zones
in the prescribed order. These trajectories showcase that our trained agent can efficiently adjust the
robot’s state after completing a sub-task and promptly proceed toward the next goal zone.

19

(a) (b)

Figure 11: Figures (a) and (b) depict trajectories that solve the goal chaining task: F(j ∧F(w ∧F(r ∧
Fy)). The initial positions of the robot are represented by orange diamonds . The different colors
of the zones, namely Red, Yellow, White, and Jetblack, correspond to the task propositions r, y, w, j,
respectively. It is important to note that the initial positions of the robot and the zones are randomized.

E Demonstration on ω-LTL Tasks

E.1 ω-Loop Tasks

An ω-loop task, expressed in the form GF(a ∧ XFb) ∧ G(¬c), intuitively requires the agent to
continuously loop between two specific zones, a and b, while always avoiding another zone, c. For
example, in the task GF(r ∧ XFy) ∧ G(¬w), the agent is expected to traverse between the Red
and Yellow zones indefinitely, while never visiting any White zone. Figures 12a and 12b illustrate
trajectories that solve this ω-LTL task. In both trajectories, the robot quickly reaches the Red zone
and subsequently oscillates between the Red and Yellow zones. It is important to note that the LTL
formula only requires the avoidance of White zones. Therefore, the trajectory shown in Figure 12b,
which visits a Jetblack zone, is still valid. Theoretically, to satisfy an ω-LTL task, our trained agent
should run indefinitely if not falsified. However, in Figure 12, we only plot trajectories for the first
1500 steps to demonstrate that our trained agent is capable of solving ω-loop tasks.

E.2 ω-Stability Tasks

An ω-stability task requires the agent to satisfy a task proposition by reaching a goal region and re-
maining in the goal region infinitely. Figures 13a and 13b depict two trajectories that (approximately)
satisfy the stability task: FGy. In both figures, the agent can eventually reach a desired Yellow zone
and then stabilize at that zone. Since the stability task runs infinitely, we report the first 1500 steps to
demonstrate that our agent is capable of stabilizing at zones of the specified color.

F Demonstrations of the LTL Tasks on Ant 16-room Environments

We conduct experiments to assess the effectiveness of our approach to navigating an Ant through a
challenging environment consisting of 16 rooms separated by thick walls. In this environment, each
room has the same size 8 × 8 divided by walls and corridors with thickness 1 (Fig. 16). There are two
obstacles denoted by black squares in the environment. We place a Mujoco (Todorov et al. [2012])
Ant robot in this environment for navigation. To solve the task, the ant should depart from the center
of the bottom-left room to reach the desired goal positions. The initial state of the ant is created with
random noise, which can keep the position of the ant around the center of the bottom-left room.

Here an atomic proposition g ∈ G is in the form of (r, c) denoting the room in the r-th row and c-th
column. The bottom-left corner is room (0,0). Given an environment state s, define s ⊧ (r, c) is true
if the position of the Mujoco ant in s is close to the center of the (r, c)-th room within a threshold.

20

(a) (b)

Figure 12: Figures (a) and (b) illustrate trajectories that solve the ω-loop task: GF(r∧XFy)∧G(¬w).
The initial positions of the robot are represented by orange diamonds . The different colors of
the zones, namely Red, Yellow, White, and Jetblack, correspond to the task propositions r, y, w, j,
respectively. It is important to note that the initial positions of the robot and the zones are randomized.

(a) (b)

Figure 13: Figures (a) and (b) illustrate trajectories that solve the ω-stability task: FGy. The initial
positions of the robot are represented by orange diamonds . The different colors of the zones,
namely Red, Yellow, White, and Jetblack, correspond to the task propositions r, y, w, j, respectively. It
is important to note that the initial positions of the robot and the zones are randomized.

F.1 Tasks: LTL Specifications

We evaluate our approach using five LTL specifications taken from DiRL Jothimurugan et al. [2021]
denoted as ϕ1 to ϕ5. These tasks have increasing levels of difficulty as they require the agent to
sequentially reach a growing number of sub-goals. In order to reach each sub-goal, the ant is allowed a
maximum of 1000 steps to move within the environment. In Figure 16, the sub-goals are represented
by colors, starting from blue and progressing to orange, yellow, green, and purple for ϕ1 to ϕ5
respectively. The agent has the option to choose between two possible paths when transitioning from
one sub-goal to the next. For instance, in the most complex specification, the agent must depart from
the blue point and sequentially reach the sub-goals at orange, yellow, green, and finally purple. The
five specifications are described below:

• ϕ1 ∶= F((0,2) ∨ (2,0)).

21

It corresponds to reaching the center of either room (0,2) or room (2,0) in the Ant16rooms
environment.

• ϕ2 ∶= F(((0,2) ∨ (2,0)) ∧ F(2,2)).
After completing the task specified by ϕ1, the ant should then proceed to reach the center of
room (2,2) in the Ant16rooms environment.

• ϕ3 ∶= F(((0,2) ∨ (2,0)) ∧ F((2,2) ∧ F(((2,1) ∨ (3,2)) ∧ F(3,1)))).
After completing the task specified by ϕ2, the ant should then proceed to reach the center of
room (3,1) in the Ant16rooms environment. The ant has the option to go through the center
of either room (2,1) or room (3,2) on its way to the target location.

• ϕ4 ∶= F(((0,2)∨ (2,0))∧F((2,2)∧F(((2,1)∨ (3,2))∧F((3,1)∧F(((1,1)∨ (3,3))∧
F(1,3)))))).
After successfully completing the task defined by ϕ3, the ant’s next objective is to reach
the center of room (1,3) in the Ant16rooms environment. The ant has the choice to pass
through the center of either room (1,1) or room (3,3) while making its way to the designated
location.

• ϕ5 ∶= F(((0,2)∨ (2,0))∧F((2,2)∧F(((2,1)∨ (3,2))∧F((3,1)∧F(((1,1)∨ (3,3))∧
F((1,3) ∧ F(((1,1) ∨ (0,3)) ∧ F(0,1)))))))).
Upon completing the task specified by ϕ4, the ant’s subsequent goal is to reach the center of
room (0,1) in the Ant16rooms environment. The ant has the option to traverse through the
center of either room (1,1) or room (0,3) as it moves towards the target location.

Additionally, to demonstrate the generalization capability of our approach, we incorporate two
additional specifications, namely ϕ6 and ϕ7, which were not included in the original study by DiRL
(Jothimurugan et al. [2021]). Furthermore, we introduce an ω-regular LTL specification, denoted as
ϕ8, which is not supported by DiRL.

• ϕ6 ∶= F(((2,0)∨ (0,1))∧F((2,1)∧F(((2,2)∨ (1,1))∧F((1,2)∧F(((3,2)∨ (1,3))∧
F(3,3)))))).
It corresponds to the following sequence of sub tasks: First, reaching the center of room
(2,1) by passing through either room (2,0) or room (0,1). Next, reaching the center of room
(1,2) by passing through either room (2,1) or room (1,1). Finally, reaching the center of
room (3,3) by passing through either room (3,2) or room (1,3).

• ϕ7 ∶= F(((2,0)∨ (0,2))∧F((2,2)∧F(((2,1)∨ (1,2))∧F((1,1)∧F(((0,1)∨ (1,3))∧
F(0,3)))))).
It corresponds to the following sequence of sub tasks: First, reaching the center of room
(2,2) by passing through either room (2,0) or room (0,2). Next, reaching the center of room
(1,1) by passing through either room (2,1) or room (1,2). Finally, reaching the center of
room (3,3) by passing through either room (3,1) or room (1,3).

• ϕ8 ∶= F(((2,0) ∨ (0,2)) ∧GF((2,2) ∧X(F((2,1) ∧XF(1,1))))).
It corresponds to the following sequence of sub tasks: First, reaching the center of room
(2,2) by passing through either room (2,0) or room (0,2). Then, taking an infinite loop from
room (2,2) → room (2,1) → room (1,1) → room (1,2) → room (2,2)...

F.2 Results.

We also compare our approach with DiRL (Jothimurugan et al. [2021]), which is a state-of-the-art
LTL-satisfying RL algorithm. Similar to ours, DiRL leverages the compositional structure of a task
specification to enable learning. However, there are some differences between our approach and
DiRL. In DiRL, a unique low-level policy is learned for each sub-goal transition, and a high-level
policy plans over the sub-goal transition space by evaluating the quality of the various low-level
policies. One limitation of DiRL is that it is restricted to a small fragment of LTL. Particularly, it
cannot handle ω-regular LTL properties that involve infinite state sequences, as it is not possible
to learn a unique low-level policy for each transition in an infinite sequence. Additionally, DiRL
is not applicable to multi-task RL scenarios because the low-level policies are specific to a single
environment setting and do not generalize across different environments.

22

Methods DiRL DiRL+ GCSL Ours Ablation
ϕ1 0.910 (0.022) 0.923 (0.082) 0.967 (0.006) 0.722 (0.073)
ϕ2 0.770 (0.083) 0.953 (0.037) 0.925 (0.049) 0.713 (0.046)
ϕ3 0.367 (0.147) 0.967 (0.017) 0.935 (0.028) 0.667 (0.039)
ϕ4 0.183 (0.046) 0.937 (0.031) 0.875 (0.041) 0.593 (0.086)
ϕ5 0.043 (0.061) 0.913 (0.017) 0.868 (0.038) 0.533 (0.083)
ϕ6 / / 0.857 (0.004) 0.565 (0.045)
ϕ7 / / 0.882 (0.018) 0.617 (0.043)
ϕ8 / / 0.903 (0.045) 0.655 (0.039)

Table 2: The success rate of the LTL specifications ϕ1 to ϕ8 on Ant16rooms. The success rates
shown are the average values obtained from three individual training experiments (for each training
experiment, we evaluate the final trained agent against a specification 200 times) Since DiRL and
DiRL+GCSL cannot be applied to multi-task RL, we train a separate agent for each of the LTL
specifications ϕ1 to ϕ5 using 3e6 environment steps. In contrast, our algorithm trains a single goal-
conditioned agent using Algorithm 2 via 3e6 environment steps and evaluates this agent over all eight
LTL specifications.

In our experiment, we consider both DiRL and DiRL+GCSL as our baselines. DiRL uses the
Augmented Random Search (ARS) algorithm (Mania et al. [2018]) to learn the low-level policy for
each sub-goal transition. DiRL+GCSL, on the other hand, replaces the ARS learning algorithm
with our extended GCSL algorithm (shown in Algorithm 2) with a fixed sub-goal for learning each
low-level sub-goal transition policy. This allows for a fair comparison as our method is based on this
learning algorithm. Since DiRL and DiRL+GCSL cannot be applied to multi-task RL, we train a
separate agent for each of the LTL specifications ϕ1 to ϕ5 using 3e6 environment steps. In contrast,
our algorithm trains a single goal-conditioned agent using Algorithm 2 via 3e6 environment steps
and evaluates this agent over all five LTL specifications.

Table 2 presents the success rates of the baseline approaches DiRL, DiRL+GCSL, and Our approach
on all the LTL specifications. The success rates shown are the average values obtained from three
individual training experiments (for each training experiment, we evaluate the final trained agent
against a specification 200 times). As the complexity of the specifications increases, the performance
of DiRL gradually deteriorates, while the other baseline approach, DiRL+GCSL, maintains a stable
success rate across all LTL specifications (from ϕ1 to ϕ5). Our goal-conditioned agent achieves
comparable performance to DiRL+GCSL, despite using significantly fewer samples to solve these
LTL tasks (see the explanation above). In addition, our approach demonstrates immediate high
success rates on the two additional LTL specifications, ϕ6 and ϕ7, without the need for additional
training. In contrast, the DiRL baselines require retraining from scratch for these additional tasks.
This showcases the capability of our technique to use a simple goal-conditioned RL agent to follow
arbitrary LTL specifications without additional training over the LTL task space. Unlike the DiRL
baselines, which are designed for LTL specifications expressible as regular expressions, our technique
is not limited to regular expressions and can handle more complex ω-regular expressions. This is
demonstrated by the success rate of our agents on the ω (loop) specification ϕ8, where the agent is
evaluated based on its ability to complete the loop twice. To further illustrate the performance of our
approach, we provide examples of evaluation rollouts for specifications ranging from ϕ1 to ϕ8 in
Figure 14.

F.3 Ablation Study

Random path selection. Recall that our algorithm uses the goal value function V(s0, g1, g2) to
measure the capability of reaching goal g2 from goal g1 from the viewpoint of the agent at an initial
state s0. This information is crucial for performing path planning over the graph representation
of a Büchi automaton, enabling the optimal execution of the sequence of tasks defined in an LTL
instruction. In this ablation study, we investigate the importance of path planning in our algorithm.
We create an ablated version of our approach where acceptable paths are randomly generated from the
Büchi automaton of an LTL specification, and the goal-conditioned agent executes towards the goals
along these randomly selected paths. The success rates for the ablated version of our algorithm across
all specifications are presented in the last column of Table 2, and the example trajectories of the agent
for ϕ1 to ϕ8 in this ablated setting are depicted in Figure 15. Our experiment reveals that without the
path planning guided by the goal value function V , the performance in satisfying specifications ϕ1 to

23

(a) Example of ϕ1 (b) Example of ϕ2 (c) Example of ϕ3

(d) Example of ϕ4 (e) Example of ϕ5 (f) Example of ϕ6

(g) Example of ϕ7 (h) Example of ϕ8

Figure 14: Figures (a) to (e) depict examples of agent trajectories for each specification from ϕ1
to ϕ8. In these figures, the ☀ symbol represents the final goal position required by the respective
specifications. Notably, for ϕ8, which is an ω-regular LTL specification involving infinite state
sequences, there is no final goal for this specification.

ϕ8 significantly deteriorates. This decline can be attributed to the randomly selected paths sometimes
crossing obstacles in certain rooms, making it challenging for the Mujoco ant to navigate through
them. By comparing Figure 14 (which showcases our full algorithm with path planning) with Figure
15, we observe that our algorithm’s ability to select obstacle-free paths (thanks to the goal value
function V) significantly improves the agent’s capacity to satisfy the given specifications.

G Implementation Details

G.1 Environment Details

ZoneEnv. The ZoneEnv environment is derived from OpenAI’s Safety Gym (Ray et al. [2019]),
and it features a continuous action and observation space. The square-shaped walled environment

24

(a) Example of ϕ1 with random
sequence of sub-goals

(b) Example of ϕ2 with random
sequence of sub-goals

(c) Example of ϕ3 with random
sequence of sub-goals

＋

＋

(d) Example of ϕ4 with random
sequence of sub-goals

++

(e) Example of ϕ5 with random
sequence of sub-goals

(f) Example of ϕ6 with random
sequence of sub-goals

＋ ＋ ＋
■

＋ ＋ ＋

＋ ＋ ＋
* ■

＋ ＋ ＋
(g) Example of ϕ7 with random
sequence of sub-goals

(h) Example of ϕ8 with random
sequence of sub-goals

Figure 15: The examples of failed trajectories of each specification for the abated version of our
algorithm. In these figures, the ☀ symbol represents the final goal position required by the respective
specifications. Randomly selected paths sometimes cross obstacles in certain rooms, making it
challenging for the Mujoco ant to navigate through them.

has 8 zones (2 of each color). The colors correspond to the task propositions. We use a simple
robot from Safety Gym called Point, with one actuator for turning and another for moving forward
or backward. An agent can observe the LiDAR information of its surrounding zones. Given this
indirect geographical information, it has to visit and/or avoid certain zones to satisfy sampled LTL
task specifications. To acquire agents to generalize to any task, the initial positions of zones and the
robot are random in every episode. Within this environment, the robot has the ability to perceive its
own state, including factors such as velocity, acceleration, and LiDAR information. The observation
comprises four distinct groups of LiDAR information, each corresponding to a specific color.

To capture LiDAR information for each color, the environment employs a set of 16 hypothetical light
bins emitted from the robot. These bins are evenly distributed, with intervals of 30 degrees between
them. Each bin is capable of detecting the presence of a desired color zone in its direction and returns
a normalized distance value indicating the proximity of the zone. The returned distance values range

25

from 0 to 1, with lower values indicating closer zones, 0 denoting overlap between the agent and
a specific color zone, satisfying the corresponding proposition, and 1 indicating the absence of a
desired zone in that direction. In cases where a bin can intersect with two zones simultaneously, the
returned value is determined by the zone that is closer to the robot. The state representation in the
ZoneEnv environment employs a 76-dimensional vector, consisting of 12 dimensions for the robot
and 64 dimensions for the LiDAR information (16 dimensions per color).

In this environment, the goal-labeling function L acts as an event detector, providing a truth assign-
ment for all propositions related to the four colors G = j,w, r, y. The goal-labeling function triggers
when the propositions in G hold true in the environment. For example, r ∈ L(s) if and only if the
agent is located on top of a red zone at a specific environment state s.

Figure 16: Ant 16 rooms

Ant-16rooms. This environment with continuous observation
and action space is adapted from the 16 rooms environment from
Jothimurugan et al. [2021]. In this walled environment with 16
rooms, each room has the same size 8 × 8 divided by walls and
corridors with thickness 1 (Fig. 16). There are two obstacles
denoted by black squares in the environment. We place a Mujoco
(Todorov et al. [2012]) Ant robot in this environment for navi-
gation. To solve the task, the ant should depart from the center
of the bottom-left room to reach the desired goal positions. The
initial state of the ant is created with random noise, which can
keep the position of the ant around the center of the bottom-left
room.

LetterEnv. The LetterEnv is a grid-based environment with a size of 7 × 7, featuring discrete
action and observation spaces. Within this environment, the agent has a complete view of the grid,
including its own position. Specifically, for each type of letter, there is a 7 × 7 matrix that contains
multiple integers. A value of 0 in a grid cell indicates that the letter is not present at that position, while
a value of 1 denotes the presence of a letter instance. In addition to these 12 matrices representing
the letters, there is an additional matrix indicating the position of the agent. By considering both
the letter positions and the agent’s position, the goal-labeling function L can determine which task
propositions are satisfied or unsatisfied at each step.

G.2 Primitive Policies Details

Dynamic Primitives of ZoneEnv. In order to obtain a discrete action space for the Point robot
in Safety Gym (Ray et al. [2019]), we trained a set of four dynamic primitives in the ZoneEnv
environment using reinforcement learning. Each dynamic primitive was trained for 0.5 million steps.
These four dynamic primitives are responsible for guiding the robot to move in the cardinal directions
of UP, DOWN, LEFT, and RIGHT respectively. The reward function used to train these primitives is
defined as follows:

rzone = cv ⋅ vdirection − cper ⋅ ∣vper ∣ (7)

where vdirection is the velocity of a given direction, and vper denotes the velocity of the direction that
is perpendicular to the given direction. In order to train the UP and DOWN primitives, vdirection = ±vx
tracks velocities on ±x-axis; similarly, to train the LEFT and RIGHT policies, we set vdirection = ±vy
to keep track of velocities along ±y-axis. Coefficients cv , cper are set to be 1 and 0.05, respectively. All
dynamic primitives for the ZoneEnv environment were trained using the PPO algorithm (Schulman
et al. [2017]) implemented in the Stable-Baselines3 RL framework (Raffin et al. [2021]).

Dynamic Primitives of Ant. For the MuJoCo ant, we follow Qiu and Zhu [2022] and train a set of
four basic primitive policies, i.e., UP, DOWN, LEFT and RIGHT for 1 million steps for each. The
reward function to acquire the above four primitives is defined as:

rant = cv ⋅ vdirection + ch ⋅ I(IsHealthy) − ca ⋅ ∥a∥2 − cf ⋅ ∥fcontact∥2 (8)

26

where vdirection is the velocity of a given direction, I(IsHealthy) is a Boolean function that de-
termines the health condition of the agent, action a is an 8-dimension vector, and fcontact is a
vector that encodes the contact force of the agent. In order to train the UP and DOWN primitives,
vdirection = ±vx tracks velocities on ±x-axis; similarly, to train LEFT and RIGHT policies, we set
vdirection = ±vy to keep track of velocities along ±y-axis. Coefficients cv, ch, ca and cf are set to
be 1, 1, 0.5, 5 × 10−4, respectively. All dynamic primitives for the MuJoCo ant are trained using the
Soft Actor-Critic algorithm (Haarnoja et al. [2018]) implemented in the OpenAI Spinning Up RL
framework (Achiam [2018]).

Training a Goal-Conditioned agent for ZoneEnv. We employ the goal-conditioned Proximal
Policy Optimization (PPO) algorithm, as shown in Algorithm 1, to train a goal-conditioned agent
that can satisfy all task propositions (goals) in the ZoneEnv environment, which involves reaching
zones of different colors. For each color (Yellow, Red, White, and Jetblack), we use a random
vector of 24 dimensions as the goal representation. During training, we sample the goal colors and
correspondingly adapt the reward function and the goal representation of the ZoneEnv environment.
It is crucial to ensure the synchronization of these elements within each episode. For instance, when
instructing the agent to reach a Red zone, we use the reward function to detect the r proposition and
exclusively utilize the appropriate goal representation for Red. To achieve a balanced agent that can
successfully reach zones of all colors with equal rates, we sample the goal colors uniformly. The
reward function for acquiring the goal-conditioned agent is defined as follows:

rcolor = {
1, satisfied
0, unsatisfied (9)

where color denotes a goal (i.e., one of r, y, w, j) that the agent must reach in an episode. We employ
a sparse reward function that only provides a reward of 1 when the desired color is satisfied, while
all other situations receive a reward of zero. We do not penalize the agent for stepping into zones of
different colors. Our focus is solely on whether the agent can effectively and efficiently reach the
desired color.

Training a Goal-Conditioned agent for LetterEnv. We utilize the goal-conditioned Proximal
Policy Optimization (PPO) algorithm, as shown in Algorithm 1, to train a goal-conditioned agent
capable of satisfying all task propositions (i.e., reaching all letters) in the LetterEnv environment.
To represent each letter as a goal, we employ a random matrix with a size of 7 × 7. The training
process for the goal-conditioned agent follows the same methodology as in the ZoneEnv environment
to ensure synchronization among goals, reward functions, and goal representations in each episode.
The reward function for acquiring the goal-reaching primitive is defined as follows:

rletter = {
1, satisfied
0, unsatisfied (10)

where letter denotes one of the goal letter that the agent must reach. We employ a sparse reward
function that provides a reward of 1 if the desired goal is achieved and 0 otherwise.

Training a Goal-Conditioned agent for Ant 16 rooms. We apply the goal-conditioned supervised
learning algorithm described in Algorithm 2 to train a goal-conditioned agent that can navigate in the
Ant16rooms environment. The reward function is defined as follows:

rg = {
1, goal reached
0, goal not reached (11)

where g is a randomly sampled goal in the goal space.

G.3 Handling Transitions

In our graph representation GB of a Büchi automaton B, a "self-transition" on a node q describes the
goal-related constraint ψ′ that must be maintained until the agent can transition to a neighbor node of
q with the underlying goal-conditioned policy π. If q is on the planned optimal path, the agent for B
needs to use π to simultaneously ensure ψ′ while transitioning to the target region. In the paper, we

27

primarily focus on reach avoidance, where ψ′ = ⋀k ¬gk encodes regions in the goal space to avoid.
At a current environment state s, when the value function V π(s, gk) is greater than a threshold, we
take a safe action argminaQ

π(s, gk, a) that moves the agent away from the most dangerous zone gk.
Similarly, our strategy applies to cases where ψ′ = ⋀k gk encodes goal regions that the agent must
stay within before transitioning out from q. In such cases, if the value function V π(s, gk) is less than
a threshold, we could take an action argmaxaQ

π(s, gk, a) that encourages the agent to remain in
gk. As our navigation benchmarks do not support the evaluation of this feature, we plan to explore it
in our future work.

(a) F(j ∧ r) (b) F(j ∧ ¬r)

Figure 17: Fig (a) and (b) show our capability to
handle overlapping goal regions. In (b), the agent
takes a detour to avoid touching the red zone.

In the paper, we restrict the target region for
a transition as ψ = ⋀j gj . Our tool supports
more diverse target regions in the form of ψ =
⋀j gj ∧⋀l ¬gl to handle tasks such as Fg1∧¬g2.
The strategy is to reuse our avoidance strategy
to avoid g2 when the agent is deemed close to
the goal region g1 i.e. the value function out-
put V π(s, g1) is above the threshold σ. Fig. 17
presents an example to solve tasks in the form
of Fg1 ∧ ¬g2.

In the handling avoidance in ZoneEnv and
LetterEnv, finding appropriate value thresh-
olds to define dangerous is quite necessary. As
we discussed in Sec. G.2, we use sparse reward
functions that only yield 0 or 1 in the training
process, so the expected threshold to be deemed
as dangerous should be located somewhere close to (but less than) 1. We perform experiments to study
success rates given different value thresholds for both environments. The results are summarized in
Table 3. From the table, we can see that a relatively smaller σ works better with ZoneEnv, while a
larger value threshold tends to be a suitable choice for LetterEnv. According to the results, we set
the σ = 0.85 for ZoneEnv, and σ = 0.92 for LetterEnv.

Environment Value threshold σ
σ=0.80 σ=0.85 σ=0.87 σ=0.90 σ=0.92 σ=0.95

ZoneEnv 0.912 0.958 0.941 0.932 0.902 0.878
LetterEnv 0.635 0.788 0.812 0.804 0.845 0.820

Table 3: Performance of trained agents on avoidance tasks with different value thresholds σ. We
report the success rates averaged over 1000 episodes.

G.4 Hyperparameters

The following hyperparameters are used to train the dynamic primitive policies for ZoneEnv with
PPO (Schulman et al. [2017]).

• Discount factor γ = 0.998.

• SGD optimizer; actor learning rate 0.001; critic learning rate 0.001.

• Mini-batch size n = 256.

The following hyperparameters are used to train the dynamic primitive policies for LetterEnv with
PPO.

• Discount factor γ = 0.94.

• SGD optimizer; actor learning rate 0.001; critic learning rate 0.001.

• Mini-batch size n = 256.

The following hyperparameters are used to train the goal-conditioned agent for ZoneEnv with the
goal-conditioned PPO algorithm shown in Algorithm 1.

28

• Discount factor γ = 0.998.
• SGD optimizer; actor learning rate 0.0003; critic learning rate 0.0003.
• Mini-batch size n = 1000.

The following hyperparameters are used to train the goal-conditioned agent for LetterEnv with the
goal-conditioned PPO algorithm shown in Algorithm 1.

• Discount factor γ = 0.94.
• Adam optimizer; actor learning rate 0.001; critic learning rate 0.001.
• Mini-batch size n = 256.

The following hyperparameters are used to train the dynamic primitive policies for Ant 16 rooms
with the SAC (Haarnoja et al. [2018]) algorithm.

• Discount factor γ = 0.99.
• SGD optimizer; actor learning rate 0.001; critic learning rate 0.001.
• Mini-batch size n = 100.
• Replay buffer size 100000.
• Soft update targets τ = 0.005.
• Target update interval and gradient step are set to be 1.

The following hyperparameters are used to train the goal value function V and policy π with our
extended goal-conditioned iterative supervised learning algorithm shown in Algorithm 2.

• For goal value function V :
– Discount factor γ = 0.99.
– Adam optimizer; learning rate 0.001.
– Mini-batch size n = 100.

• For policy π :
– Adam optimizer; learning rate 0.0005.
– Replay buffer size 20000000.
– Mini-batch size n = 512.

For all training with PPO algorithm, we use GAE λ = 0.97, clip range ϵ = 0.2, and we set the number
of iterations when optimizing the surrogate loss to be 10.

Table 4 summarizes the neural network architectures used by our reinforcement learning algorithms.
All neural networks are multi-layer feed-forward neural networks.

Policies Environment Hidden Units
PPO dynamic ZoenEnv (64, 64)
PPO dynamic LetterEnv (64, 64)

PPO goal-reaching ZoneEnv (512, 1024, 256)
PPO goal-reaching LetterEnv (256, 512, 128)

SAC dynamic Ant (256, 256)
Goal-conitioned value Ant16rooms (256, 256,256)

GCSL Ant16rooms (256, 256,256)
Table 4: Neural Network Structures.

29

	Introduction
	Background
	Instructing Goal-Conditioned Agents with LTL Objectives
	LTL Task Planning on Büchi Automata
	Algorithm Summary
	Handling Avoidance

	Experiments
	Evaluation in Multi-Task Settings
	Comparison with Compositional RL

	Related Work
	Conclusion
	
	GCRL-LTL Limitations
	Pseudo Code for Goal-Conditioned Reinforcement Learning
	Pseudo Code for the Goal-Conditioned PPO Algorithm
	Pseudo Code for the Goal-Conditioned Supervised Learning Algorithm

	Additional Related Work
	Goal-conditioned Reinforcement Learning
	Reinforcement Learning Meets Logic and Specifications

	Demonstrations of the LTL Tasks in Sec. 4
	Avoidance Tasks
	Avoiding More Tasks
	Goal Chaining Tasks.

	Demonstration on -LTL Tasks
	-Loop Tasks
	-Stability Tasks

	Demonstrations of the LTL Tasks on Ant 16-room Environments
	Tasks: LTL Specifications
	Results.
	Ablation Study

	Implementation Details
	Environment Details
	Primitive Policies Details
	Handling Transitions
	Hyperparameters

