
Supplementary Material: IQVAEs
A Tips for practical computation

Quotient reconstruction loss. For finite (discrete) groups, the infimum of the quotient reconstruc-
tion loss (4) is equal to the minimum of that:

LQAE(θ, ϕ;x, G) = min
g∈G

∥g ∗ x− µϕ ◦ µθ(x)∥22,

which can be easily computed. For infinite (continuous) groups such as Lie groups, one can discretize
such groups and directly apply the above or find the minimum via the gradient descent optimization
proposed in [3]. In addition, any type of reconstruction loss, e.g., L1 norm or binary cross-entropy
can be used instead of the standard L2 norm. We use the L2 norm and binary cross-entropy for
colored and gray-scale image datasets, respectively.

Jacobians. Exact computation of Jacobian in (8) might be a cost bottleneck when optimizing the
IQVAEs. One can simply use its first-order approximation given by:

Jt
µϕ

(z) ≈ 1

η

[
µϕ(z+ ηet)− µϕ(z)

]
,

where Jt
µϕ

is the t-th column vector of the Jacobian and η is a small constant.

Figure S1: R2 scores between the true and first-order
approximated pullback metrics. We used the 2π-
rotated MNIST dataset for this experiment. To com-
pute R2, the pullback metric matrices (N,n, n) are
reshaped as a vector form (N,n2) where N is the
number of samples and n is the latent dimensionality.

Table S1: Impact of the first-order approximated Ja-
cobian on the final performance of IQVAEs for 2π-
rotated MNIST. The column titled “Time [s]” means
the training wall-clock time per epoch. We used eight
V100 32GB GPUs for this experiment.

METHOD k-MEANS GMM SVM RF TIME [S]

TRUE 71.7 70.8 92.8 92.4 316
APPROX. 70.9 72.9 92.9 92.7 3.05

An important question is how the trade-off be-
tween the estimation quality of the Jacobian
and the computational cost in the objective
affects the performance of IQVAEs. To check
this point, we conducted an experiment to
evaluate the estimation quality of the Jacobian
using the approximation. The result is shown
in Figure S1, where we present the R2 scores
between the true pullback metric tensors and
their approximations as a function of the num-
ber of epochs. It demonstrates the approxi-
mation can effectively mimic the true values
with R2 greater than 0.96. Furthermore, Ta-
ble S1 compares the performances of IQVAEs
trained with true and approximated Jacobians
for the rotated MNIST dataset. It consistently
shows that the first-order approximation is a
good alternative to the true Jacobian.

B Details on G-Orbit Pooling

G-orbit pooling [2, 3] is a simple yet efficient
approach that can achieve G-invariance from
arbitrary functions. Formally, let f : x 7→ z
be an arbitrary function, e.g., neural networks.
We denote zi = f i(x) as i-th dimensional
element of z. We denote G = {g1, ..., gk, ..., gK} is a discrete group acting on x whose |G| = K.
Then, the G-orbit average pooling is given by:

f i
G(x) =

1

K

K∑
k=1

f i(gk ∗ x).

Similarly, the G-orbit max pooling is given by:
f i
G(x) = max

fi
{f i(gk ∗ x)|gk ∈ G}.

One can easily see such a fG is a G-invariant function, i.e., fG(x) = fG(gk ∗ x) for all k = 1, ...,K.
We empirically found that G-orbit average pooling and G-orbit max pooling exhibit comparable
performances for our task. We used the G-orbit average pooling for this work.

1

Figure S2: Example images of rotated MNIST datasets.

C Example Images of Used Datasets

We visualize some example images of the rotated MNIST, MixedWM38, and SIPakMeD in Figure
S2, Figure S3, and Figure S4, respectively. For MixedWM38 and SIPakMeD, each sub-image is
titled as its corresponding label.

D Implementation Details

We denote fully-connected layers as Dense(input neurons, output neurons). We denote two-
dimensional convolutional and transposed convolutional layers as Conv2d(input channel, output
channel, kernel size, stride, padding), and ConvT2d (input channel, output channel, kernel size, stride,
padding), respectively.

D.1 Rotated MNIST

Encoders are convolutional neural networks with the following architecture: i) Conv2d(1, 32, 4, 2,
same), ii) Conv2d(32, 64, 4, 2, same), iii) Conv2d(64, 64, 4, 2, same), iv) Flatten, v) Dense(1024,
256) with tanh hidden layer activation functions. For AEs and QAEs, the output is Dense(256, 5)
layer with linear activation functions. For VAEs, β-VAEs, CRVAEs, FMVAEs, QVAEs, and IOVAEs,
the output is two Dense(256, 5) layers with linear activation functions. For QAEs, QVAEs, and
IQVAEs, discrete G-orbit pooling is applied to encoders with a rotational group discretized by a step
size of π/18 following [3].

Decoders are transposed convolutional neural networks with the following architecture: i) Dense(5,
256), ii) Dense(256, 1024), iii) Reshape((4, 4, 64)), iv) ConvT2d(64, 64, 4, 2, same), v) ConvT2d(64,
32, 4, 2, same) with tanh hidden layer activation functions. The output is ConvT2d(32, 1, 4, 2, same)
with sigmoid activation functions.

All models were trained with a learning rate of 2.5× 10−4 and mini-batch size of 1,024 during 2,000
epochs by using the Adam optimizer [1].

D.2 MixedWM38

Encoders are convolutional neural networks with the following architecture: i) Conv2d(1, 32, 3, 2,
same), ii) Conv2d(32, 32, 3, 2, same), iii) Conv2d(64, 64, 3, 2, valid), iv) Conv2d(64, 64, 3, 2, same),
v) Flatten, vi) Dense(576, 256) with tanh hidden layer activation functions. For AEs and QAEs, the
output is Dense(256, 5) layer with linear activation functions. For VAEs, β-VAEs, CRVAEs, FMVAEs,
QVAEs, and IOVAEs, the output is two Dense(256, 5) layers with linear activation functions. For
QAEs, QVAEs, and IQVAEs, discrete G-orbit pooling is applied to encoders with a roto-reflectional
group discretized by a step size of π/9 following [3].

Decoders are transposed convolutional neural networks with the following architecture: i) Dense(5,
256), ii) Dense(256, 576), iii) Reshape((3, 3, 64)), iv) ConvT2d(64, 64, 3, 2, same), v) ConvT2d(64,
32, 3, 2, valid), vi) ConvT2d(32, 32, 3, 2, same) with tanh hidden layer activation functions. The
output is ConvT2d(32, 1, 3, 2, same) with sigmoid activation functions.

All models were trained with a learning rate of 2.5× 10−4 and mini-batch size of 1,024 during 3,000
epochs by using the Adam optimizer [1].

2

Figure S3: Example images of MixedWM38 dataset [5]. The single-type defects are categorized into
8 patterns: center (C), donut (D), edge-local (EL), edge-ring (ER), local (L), near-full (NF), scratch
(S), and random (R). The corresponding labels for each pattern are: center ([1 0 0 0 0 0 0 0]), donut
([0 1 0 0 0 0 0 0]), edge-local ([0 0 1 0 0 0 0 0]), edge-ring ([0 0 0 1 0 0 0 0]), local ([0 0 0 0 1 0 0 0]),
near-full ([0 0 0 0 0 1 0 0]), scratch ([0 0 0 0 0 0 1 0]), and random ([0 0 0 0 0 0 0 1]).

D.3 SIPakMeD

Encoders are convolutional neural networks with the following architecture: i) Conv2d(3, 32, 4, 2,
same), ii) Conv2d(32, 64, 4, 2, same), iii) Conv2d(64, 64, 4, 2, same), iv) Flatten, v) Dense(1024,
256) with relu hidden layer activation functions. For AEs and QAEs, the output is Dense(256, 10)
layer with linear activation functions. For VAEs, β-VAEs, CRVAEs, FMVAEs, QVAEs, and IOVAEs,
the output is two Dense(256, 10) layers with linear activation functions. For QAEs, QVAEs, and
IQVAEs, discrete G-orbit pooling is applied to encoders with a roto-reflectional group discretized by
a step size of π/9 following [3].

Decoders are transposed convolutional neural networks with the following architecture: i) Dense(10,
256), ii) Dense(256, 1024), iii) Reshape((4, 4, 64)), iv) ConvT2d(64, 64, 4, 2, same), v) ConvT2d(64,
32, 4, 2, same) with relu hidden layer activation functions. The output is ConvT2d(32, 3, 4, 2, same)
with sigmoid activation functions.

All models were trained with a learning rate of 2.5× 10−4 and mini-batch size of 256 during 3,000
epochs by using the Adam optimizer [1].

3

Figure S4: Example images of SIPakMeD dataset [4].

E Additional UMAP Visualizations of Latent Representations

We visualize the learned latent representation for the test datasets of (2π/3)-rotated MNIST, 2π-
rotated MNIST, MixedWM38, and SIPakMeD in Figure S5, Figure S6, Figure S7, and Figure S8,
respectively.

F Additional Interpolation Results

Similar to Figure 5 (a), we provide comparisons of linear interpolation results for different digit pairs
across the VAE, QVAE, and IQVAE models in Figure S9 and Figure S10.

G Distance-based OoD Detection

Suppose X = {xi}Ni=1 and Y = {yi}Ni=1 are respectively the learned in-distribution dataset and
corresponding label set with K unique classes. Suppose zi = µθ(xi) is a latent representation of
xi based on the trained encoder µθ : Rd → Rn. The distance-based OoD detection models K
class-conditional latent Gaussian distributions N (µK ,Σ), k = 1, ...,K as follows:

µk =
1

Nk

∑
i:yi=k

zi,Σ =
1

N

K∑
k=1

∑
i:yi=k

(zi − µk)(zi − µk)
T,

where Nk is the number of samples belonging to k-th class. Then, for a test instance x́ the class-wise
Mahalanobis distance is computed as follows:

dk(ź, µk) =
√

(ź− µk)TΣ−1(ź− µk),

where ź = µθ(x
′). Finally, the confidence score is given by:

s(ź) = −min
k

dk(ź, µk).

The instance x́ is considered as OoD if s(ź) ≤ δ for a pre-defined threshold δ. By varying δ, one can
obtain the receiver operating characteristic (ROC) and precision-recall (PR) curves of OoD detectors.
AUCROC and AUPRC are the areas underneath the entire ROC and PR curves, respectively.

4

Figure S5: Latent visualization of (a) AE, (b) VAE, (c) β-VAE, (d) CRVAE, (e) QAE, (f) FMVAE,
(g) QVAE and (h) IQVAE for the (2π/3)-rotated MNIST. The colored clouds represent digits; for
example, the blue cloud signifies the digit zero.

Figure S6: Latent visualization of (a) AE, (b) VAE, (c) β-VAE, (d) CRVAE, (e) QAE, (f) FMVAE, (g)
QVAE and (h) IQVAE for the 2π-rotated MNIST. The colored clouds represent digits; for example,
the blue cloud signifies the digit zero.

5

Figure S7: Latent visualization of (a) AE, (b) VAE, (c) β-VAE, (d) CRVAE, (e) QAE, (f) FMVAE,
(g) QVAE and (h) IQVAE for the MixedWM38. The color clouds correspond to defect classes. To
enhance clarity, only the points corresponding to single-type defect classes are color-coded.

Figure S8: Latent visualization of (a) AE, (b) VAE, (c) β-VAE, (d) CRVAE, (e) QAE, (f) FMVAE,
(g) QVAE and (h) IQVAE for the SIPakMeD. The colored clouds represent specific cell classes.

6

Figure S9: Linear interpolation results for all possible digit combinations (1).

7

Figure S10: Linear interpolation results for all possible digit combinations (2).

8

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[2] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. Ti-pooling:
transformation-invariant pooling for feature learning in convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 289–297,
2016.

[3] Eloi Mehr, André Lieutier, Fernando Sanchez Bermudez, Vincent Guitteny, Nicolas Thome, and
Matthieu Cord. Manifold learning in quotient spaces. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9165–9174, 2018.

[4] Marina E Plissiti, Panagiotis Dimitrakopoulos, Giorgos Sfikas, Christophoros Nikou, O Krikoni,
and Antonia Charchanti. SIPaKMeD: A new dataset for feature and image based classification of
normal and pathological cervical cells in Pap smear images. In 2018 25th IEEE International
Conference on Image Processing (ICIP), pages 3144–3148. IEEE, 2018.

[5] Junliang Wang, Chuqiao Xu, Zhengliang Yang, Jie Zhang, and Xiaoou Li. Deformable convolu-
tional networks for efficient mixed-type wafer defect pattern recognition. IEEE Transactions on
Semiconductor Manufacturing, 33(4):587–596, 2020.

9

	Tips for practical computation
	Details on G-Orbit Pooling
	Example Images of Used Datasets
	Implementation Details
	Rotated MNIST
	MixedWM38
	SIPakMeD

	Additional UMAP Visualizations of Latent Representations
	Additional Interpolation Results
	Distance-based OoD Detection

