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Abstract

We study structure-preserving low-dimensional representation of a data manifold
embedded in a high-dimensional observation space based on variational auto-
encoders (VAEs). We approach this by decomposing the data manifold M as
M = M/G×G, where G and M/G are a group of symmetry transformations
and a quotient space of M up to G, respectively. From this perspective, we define
the structure-preserving representation of such a manifold as a latent space Z
which is isometrically isomorphic (i.e., distance-preserving) to the quotient space
M/G rather M (i.e., symmetry-preserving). To this end, we propose a novel
auto-encoding framework, named isometric quotient VAEs (IQVAEs), that can
extract the quotient space from observations and learn the Riemannian isometry
of the extracted quotient in an unsupervised manner. Empirical proof-of-concept
experiments reveal that the proposed method can find a meaningful representation
of the learned data and outperform other competitors for downstream tasks.

1 Introduction

There has been a common consensus that natural image datasets form a low-dimensional manifold M
embedded in a high-dimensional observation space Rd, i.e., dim(M) ≪ d [6]. From this perspective,
a good neural network is a mapping function that can recognize the underlying structure of the data
manifold well [25]. A question that arises is what structures should be represented from the data.

For unsupervised learning task, especially in generative modeling, if we suppose the data manifold
to be a Riemannian one, then preserving geometric structures in the representation space is a key
consideration [1, 8, 25]. To make things more explicit, if Z is a latent representation of M, then Z
should be isometrically isomorphic to M in the sense of the Riemannian isometry. This means that an
infinitesimal distance on the data manifold should be preserved in the latent space as well, promoting
geodesic distances in the latent space that accurately reflect those in the data space. Recently, several
papers [8, 40, 25] have suggested using the concept of Riemannian isometry for deep generative
models, such as variational auto-encoders (VAEs) [22] and generative adversarial networks (GANs)
[14], to obtain more meaningful and relevant representations. These concepts have been applied to
improve latent space interpolations [30] or clustering [45] of data manifolds.

However, the Riemannian isometry does not tell the whole story of the data structure, particularly
in the case of vision datasets. One common property of natural images is that there are symmetry
transformations that preserve the semantic meaning of the given image. For example, if one applies a
rotational transformation to a certain image, then its semantic meaning, e.g., its label, does not change.
In this situation, what one really wants to do is represent the inherent geometry of the manifold, i.e.,
the geometry up to such symmetry transformations [29].
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Figure 1: We denote X ⊂ Rd as an extrin-
sic view of the data manifold M. It consists
as X = X/G × G where X/G is a quotient
space of X and G is a group of symmetry trans-
formations that naturally act on X , respectively.
From this perspective, the structure-preserving rep-
resentation Z should preserve all geodesic dis-
tances of X/G (dX/G(·, ·)) rather than them of
X (dX (·, ·)), i.e., dZ(z1, z2) = c · dX/G(x̂1, x̂2),
∀x̂1, x̂2 ∈ X/G, z1, z2 ∈ Z , where dZ(·, ·) is a
distance on Z . Such a space Z preserves all the
essential geometry and symmetry of the data.

The concept of the inherent geometry can be
formalized by using the notion of the principal
bundle M = M/G × G, a fiber bundle that
consists of the group G of symmetry transfor-
mations and a quotient space M/G as the fiber
and base spaces, respectively [16, 26]. In this
case, the inherent geometry of M up to G is
indeed determined by its quotient M/G solely;
the quotient formulates an invariant structure of
the data, thus a measure on M/G gives a mea-
sure on M that is invariant to the actions of G.
Therefore, one should find the Riemannian isom-
etry of M/G rather than M for a geometric-
meaningful representation of the dataset (see
Figure 1). Nevertheless, to the best of our knowl-
edge, there has been a lack of studies, at least
in the field of generative models, that integrate
both the concepts of the quotient space and its
Riemannian geometry.

In this paper, we propose a novel auto-encoding
framework, named isometric quotient VAEs (IQ-
VAEs), that can extract the quotient space from
observations and learn its Riemannian isometry
in an unsupervised manner, allowing for a cor-
rect representation of the data manifold and accurate measurement of distances between samples from
the learned representation. The proposed IQVAE model can be applied to a variety of practical tasks
such as downstream clustering and out-of-distribution (OoD) detection. We evaluate the model’s
performance using three datasets: rotated MNIST [44], mixed-type wafer defect maps (MixedWM38)
[42] and cervical cancer cell images (SIPaKMeD) [32]. In summary, our contribution is threefold:

• We propose a novel approach for structure-preserving representation learning by viewing a
data manifold as a principal bundle, and formulate it as an unsupervised learning task that
finds a Riemannian isometry for the quotient of the data manifold.

• We introduce a practical method, called the IQVAE, which can learn such a structure-
preserving representation in an unsupervised manner by using the auto-encoding framework.

• We demonstrate through experimental evaluations on various datasets that our proposed
method can find useful representations and outperform other competing methods for down-
stream tasks such as classification, clustering, and OoD detection.

2 Related Works

2.1 G-Invariance and Quotient Space Learning

Quotient space learning is highly related to the notion of the G-invariance. Data augmentation is the
most common approach to deal with the G-invariance of label distributions [18]. To achieve such a
symmetry more explicitly, various G-invariant and G-equivariant architectures have been proposed;
[10] has proposed G-convolution beyond the conventional translational equivariance of convolutional
neural networks. [12] has generalized it further for Lie groups. G-orbit pooling, proposed by [23],
can be applied to both arbitrary discrete groups and continuous groups by discretizing them. Some
research has attempted to discover the underlying invariances within data [4, 46, 31, 35]. These
approaches can be integrated as a major component of auto-encoders to represent the quotient
symmetry of the data manifold, as we will discuss later in Section 3.3.

More relevant to our work, [37] has proposed using the consistency regularization for VAEs to
encourage consistency in the latent variables of two identical images with different poses. It can be
considered as the unsupervised learning version of the data augmentation and does not guarantee the
explicit G-invariance of the regularized latent space. [5] has disentangled image content from pose
variables, e.g., rotations or translations under the VAE framework. However, it has some limitations,
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such as the requirement of using a specific decoder, the spatial transformer network [20]. It also
has a problem that it cannot handle arbitrary groups beyond the rotation and translation. [11] has
dealt with more complicated SO(3) group under the VAE framework. [29] has proposed the quotient
auto-encoder (QAE) that can learn the quotient space of observations with respect to a given arbitrary
group, extending early works in quotient images [34, 41]. However, it is a deterministic model and
therefore cannot generate new samples easily. In addition, all the above-mentioned studies have not
considered the Riemannian geometry of the learned latent representation.

2.2 Rimeannian Geometry of Generative Models

Recent studies have proposed to view the latent space of generative models as a Riemannian manifold
[1, 9, 7]. In this perspective, the metric tensor of the latent space is given by a pullback metric induced
from the observation space through the generator function. In line with this theoretical perspective,
the flat manifold VAE (FMVAE) [8] and its variant [25, 15] have been proposed to regularize the
generator function to be a Riemannian isometry by matching the pullback metric with the Euclidean
one. The regularized latent space preserves geodesic distances of the observation space, making
it a more geometrically meaningful representation that can be useful. However, the FMVAE and
its variants do not take into account the underlying group symmetry, which can lead to inaccurate
estimation of distances between data points. For example, they could estimate a non-zero distance
between two identical images with different rotational angles, which is unsuitable for clustering tasks.

3 Method

Suppose x ∈ X ⊂ Rd is an observation where X is an extrinsic view of M, i.e., the data manifold
is realized via a mapping π : M → Rd such that X = π(M), and z ∈ Z ⊂ Rn is its latent
representation where n ≪ d. In addition, suppose G to be a group (of symmetry transformations)
that its group elements g ∈ G naturally act on X by a left group action α : G× X → X . We will
denote α(g,x) as g ∗ x. Typical examples of G include the special orthogonal group SO(2), a group
of 2-dimensional rotations that can also naturally act on d-dimensional images by rotating them.

3.1 Auto-Encoders

The auto-encoder framework consists of two parameterized neural networks, an encoder µθ : Rd →
Rn and a decoder µϕ : Rn → Rd. Vanilla auto-encoders find a low-dimensional compression of
observations by minimizing the following reconstruction loss:

Ex∼pX (x)

[
LAE(θ, ϕ;x)

]
= Ex∼pX (x)

[
∥x− µϕ ◦ µθ(x)∥22

]
, (1)

where pX (x) is the data distribution. The expectation over pX (x) can be computed via Monte Carlo
(MC) estimation with finite samples X = {xi}Ni=1 as EpX (x)

[
LAE(θ, ϕ;x)

]
≈ (1/N)

∑N
i=1 ∥xi −

µϕ ◦ µθ(xi)∥22. Unless otherwise mentioned, we will omit the expectation over pX (x) for brevity.

Although sufficiently deep auto-encoders can provide effective latent compression µθ(X) = Z ⊂ Rn

of high-dimensional data, they tend to overfit and the learned latent manifolds are often inaccurate
[25], i.e., they cannot consider the underlying geometry of data. This can lead to problems such as
incorrect latent interpolation or poor performance in downstream tasks, in addition to the absence of
the ability to generate new samples.

3.2 Variational Auto-Encoders

The VAE [22] is a stochastic auto-encoding architecture belonging to the families of deep generative
models. Contrary to vanilla auto-encoders, the VAE framework consists of two parameterized
distributions qθ(z|x) and pϕ(x|z) where the former and the latter are variational posterior and
likelihood, respectively. VAEs try to maximize the marginal log-likelihood of observations by
optimizing the following evidence lower bound:

log pϕ(x) ≥ Ez∼qθ(z|x)
[
log pϕ(x|z)

]
−DKL

(
qθ(z|x)∥pZ(z)

)
≜ −LVAE(θ, ϕ;x), (2)

where pZ(z) is the latent prior and DKL(·, ·) is the Kullback-Leibler (KL) divergence. pZ(z) is often
given by a normal distribution N (z|0, In) where 0 is a zero vector and In is n× n identity matrix.
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For vanilla VAEs, qθ(z|x) is chosen as a multivariate Gaussian distribution with a diagonal covariance
matrix N (z|µθ(x), diag[σ2

θ(x)]) and represented by a neural network encoder (µθ, σθ) : Rd →
Rn ×Rn

+. A latent variable is sampled by using the reparameterization trick z = µθ(x) + σθ(x)⊙ ϵ
where ϵ ∼ N (ϵ|0, In). Although pϕ(x|z) is chosen depending on the modeling of the data, it is often
taken as a simple distribution such as a Gaussian with fixed variance, N (x|µϕ(z), βId), represented
by a neural network decoder µϕ : Rn → Rd. In this case, the VAE objective (2) can be seen as
a regularized version of (1) given by a sum of the stochastic auto-encoding reconstruction term
LAE(θ, ϕ;x, ϵ) = ∥x − µϕ(µθ(x) + σθ(x) ⊙ ϵ)∥22 and β-weighted KL divergence LKL(θ;x, β) =
βDKL(N (z|µθ(x), diag[σ2

θ(x)])∥N (z|0, In)) as follows:

LVAE(θ, ϕ;x, β) = Eϵ∼N (ϵ)

[
LAE(θ, ϕ;x, ϵ)

]
+ LKL(θ;x, β). (3)

Practically, the expectation over N (ϵ) term is estimated via a single-point MC when the mini-batch
size is sufficiently large [22]. When β → 0 and σ2

θ → 0, VAEs reduce to vanilla auto-encoders.

By minimizing (3), VAEs can learn the probabilistic process on the smooth latent space [13] that can
easily generate plausible new samples by sampling a latent variable and decoding it, i.e., µϕ(Z) ≈ X .
However, VAEs, like vanilla auto-encoders, do not ensure that the learned latent representation
preserves the crucial information about the symmetry and geometry of the data manifold.

3.3 Quotient Auto-Encoders

QAE [29] is a modification of the deterministic auto-encoding framework that can find the quotient
of the observation set X/G by replacing (1) as the following quotient reconstruction loss:

LQAE(θ, ϕ;x, G) = inf
g∈G

∥g ∗ x− µϕ ◦ µθ(x)∥22. (4)

As shown in (4), QAEs aim to minimize the set distance between the auto-encoded sample µϕ ◦µθ(x)
and G-orbit G ∗ x = {g ∗ x|g ∈ G} of the given x rather than x itself. It is noteworthy that G-orbit
loses the information of G for a given x, which is the case of the natural quotient for x up to G. Thus,
QAE can learn the quotient space of observations directly: for the ideal case of QAEs, i.e., when
LQAE(θ, ϕ;x, G) → 0, the following property holds:

µϕ ◦ µθ(x) = µϕ ◦ µθ(x = g ∗ x) ≜ x̂, ∀g ∈ G,

which means that the image µϕ ◦ µθ(X) ≜ X̂ does not contain any information on g. In addition,
QAEs typically adopt G-invariant architectures such as G-orbit pooling [23] (see Section B of
Supplementary Material (SM) for details) for the encoder part to explicitly guarantee the following
G-invariant latent representation:

µG
θ (x) = µG

θ (g ∗ x) ≜ ẑ, ∀g ∈ G,

where µG
θ : Rd → Rn is the G-invariant encoder. It is worth mentioning that these encoder

architectures are unable to learn a meaningful representation of the data when using a vanilla auto-
encoding framework, as the reconstruction loss (1) cannot be reduced enough; on the other hand,
QAEs can use the explicitly G-invariant encoding architectures easily by taking advantage of the
infimum in (4). This allows for both X̂ and µG

θ (X) ≜ Ẑ to possess the invariant property up to G.

3.4 Isometric Quotient Variational Auto-Encoders

Although QAEs with G-invariant encoders can extract the underlying symmetry of observations,
they still have the following drawbacks. First, QAEs are deterministic and may overfit to limited
observations, similar to vanilla auto-encoders. Second, the Riemannian geometry of the extracted
quotient manifold may not be preserved in the latent space. To address these issues, we present a
stochastic version of QAEs called QVAEs, and further improve them with a novel framework for
isometric learning called IQVAEs.

QVAEs. Inspired by the connection among (1), (3), and (4), we propose the stochastic version of
QAEs (QVAEs) which minimizes the following stochastic quotient objective:

LQVAE(θ, ϕ;x, β,G) ≜ Eϵ∼N (ϵ)

[
LQAE(θ, ϕ;x, ϵ, G)

]
+ LKL(θ;x, β,G), (5)
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where the first term is defined as LQAE(θ, ϕ;x, ϵ, G) ≜ infg∈G ∥g ∗ x− µϕ(µ
G
θ (x) + σG

θ (x)⊙ ϵ)∥22
and the second term is LKL(θ;x, β,G) ≜ βDKL

(
N (ẑ|µG

θ (x), diag[σG
θ (x)]

2)∥pZ(ẑ)
)
. We denote

(µG
θ , σ

G
θ ) : Rd → Rn × Rn

+ for the G-invariant multivariate Gaussian encoder.

QVAEs are able to generate new samples from the quotient space, unlike QAEs. It means that QVAEs
can approximate the quotient space of the data manifold X/G ≜ X̂ as a form of the immersed
manifold µϕ(Ẑ) ≈ X̂ where Ẑ is a G-invariant latent representation. This leads us to introduce the
concept of Riemannian isometry as a geometric regularization for QVAEs.

Isometric regularziation to quotient spaces. Before introducing the isometric regularization of
the proposed QVAE, we review some basic concepts of the Riemannian geometry [2, 25].
Definition 3.1. (Riemannian manifolds) A n-dimensional Riemannian manifold X is a n-
dimensional differentiable manifold that is equipped with a symmetric positive-definite metric
tensor HX (x) ∈ Rn×n (n× n matrix). It defines a local smooth inner product on the tangent space
TxX as ⟨ux,vx⟩HX = uT

xHX (x)vx with tangent vectors ux,vx ∈ TxX at each x ∈ X , allowing
us to measure the distance and angles between tangent vectors at each point.
Definition 3.2. (Riemannian distances) Suppose X is a connected Riemannian manifold equipped
with a Riemannian metric HX (x) at each point x ∈ X . A length of a curve on X between two points
x0 and x1 is defined as:

L[γX ] =

∫ 1

0

dt
√
⟨γ̇X (t), γ̇X (t)⟩HX =

∫ 1

0

dt
√

γ̇T
X (t)HX (γX (t))γ̇X (t),

where γX : [0, 1] → X is a curve on X that travels from x0 = γX (0) to x1 = γX (1) and
γ̇X (t) = ∂tγX (t) ∈ TγX (t)X is the velocity of the curve. The curve minimizing L is called a geodesic.
The Riemannian distance is given by the length of the geodesic, i.e., dX (x0,x1) = infγX L[γX ].

Definition 3.3. (Immersions) Let Z be an open set in Rn. A smooth map µ : Z → Rd (n < d) is
called an immersion if its pushforward dµz : TzZ → Tµ(z)µ(Z) is injective for all z ∈ Z . Then,
µ(Z) is called an immersed submanifold.

Definition 3.4. (Geometry of immersed submanifolds) Suppose µ : Z → Rd is an immersion
onto a submanifold X ⊂ Rd. The Euclidean inner product in Rd is a proper inner product of tangent
vectors of X . Thus, X is a Riemannian manifold equipped with a Riemannian metric HX (x) = Id,
i.e., ⟨ux,vx⟩HX = uT

xIdvx = uT
xvx for tangent vectors ux,vx ∈ TxX at each x ∈ X .

Definition 3.5. (Pullback metric) Suppose µ : Z → Rd is an immersion onto a Riemannian
submanifold X ⊂ Rd equipped with a Riemannian metric Id. Then, for tangent vectors ux,vx ∈
TxX at each x = µ(z) ∈ X = µ(Z), the following holds:

⟨ux,vx⟩HX=Id = uT
xvx = (dµzuz)

Tdµzvz = uT
z[(dµz)

Tdµz]vz ≜ uT
zHµ(z)vz = ⟨uz,vz⟩Hµ

.

Therefore, Z can be viewed as a Riemannian manifold equipped with Hµ(z) called a pullback metric.
In addition, because Z ⊂ Rn and X ⊂ Rd, the pushforward dµz is equal to the standard Jacobian
Jµ(z) of µ, i.e., Hµ(z) = JT

µ(z)Jµ(z).
Definition 3.6. (Isometric immersion) Suppose Z is a Riemannian manifold equipped with a
Riemannian metric HZ(z) at each z ∈ Z . A smooth immersion µ : Z → Rd onto X ⊂ Rd is a
Riemannian isometry if the metric HZ(z) is equal to the pullback metric Hµ(z), i.e., HZ(z) =
JT
µ(z)Jµ(z) for every z ∈ Z . In this case, the length of curves on X is equivalent with that on Z:

L[γX ]=

∫ 1

0

dt
√
⟨γ̇X (t), γ̇X (t)⟩=

∫ 1

0

dt
√
γ̇T
X (t)γ̇X (t)=

∫ 1

0

dt
√
γ̇T
Z(t)J

T
µ(γZ(t))Jµ(γZ(t))γ̇Z(t)

=

∫ 1

0

dt
√

γ̇T
Z(t)HZ(γZ(t))γ̇Z(t) =

∫ 1

0

dt
√

⟨γ̇Z(t), γ̇Z(t)⟩HZ = L[γZ ],

where γZ : [0, 1] → Z and γX : [0, 1] → X are respectively curves from z0 = γZ(0) to z1 = γZ(1)
and from x0 = γX (0) to x1 = γX (1), when x0 = µ(z0), x1 = µ(z1), γ̇Z(t) ∈ TγZ(t)Z , and
accordingly γ̇X (t) ∈ Tµ(γZ(t))µ(Z).

With some mild assumptions [36], a sufficiently well-trained decoder µϕ : Ẑ → Rd of the QVAE
can be viewed as a smooth immersion onto the quotient of X̂ = X/G. Then, from Definition 3.6,
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the following regularization should be added to (5) to make the decoder be a Riemannian isometry
between the latent representation Ẑ and quotient X̂ :

LISO(θ, ϕ;x,HẐ , λ) = λEẑ∼qθ(ẑ|x)∥J
T
µϕ

(ẑ)Jµϕ
(ẑ)−HẐ(ẑ)∥F , (6)

where Jµϕ
(ẑ) is Jacobian of µϕ at ẑ, λ is a hyper-parameter, and HẐ(ẑ) is a metric tensor of Ẑ .

Algorithm 1 IQVAEs
Input: data {xi}Ni=1, hyper-parameters (β, λ), group G, G-
invariant encoders (µG

θ , σ
G
θ ), decoder µϕ

Initialize θ, ϕ, Cn

while training do
Sample {αi ∼ [0, 1]}Ni , {ϵi ∼ N (0, I)}Ni
Compute {µi

θ, σ
i
θ}Ni = {µG

θ (xi) , σ
G
θ (xi)}Ni

Sample {zi}Ni=1 = {µi
θ + σi

θ ⊙ ϵi}Ni=1

Shuffle {zj}Nj=1 = shuffle({zi}Ni=1)

Augment {z̃i}Ni=1 = {(1− αi)zi + αizj}i=j=N
i=j=0

Compute LQAE =
∑N

i=1 ming∈G ∥g ∗ xi − µϕ(zi)∥22
Compute LKL =

∑N
i=1 DKL(N (µi

θ, diag[σi
θ]

2)∥N (0, In))

Compute {Ji
µϕ

}Ni=1 = {Jµϕ(z̃i)}
N
i

Compute LISO =
∑N

i=1 ∥(J
i
µϕ

)TJi
µϕ

−Cn∥F
Optimize (LQAE + βLKL + λLISO)/N w.r.t θ, ϕ

end while

There are two things that should be
clarified for practical computation of
(6). The first aspect to consider is the
selection of the Riemannian metric
HẐ(ẑ). A commonly used and partic-
ularly useful choice of HẐ(ẑ) is the
scaled Euclidean metric in Rn, i.e.,
HẐ(ẑ) = Cn = c2In where c is a
constant. This is because it is the case
that using the Euclidean distance1 on
the latent representation dẐ(ẑ0, ẑ1) =√
(ẑ1 − ẑ0)TIn(ẑ1 − ẑ0) can pre-

serve the geodesic distance on the
quotient manifold dX̂ (x̂0, x̂1) up to
c. The constant c can be regarded as
either a pre-defined hyper-parameter
or a learnable one. More generally,
one can use any parameterized sym-
metric positive-definite matrix Cn for HẐ(ẑ). Note that such matrices can be achieved from an
arbitrary learnable parameterized n× n matrix Mn by using the Cholesky decomposition as follows:

Cn = Ln(Ln)
T, Ln = lower[Mn]− diag[Mn] + diag[Mn]

2 + ε2In, (7)
where Ln is a real lower triangular matrix with all positive diagonal entries and ε is a small non-
zero constant. In this case, using the Mahalanobis distance on the latent space dẐ(ẑ0, ẑ1) =√
(ẑ1 − ẑ0)TCn(ẑ1 − ẑ0) preserves the geodesic distance of the quotient space of the observation

manifold dX̂ (x̂0, x̂1).

The second aspect to consider is the sampling from qθ(ẑ|x). It can be considered as Gaussian vicinal
distribution for finite observation samples that smoothly fills the latent space where data is missing.
In addition to that, following [8], we use the mix-up vicinal distribution [39] to effectively regularize
the entire space of interest to be isometric. As a result, the tractable form of (6) is equal to2:

λExi,j∼pX ,ϵi,j∼N ,α∼[0,1]∥JT
µϕ

(fα
θ (xi,j , ϵi,j))Jµϕ

(fα
θ (xi,j , ϵi,j))−Cn∥F , (8)

where fα
θ (xi,j , ϵi,j) = (1− α)ẑi + αẑj is the latent mix-up for ẑi,j = µG

θ (xi,j) + σG
θ (xi,j)⊙ ϵi,j .

Practically, it is computed by sampling a mini-batch of latent variables, i.e., {ẑi}Ni=1 = {µG
θ (xi) +

σG
θ (xi)⊙ ϵi}Ni=1, shuffling it for {ẑj}Nj=1 = shuffle({ẑj}Ni=1), and mixing-up them.

IQVAE. We define the IQVAE as a class of QVAEs whose objective function is given by the sum
of the variational quotient objective LQVAE (5) and Riemannian isometry LISO (8) as follows:

LIQVAE(θ, ϕ;x, β, λ,G) ≜ LQVAE(θ, ϕ;x, β,G) + LISO(θ, ϕ,Cn;x, λ). (9)
The proposed IQVAE optimization procedure is summarized in Algorithm 1 (see Section A of SM for
additional tips). In the IQVAE, we typically set Cn = c2In. For clarity, we will refer to the IQVAE
with (7) as IQVAE-M, to distinguish it from the basic version.

4 Experiments

We compared our proposed QVAE and IQVAE with six different competitors: the auto-encoder (AE),
VAE, β-VAE [19], consistency regularized VAE (CRVAE) [37], QAE [29], and FMVAE [8]. We
used the same convolutional architecture3, hyper-parameters, optimizer [21], and training scheme for

1We assume the straight path between ẑ0 and ẑ1 is an on-manifold path for every pair ẑ0, ẑ1 ∈ Ẑ .
2In (8), we temporarily retrieve the expectation on observations to make things more explicit.
3We used G-orbit pooling (see Section B of SM for details), which can achieve G-invariance in combination

with arbitrary convolutional models, for encoders of QAE, QVAE, and IQVAE.
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Table 1: The averaged clustering ARIs and classification test accuracies for (2π/3)-rotated (left) and
2π-rotated (right) MNIST across various models, each repeated five times.

METHOD k-MEANS GMM SVM RF

AE 21.8±2.3 29.5±2.2 86.4±0.4 86.2±0.5

VAE 23.1±0.5 28.4±0.7 87.4±0.4 87.4±0.4

β-VAE 21.5±1.0 26.5±0.8 88.5±0.5 88.5±0.5

CRVAE 34.9±1.3 37.4±2.4 93.0±0.2 93.0±0.3

QAE 45.2±4.2 65.5±3.6 93.1±0.3 92.7±0.3

FMVAE 19.0±1.2 25.7±2.0 85.6±0.5 85.1±0.6

QVAE 59.3±6.5 72.6±5.2 93.0±0.4 92.5±0.5

IQVAE 72.8±2.9 74.4±1.6 93.2±0.2 92.9±0.1

METHOD k-MEANS GMM SVM RF

AE 10.0±1.0 12.5±2.0 68.3±2.6 71.2±2.1

VAE 11.4±1.2 14.7±1.6 72.8±1.3 73.3±0.9

β-VAE 10.1±0.8 11.9±1.1 72.5±0.5 73.5±0.5

CRVAE 26.1±2.7 33.4±3.6 78.3±2.4 80.3±2.0

QAE 36.9±5.2 52.9±3.1 91.8±0.6 91.7±0.3

FMVAE 10.1±0.9 11.9±1.0 67.6±0.7 69.2±0.4

QVAE 53.9±7.2 66.3±6.5 93.0±0.1 92.5±0.1

IQVAE 70.9±2.9 72.9±1.5 92.9±0.3 92.7±0.4

all models. Implementation details can be found in Section D of SM. After training, we encoded all
samples and extracted their latent representations across models. Then, we conducted latent-based
downstream clustering tasks by using the simple k-means and Gaussian mixture model (GMM) [33].
Similarly, we conducted downstream classification tasks by using the support vector machine (SVM)
[17] and random forest (RF) classifiers. We used the same hyper-parameters for downstream models
regardless of the benchmarked latent representations. Then, we computed the adjusted Rand index
(ARI) [38] and test classification accuracy for clustering and classification models, respectively.

4.1 Rotated MNIST

Figure 2: Clustering confusion matrices of
(left) QVAE and (right) IQVAE for φ = 2π.

Figure 3: UMAP visualizations of (left) VAE
and (right) IQVAE for φ = 2π.

Rotated MNIST consists of randomly rotated images
of handwritten digits. It has the rotational group sym-
metry of G = SO(2). We padded the original MNIST
images to size 32 × 32 for improved usability. Then,
we generated φ-rotated MNIST by randomly rotating
each sample in the MNIST with a uniform distribu-
tion of [−φ/2, φ/2]. We considered both φ = 2π/3
and φ = 2π cases (see Section C of SM for ex-
amples). We used 60,000 samples for training and
10,000 samples for testing.

Basic evaluation. For quantitative analysis, we
summarize downstream task performances across the
models in Table 1. It clearly shows the proposed
QVAE and IQVAE outperform other competitors
by a large margin because they consider the group
symmetry explicitly. Moreover, the IQVAE shows
greatly improved clustering performances even over
the QVAE when φ = 2π. We deduce that the Rieman-
nian isometry helps the IQVAE recognize a meaning-
ful distance relationship between controversial samples, e.g., digits 6 and 9, as depicted in Figure 2.
For qualitative analysis, we also visualize the learned latent representations for the test dataset of
the rotated MNIST by using the uniform manifold approximation and projection (UMAP) [28] (see
Figure 3, and Section E of SM for all models). It further supports that the IQVAE succeeds in finding
meaningful representations of the dataset.

Figure 4: Six images of digit 7 and their re-
constructions based on the proposed IQVAE.

Aligned reconstructions. Figure 4 shows six im-
ages of digit 7 and their reconstructions based on the
proposed IQVAE demonstrating that the IQVAE can
reconstruct rotated digits in the aligned frame thanks
to learning the quotient up to rotations.

Better interpolation. Figure 5 compares linear interpolations between digits 1 and 7 for the VAE,
QVAE, and IQVAE. It is conducted by parameterizing a linear path as z(t) = z(0)+ (z(10)− z(0)) ·
(t/10) and then reconstructing x(t) = µϕ(z(t)) for t ∈ {0, 1, ..., 10}. As shown in Figure 5 (a), the
VAE shows a meaningless interpolation from t = 5 to t = 9 (see Section F of SM for other examples).
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Figure 5: (a) Linear interpolations between digits 1 and 7 for the VAE, QVAE, and IQVAE. (b) The
geometric volume measures along each linear path of the QVAE and IQVAE.

While the QVAE shows a more convincing interpolation compared to the VAE, it also shows abrupt
changes at t = 7 and t = 8. The IQVAE shows the smoothest interpolation between digits 1 and
7 compared to the other models owing to the isometry regularization. The smooth interpolation of
the IQVAE is also quantitatively confirmed in Figure 5 (b) which compares the geometric volume
measures along each linear path of the QVAE and IQVAE. The volume measure is computed via√
detJT

µϕ
(z(t))Jµϕ

(z(t)) and can be viewed as a local infinitesimal volume ratio between the latent
and observation spaces. The volume measure of the QVAE shows a clear peak near t = 8, while that
of the IQVAE is nearly constant.

Figure 6: (left) Condition numbers and (right) vol-
ume measures for the 2π-rotated MNIST for the
VAE, QVAE, and IQVAE.

Evidence for isometry. To demonstrate that
the learned decoding function of IQVAEs up-
holds the desired Riemannian isometry, we
evaluated the condition numbers of the pull-
back metric tensors and the Riemannian vol-
ume measures for all test samples across mod-
els. The condition number is defined as the
ratio λmax/λmin, where λmax and λmin respec-
tively represent the maximum and minimum
eigenvalues of the pull-back metric, denoted as
JT
µϕ

(z)Jµϕ
(z). All computed volume measures

are normalized by their average values. Therefore, condition numbers and normalized volume
measures approaching 1.0, accompanied by minimal variances, indicate that the learned latent repre-
sentation is isometrically isomorphic to Euclidean space. In other words, the learned pull-back metric
aligns with the Euclidean metric. As shown in Figure 6, the IQVAE presents condition numbers and
volume measures close to 1.0, exhibiting trivial variances compared to other models.

Table 2: Classification test accuracies for 2π-
rotated MNIST with varying training sample sizes.

SAMPLE SIZE QAE + SVM IQVAE + SVM

5,000 83.9±0.7 87.6±0.6

10,000 85.5±0.8 89.8±1.0

60,000 91.8±0.6 92.9±0.3

Sample efficiency comparison. Table 2 com-
pares the sample efficiency of IQVAE and the
most comparable baseline, QAE, in terms of
classification accuracy. The results demonstrate
the effectiveness of the proposed method as IQ-
VAE shows more robust performance with re-
spect to variations in the training sample size.

Table 3: Training wall-clock time per epoch and
clustering ARIs of VAEs, QVAEs, and IQVAEs.
We used a single V100 32GB GPU.

METHOD TIME [S] k-MEANS GMM

VAE 1.12 11.4±1.2 14.7±1.6

QVAE (36-36) 10.17 53.9±7.2 66.3±6.5

QVAE (12-12) 4.06 50.8±2.6 59.2±1.5

QVAE (12-36) 4.06 54.6±2.8 63.8±3.9

IQVAE (36-36) 13.22 70.9±2.9 72.9±1.5

IQVAE (12-12) 6.11 59.6±2.7 60.9±1.8

IQVAE (12-36) 6.11 64.3±2.1 65.0±2.1

Test-time orbit augmentation. The current
QVAE and IQVAE require more computational
cost than vanilla VAE due to the G-orbit pooling
encoders, which augment the number of obser-
vations |G| times larger by expanding a data
point x as a G-orbit G ∗ x. It might be a bot-
tleneck, especially when training the proposed
model with larger-scale datasets. To resolve this
issue, we suggest the test-time orbit augmen-
tation strategy, which involves using a coarse
step size when discretizing the group parame-
ters (e.g., rotation angle) during training, and
then switching to a finer step size during the inference phase. Table 3 compares wall-clock training
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times and downstream task performances for 2π-rotated MNIST datasets for the VAE, QVAE, and
IQVAE. The former and latter numbers in parentheses for QVAEs and IQVAEs in the table indicate
discretized group sizes used in the training and inference phases respectively. The results show that
the proposed technique can scale the training time without severe performance degradation.

Figure 7: (left) Condition numbers of the pullback
metrics and (right) volume measures of 2π-rotated
MNIST test samples, with and without the mix-up
for IQVAEs. The numbers in parentheses indicate
the training sample size.

Effect of mix-up. We employed the mix-up
technique (8) to regularize the entire latent space.
By augmenting the latent space with the mix-up,
it is possible to smoothly fill gaps in the latent
space regions where data might be missing. This
becomes particularly crucial when the number
of available training samples is limited. To val-
idate this, we trained IQVAEs both with and
without the mix-up technique in two scenarios:
one with a training sample size of 60,000 and the
other with 10,000. Subsequently, we computed
the condition numbers of the pull-back metric
tensors and mean-normalized volume measures
for test samples. Figure 7 shows that using the mix-up reduces the variances of both condition
numbers and volume measures for pull-back metric tensors, demonstrating its efficacy in regularizing
the entire latent space. Furthermore, the impact of the mix-up approach becomes more noticeable
when the training sample size is smaller.

4.2 MixedWM38

Table 4: Clustering ARIs and classification test
F-scores for MixedWM38 (repeated five times).

METHOD k-MEANS GMM SVM RF

AE 18.7±0.8 22.0±0.6 81.7±0.6 83.8±0.2

VAE 21.3±0.7 24.9±0.6 82.5±0.3 84.1±0.5

β-VAE 21.3±0.4 27.1±1.1 82.5±0.6 84.5±0.5

CRVAE 21.4±0.6 24.6±0.6 82.3±0.9 84.9±1.0

QAE 22.7±0.9 30.7±1.5 84.4±0.3 85.1±0.2

FMVAE 17.6±0.4 25.8±0.7 81.4±0.2 83.1±0.4

QVAE 23.3±0.5 31.1±0.5 85.0±0.4 85.1±0.1

IQVAE 27.5±0.2 35.3±1.4 84.4±0.2 85.6±0.3

MixedWM38 is a dataset containing 38,015 52
× 52 semiconductor wafer maps, separated into
38 defect categories including 1 normal type, 8
single-defect types, and 29 mixed-defect types
[42] (see Section C of SM for examples). We
assume rotation and reflection (i.e., G = O(2))
symmetries are present in the MixedWM38. We
used 30,720 samples for training and 7,295 sam-
ples for testing.

Basic evaluation. We performed an experi-
ment on the MixedWM38 dataset, similar to the
one previously conducted on rotated MNIST. Unlike the rotated MNIST, the MixedWM38 dataset
requires a multi-label classification task, which is a key difference between the two experiments.
Thus, we use the F-score as a classification accuracy for this problem. Table 4 summarizes the
downstream task performances of eight models on the MixedWM38 dataset (see Section E of SM for
UMAP visualizations). As shown in the table, the proposed methods have a higher performance on
the downstream task than the other models.

Table 5: AUCROCs and AUPRCs
for MixedWM38 across the models
(repeated five times).

METHOD AUCROC AUPRC

AE 47.3±3.6 27.2±3.3

VAE 62.4±3.1 34.3±2.4

β-VAE 66.1±4.1 41.4±6.8

CRVAE 80.5±6.1 60.4±10.2

QAE 90.2±3.7 81.8±3.4

FMVAE 69.8±5.6 42.5±7.2

QVAE 90.3±1.1 79.5±3.9

IQVAE 93.8±0.4 88.3±1.7

OoD evaluation. We further demonstrate the effectiveness of
the proposed IQVAE in detecting OoD samples, an important
task in the semiconductor engineering field. In order to mimic a
real-world setting, we divided the 7,015 single-defect type data
(8 classes: C, D, EL, ER, L, NF, S, R; see Section C of SM)
into two sets: C-EL-L-S as the in-distribution set, and D-ER-
NF-R as the OoD set. Then, we randomly rotated all samples
in the C-EL-L-S subset, and considered the rotated samples an
in-distribution set, aligning with the nature of the semiconduc-
tor manufacturing process [43]. Using auto-encoding models
trained on the original C-EL-L-S data, we formulated an OoD
detection task, the goal of which is to differentiate between
samples from the rotated C-EL-L-S set (in-distribution) and
samples from the D-ER-NF-R set (OoD). We assessed the standard distance-based OoD detection:
it labels an instance as OoD if its latent vector is farther than a pre-defined threshold from any

9



class-conditional mean latent vector of learned in-distribution sets, in terms of the Mahalanobis
distance [24] (see Section G of SM for details). Table 5 shows the comparison of competing models
using standard metrics (AUCROC and AUPRC) for threshold-based OoD detection, demonstrating
that the proposed IQVAE excels in the OoD tasks as it accurately learns the data structure.

4.3 SIPaKMeD

Table 6: Clustering ARIs and classification test
accuracies for SIPaKMeD (repeated five times).

METHOD k-MEANS GMM SVM RF

AE 33.4±4.0 35.6±1.0 78.6±0.5 76.9±1.1

VAE 33.9±1.5 34.0±1.7 79.4±1.0 76.5±2.1

β-VAE 34.4±1.5 33.7±1.1 79.1±1.0 76.6±1.3

CRVAE 24.9±3.6 31.9±1.3 77.1±0.7 80.6±1.1

QAE 40.9±1.9 41.1±2.9 80.5±0.9 81.6±0.7

FMVAE 39.6±0.3 37.9±1.1 80.0±0.8 75.7±1.2

QVAE 40.6±3.2 40.6±2.5 82.2±0.8 81.7±0.9

IQVAE 39.3±0.4 44.7±2.0 82.7±0.3 80.9±0.7

IQVAE-M 43.0±1.1 46.5±2.9 84.3±0.7 81.6±1.8

The SIPaKMeD dataset includes 4,049 single-
cell Pap smear images for cervical cancer diag-
nosis and is split into 5 classes [32] (see Section
C of SM for examples). We assume O(2) sym-
metry for the SIPaKMeD dataset. We resized
the original SIPaKMeD images to size 32 × 32
for better usability. In accordance with the orig-
inal data splitting, 3,549 samples were used for
training and 500 samples for testing.

IQVAE-M. As we did with rotated MNIST,
we conducted the same experiment on the
SIPaKMeD dataset. Furthermore, we also as-
sessed the proposed IQVAE-M that incorporates a learnable flexible Riemannian metric as described
in (7) and utilizes the latent Mahalanobis distance when computing the radial basis function (RBF) ker-
nel K : Rn×Rn → R of SVMs as K(z0, z1) = exp

(
−(z1 − z0)

TCn(z1 − z0)
)
. To quantitatively

analyze the learned representations, we present the downstream task performance of the competing
models on the SIPaKMeD dataset in Table 6 (see Section E of SM for UMAP visualizations). As
shown in Table 6, the proposed methods exhibit superior performance compared to other models4.

5 Conclusion and Limitation

We have proposed and demonstrated the effectiveness of IQVAE, a simple yet effective approach that
maintains symmetry and geometry in data. However, our work has two main limitations as follows.

Predefined groups of symmetry transformations. We assume the group structure of a given
dataset is known in advance. This group invariance is represented using the quotient auto-encoding
framework with a Riemannian isometry. However, several recent papers have delved into learning an
unknown group directly from data. For example, [35] presents a novel neural network that identifies
bispectral invariants. [31] employs Lie algebra to find underlying Lie group invariances. [46] tackles
the disentanglement challenge with VAEs, aiming to learn the latent space in terms of one-parameter
subgroups of Lie groups. Integrating these methods with our IQVAEs learning approach could be a
promising direction for future research.

Euclidean metric tensors. We focus on cases where the metric tensor of the observation space
is Euclidean. If the intrinsic dimensionality of the image manifold is significantly lower than that
of the ambient observation space, the Euclidean metric of the observation space can well serve as a
Riemannian metric for the intrinsic geometry of the image manifold. This reasoning supports our
use of the pullback metric as a metric tensor for the latent space. However, when constructing a
latent representation that effectively addresses a specific task, a specialized metric tensor might be
more appropriate than the standard Euclidean metric of the ambient space. For instance, when tasks
involve capturing subtle variations in a local image patch, the pullback metric derived from the entire
observation dimensions may not provide the most efficient geometry. In such cases, a specialized
metric structure better suited for capturing these local variations should be considered. In this context,
a task-specific metric can be determined using prior knowledge about the tasks [27]. Alternatively,
IQVAEs can semi-supervisedly learn this specialized metric with minimal labeled data, leveraging
metric learning concepts [3]. This approach holds significant potential for future research, as it allows
the model to tailor its representation to the specific requirements of the task, thereby improving
overall performance.

4When using the Euclidean RBF (Cn = In) for SVMs of the IQVAE-M, the accuracy decreases to 81.9; it
shows the usefulness of the learned metric and the corresponding Mahalanobis RBF.
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