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Abstract

Recently, Arjevani et al. [1] establish a lower bound of iteration complexity for1

the first-order optimization under an L-smooth condition and a bounded noise2

variance assumption. However, a thorough review of existing literature on Adam’s3

convergence reveals a noticeable gap: none of them meet the above lower bound. In4

this paper, we close the gap by deriving a new convergence guarantee of Adam, with5

only an L-smooth condition and a bounded noise variance assumption. Our results6

remain valid across a broad spectrum of hyperparameters. Especially with properly7

chosen hyperparameters, we derive an upper bound of iteration complexity of8

Adam and show that it meets the lower bound for first-order optimizers. To the best9

of our knowledge, this is the first to establish such a tight upper bound for Adam’s10

convergence. Our proof utilizes novel techniques to handle the entanglement11

between momentum and adaptive learning rate and to convert the first-order term in12

the Descent Lemma to the gradient norm, which may be of independent interest.13

1 Introduction14

First-order optimizers, also known as gradient-based methods, make use of gradient (first-order15

derivative) information to find the minimum of a function. They have become a cornerstone of16

many machine learning algorithms due to the efficiency as only gradient informaiton is required, and17

the flexibility as gradients can be easily computed for any function represented as directed acyclic18

computational graph via auto-differentiation [2, 19].19

Therefore, it is fundamental to theoretically uderstand the properties of these first-order methods.20

Recently, Arjevani et al. [1] establish a lower bound on the iteration complexity of stochastic first-21

order methods. Formally, for a well-studied setting where the objective is L-smooth and a stochastic22

oracle can query the gradient unbiasly with bounded variance (see Assumption 1 and 2), any stochastic23

first-order algorithm requires at least ε−4 queries (in the worst case) to find an ε-stationary point, i.e.,24

a point with gradient norm at most ε. Arjevani et al. [1] further show the above lower bound is tight25

as it matches the existing upper bound of iteration complexity of SGD [1].26

On the other hand, among first-order optimizers, Adam [16] becomes dominant in training state-27

of-the-art machine learning models [3, 15, 4, 11]. Compared to vanilla stochastic gradient descent28

(SGD), Adam consists of two more key components: (i) momentum to accumulate historical gradient29

information and (ii) adaptive learning rate to rectify coordinate-wise step sizes. The psedo-code30

of Adam is given as Algorithm 1. While the sophisticated design of Adam enables its empirical31

superiority, it brings great challenges for the theoretical analysis. After examining a series of32

theoretical works on the upper bound of iteration complexity of Adam [24, 9, 10, 27, 14, 21, 25], we33

find that none of them match the lower bound for first-order optimizers: they not only consume more34

queries than the lower bound to reach ε-stationary iterations but also requires additional assumptions.35
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This theoretical mismatch becomes even more unnatural given the great empirical advantage of Adam36

over SGD, which incites us to think:37

Is the gap between the upper and lower bounds for Adam a result of the inherent complexity induced38

by Adam’s design, or could it be attributed to the proof techniques not being sharp enough?39

This paper answers the above question, validating the latter hypothesis, by establishing a new upper40

bound on iteration complexity of Adam for a wide range of hyperparameters that cover typical41

choices. Specifically, our contribution can be summarized as follows:42

• We examine existing works that analyze the iteration complexity of Adam, and find that43

none of them meets the lower bound of first-order optimization algorithms;44

• We derive a new convergence guarantee of Adam with only assuming L-smooth condition45

and bounded variance assumption (Theorem 1), which holds for a wide range of hyperpa-46

rameters covering typical choices;47

• With chosen hyperparameters, we further tighten Theorem 1 and show that the upper bound48

on the iteration complexity of Adam meets the lower bound, closing the gap (Theorem 2).49

Our upper bound is tighter than existing results by a logarithmic factor, in spite of weaker50

assumption.51

To the best of our knowledge, this work provide the first upper bound on the iteration complexity52

of Adam without additional assumptions other than L-smooth condition and bounded variance53

assumption. It is also the first upper bound matching the lower bound of first-order optimizers.54

Organization of this paper. The rest of the paper is organized as follows: in Section 2, we first55

present the notations and settup of analysis in this paper ; in Section 3, we revisit the existing works56

on the iteration complexity of Adam; in Section 4, we present a convergence analysis of Adam57

with general hyperparameters (Theorem 1); in Section 5, we tighten Theorem 1 with a chosen58

hyperparameter, and derive an upper bound of Adam’s iteration complexity which meets the lower59

bound; in Section 6, we discuss the limitation of our results; in Section 7, we discuss the related60

works.61

2 Preliminary62

The Adam algorithm is restated in Agorithm 1 for convenient reference. Note that compared to the63

orignal version of Adam in Kingma and Ba [16], the bias-correction terms are omitted to simplify64

the analysis, and our analysis can be immediately extended to the original version of Adam because65

the effect of bias-correction term decays exponentially. Also, in the original version of Adam, the66

adaptive learning rate is η√
νt+ε1d

instead of η√
νt

. However, our setting is more challenging and our67

result can be easily extend to the original version of Adam, since the ε term makes the adaptive68

learning rate upper bounded and eases the analysis.69

Algorithm 1 Adam
Input: Stochastic oracle O, learning rate η > 0, initial point w1 ∈ Rd, initial conditioner ν0 ∈ R+,

initial momentum m0, momentum parameter β1, conditioner parameter β2, number of epoch T

1: Sample r ∼ Unif{1, · · · , T}
2: For t = 1 → T :
3: Generate a random zt, and query stochastic oracle gt = Of (wt, zt)

4: Calculate νt = β2νt−1 + (1− β2)g
�2
t

5: Calculate mt = β1mt−1 + (1− β1)gt
6: Update wt+1 = wt − η 1√

νt
�mt

7: EndFor
Output: wr

Notations. For a, b ∈ Z≥0 and a ≤ b, denote [a, b] = {a, a+ 1, · · · , b− 1, b}. For any two vectors70

w,v ∈ Rd, denote w � v as the Hadamard product (i.e., coordinate-wise multiplication) between71

w and v. When analyzing Adam, we denote the true gradient at iteration t as Gt = ∇f(wt), and72
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the sigma algebra before iteration t as Ft = σ(g1, · · · , gt−1). We denote conditional expectation as73

E|Ft [∗] = E[∗|Ft]. We also use asymptotic notations o, O, Ω, and Θ, where h2(x) = ox→x0
(h1(x))74

means that limx→x0

h2(x)
h1(x)

= 0 (when the context is clear, we abbreviate x → x0 and only use75

o(h1(x))); h2(x) = O(h1(x)) means that there exists constant γ independent of x such that h2(x) ≤76

γg1(x); h2(x) = Ω(h1(x)) means that h1(x) = O(h2(x)); and h2(x) = Θ(h1(x)) means that77

h2(x) = O(h1(x)) and h2(x) = Ω(h1(x)).78

Objective function. In this paper, we consider solving the following optimization problem:79

minw∈Rd f(w). We make the following assumption on the objective function f .80

Assumption 1 (On objective function). We assume f is differentiable, and the gradient of f is81

L-Lipschitz.82

We denote the set of all objective functions satisfying Assumption 1 as F(L).83

Stochastic oracle. As f is differentiable, we can utilize the gradient of f (i.e., ∇f ) to solve the84

above optimization problem. However, the ∇f is usually expensive to compute. Instead, we query85

a stochastic estimation of ∇f through a stochastic oracle O. Specifically, the stochastic oracle O86

consists of a distribution P over a measurable space Z and a mapping Of : Rd ×Z → Rd. We make87

the following asssumption on O.88

Assumption 2 (On stochastic oracle). We assume that O is unbiased, i.e., ∀w ∈ Rd,89

Ez∼POf (w, z) = ∇f(w). We further assume O has bounded variance, i.e., ∀w ∈ Rd,90

Ez∼P [‖Of (w, z)−∇f(w)‖2] ≤ σ2.91

We denote the set of all stochastic oracles satisfying Assumption 2 with variance bound σ2 as O(σ2).92

Adam belongs to first-order optimization algorithms, which is defined as follows:93

Definition 1 (First-order optimization algorithm). An algorithm A is called a first-order optimization94

algorithm, if it takes an input w1 and hyperparameter θ, and produces a sequence of parameters as95

follows: first sample a random seed r from some distribution Pr
1, set wA(θ)

1 = w1 and then update96

the parameters as97

w
A(θ)
t+1 = At

θ(r,w
A(θ)
1 ,Of (w

A(θ)
1 , z1), · · · ,Of (w

A(θ)
t , zt)),

where z1, z2, · · · , zt are sampled i.i.d. from P .98

Denote the set of all first-order optimization algorithms as Afirst. We next introduce iteration99

complexity to measure the convergence rate of optimization algorithms.100

Definition 2 (Iteration complexity). The iteration complexity of first-order optimization algorithm A101

is defined as102

Cε(A,∆, L, σ2) = sup
O∈O(σ2)

sup
f∈F(L)

sup
w1:f(w1)=∆

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

Furthermore, the iteration complexity of the family of first-order optimization algorithms Afirst is103

Cε(∆, L, σ2) = sup
O∈O(σ2)

sup
f∈F(L)

sup
w1:f(w1)=∆

inf
A∈Afirst

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

It should be noticed that the iteration complexity of the family of first-order optimization algorithms104

is a lower bound of the iteration complexity of a specific first-order optimization algorithm, i.e.,105

∀A ∈ Afirst, Cε(A,∆, L, σ2) ≥ Cε(∆, L, σ2).106

3 None of existing upper bounds match the lower bound107

In this section, we examine existing works that study the iteration complexity of Adam, and defer a108

discussion of other existing works to Appendix A. We find that none of them match the lower bound109

for first-order algorithms provided in [1] (restated as follows).110

1Such a random seed allows sampling from all iterations to generate the final output of the optimization
algorithm. As an example, Algorithm 1 set Pr .
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Proposition 1 (Theorem 3, [1]). ∀L,∆, σ2 > 0, we have Cε(∆, L, σ2) = Ω( 1
ε4 ).111

Note that in the above bound, we omit the dependence of the lower bound over ∆, L, and σ2, which112

is a standard practice in existing works (see Cutkosky and Mehta [8], Xie et al. [23], Faw et al. [13]113

as examples) because the dependence over the accuracy ε can be used to derive how much additional114

iterations is required for a smaller target accuracy and is thus of more interest. In this paper, when we115

say "match the lower bound", we always mean that the upper bound has the same order of ε as the116

lower bound.117

Generally speaking, existing works on the iteration complexity of Adam can be divided into two cate-118

gories: they either (i) assume that gradient is universally bounded or (ii) make stronger assumptions119

on smoothness. Below we respectively explain how these two categories of works do not match the120

lower bound in [1].121

The first line of works, including Zaheer et al. [24], De et al. [9], Défossez et al. [10], Zou et al.122

[27], Guo et al. [14], assume that the gradient norm of f is universally bounded, i.e., ‖∇f(w)‖ ≤ G,123

∀w ∈ Rd. In other words, what they consider is another iteration complexity defined as follows:124

Cε(A,∆, L, σ2, G) , sup
O∈O(σ2)

sup
f∈F(L),‖∇f‖≤G

sup
w1:f(w1)=∆

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

This line of works do not match the lower bound due to the following two reasons: First of all, the125

upper bound they derive is O( log 1/ε
ε4 ), which has an additional log ε factor more than the lower bound;126

secondly, the bound they derive is for Cε(A,∆, L, σ2, G). Note that F(L) ∩ {f : ‖∇f‖ ≤ G} is a127

proper subset of F(L) for any G, where a simple example in F(L) but without bounded gradient is128

the quadratic function f(x) = ‖x‖2. Therefore, we have that129

Cε(A,∆, L, σ2) ≥ Cε(A,∆, L, σ2, G), ∀G ≥ 0, (1)

and thus the upper bound on Cε(A,∆, L, σ2, G) does not apply to Cε(A,∆, L, σ2). Moreover, their130

upper bound of Cε(A,∆, L, σ2, G) tends to ∞ as G → ∞, which indicates that if following their131

analysis the upper bound of Cε(A,∆, L, σ2) would be infinity based on Eq. (1).132

The second line of works includes Shi et al. [21], Zhang et al. [25], Wang et al. [22], which additionally133

assume a mean-squared smoothness property besides Assumption 1 and 2, i.e., Ez∼P‖Of (w, z)−134

Of (v, z)‖2 ≤ L‖w − v‖2. Denote Õ(σ2, L) , {O : Ez∼P‖Of (w, z) −Of (v, z)‖2 ≤ L‖w −135

v‖2,∀w,v ∈ Rd} ∩O(σ2). The iteration complexity that they consider is defined as follows:136

C̃ε(A,∆, L, σ2) = sup
O∈Õ(σ2,L)

sup
f∈F(L)

sup
w1:f(w1)=∆

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

The rate derived in [21, 25, 22] is O( log 1/ε
ε6 ), which is derived by minimizing the upper bounds in137

[21, 25, 22] with respect to the hyperparameter of adaptive learning rate β2. According to [1], the138

lower bound of iteration complexity of C̃ε(A,∆, L, σ2) is Ω( 1
ε3 ) and smaller than the original lower139

bound Ω( 1
ε4 ), resulting in an even larger gap between the upper bound and lower bound.140

On the other hand, a concurrent work [17] which does not require bounded gradient assumption141

and mean-squared smoothness property but poses a stronger assumption on the stochastic ora-142

cle: the set of stochastic oracles they consider is ˜̃O = {O : ∀w ∈ Rd, Ez∼POf (w, z) =143

∇f(w),P
(
‖Of (w, z)−∇f(w)‖2 ≤ σ2

)
= 1}. ˜̃O is a proper subset of O because a simple144

example is that Of (w, z) = ∇f(w) + z where z is a standard gaussian variable. Therefore, their145

result does not provide a valid upper bound of Cε(A,∆, L, σ2).146

4 Convergence analysis of Adam with only Assumptions 1 and 2147

As discussed in Section 3, existing works on analyzing Adam require additional assumptions besides148

Assumption 1 and 2. In this section, we provide the first convergence analysis of Adam with only As-149

sumption 1 and 2, which naturally gives an upper bound on the iteration complexity Cε(A,∆, L, σ2).150

Specifically, we present the following theorem.151
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Theorem 1. Let A be by Adam (Algorithm 1) and θ = (η, β1, β2) are the hyperparameters of A.152

Let Assumption 1 and 2 hold. Then, if 0 ≤ β1 < β2 < 1, we have153

E
T∑

t=1

‖∇f(wt)‖ ≤
√

1− β2C2 +
2
√
1− β2

(1− β1)η
C1d ln

(
12C2 + 2T

d∑
l=1

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1

)

+

√√√√C2 +
2

(1− β1)η
C1d ln

(
12C2 + 2T

d∑
l=1

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1

)

×

√√√√12C2 + 2T

d∑
l=1

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1. (2)

where ν0,l is the l-th coordinate of ν0,154

C1 =

L

2
η
2
+ 2

√
1 − β2

(1 − β1)2
ησ +

η2β1
√
β2(1 − β1√

β2
)
+ L

2 β1η
3(1 − β1)

β2(1 − β2)
1
2 (1 − β2

1
β2

)(1 − β1
β2

)2

d

σ

(1 − β1)
2

(1 − β1√
β2

)2

 1

1 − β2

.

and155

C2 =
2

(1− β1)η

(
f(w1) +

d∑
l=1

2C1

(
E ln

(
1

ν0,l

)
− T lnβ2

))
.

A proof sketch is given in Section 4.2 and the full proof is deferred to Appendix.156

The right-hand side in Eq. (2) looks messy at the first glance. We next explain Theorem 1 in detail157

and make the upper bound’s dependence over hyperparameters crystally clear.158

4.1 Discussion on Theorem 1159

Required assumptions and conditions. As mentioned previously, Theorem 1 only requires Assump-160

tion 1 and 2, which aligns with the setting of the lower bound (Proposition 1). To our best knowledge,161

this is the first analysis of Adam without additional assumptions. Also, Theorem 1 holds for general162

choices of hyperparameters since the only condition posed on hyperparameters is β1 < β2. Such163

condition covers a wide range of hyperparameters, e.g., the default setting β1 = 0.9 and β2 = 0.999164

in PyTorch [19].165

Dependence over β2, η, and T . Here we consider the influence of β2, η, and T while fixing166

β1 constant (we will discuss the effect of β1 in Section 6). With logarithmic factors ignored and167

coefficients hidden, C1, C2 and the right-hand-side of Eq. (2) can be rewritten with asymptotic168

notations as169

C1 = Õ

(
η√

1− β2

+
η3

(1− β2)
3
2

)
,

C2 = Õ

(
1√

1− β2

+
η2

(1− β2)
3
2

+
1

η
+ T

√
1− β2 +

η2T

(1− β2)
1
2

)
,

E
T∑

t=1

‖∇f(wt)‖ = Õ
(√

1− β2C2 +

√
1− β2

η
C1 +

√
C2 +

C1

η

√
C2 + T + C1

)
,

where Õ denotes O with logarithmic terms ignored. Consequently, the dependence of Eq. (2) over170

β2, η and T becomes171

E
T∑

t=1

‖∇f(wt)‖ =Õ

(
1√

1− β2

+
η2

(1− β2)
3
2

+
1

η
+

η2T

(1− β2)
1
2

)

+ Õ

( √
T

4
√
1− β2

+
η
√
T

(1− β2)
3
4

+

√
T

√
η

+ T 4
√

1− β2 +
ηT

(1− β2)
1
4

)
.

Therefore, in order to ensure convergence, mint∈[T ] E‖Gt‖1 → 0 as T → ∞, a sufficient condition172

is that the right-hand-side of the above equation is o(T ). Specifically, by choosing η = Θ(T−a) and173

1− β2 = Θ(T−b), we obtain that174

1

T
E

T∑
t=1

‖∇f(wt)‖ = Õ
(
T

b
2
−1

+ T
−2a+3

2
b−1

+ T
a−1

+ T
−2a+1

2
b
+ T

b
4
− 1

2 + T
−a+3

4
b− 1

2 + T
1
2
a− 1

2 + T
−a+1

4
b

)
.
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By simple calculation, we obtain that the right-hand side of the above inequality is o(1) as T → ∞175

if and only if 0 < b
4 < a < 1 and 3b− 4a < 2. Moreover, the minimum of the right-hand side of the176

above inequality is Õ( 1

T
1
4
), which is achieved at a = 1

2 and b = 1. Such a minimum implies an upper177

bound of the iteration complexity which at most differs from the lower bound by logarithmic factors178

as solving Õ( 1

T
1
4
) = ε gives T = Õ( 1

ε4 ). In Theorem 2, we will further remove the logarithmic179

factor by giving a refined proof when a = 1
2 and b = 1 and close the gap between the upper and180

lower bounds.181

4.2 Proof Sketch of Theorem 1182

In this section, we demonstrate the proof idea of Theorem 1. Concretely, we sketch the proof by183

identifying two key challenges in the proof and provide our solutions respectively.184

Challenge I: Disentangle the stochasticity in momentum and adaptive learning rate. According185

to the standard descent lemma, we have that186

Ef(wt+1) = f(wt) + E
[
〈Gt,wt+1 −wt〉+

L

2
‖wt+1 −wt‖2

]
≤ Ef(wt) + E

[〈
Gt,−η

1
√
νt

�mt

〉]
︸ ︷︷ ︸

First Order

+
L

2
η2E

∥∥∥∥ 1
√
νt

�mt

∥∥∥∥2︸ ︷︷ ︸
Second Order

(3)

The first challenge arises from bounding the "First Order" term above. To faciliate the understanding187

of the difficulty, we compare the "First Order" term of Adam to the corresponding "First Order" term188

of SGD, i.e., −ηE〈Gt, gt〉. By directly applying E|Ftgt = Gt, we obtain that the "First-Order" term189

of SGD equals to −ηE‖Gt‖2〉. However, as for Adam, there are two folds of trouble: firstly, we190

do not know what E|Ft 1√
νt

�mt is, as the stochasticity in mt and νt entangles. Secondly, even191

without νt, it is unclear how EFtmt aligns with Gt given the existence of gt−1, · · · , g1 in mt.192

Solution to Challenge I. For i ∈ [1, t], we define a set of surrogate conditioner ν̃i
t , βi

2νt−i +193 ∑i−1
j=0 β

j
2(1 − β2)G

�2
t−i+1 + (1 − β2)σ

2, and ν̃0
t , νt. Note that ν̃i

t is measurable with respect to194

Ft−i+1. The key idea of our solution is the following peeling-off strategy: starting from E[〈Gt,
1√
νt
�195

mt〉], we replace νt = ν̃0
t by ν̃1

t (of course, such a replacement will bring a error term, which we196

temporily ignore and will consider it in the formal proof) and obtain E[〈Gt,
1√
ν̃1
t

� mt〉]. As197

mt = β1mt−1 + (1− β1)gt, we further have E[〈Gt,
1√
ν̃1
t

�mt〉] = E[〈Gt,
1√
ν̃1
t

� (1− β1)gt〉] +198

E[〈Gt −Gt−1,
1√
ν̃1
t

� β1mt−1〉] +E[〈Gt−1,
1√
ν̃1
t

� β1mt−1〉]. As ν̃1
t is measurable w.r.t. Ft, we199

can then disentangle the stochasticity in gt and νt, and the term E[〈Gt,
1√
ν̃1
t

� (1−β1)gt〉] equals to200

E[〈Gt,
1√
ν̃1
t

� (1− β1)Gt〉], which is desired. The term E[〈Gt −Gt−2,
1√
ν̃1
t

� β1mt−1〉] is small201

due to L-smooth condition. The term E[〈Gt−1,
1√
ν̃1
t

� β1mt−1〉] resembles E[〈Gt,
1√
νt

�mt〉],202

and we can apply the methodology recursively to get E[〈Gt−2,
1√
ν̃2
t

� β2
1mt−2〉], E[〈Gt−3,

1√
ν̃3
t

�203

β3
1mt−3〉], and so on. All in all, the above methodology can be summarized as the following lemma.204

Lemma 1. Let all conditions in Theorem 1 hold. Denote F i
t , E〈Gt−i,

1√
ν̃i
t

�mt−i〉. Set G0 , G1205

Then, ∀t ≥ 1 and i ∈ [0, t− 1],206

F i
t ≥β1F

i+1
t +

(1− β1)

2
E


∥∥∥∥∥∥ 1

4

√
ν̃i+1
t

�Gt−i

∥∥∥∥∥∥
2
− β1LE

‖wt−i −wt−i−1‖

∥∥∥∥∥∥ 1√
ν̃i+1
t

�mt−i−1

∥∥∥∥∥∥


−

2

√
1− β2

1− β1
σ + L2 η2(1− β1)

(1− β2)
1
2 (1− β2

1

β2
)βi

2

i

σ
d

E
∥∥∥∥ 1
√
νt−i

�mt−i

∥∥∥∥2 .
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The proof is deferred to Appendix C.1. We highlight here that despite the simple methodology207

above, the proof itself is highly non-trivial and technical. The core difficulty lies in handling the error208

introduced by approximating ν̃i
t with ν̃i+1

t , where we need to bound the gap both between gt−i and209

Gt−i and between Gt−i and Gt−i+1.210

Remark 1. Our surrogate conditioners ν̃i
t are novel. Previously, there are other surrogate condition-211

ers in Défossez et al. [10], Zou et al. [27] which help to disentangle the stochasticity in gt and νt.212

However, none of them can be applied in our setting because the bounded gradient assumption is213

required to use them, which is missed in our setting. Therefore, our surrogate conditioners may also214

shed light on the other analysis of Adam where no bounded gradient is assumed.215

Based on Lemma 1, we can estimate the "First-Order" term recursively. Combining the estimation of216

the "First-Order" term back to the descent lemma (Eq. (3)) and summing the descent lemma over t217

from 1 to T , we obtain218

T∑
t=1

(1− β1)η

2
E

[∥∥∥∥∥ 1
4
√

ν̃1
t

�Gt

∥∥∥∥∥
2]

≤ f(w1)− Ef(wT+1) +

d∑
l=1

C1

(
E ln

(
νT,l

ν0,l

)
− T lnβ2

)
. (4)

We then encounter the second challenge.219

Challenge II: Convert Eq. (4) to a bound of gradient norm. Although we have bounded the sum220

of E[‖ 1
4
√

ν̃1
t

�Gt‖2], we need to convert it into a bound of E[‖Gt‖2]. In existing works [27, 10, 14]221

which assumes bounded gradient, such a conversion is straightforward because (their version of) ν̃1
t222

is upper bounded. However, we do not assume bounded gradient and ν̃1
t can be aribitrarily large,223

making E[‖ 1
4
√

ν̃1
t

�Gt‖2] arbitrarily small than E[‖Gt‖2].224

Solution to Challenge II. As this part involves coordinate-wise analysis, we define gt,l, Gt,l, νt,l,225

and ν̃1
t,l respectively as the l-th coordinate of gt, Gt, νt, and ν̃1

t . To begin with, note that due to226

Cauchy’s inequality and Hölder’s inequality,227 (
E

T∑
t=1

‖Gt‖

)2

≤

(
T∑

t=1

E

[∥∥∥∥∥ 1
4
√

ν̃1
t

�Gt

∥∥∥∥∥
2])( T∑

t=1

E

[∥∥∥∥ 4

√
ν̃1
t

∥∥∥∥2
])

. (5)

Therefore, we only need to derive an upper bound of
∑T

t=1 E[‖
4
√
ν̃1
t ‖2], which is achieved by the228

following divide-and-conque methodology. Firstly, when |Gt,l| ≥ σ, we can show 2E|Ft |gt,l|2 ≥229

2|Gt,l|2 ≥ E|Ft |gt,l|2. Then, by the concavity of f(x) = x√
a+x

(a > 0) and through a massive230

calculation, we obtain that231

E

 |Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ

 ≥ 1

3(1− β2)
E(
√

νt,l + (1− β2)σ2−
√

β2(νt−1,l + (1− β2)σ2))1|Gt,l|≥σ,

and thus232

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

 ≥
T∑

t=1

1

3(1− β2)
E(
√
νt,l + (1− β2)σ2 −

√
β2(νt−1,l + (1− β2)σ2))1|Gt,l|≥σ.

Secondly, when |Gt,l| < σ, define {ν̄t,l}∞t=0 as ν̄0,l = ν0,l, ν̄t,l = ν̄t−1,l + |gt,l|21|Gt,l|<σ . One can233

easily observe that ν̄t,l ≤ νt,l, and thus234

T∑
t=1

E
(√

νt,l + (1− β2)σ2 −
√
β2(νt−1,l + (1− β2)σ2)

)
1|Gt,l|≥σ

≤
T∑

t=1

E
(√

ν̄t,l + (1− β2)σ2 −
√
β2(ν̄t−1,l + (1− β2)σ2)

)

=E
√

ν̄T,l + (1− β2)σ2 + (1−
√
β2)

T−1∑
t=1

E
√
ν̄t,l + (1− β2)σ2 − E

√
β2(ν̄0,l + (1− β2)σ2).
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Putting the above two estimations together, we derive that235

T∑
t=1

d∑
l=1

E
√
νt,l + (1− β2)σ2 ≤ 3(1 +

√
β2)

T∑
t=1

d∑
l=1

E

 |Gt,l|2√
ν̃1
t,l

+ T

d∑
l=1

√
ν0,l + (3− β2)σ2.

The above methodology can be summarized as the following lemma.236

Lemma 2. Let all conditions in Theorem 1 hold. Then,237

T∑
t=1

d∑
l=1

E
√
νt,l + (1− β2)σ2 ≤2T

d∑
l=1

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1 + 12C2.

Based on Lemma 2, we can derive the estimation of
∑T

t=1 E[‖
4
√
ν̃1
t ‖2] since ν̃1

t is close to νt. The238

proof is then completed by combining the estimation of
∑T

t=1 E[‖
4
√
ν̃1
t ‖2] and Eq. (5).239

5 Gap-closing upper bound on the iteration complexity of Adam240

In this section, based on a refined proof of Stage II of Theorem 1 (see Appendix C) under the specific241

case η = Θ(1/
√
T ) and β2 = 1−Θ(1/T ), we show that the logarithmic factor in Theorem 1 can be242

removed and the lower bound can be achieved. Specifically, we have the following theorem.243

Theorem 2. Let Assumption 1 and Assumption 2 hold. Then, select the hyperparameters of Adam as244

η = a√
T

, β2 = 1− b
T and β1 = cβ2, where a, b > 0 and 0 ≤ c < 1 are independent of T . Then, let245

wτ be the output of Adam in Algorithm 1, and we have246

E‖∇f(wτ )‖ ≤ 1
4
√
T

√√√√ 2√
b

(
D1 + 2D2 ln

(
2
√
b√
T
D1 +

4b

T
D2

2 +

d∑
l=1

√
ν0,l + 3bσ2

))

×

√√√√2
√
b√
T
D1 +

4b

T
D2

2 +

d∑
l=1

√
ν0,l + 3bσ2 +

1

T

(
D1 + 2D2 ln

(
2
√
b√
T
D1 +

4b

T
D2

2 +

d∑
l=1

√
ν0,l + 3bσ2

))
,

where247

D1 ,
4
√
b

a(1− c)
f(w1) +

d∑
l=1

2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 2

L2ca3d√
b(1− c)5σ

)
(− ln (ν0,l) + b) ,

D2 , d
2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 4

L2ca3d√
b(1− c)5σ

)
.

As a result, let A be Adam in Algorithm 1, we have Cε(A,∆, L, σ2) = O( 1
ε4 ).248

The proof of Theorem 2 is based on a refined solution of Challenge II in the proof of Theorem 1249

under the specific hyperparameter settings, and we defer the concrete proof to Appendix D. Below250

we discuss on Theorem 2, comparing it with pratice, with Theorem 1 and existing convergence rate251

of Adam, and with the convergence rate of AdaGrad.252

Alignment with the practical hyperparameter choice. The hyperparameter setting in Theorem253

2 indicates that to achieve the lower bound of iteration complexity, we need to select small η and254

close-to-1 β2, with less requirement over β1. This agrees with the hyperparameter setting in deep255

learning libaries, for example, η = 10−3, β2 = 0.999, and β1 = 0.9 in PyTorch.256

Comparison with Theorem 1 and existing works. To our best knowledge, Theorem 2 is the first to257

derive the iteration complexity O( 1
ε4 ). Previously, the state-of-art iteration complexity is O( log 1/ε

ε4 )258

[10] where they additionally assume bounded gradient. Theorem 2 is also tight than Theorem 1 (while259

Theorem 1 holds for more general hyperparameter settings). As discussed in Section 4.1, if applying260

the hyperparameter setting in Theorem 2 (i.e., η = a√
T

, β2 = 1− b
T and β1 = cβ2) to Theorem 1,261

we will obtain that E‖∇f(wτ )‖ ≤ O(poly(log T )/ 4
√
T ) and Cε(A,∆, L, σ2) = O( log 1/ε

ε4 ), which262
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is worse than the upper bound in Theorem 2 and the lower bound in Proposition 1 by a logarithmic263

factor.264

Comparison with AdaGrad. AdaGrad [12] is another popular adaptive optimizer. Under Assump-265

tions 1 amd 2, the state-of-art iteration complexity of AdaGrad is O( log 1/ε
ε4 ) [13], which is worse266

than Adam by a logarithmic factor. Here we show that such a gap may be not due to the limitation267

of analysis, and can be explained by analogizing AdaGrad to Adam without momentum as SGD268

with diminishing learning rate to SGD with constant learning rate. To start with, the update rule of269

AdaGrad is given as270

νt = νt−1 + g�2
t ,wt+1 = wt − η

1
√
νt

� gt. (6)

We first show that in Algorithm 1, if we allow the hyperparameters to be dynamical, i.e.,271

νt = β2,tνt−1 + (1− β2,t)g
�2
t ,mt = β1,tmt−1 + (1− β1,t)gt,wt+1 = wt − ηt

1√
νt

�mt, (7)

then Adam is equivalent to AdaGrad by setting ηt =
η√
t
, β1,t = 0, and β2,t = 1− 1

t . Specifically, by272

setting µt = tνt in Eq. (7), we have Eq. (7) is equivalent to with Eq. (6) (by replacing νt by µt in273

Eq. (6)). Comparing the above hyperparameter setting with that in Theorem 2, we see that the above274

hyperparameter setting can be obtained by changing T to t and setting c = 0 in Theorem 2. This275

is similar to the relationship between SGD with diminishing learning rate Θ(1/
√
t) and SGD with276

diminishing learning rate Θ(1/
√
T ). Moreover, the iteration complexity of SGD with diminishing277

learning rate Θ(1/
√
t) also has an additional logarithmic factor than SGD with constant learning rate,278

which may explain the gap between AdaGrad and Adam.279

6 Limitations280

Despite that our work provide the first result closing the upper bound and lower bound of the iteration281

complexity of Adam, there are several limitations listed as follows:282

Dependence over the dimension d. The bounds in Theorem 1 and Theorem 2 is monotonously283

increasing with respect to d. This is undesired since the upper bound of iteration complexity of SGD284

is invariant with respect to d. Nevertheless, removing such an dependence over d is technically hard285

since we need to deal with every coordinate separately due to coodinate-wise learning rate, while the286

descent lemma does not hold for a single coordinate but combines all coordinates together. To our287

best knowledge, all existing works on the convergene of Adam also suffers from the same problem.288

We leave removing the dependence over d as an important future work.289

No better result with momentum. It can be observed that in Theorem 1 and Theorem 2, the tightest290

bound is achieved when β1 = 0 (i.e., no momentum is applied). This contradicts with the common291

wisdom that momentum helps to accelerate. Although the benefit of momentum is not very clear for292

simple optimizer SGD with momentum, we view this as a limitation of our work and defer proving293

the benefit of momentum in Adam as a future work.294

7 Related works295

Section 3 has provided a detailed discussion over existing convergence analysis of Adam. In this296

section, we briefly review other related works. Adam is proposed with a convergence analysis in297

online optimization [16]. The proof, however, is latter shown to be flawed in Reddi et al. [20] as it298

requires the adaptive learning rate of Adam to be non-increasing. This motivates a line of works299

modifying Adam to ensure convergence. The modifications include enforcing the adaptive learning300

rate to be non-increasing [20, 5], imposing upper bound and lower bound of the adaptive learning301

rate [18], and using different approach to estimate second-order momentum [26, 7]. Recently, Chen302

et al. [6] discover a new optimizer Lion through Symbolic Discovery, which uses sign operation to303

replace the adaptive learning rate in Adam, achieving comparable performance of Adam with less304

memory costs.305
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A Related Works369

B Auxilliary Lemmas370

The following two lemmas are useful when bounding the second-order term.371

Lemma 3. Assume we have 0 < β2 < 1 and a sequence of real numbers (an)∞n=1. Let b0 > 0 and372

bn = β2bn−1 + (1− β2)a
2
n. Then, we have373

T∑
n=1

a2n
bn

≤ 1

1− β2

(
ln

(
bT
b0

)
− T lnβ2

)
.

Lemma 4. Assume we have 0 < β2
1 < β2 < 1 and a sequence of real numbers (an)∞n=1. Let b0 > 0,374

bn = β2bn−1 + (1− β2)a
2
n, c0 = 0, and cn = β1cn−1 + (1− β1)an. Then, we have375

T∑
n=1

|cn|2

bn
≤ (1− β1)

2

(1− β1√
β2
)2(1− β2)

(
ln

(
bT
b0

)
− T lnβ2

)
.

Proof. To begin with,376

|cn|√
bn

≤ (1− β1)

n∑
i=1

βn−i
1 |ai|√

bn
≤ (1− β1)

n∑
i=1

βn−i
1 |ai|√

bn
≤ (1− β1)

n∑
i=1

(
β1√
β2

)n−i |ai|√
bi
.

Applying Cauchy’s inequality, we obtain377

|cn|2

bn
≤ (1− β1)

2

(
n∑

i=1

(
β1√
β2

)n−i |ai|√
bi

)2

≤(1− β1)
2

(
n∑

i=1

(
β1√
β2

)n−i
)(

n∑
i=1

(
β1√
β2

)n−i |ai|2

bi

)
≤ (1− β1)

2

1− β1√
β2

(
n∑

i=1

(
β1√
β2

)n−i |ai|2

bi

)
.

Summing the above inequality over n from 1 to T then leads to378

T∑
n=1

|cn|2

bn
≤ (1− β1)

2

1− β1√
β2

T∑
n=1

(
n∑

i=1

(
β1√
β2

)n−i |ai|2

bi

)
=

(1− β1)
2

1− β1√
β2

T∑
n=1

|an|2

bn

(
T−n∑
i=0

(
β1√
β2

)i
)

≤ (1− β1)
2

(1− β1√
β2
)2

T∑
n=1

|an|2

bn
≤ (1− β1)

2

(1− β1√
β2
)2(1− β2)

(
ln

(
bT
b0

)
− T lnβ2

)
.

The proof is completed.379

The following lemma bound the update norm of Adam.380

Lemma 5. We have ∀t ≥ 1, |wt+1,l −wt,l| ≤ η 1−β1

√
1−β2

√
1− β2

1
β2

.381

Proof. We have that382

|wt+1,l −wt,l| = η

∣∣∣∣mt,l√
νt,l

∣∣∣∣ ≤ η

∑t−1
i=0(1− β1)β

i
1|gt−i,l|√∑t−1

i=0(1− β2)βi
2|gt−i,l|2 + βt

2ν0,l

≤η
1− β1√
1− β2

√∑t−1
i=0 β

i
2|gt−i,l|2

√∑t−1
i=0

β2i
1

βi
2√∑t−1

i=0 β
i
2|gt−i,l|2

≤ η
1− β1

√
1− β2

√
1− β2

1

β2

.

Here the second inequality is due to Cauchy’s inequality. The proof is completed.383
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C Proof of Theorem 1384

C.1 Proof of Lemma 1 and Lemma 2385

Proof of Lemma 1. ∀i ∈ [0, t− 1], we have the following decomposition:386

F i
t = E

〈Gt−i,
1√
ν̃i+1
t

�mt−i

〉
︸ ︷︷ ︸

(i)it

+E

〈Gt−i,

 1√
ν̃i
t

− 1√
ν̃i+1
t

�mt−i

〉
︸ ︷︷ ︸

(ii)it

.

As for (i)it, according to the definition of mt−i, it can be lower bounded as387

E

〈
Gt−i,

1√
ν̃i+1
t

� mt−i

〉 = E

〈
Gt−i, (1 − β1)

1√
ν̃i+1
t

� gt−i

〉 + E

〈
Gt−i, β1

1√
ν̃i+1
t

� mt−i−1

〉

=E

(1 − β1)

∥∥∥∥∥∥∥
1

4
√

ν̃i+1
t

� Gt−i

∥∥∥∥∥∥∥
2 + E

〈
Gt−i−1, β1

1√
ν̃i+1
t

� mt−i−1

〉 + E

〈
Gt−i − Gt−i−1, β1

1√
ν̃i+1
t

� mt−i−1

〉

≥E

(1 − β1)

∥∥∥∥∥∥∥
1

4
√

ν̃i+1
t

� Gt−i

∥∥∥∥∥∥∥
2 + E

〈
Gt−i−1, β1

1√
ν̃i+1
t

� mt−i−1

〉 − β1LE

‖wt−i − wt−i−1‖

∥∥∥∥∥∥∥
1√
ν̃i+1
t

� mt−i−1

∥∥∥∥∥∥∥
 ,

where the last inequality is due to Assumption 1. As for (ii)it, if i = 0, we have388

∣∣∣∣∣E|Ft

[〈
Gt,

(
1√
ν̃0
t

− 1√
ν̃1
t

)
�mt

〉]∣∣∣∣∣ ≤
d∑

l=1

|Gt,l|E|Ft

|mt,l|

∣∣∣∣∣∣ 1
√
νt,l

− 1√
ν̃1
t,l

∣∣∣∣∣∣


=

d∑
l=1

|Gt,l|‖E|Ft

|mt,l|
(1− β2)

∣∣|Gt,l|2 − |gt,l|2
∣∣+ (1− β2)σ

2√
νt,lν̃1

t,l(
√
νt,l +

√
ν̃1
t,l)


(∗)
≤

d∑
l=1

|Gt,l|E|Ft

||mt,l|
(1− β2)|Gt,l − gt,l|(|Gt,l|+ |gt,l|) + (1− β2)σ

2√
νt,lν̃i

t,l(
√
νt,l +

√
ν̃1
t,l)


≤

d∑
l=1

|Gt,l|E|Ft

|mt,l|
√
1− β2|Gt,l − gt,l|+

√
1− β2σ√

νt,lν̃1
t,l


(?)

≤
d∑

l=1

√
1− β2(1− β1)|Gt,l|2

4σν̃1
t,l

(
E|Ft |Gt,l − gt,l|2 + σ2

)
+

d∑
l=1

2

√
1− β2

1− β1
E|Ftσ

|mt,l|2

νt,l

≤
d∑

l=1

(1− β1)|Gt,l|2

2
√
ν̃1
t,l

+

d∑
l=1

2

√
1− β2

1− β1
E|Ftσ

|mt,l|2

νt,l
,

where inequality (∗) is due to the triangle inequality, and inequality (?) is due to the mean-value389

inequality, and the last inequality is due to Assumption 2.390
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If i > 0, then391 ∣∣∣∣∣∣E|Ft−i

〈Gt−i,

 1√
ν̃i
t

− 1√
ν̃i+1
t

�mt−i

〉∣∣∣∣∣∣
≤

d∑
l=1

|Gt−i,l|E|Ft−i

|mt−i,l|

∣∣∣∣∣∣ 1√
ν̃i
t,l

− 1√
ν̃i+1
t,l

∣∣∣∣∣∣


≤
d∑

l=1

|Gt−i,l|E|Ft−i

|mt−i,l|
(1− β2)β

i
2

∣∣|Gt−i,l|2 − |gt−i,l|2
∣∣+∑i−1

j=0 β
j
2(1− β2)

∣∣|Gt−i,l|2 − |Gt−i+1,l|2
∣∣√

ν̃i
t,lν̃

i+1
t,l

(√
ν̃i
t,l +

√
ν̃i+1
t,l ]

)


≤
d∑

l=1

|Gt−i,l|E|Ft−i

|mt−i,l|
(1− β2)β

i
2|Gt−i,l − gt−i,l|(|Gt−i,l|+ |gt−i,l|)√
ν̃i
t,lν̃

i+1
t,l

(√
ν̃i
t,l +

√
ν̃1
t,l

)


+

d∑
l=1

|Gt−i,l|E|Ft−i

|mt−i,l|
∑i−1

j=0 β
j
2(1− β2)||Gt−i,l| − |Gt−i+1,l||(|Gt−i,l|+ |Gt−i+1,l|)√

ν̃i
t,lν̃

i+1
t,l

(√
ν̃i
t,l +

√
ν̃1
t,l

)


Applying Cauchy’s inequality, we obtain the RHS of the above inequality is smaller than392

d∑
l=1

|Gt−i,l|E|Ft−i

|mt−i,l|
√
1− β2

√
βi
2|Gt−i,l − gt−i,l|√
ν̃i
t,lν̃

i+1
t,l


+

d∑
l=1

|Gt−i,l|E|Ft−i

|mt−i,l|

√∑i−1
j=0 β

j
2(1− β2)|Gt−i,l −Gt−i+1,l|2√

ν̃i
t,lν̃

i+1
t,l


(?)

≤
d∑

l=1

√
1− β2(1− β1)|Gt−i,l|2

4σν̃i+1
t,l

(
E|Ft |Gt,l − gt,l|2

)
+

d∑
l=1

√
1− β2

(1− β1)
βi
2E|Ft−iσ

|mt−i,l|2

ν̃i
t,l

+

d∑
l=1

√
1− β2σ(1− β1)|Gt−i,l|2

4ν̃i+1
t,l

+

d∑
l=1

1

(1− β1)
E|Ft−i

1

σ

|mt−i,l|2

ν̃i
t,l

(
i−1∑
j=0

βj
2

√
1− β2|Gt−i,l −Gt−i+1,l|2

)

≤
d∑

l=1

(1− β1)|Gt−i,l|2

2
√

ν̃i+1
t,l

+
d∑

l=1

√
1− β2

1− β1
E|Ft−iσβi

2
|mt−i,l|2

νt,l
+ L2 η

2√1− β2

(1− β1)βi
2

i

σ
E|Ft−i

(
d∑

l=1

|mt−i,l|2

νt−i,l

)2

(◦)
≤

d∑
l=1

(1− β1)|Gt−i,l|2

2
√

ν̃i+1
t,l

+

d∑
l=1

√
1− β2

(1− β1)
E|Ft−iσ

|mt−i,l|2

νt−i,l
+ L2 η2(1− β1)

(1− β2)
1
2 (1− β2

1
β2

)βi
2

i

σ
dE|Ft−i

(
d∑

l=1

|mt−i,l|2

νt−i,l

)
.

Here inequality (?) is due to the mean-value inequality, and inequality (◦) is due to Lemma 5. Putting393

the estimation of (i)it and (ii)it together completes the proof.394

Proof of Lemma 2. To begin with, we have that395

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ

 ≤
T∑

t=1

E

 |Gt,l|2√
ν̃1
t,l

 . (8)

On the other hand, we have that396

|Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ ≥
2
3 |Gt,l|2 + 1

3σ
2√

ν̃1
t,l

1|Gt,l|≥σ ≥
1
3E

|Ft |gt,l|2 + 1−β2

3 σ2√
ν̃1
t,l

1|Gt,l|≥σ

≥
1
3E

|Ft |gt,l|2 + 1−β2

3 σ2√
β2νt−1,l + (1− β2)E|Ft |gt,l|2 + (1− β2)σ2

1|Gt,l|≥σ

≥E|Ft

1
3 |gt,l|

2 + 1−β2

3 σ2√
β2νt−1,l + (1− β2)|gt,l|2 + (1− β2)σ2

1|Gt,l|≥σ.
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Here the last inequality is due to the concavity of x√
x+a

with respect to x. As a conclusion,397

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ

 ≥
T∑

t=1

E


(

1
3 |gt,l|

2 + 1−β2

3 σ2
)

√
β2νt−1,l + (1− β2)|gt,l|2 + (1− β2)σ2

1|Gt,l|≥σ


≥ 1

3(1− β2)

T∑
t=1

E
(√

νt,l + (1− β2)σ2 −
√
β2(νt−1,l + (1− β2)σ2)

)
1|Gt,l|≥σ.

On the other hand, as stated in Section 4.2, we define {ν̄t,l}∞t=0 as ν̄0,l = ν0,l, ν̄t,l = ν̄t−1,l +398

|gt,l|21|Gt,l|<σ . One can easily observe that ν̄t,l ≤ νt,l, and thus399

T∑
t=1

E
(√

νt,l + (1− β2)σ2 −
√
β2(νt−1,l + (1− β2)σ2)

)
1|Gt,l|<σ

=
T∑

t=1

E
(√

β2νt−1,l + (1− β2)|gt,l|2 + (1− β2)σ2 −
√

β2(νt−1,l + (1− β2)σ2)

)
1|Gt,l|<σ

≤
T∑

t=1

E
(√

β2ν̄t−1,l + (1− β2)|gt,l|2 + (1− β2)σ2 −
√

β2(ν̄t−1,l + (1− β2)σ2)

)
1|Gt,l|<σ

≤
T∑

t=1

E(
√
β2ν̄t−1,l + (1− β2)|gt,l|21|Gt,l|<σ + (1− β2)σ2 −

√
β2(ν̄t−1,l + (1− β2)σ2))

=

T∑
t=1

E(
√
ν̄t,l + (1− β2)σ2 −

√
β2(ν̄t−1,l + (1− β2)σ2))

=E
√

ν̄T,l + (1− β2)σ2 + (1−
√
β2)

T−1∑
t=1

E
√
ν̄t,l + (1− β2)σ2 − E

√
β2(ν̄0,l + (1− β2)σ2).

All in all, summing the above two inequalities together, we obtain that400

E
√

νT,l + (1 − β2)σ2 + (1 −
√

β2)

T−1∑
t=1

E
√

νt,l + (1 − β2)σ2 − E
√

β2(ν0,l + (1 − β2)σ2)

=

T∑
t=1

E(
√

νt,l + (1 − β2)σ2 −
√

β2(νt−1,l + (1 − β2)σ2))

≤
T∑

t=1

E(
√

νt,l + (1 − β2)σ2 −
√

β2(νt−1,l + (1 − β2)σ2))1|Gt,l|≥σ

+
T∑

t=1

E(
√

νt,l + (1 − β2)σ2 −
√

β2(νt−1,l + (1 − β2)σ2))1|Gt,l|<σ

=3(1 − β2)
T∑

t=1

E

 |Gt,l|2√
ν̃1
t,l

 + E
√

ν̄T,l + (1 − β2)σ2 + (1 −
√

β2)

T−1∑
t=1

E
√

ν̄t,l + (1 − β2)σ2 − E
√

β2(ν̄0,l + (1 − β2)σ2).

As E
√

νT,l + (1− β2)σ2 ≥ E
√

ν̄T,l + (1− β2)σ2 and E
√

ν0,l + (1− β2)σ2 =401

E
√
ν̄0,l + (1− β2)σ2, we obtain that402

(1−
√

β2)

T∑
t=1

E
√

νt,l + (1− β2)σ2 ≤3(1− β2)

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

+ (1−
√

β2)

T∑
t=1

E
√

ν̄t,l + (1− β2)σ2

≤3(1− β2)

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

+ (1−
√

β2)

T∑
t=1

√
Eν̄t,l + (1− β2)σ2

≤3(1− β2)

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

+ (1−
√

β2)

T∑
t=1

√
ν̄0,l + (3− β2)σ2.

(9)
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Leveraging Eq. (4), we then obtain that403

T∑
t=1

d∑
l=1

E
√

νt,l + (1− β2)σ2

≤3(1 +
√

β2)

T∑
t=1

E

 |Gt,l|2√
ν̃1
t,l

+

T∑
t=1

d∑
l=1

√
ν0,l + (3− β2)σ2

≤ 12

(1− β1)η

(
f(w1) + 2

d∑
l=1

C1

(
E ln

(√
νT,l + (1− β2)σ2

ν0,l

)
− T lnβ2

))
+ T

d∑
l=1

√
ν0,l + (3− β2)σ2

≤ 12

(1− β1)η

(
f(w1) + 2

d∑
l=1

C1

(
E ln

(∑T
t=1

√
νt,l + (1− β2)σ2

ν0,l

)
− T lnβ2

))
+ T

d∑
l=1

√
ν0,l + (3− β2)σ2

≤ 12

(1− β1)η

(
f(w1) + 2

d∑
l=1

C1

(
ln

(
E
∑T

t=1

∑d
m=1

√
νt,m + (1− β2)σ2

ν0,l

)
− T lnβ2

))
+ T

d∑
l=1

√
ν0,l + (3− β2)σ2,

where in the last inequality we use the concavity of h(x) = lnx. Solving the above inequality with404

respect to
∑T

t=1

∑d
l=1 E

√
νt,l + (1− β2)σ2 then gives405

T∑
t=1

d∑
l=1

E
√
νt,l + (1− β2)σ2 ≤2T

d∑
l=1

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1

+
24

(1− β1)η

(
f(w1) + 2

d∑
l=1

C1

(
ln

(
1

ν0,l

)
− T lnβ2

))
.

The proof is then completed.406

407

C.2 Proof of Theorem 1408

Proof of Theorem 1. As stated in Section 4.2, the proof involves solving two key challenges. We409

respectively divide the proof into two stages according to the challenges.410

Stage I. Based on Lemma 1, we can estimate E〈Gt,
1√
ν̃t

�mt〉 = F 0
t recursively. Specifically, we411

have412

F 0
t ≥

t−1∑
i=0

βi
1

 (1− β1)

2
E


∥∥∥∥∥∥ 1

4

√
ν̃i+1
t

�Gt−i

∥∥∥∥∥∥
2
− β1E

‖wt−i −wt−i−1‖

∥∥∥∥∥∥ 1√
ν̃i+1
t

�mt−i−1

∥∥∥∥∥∥


−

2

√
1− β2

1− β1
σ + L2 η2(1− β1)

(1− β2)
1
2 (1− β2

1

β2
)βi

2

i

σ
d

E
∥∥∥∥ 1
√
νt−i

�mt−i

∥∥∥∥2


≥ (1− β1)

2
E

∥∥∥∥∥ 1
4
√
ν̃1
t

�Gt

∥∥∥∥∥
2
−

t−1∑
i=0

βi
1

β1E

‖wt−i −wt−i−1‖

∥∥∥∥∥∥ 1√
ν̃i+1
t

�mt−i−1

∥∥∥∥∥∥


+

2

√
1− β2

1− β1
σ + L2 η2(1− β1)

(1− β2)
1
2 (1− β2

1

β2
)βi

2

i

σ
d

E
∥∥∥∥ 1
√
νt−i

�mt−i

∥∥∥∥2

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Applying the above inequality back to Eq. (3) then gives413

Ef(wt+1)

≤Ef(wt)−
(1− β1)η

2
E

∥∥∥∥∥ 1
4
√
ν̃1
t

�Gt

∥∥∥∥∥
2
+

L

2
η2E

∥∥∥∥ 1
√
νt

�mt

∥∥∥∥2 + η

t−1∑
i=0

βi
1 (β1E [‖wt−i −wt−i−1‖

×

∥∥∥∥∥∥ 1√
ν̃i+1
t

�mt−i−1

∥∥∥∥∥∥
+

2

√
1− β2

1− β1
σ + L2 η2(1− β1)

(1− β2)
1
2 (1− β2

1

β2
)βi

2

i

σ
d

E
∥∥∥∥ 1
√
νt−i

�mt−i

∥∥∥∥2
 .

Summing the above inequality with respect to t then gives414

Ef(wT+1)

≤f(w1)−
T∑

t=1

(1− β1)η

2
E

[∥∥∥∥∥ 1√
ν̃1
t

�Gt

∥∥∥∥∥
2]

+

(
L

2
η2 + 2

√
1− β2

(1− β1)2
ησ +

η2β1√
β2(1− β1√

β2
)

+ L2 β1η
3(1− β1)

β2(1− β2)
1
2 (1− β2

1
β2

)(1− β1
β2

)2

d

σ

 T∑
t=1

E
∥∥∥∥ 1√

νt
�mt

∥∥∥∥2 .
Here the inequality is due to415

2

√
1− β2

1− β1
η

T∑
t=1

t−1∑
i=0

βi
1Eσ

∥∥∥∥ 1
√
νt−i

�mt−i

∥∥∥∥2 =2

√
1− β2

1− β1
ησ

T∑
i=1

T∑
t=i

βt−i
1 E

∥∥∥∥ 1
√
νt

�mt

∥∥∥∥2

≤2

√
1− β2

(1− β1)2
ησ

T∑
i=1

E
∥∥∥∥ 1
√
νi

�mi

∥∥∥∥2 ,
416

η

T∑
t=1

t−1∑
i=0

βi+1
1 E

‖wt−i −wt−i−1‖

∥∥∥∥∥∥ 1√
ν̃i+1
t

�mt−i−1

∥∥∥∥∥∥


≤η

T∑
t=1

t−1∑
i=0

βi+1
1√
βi+1
2

E
[
‖wt−i −wt−i−1‖

∥∥∥∥ 1
√
νt−i−1

�mt−i−1

∥∥∥∥]

=η2
T∑

t=1

t−1∑
i=0

βi+1
1√
βi+1
2

E

[∥∥∥∥ 1
√
νt−i−1

�mt−i−1

∥∥∥∥2
]
= η2

T−1∑
i=0

T∑
t=i+1

βt−i
1√
βt−i
2

E

[∥∥∥∥ 1
√
νi

�mi

∥∥∥∥2
]

≤ η2β1√
β2(1− β1√

β2
)

T−1∑
i=0

E

[∥∥∥∥ 1
√
νi

�mi

∥∥∥∥2
]
=

η2β1√
β2(1− β1√

β2
)

T−1∑
i=1

E

[∥∥∥∥ 1
√
νi

�mi

∥∥∥∥2
]
,

and417

L2 η3(1− β1)

(1− β2)
1
2 (1− β2

1
β2

)

d

σ

T∑
t=1

t−1∑
i=0

βi
1

βi
2

iE
∥∥∥∥ 1
√
νt−i

�mt−i

∥∥∥∥2

=L2 η3(1− β1)

(1− β2)
1
2 (1− β2

1
β2

)

d

σ

T∑
i=1

T∑
t=i

βt−i
1

βt−i
2

(t− i)E
∥∥∥∥ 1√

νi
�mi

∥∥∥∥2 ≤ L2 β1η
3(1− β1)

β2(1− β2)
1
2 (1− β2

1
β2

)(1− β1
β2

)2

d

σ

T∑
i=1

E
∥∥∥∥ 1√

νi
�mi

∥∥∥∥2 .
Applying Lemma 4, we obtain that418

Ef(wT+1)

≤f(w1) +

d∑
l=1

L

2
η2 + 2

√
1− β2

(1− β1)2
ησ +

η2β1√
β2(1− β1√

β2
)
+ L2 β1η

3(1− β1)

β2(1− β2)
1
2 (1− β2

1
β2

)(1− β1
β2

)2

d

σ

(1− β1)
2

(1− β1√
β2

)2

 1

1− β2

×
(
E ln

(
νT,l

ν0,l

)
− T lnβ2

)
−

T∑
t=1

(1− β1)η

2
E

[∥∥∥∥∥ 1
4
√

ν̃1
t

�Gt

∥∥∥∥∥
2]

.
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The proof of Stage I is completed.419

Stage II. According to Cauchy’s inequality, we have420 (
E

T∑
t=1

‖Gt‖1

)2

≤

 T∑
t=1

E

∥∥∥∥∥ 1
4
√
ν̃1
t

�Gt

∥∥∥∥∥
2
( T∑

t=1

E

[∥∥∥∥ 4

√
ν̃1
t

∥∥∥∥2
])

. (10)

Meanwhile, by Lemma 2, we have421

T∑
t=1

E

[∥∥∥∥ 4

√
ν̃1
t

∥∥∥∥2
]
=E

[
T∑

t=1

d∑
l=1

√
β2νt−1,l + (1− β2)|Gt,l|2 + (1− β2)σ2

]

≤E

[
T∑

t=1

d∑
l=1

(√
β2νt−1,l + (1− β2)σ2 +

√
1− β2|Gt,l|

)]

=E

[
T∑

t=1

d∑
l=1

√
β2νt−1,l + (1− β2)σ2 +

T∑
t=1

√
1− β2‖Gt‖1

]

≤E

[
T∑

t=1

√
1− β2‖Gt‖1

]
+ 2T

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1

+
24

(1− β1)η

(
f(w1) + 2

d∑
l=1

C1

(
ln

(
1

ν0,l

)
− T lnβ2

))
.

Combining the above inequality and Eq. (10) gives422 (
E

T∑
t=1

‖Gt‖1

)2

≤ 2

(1− β1)η

(
f(w1) +

d∑
l=1

C1

(
E ln

(
νT,l

ν0,l

)
− T lnβ2

))

×

(
E

[
T∑

t=1

√
1− β2‖Gt‖1

]
+ 2T

√
ν0,l + (3− β2)σ2 + 4dC1 ln dC1

+
24

(1− β1)η

(
f(w1) + 2

d∑
l=1

C1

(
ln

(
1

ν0,l

)
− T lnβ2

)))
.

Solving the above quadratic inequality with respect to E
∑T

t=1 ‖Gt‖1 then completes the proof.423

424

D Proof of Theorem 2425

Proof. According to Stage I in the proof of Theorem 1, we obtain426

Ef(wT+1)

≤f(w1) +

d∑
l=1

L

2
η2 + 2

√
1− β2

(1− β1)2
ησ +

η2β1√
β2(1− β1√

β2
)
+ L2 β1η

3(1− β1)

β2(1− β2)
1
2 (1− β2

1
β2

)(1− β1
β2

)2

d

σ

(1− β1)
2

(1− β1√
β2

)2

 1

1− β2

× E
(
ln

(
νT,l

ν0,l

)
− T lnβ2

)
−

T∑
t=1

(1− β1)η

2
E

[∥∥∥∥∥ 1
4
√

ν̃1
t

�Gt

∥∥∥∥∥
2]

.

Applying the definition of η, β1, and β2, we obtain that427

T∑
t=1

E

∥∥∥∥∥ 1
4
√
ν̃1
t

�Gt

∥∥∥∥∥
2
 ≤ 2

√
T√
b

(
D1 +

D2

d

d∑
l=1

E lnνT,l

)
. (11)
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Meanshile, we have that428

|Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ ≥
1
2E

|Ft |gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ

=
1
2E

|Ft |gt,l|2√
β2νt−1,l + (1− β2)E|Ft |gt,l|2 + (1− β2)σ2

1|Gt,l|≥σ

≥1

2
E|Ft

|gt,l|2√
β2νt−1,l + (1− β2)|gt,l|2 + (1− β2)σ2

1|Gt,l|≥σ

≥ 1

2
√
1− β2

E|Ft
|gt,l|2√

ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
1|Gt,l|≥σ,

where the last inequality is due to that429

β2νt−1,l + (1− β2)|gt,l|2 = (1− β2)
t∑

s=1

βt−s
2 |gs,l|2 + βt

2ν0,l

≤(1− β2)

T∑
s=1

|gs,l|2 + ν0,l. (12)

Furthermore, we have430

σ2 +
ν0,l

1−β2√
ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
+

T∑
t=1

E
|gt,l|2√

ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
1|Gt,l|<σ

≤
σ2 +

ν0,l

1−β2√
ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
+

T∑
t=1

E
|gt,l|2√

ν0,l

1−β2
+
∑T

s=1 |gs,l|21|Gs,l|<σ + σ2
1|Gt,l|<σ

=E

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|21|Gs,l|<σ + σ2 ≤

√√√√ ν0,l

1− β2
+ E

T∑
s=1

|gs,l|21|Gs,l|<σ + σ2

≤
√

ν0,l

1− β2
+ 2σ2T + σ2.

Conclusively, we obtain431

E

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|2 + σ2

=
σ2 +

ν0,l

1−β2√
ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
+

T∑
t=1

E
|gt,l|2√

ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
1|Gt,l|<σ

+

T∑
t=1

E
|gt,l|2√

ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2
1|Gt,l|≥σ

≤
√

ν0,l

1− β2
+ 2σ2T + σ2 + 2

√
1− β2

T∑
t=1

|Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ.
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Summing the above inequality with respect to l then gives432

d∑
l=1

E

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|2 + σ2

≤
d∑

l=1

√
ν0,l

1− β2
+ 2σ2T + σ2 + 2

√
1− β2

d∑
l=1

T∑
t=1

|Gt,l|2√
ν̃1
t,l

1|Gt,l|≥σ

≤
d∑

l=1

√
ν0,l

1− β2
+ 2σ2T + σ2

+
4
√
b

a(1− c)
f(w1) +

d∑
l=1

2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 2

L2ca3d√
b(1− c)5σ

)(
E ln

(
νT,l

ν0,l

)
+ b

)

=
d∑

l=1

√
ν0,l

1− β2
+ 2σ2T + σ2 +

d∑
l=1

2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 4

L2ca3d√
b(1− c)5σ

)
E ln

(√
νT,l

)
+

4
√
b

a(1− c)
f(w1) +

d∑
l=1

2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 2

L2ca3d√
b(1− c)5σ

)
(− ln (ν0,l) + b)

≤
d∑

l=1

√
ν0,l

1− β2
+ 2σ2T + σ2

+ d
2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 4

L2ca3d√
b(1− c)5σ

)
E ln

 d∑
l=1

√
1− β2

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|2 + σ2


+

4
√
b

a(1− c)
f(w1) +

d∑
l=1

2

ab
√
b

(
La2 + 4

a
√
bσ

(1− c)2
+ 2

a2c

1− c
+ 2

L2ca3d√
b(1− c)5σ

)
(− ln (ν0,l) + b)

≤
d∑

l=1

√
ν0,l

1− β2
+ 3σ2T +D1 +D2 ln

E
d∑

l=1

√
1− β2

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|2 + σ2

 ,

where the second inequality is due to Eq. (11), the second-to-last inequality is due to Eq. (12),433

and the last inequality is due to Jensen’s inequality. Solving the above ineqaulity with respect to434
√
1− β2

∑d
l=1 E

√
ν0,l

1−β2
+
∑T

s=1 |gs,l|2 + σ2 then gives435

√
1− β2

d∑
l=1

E

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|2 + σ2 ≤2
√
1− β2D1 + 4

√
1− β2D2 ln(1 +

√
1− β2D2)

+

d∑
l=1

√
ν0,l + 3bσ2.

Therefore, by Cauchy’s inequality, we have436

E

[
T∑

t=1

‖Gt‖1

]2
≤

 T∑
t=1

E

∥∥∥∥∥ 1
4
√
ν̃1
t

�Gt

∥∥∥∥∥
2
( T∑

t=1

d∑
l=1

E
√

ν̃1
t,l

)
.
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Since437

T∑
t=1

d∑
l=1

√
ν̃1
t,l ≤

T∑
t=1

d∑
l=1

(√
β2νt−1,l + (1− β2)σ2 +

√
(1− β2)|Gt,l|

)

≤T

d∑
l=1

√
1− β2

√√√√ ν0,l

1− β2
+

T∑
s=1

|gs,l|2 + σ2 +

T∑
t=1

d∑
l=1

√
(1− β2)|Gt,l|

≤T

(
2
√
1− β2D1 + 4

√
1− β2D2 ln(1 +

√
1− β2D2) +

d∑
l=1

√
ν0,l + 3bσ2

)
+

T∑
t=1

√
(1− β2)‖Gt‖1,

we have438

E

[
T∑

t=1

‖Gt‖1

]2

≤

(
T

(
2
√

1− β2D1 + 4
√

1− β2D2 ln(1 +
√

1− β2D2) +

d∑
l=1

√
ν0,l + 3bσ2

)
+

T∑
t=1

√
(1− β2)E‖Gt‖1

)

× 2
√
T√
b

(
D1 +

D2

d

d∑
l=1

E lnνT,l

)
.

Solving the above inequality with respect to
∑T

t=1 E ‖Gt‖1 completes the proof.439
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