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Abstract

Recently, Arjevani et al. [1] establish a lower bound of iteration complexity for
the first-order optimization under an L-smooth condition and a bounded noise
variance assumption. However, a thorough review of existing literature on Adam’s
convergence reveals a noticeable gap: none of them meet the above lower bound. In
this paper, we close the gap by deriving a new convergence guarantee of Adam, with
only an L-smooth condition and a bounded noise variance assumption. Our results
remain valid across a broad spectrum of hyperparameters. Especially with properly
chosen hyperparameters, we derive an upper bound of iteration complexity of
Adam and show that it meets the lower bound for first-order optimizers. To the best
of our knowledge, this is the first to establish such a tight upper bound for Adam’s
convergence. Our proof utilizes novel techniques to handle the entanglement
between momentum and adaptive learning rate and to convert the first-order term in
the Descent Lemma to the gradient norm, which may be of independent interest.

1 Introduction

First-order optimizers, also known as gradient-based methods, make use of gradient (first-order
derivative) information to find the minimum of a function. They have become a cornerstone of
many machine learning algorithms due to the efficiency as only gradient informaiton is required, and
the flexibility as gradients can be easily computed for any function represented as directed acyclic
computational graph via auto-differentiation [2, 25].

Therefore, it is fundamental to theoretically understand the properties of these first-order methods.
Recently, Arjevani et al. [1] establish a lower bound on the iteration complexity of stochastic first-
order methods. Formally, for a well-studied setting where the objective is L-smooth and a stochastic
oracle can query the gradient unbiasly with bounded variance (see Assumption 1 and 2), any stochastic
first-order algorithm requires at least ε−4 queries (in the worst case) to find an ε-stationary point, i.e.,
a point with gradient norm at most ε. Arjevani et al. [1] further show that the above lower bound is
tight as it matches the existing upper bound of iteration complexity of SGD [15].

On the other hand, among first-order optimizers, Adam [20] becomes dominant in training state-
of-the-art machine learning models [3, 18, 4, 11]. Compared to vanilla stochastic gradient descent
(SGD), Adam consists of two more key components: (i) momentum to accumulate historical gradient
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information and (ii) adaptive learning rate to rectify coordinate-wise step sizes. The psedo-code
of Adam is given as Algorithm 1. While the sophisticated design of Adam enables its empirical
superiority, it brings great challenges for the theoretical analysis. After examining a series of
theoretical works on the upper bound of iteration complexity of Adam [33, 9, 10, 36, 16, 27, 34], we
find that none of them match the lower bound for first-order optimizers: they not only consume more
queries than the lower bound to reach ε-stationary iterations but also requires additional assumptions
(see Section 3 for a detailed discussion).

This theoretical mismatch becomes even more unnatural given the great empirical advantage of Adam
over SGD, which incites us to think:

Is the gap between the upper and lower bounds for Adam a result of the inherent complexity induced
by Adam’s design, or could it be attributed to the proof techniques not being sharp enough?

This paper answers the above question, validating the latter hypothesis, by establishing a new upper
bound on iteration complexity of Adam for a wide range of hyperparameters that cover typical
choices. Specifically, our contribution can be summarized as follows:

• We examine existing works that analyze the iteration complexity of Adam, and find that
none of them meets the lower bound of first-order optimization algorithms;

• We derive a new convergence guarantee of Adam with only assuming L-smooth condition
and bounded variance assumption (Theorem 1), which holds for a wide range of hyperpa-
rameters covering typical choices;

• With chosen hyperparameters, we further tighten Theorem 1 and show that the upper bound
on the iteration complexity of Adam meets the lower bound, closing the gap (Theorem 2).
Our upper bound is tighter than existing results by a logarithmic factor, in spite of weaker
assumption.

To the best of our knowledge, this work provides the first upper bound on the iteration complexity
of Adam without additional assumptions other than L-smooth condition and bounded variance
assumption. It is also the first upper bound matching the lower bound of first-order optimizers.

Organization of this paper. The rest of the paper is organized as follows: in Section 2, we first
present the notations and settup of analysis in this paper ; in Section 3, we revisit the existing works
on the iteration complexity of Adam; in Section 4, we present a convergence analysis of Adam
with general hyperparameters (Theorem 1); in Section 5, we tighten Theorem 1 with a chosen
hyperparameter, and derive an upper bound of Adam’s iteration complexity which meets the lower
bound; in Section 6, we discuss the limitation of our results.

2 Preliminary

The Adam algorithm is restated in Agorithm 1 for convenient reference. Note that compared to the
orignal version of Adam in Kingma and Ba [20], the bias-correction terms are omitted to simplify
the analysis, and our analysis can be immediately extended to the original version of Adam because
the effect of bias-correction term decays exponentially. Also, in the original version of Adam, the
adaptive learning rate is η√

νt+λ1d
instead of η√

νt
. However, our setting is more challenging and our

result can be easily extend to the original version of Adam, since the λ term makes the adaptive
learning rate upper bounded and eases the analysis.
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Algorithm 1 Adam
Input: Stochastic oracle O, learning rate η > 0, initial point w1 ∈ Rd, initial conditioner ν0 ∈ R+,

initial momentum m0, momentum parameter β1, conditioner parameter β2, number of epoch T

1: Sample r ∼ Unif{1, · · · , T}
2: For t = 1 → T :
3: Generate a random zt, and query stochastic oracle gt = Of (wt, zt)

4: Calculate νt = β2νt−1 + (1− β2)g
�2
t

5: Calculate mt = β1mt−1 + (1− β1)gt
6: Update wt+1 = wt − η 1√

νt
�mt

7: EndFor
Output: wr

Notations. For a, b ∈ Z≥0 and a ≤ b, denote [a, b] = {a, a+ 1, · · · , b− 1, b}. For any two vectors
w,v ∈ Rd, denote w � v as the Hadamard product (i.e., coordinate-wise multiplication) between
w and v. When analyzing Adam, we denote the true gradient at iteration t as Gt = ∇f(wt), and
the sigma algebra before iteration t as Ft = σ(g1, · · · , gt−1). We denote conditional expectation as
E|Ft [∗] = E[∗|Ft]. We also use asymptotic notations o, O, Ω, and Θ, where h2(x) = ox→x0(h1(x))

means that limx→x0

h2(x)
h1(x)

= 0 (when the context is clear, we abbreviate x → x0 and only use
o(h1(x))); h2(x) = O(h1(x)) means that there exists constant γ independent of x such that h2(x) ≤
γh1(x); h2(x) = Ω(h1(x)) means that h1(x) = O(h2(x)); and h2(x) = Θ(h1(x)) means that
h2(x) = O(h1(x)) and h2(x) = Ω(h1(x)).

Objective function. In this paper, we consider solving the following optimization problem:
minw∈Rd f(w). We make the following assumption on the objective function f .
Assumption 1 (On objective function). We assume f to be non-negative. We further assume that f
satisfies L-smooth condition, i.e., f is differentiable, and the gradient of f is L-Lipschitz.

We denote the set of all objective functions satisfying Assumption 1 as F(L).

Stochastic oracle. As f is differentiable, we can utilize the gradient of f (i.e., ∇f ) to solve the
above optimization problem. However, the ∇f is usually expensive to compute. Instead, we query
a stochastic estimation of ∇f through a stochastic oracle O. Specifically, the stochastic oracle O
consists of a distribution P over a measurable space Z and a mapping Of : Rd ×Z → Rd. We make
the following asssumption on O.
Assumption 2 (On stochastic oracle). We assume that O is unbiased, i.e., ∀w ∈ Rd,
Ez∼POf (w, z) = ∇f(w). We further assume O has bounded variance, i.e., ∀w ∈ Rd,
Ez∼P [‖Of (w, z)−∇f(w)‖2] ≤ σ2.

We denote the set of all stochastic oracles satisfying Assumption 2 with variance bound σ2 as O(σ2).

Algorithm. Adam belongs to first-order optimization algorithms, which is defined as follows:
Definition 1 (First-order optimization algorithm). An algorithm A is called a first-order optimization
algorithm, if it takes an input w1 and hyperparameter θ, and produces a sequence of parameters as
follows: first sample a random seed r from some distribution Pr

*, set wA(θ)
1 = w1 and then update

the parameters as

w
A(θ)
t+1 = At

θ(r,w
A(θ)
1 ,Of (w

A(θ)
1 , z1), · · · ,Of (w

A(θ)
t , zt)),

where z1, z2, · · · , zt are sampled i.i.d. from P .

Iteration complexity. Denote the set of all first-order optimization algorithms as Afirst. We next
introduce iteration complexity to measure the convergence rate of optimization algorithms.
Definition 2 (Iteration complexity). The iteration complexity of first-order optimization algorithm A
is defined as

Cε(A,∆, L, σ2) = sup
O∈O(σ2)

sup
f∈F(L)

sup
w1:f(w1)=∆

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

*Such a random seed allows sampling from all iterations to generate the final output of the optimization
algorithm. As an example, Algorithm 1 sets Pr as a uniform distribution over [T ].
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Furthermore, the iteration complexity of the family of first-order optimization algorithms Afirst is

Cε(∆, L, σ2) = sup
O∈O(σ2)

sup
f∈F(L)

sup
w1:f(w1)=∆

inf
A∈Afirst

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

It should be noticed that the iteration complexity of the family of first-order optimization algorithms
is a lower bound of the iteration complexity of a specific first-order optimization algorithm, i.e.,
∀A ∈ Afirst, Cε(A,∆, L, σ2) ≥ Cε(∆, L, σ2).

3 Related works: none of existing upper bounds match the lower bound

In this section, we examine existing works that study the iteration complexity of Adam, and defer a
discussion of other related works to Appendix A. Specifically, we find that none of them match the
lower bound for first-order algorithms provided in [1] (restated as follows).

Proposition 1 (Theorem 3, [1]). ∀L,∆, σ2 > 0, we have Cε(∆, L, σ2) = Ω( 1
ε4 ).

Note that in the above bound, we omit the dependence of the lower bound over ∆, L, and σ2, which
is a standard practice in existing works (see Cutkosky and Mehta [8], Xie et al. [32], Faw et al. [13]
as examples) because the dependence over the accuracy ε can be used to derive how much additional
iterations is required for a smaller target accuracy and is thus of more interest. In this paper, when we
say "match the lower bound", we always mean that the upper bound has the same order of ε as the
lower bound.

Generally speaking, existing works on the iteration complexity of Adam can be divided into two cate-
gories: they either (i) assume that gradient is universally bounded or (ii) make stronger assumptions
on smoothness. Below we respectively explain how these two categories of works do not match the
lower bound in [1].

The first line of works, including Zaheer et al. [33], De et al. [9], Défossez et al. [10], Zou et al.
[36], Guo et al. [16], assume that the gradient norm of f is universally bounded, i.e., ‖∇f(w)‖ ≤ G,
∀w ∈ Rd. In other words, what they consider is another iteration complexity defined as follows:

Cε(A,∆, L, σ2, G) , sup
O∈O(σ2)

sup
f∈F(L),‖∇f‖≤G

sup
w1:f(w1)=∆

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

This line of works do not match the lower bound due to the following two reasons: First of all, the
upper bound they derive is O( log 1/ε

ε4 ), which has an additional log 1/ε factor more than the lower
bound; secondly, the bound they derive is for Cε(A,∆, L, σ2, G). Note that F(L)∩{f : ‖∇f‖ ≤ G}
is a proper subset of F(L) for any G, where a simple example in F(L) but without bounded gradient
is the quadratic function f(x) = ‖x‖2. Therefore, we have that

Cε(A,∆, L, σ2) ≥ Cε(A,∆, L, σ2, G), ∀G ≥ 0, (1)

and thus the upper bound on Cε(A,∆, L, σ2, G) does not apply to Cε(A,∆, L, σ2). Moreover, their
upper bound of Cε(A,∆, L, σ2, G) tends to ∞ as G → ∞, which indicates that if following their
analysis, the upper bound of Cε(A,∆, L, σ2) would be infinity based on Eq. (1).

The second line of works [27, 34, 30] additionally assume a mean-squared smoothness property
besides Assumption 1 and 2, i.e., Ez∼P‖Of (w, z)−Of (v, z)‖2 ≤ L‖w−v‖2. Denote Õ(σ2, L) ,
{O : Ez∼P‖Of (w, z)−Of (v, z)‖2 ≤ L‖w−v‖2,∀w,v ∈ Rd}∩O(σ2). The iteration complexity
that they consider is defined as follows:

C̃ε(A,∆, L, σ2) = sup
O∈Õ(σ2,L)

sup
f∈F(L)

sup
w1:f(w1)=∆

inf
θ
{T : E‖∇f(w

A(θ)
T )‖ ≤ ε}.

The rate derived in [27, 34, 30] is O( log 1/ε
ε6 ), which is derived by minimizing the upper bounds in

[27, 34, 30] with respect to the hyperparameter of adaptive learning rate β2. According to Arjevani
et al. [1], the lower bound of iteration complexity of C̃ε(A,∆, L, σ2) is Ω( 1

ε3 ) and smaller than the
original lower bound Ω( 1

ε4 ), resulting in an even larger gap between the upper and lower bounds.
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Recently, there is a concurrent work [21] which does not require bounded gradient assumption
and mean-squared smoothness property but poses a stronger assumption on the stochastic ora-
cle: the set of stochastic oracles they consider is ˜̃O = {O : ∀w ∈ Rd, Ez∼POf (w, z) =

∇f(w),P
(
‖Of (w, z)−∇f(w)‖2 ≤ σ2

)
= 1}. ˜̃O is a proper subset of O because a simple

example is that Of (w, z) = ∇f(w) + z where z is a standard gaussian variable. Therefore, their
result does not provide a valid upper bound of Cε(A,∆, L, σ2).

4 Convergence analysis of Adam with only Assumptions 1 and 2

As discussed in Section 3, existing works on analyzing Adam require additional assumptions besides
Assumption 1 and 2. In this section, we provide the first convergence analysis of Adam with only As-
sumption 1 and 2, which naturally gives an upper bound on the iteration complexity Cε(A,∆, L, σ2).
In fact, our analysis even holds when the stochastic oracle satisfies the following more general
assumption.

Assumption 3 (Coordinate-wise affine noise variance). We assume that O is unbiased, i.e., ∀w ∈ Rd,
Ez∼POf (w, z) = ∇f(w). We further assume O has coordinate-wise affine variance, i.e., ∀w ∈ Rd

and ∀i ∈ [d], Ez∼P [|(Of (w, z))i|2] ≤ σ2
0 + σ2

1∂if(w)2.

One can easily observe that Assumption 3 is more general than Assumption 2 since Assumption 2
immediately indicates Assumption 3 with σ0 = σ and σ1 = 1. We consider Assumption 3 not only
because it is more general but also because it allows the noise to grow with the norm of the true
gradient, which is usually the case in machine learning practice [14, 19].

Our analysis under Assumption 1 and Assumption 3 is then given as follows.
Theorem 1. Let A be by Adam (Algorithm 1) and θ = (η, β1, β2) are the hyperparameters of A.
Let Assumption 1 and 2 hold. Then, if 0 ≤ β1 ≤

√
β2 − 8σ2

1(1− β2)β
−2
2 and β2 < 1, we have

E
T∑

t=1

‖∇f(wt)‖ ≤

√√√√C2 + 2C1

d∑
i=1

(
ln

(
2(T + 1)

d∑
i=1

√
ν0,i + σ2

0 + 24d
σ2
1C1√
β2

ln d
σ2
1C1√
β2

+
12σ2

1√
β2

C2

))

×

√√√√2(T + 1)

d∑
i=1

√
ν0,i + σ2

0 + 24d
σ2
1C1√
β2

ln d
σ2
1C1√
β2

+
12σ2

1√
β2

C2. (2)

where ν0,i is the i-th coordinate of ν0,

C1 =
32Lη

(
1 +

β1√
β2

)3

(1 − β2)
(
1 − β1√

β2

)3
+

16β2
1σ0(1 − β1)

β2

√
1 − β2

(
1 − β1√

β2

)3
+

64(1 + σ2
1)σ

2
1L

2η2d

β2
2

(
1 − β1√

β2

)4
σ0(1 − β2)

3
2

,

C2 =
1 − β1√

β2

1 − β1

8

η
f(u1) +

32

β2

(
1 − β1√

β2

)2

d∑
i=1

E
G2

1,i√
ν̃1,i

+ 2C1

d∑
i=1

(
ln

(
1√

β2ν0,i

)
− T ln β2

)
.

A proof sketch is given in Section 4.2 and the full proof is deferred to Appendix.

The right-hand side in Eq. (2) looks messy at the first glance. We next explain Theorem 1 in detail
and make the upper bound’s dependence over hyperparameters crystally clear.

4.1 Discussion on Theorem 1

Required assumptions and conditions. As mentioned previously, Theorem 1 only requires Assump-
tion 1 and 2, which aligns with the setting of the lower bound (Proposition 1). To our best knowledge,
this is the first analysis of Adam without additional assumptions.

As for the range of β1 and β2, one can immediately see that the condition β1 ≤
√
β2−8σ2

1(1−β2)β
−2
2

degenerates to β1 ≤
√
β2 in the bounded gradient case (i.e., σ1 = 0), the weakest condition required

in existing literature [36]. When σ1 6= 0, such a condition is stronger than β1 ≤
√
β2. We point

out that this is not due to technical limitations but instead agrees with existing counterexamples for
Adam: Reddi et al. [26], Zhang et al. [34] show that when σ1 6= 0, there exists a counterexample
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satisfying Assumption 1 and Assumption 3 and a pair of (β1, β2) with β1 <
√
β2 and Adam with

(β1, β2) diverges over such a counterexample.

Dependence over β2, η, and T . Here we consider the influence of β2, η, and T while fixing
β1 constant (we will discuss the effect of β1 in Section 6). With logarithmic factors ignored and
coefficients hidden, C1, C2 and the right-hand-side of Eq. (2) can be rewritten with asymptotic
notations as

C1 = Õ

(
1√

1− β2

+
η2√

(1− β2)3

)
, C2 = Õ

(
1√

1− β2

+
η2√

(1− β2)3
+

1

η
+ T

√
1− β2 +

η2

√
1− β2

T

)
,

E
T∑

t=1

‖∇f(wt)‖ = Õ
(
C1 + C2 +

√
TC1 +

√
TC2

)
,

where Õ denotes O with logarithmic terms ignored. Consequently, the dependence of Eq. (2) over
β2, η and T becomes

E
T∑

t=1

‖∇f(wt)‖ =Õ

(
1√

1− β2

+
η2√

(1− β2)3
+

1

η
+ T

√
1− β2 +

η2

√
1− β2

T

)

+ Õ

( √
T

4
√
1− β2

+
η
√
T

4
√

(1− β2)3
+

√
T

√
η

+ T 4
√

1− β2 +
η

4
√
1− β2

T

)
.

Here we consider two cases: (i). β2 and η are independent over T , and (ii). β2 and η are dependent
over T . For case (i), based on the above equation, one can easily observe that the averaged gradient
norm 1

T E
∑T

t=1 ‖∇f(wt)‖ will converge to the threshold O( η2

√
1−β2

+ 4
√
1− β2 +

η
4
√
1−β2

) with rate

O(1/
√
T ). This aligns with the observation in [27, 34] that Adam will not converge to the stationary

point with constant β2.

For case (ii), in order to ensure convergence, i.e., mint∈[T ] E‖Gt‖1 → 0 as T → ∞, a sufficient
condition is that the right-hand-side of the above equation is o(T ). Specifically, by choosing
η = Θ(T−a) and 1− β2 = Θ(T−b), we obtain that

1

T
E

T∑
t=1

‖∇f(wt)‖ =Õ
(
T

b
2
−1 + T−2a+ 3b

2
−1 + T a−1 + T− b

2 + T−2a+ b
2

)
+ Õ

(
T− 1

2
+ b

4 + T− 1
2
−a+ 3b

4 + T− 1
2
+ a

2 + T− b
4 + T−a+ b

4

)
.

By simple calculation, we obtain that the right-hand side of the above inequality is o(1) as T → ∞
if and only if b > 0, 1 > a > 0 and b− a < 1. Moreover, the minimum of the right-hand side of the
above inequality is Õ(1/T

1
4 ), which is achieved at a = 1

2 and b = 1. Such a minimum implies an
upper bound of the iteration complexity which at most differs from the lower bound by logarithmic
factors as solving Õ(1/T

1
4 ) = ε gives T = Õ( 1

ε4 ). In Theorem 2, we will further remove the
logarithmic factor by giving a refined proof when a = 1

2 and b = 1 and close the gap between the
upper and lower bounds.

Dependence over λ. Our analysis allows λ = 0 in the adaptive learning rate η 1√
νt+λ1d

. In contrast,
some existing works [16, 21] require non-zero λ and their iteration complexity has polynomial
dependence over 1

λ , which is less desired as λ can be as small as 10−8 in practice (e.g., in PyTorch’s
default setting). Furthermore, compared to their setting, our setting is more challenging as non-zero
λ immediately provides an upper bound of the adaptive learning rate.

4.2 Proof Sketch of Theorem 1

In this section, we demonstrate the proof idea of Theorem 1. Generally speaking, our proof is inspired
by (i). the construction of the Lyapunov function for SGDM [22] and (ii) the construction of auxiliary
function and the conversion from regret bound to gradient bound for AdaGrad [31], but the adaptation
of these techniques to Adam is highly non-trivial, as SGDM does not hold an adaptive learning rate,
and the adaptive learning rate of AdaGrad is monotonously decreasing. Below we sketch the proof
by identifying three key challenges in the proof and provide our solutions respectively.

Challenge I: Disentangle the stochasticity in stochastic gradient and adaptive learning rate. For
simplicity, let us first consider the case where β1 = 0, i.e., where the momentum mt degenerates to
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the stochastic gradient gt. According to the standard descent lemma, we have that

Ef(wt+1) ≤ f(wt) + E
[
〈Gt,wt+1 −wt〉+

L

2
‖wt+1 −wt‖2

]
≤ Ef(wt) + E

[〈
Gt,−η

1
√
νt

� gt

〉]
︸ ︷︷ ︸

First Order

+
L

2
η2E

∥∥∥∥ 1
√
νt

�mt

∥∥∥∥2︸ ︷︷ ︸
Second Order

(3)

The first challenge arises from bounding the "First Order" term above. To facilitate the understanding
of the difficulty, we compare the "First Order" term of Adam to the corresponding "First Order" term
of SGD, i.e., −ηE〈Gt, gt〉. By directly applying E|Ftgt = Gt, we obtain that the "First-Order" term
of SGD equals to −ηE‖Gt‖2. However, as for Adam, we do not even know what E|Ft 1√

νt
� gt is

given that the stochasticity in gt and νt entangles. A common practice is to use a surrogate adaptive
learning rate ν̃t measurable with respect to Ft, to approximate the real adaptive learning rate νt.
This leads to the following equation:

E
[〈

Gt,−η
1

√
νt

� gt

〉]
︸ ︷︷ ︸

First Order

= E
[〈

Gt,−η
1√
ν̃t

� gt

〉]
︸ ︷︷ ︸

First Order Main

+E
[〈

Gt,−η

(
1

√
νt

− 1√
ν̃t

)
� gt

〉]
︸ ︷︷ ︸

Error

.

One can immediately see that "First Order Main" terms equals to E[〈Gt,−η 1√
ν̃t

�Gt〉] < 0, but
now we need to handle the "Error" term. In existing literature, such a term is mostly bypassed by
applying the bounded gradient assumption [10, 36], which, however, we do not assume.

Solution to Challenge I. Inspired by recent advance in the analysis of AdaGrad [31], we consider the
auxiliary function ξt = E[η〈Gt,− 1√

ν̃t+1
�Gt〉], where we choose ν̃t = β2νt−1 + (1− β2)σ

2
01d.

In the following lemma, we show that the error term can be controlled using ξt, parallel to (Lemma 4.
[31]).

Lemma 1 (Informal version of Lemma 7 with β1 = 0). Let all conditions in Theorem 1 hold. Then,

Error ≤ 5

8
E
[
η

〈
Gt,−

1√
ν̃t

�Gt

〉]
+O

(
1√
β2

ξt−1 − ξt

)
+ Small Error. (4)

In the right-hand-side of inequality (4), one can easily observe that the first term can be controlled by
"First Order Main" term, and the third term is as small as the "Second Order" term. However, the
second term seems annoying – in the analysis of AdaGrad [31], there is no 1/

√
β2 factor, making

the corresponding term a telescoping, but this is no longer true due to the existence of the 1/
√
β2

factor. We resolve this difficulty by looking at the sum of 1√
β2
ξt−1 − ξt over t from 1 to T , which

gives O((1− β2)
∑T−1

t=1 ξt). By further noticing that ν̃t+1 ≥ β2ν̃t, we have

T∑
t=1

(
1√
β2

ξt−1 − ξt

)
≤ O

(
(1− β2)

T−1∑
t=1

E
[
η

〈
Gt,−

1√
ν̃t

�Gt

〉])
.

The right-hand-side term can thus be controlled by the "First Order Main" term when β2 is close to 1.

Remark 1. Compared to the analysis of AdaGrad in [31], our proof technique has two-fold novelties.
First, our auxiliary function has an additional (1−β2)σ

2
01d term, which is necessary for the analysis

of Adam as it makes ν̃t lower bounded from 0 (AdaGrad does not need this, as νt−1 of AdaGrad
itself is lower bounded). Secondly, as discussed above, the "AdaGrad version" of second term in the
right-hand-side of inequality (4) is a telescoping, the sum of which can be bounded straightforwardly.

Challenge II: Handle the mismatch between stochastic gradient and momentum. In the anal-
ysis above, we assume β1 = 0. Additional challenges arise when we move to the case where
β1 6= 0. Specifically, following the same routine, the "First Order Main" term now becomes
E
[
〈Gt,−η 1√

ν̃t
�mt

]
. It is hard to even estimate whether such a term is negative or not, given that

mt and ν̃t still has entangled stochasticity, and the conditional expectation of mt also differs from
Gt, both due to the existence of historical gradient.
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Solution to Challenge II. Inspired by the state-of-art analysis of SGDM [22], which leverage the
potential function f(vt) with vt =

wt−βwt−1

1−β , we propose to use the potential function f(ut) with

ut =
wt− β1√

β2
wt−1

1− β1√
β2

. Applying descent lemma to f(ut), we obtain that

E[f(ut+1)] ≤ Ef(ut) + E [〈∇f(ut),ut+1 − ut〉]︸ ︷︷ ︸
First Order

+
L

2
E ‖ut+1 − ut‖2︸ ︷︷ ︸

Second Order

.
(5)

We again focus on the "First Order" term, which can be written as

E [〈∇f(ut),ut+1 − ut〉] =E

[〈
∇f(ut),

wt+1 −wt

1− β1√
β2

− β1√
β2

wt −wt−1

1− β1√
β2

〉]
(∗)
≈E

[〈
∇f(wt),−

η

1− β1√
β2

1√
νt

�mt +
η

1− β1√
β2

β1√
β2νt−1

�mt−1

〉]
(◦)
≈E

[〈
∇f(wt),−

η

1− β1√
β2

1√
ν̃t

�mt +
η

1− β1√
β2

β1√
ν̃t

�mt−1

〉]

=E

[〈
Gt,−

η(1− β1)

1− β1√
β2

1√
ν̃t

� gt

〉]
= E

[〈
Gt,−

η(1− β1)

1− β1√
β2

1√
ν̃t

�Gt

〉]
.

Here approximate equation (∗) is due to Assumption 1 and that wt is close to ut, and approximate
equation (◦) is due to Lemma 1 and ν̃t = β2νt−1 + (1 − β2)σ

2
0 ≈ β2νt−1 (of course, these are

informal statements. Please refer to Appendix C for the detailed proof). With the above methodology,
we arrive at the following lemma.
Lemma 2 (Informal Version of Lemma 8). Let all conditions in Theorem 1 holds. Then,

Ef(ut+1) ≤ Ef(ut)− Ω

(
E
[
η

〈
Gt,−

1√
ν̃t

�Gt

〉])
+O

(
1√
β2

ξt−1 − ξt

)
+ Small Error.

Summing the above lemma over t from 1 to T , we obtain
T∑

t=1

E

[∥∥∥∥ 1
4
√
ν̃t

�Gt

∥∥∥∥2
]
≤ O(1) +

d∑
l=1

O
(
E ln

(
νt,i

ν0,l

)
− T lnβ2

)
. (6)

We then encounter the second challenge.

Challenge III: Convert Eq. (6) to a bound of gradient norm. Although we have derived a regret
bound, i.e., a bound of

∑T
t=1 E[‖

1
4√ν̃t

�Gt‖2], we need to convert it into a bound of E[‖Gt‖2]. In
existing works [36, 10, 16] which assumes bounded gradient, such a conversion is straightforward
because (their version of) ν̃t is upper bounded. However, we do not assume bounded gradient and ν̃t

can be aribitrarily large, making E[‖ 1
4√ν̃t

�Gt‖2] arbitrarily small than E[‖Gt‖2].

Solution to Challenge III. As this part involves coordinate-wise analysis, we define gt,i, Gt,i, νt,i,
and ν̃1

t,i respectively as the l-th coordinate of gt, Gt, νt, and ν̃1
t . To begin with, note that due to

Cauchy’s inequality and Hölder’s inequality,(
E

T∑
t=1

‖Gt‖

)2

≤

(
T∑

t=1

E

[∥∥∥∥ 1
4
√
ν̃t

�Gt

∥∥∥∥2
])(

T∑
t=1

E
[∥∥∥ 4
√

ν̃t

∥∥∥2]) . (7)

Therefore, we only need to derive an upper bound of
∑T

t=1 E[‖
4
√
ν̃t‖2], which is achieved by the

following divide-and-conque methodology. Firstly, when |Gt,i| ≥ σ0

σ1
, we can show 2E|Ft |gt,i|2 ≥

2|Gt,i|2 ≥ E|Ft |gt,i|2. Then, through a direct calculation, we obtain that

E

[
|Gt,i|2√

ν̃t,i

1|Gt,i|≥σ0
σ1

]
≥

√
β2

3(1− β2)σ2
1

E
[(√

ν̃t+1,i −
√
β2ν̃t,i

)
1|Gt,i|≥σ0

σ1

]
,

and thus
T∑

t=1

E

[
|Gt,i|2√

ν̃t,i

]
≥

√
β2

3(1− β2)σ2
1

T∑
t=1

E
[(√

ν̃t+1,i −
√

β2ν̃t,i

)
1|Gt,i|≥σ0

σ1

]
.
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Secondly, when |Gt,i| < σ0

σ1
, define {ν̄t,i}∞t=0 as ν̄0,l = ν0,l, ν̄t,i = ν̄t−1,i + |gt,i|21|Gt,i|<σ0

σ1

. One
can easily observe that ν̄t,i ≤ νt,i, and thus

T∑
t=1

E

[(√
ν̃t+1,i −

√
β2ν̃t,i

)
1
|Gt,i|<

σ2
0

σ2
1

]

≤
T∑

t=1

E
(√

β2ν̄t,i + (1− β2)σ2
0 −

√
β2(β2ν̄t−1,i + (1− β2)σ2

0)

)

=E
√
β2ν̄t,i + (1− β2)σ2

0 + (1−
√
β2)

T−1∑
t=1

E
√

β2ν̄t,i + (1− β2)σ2
0 − E

√
β2(β2ν̄0,i + (1− β2)σ2

0).

Putting the above two estimations together, we derive that

(1−
√
β2)

T+1∑
t=1

E
√
ν̃t,i ≤

3(1− β2)σ
2
1√

β2

T∑
t=2

E

[
|Gt,i|2√

ν̃t,i

]
+ (1−

√
β2)(T + 1)

√
σ2
0 + ν0,i.

The above methodology can be summarized as the following lemma.

Lemma 3. Let all conditions in Theorem 1 hold. Then,

T+1∑
t=1

d∑
i=1

E
√
ν̃t,i ≤ 2(T + 1)

d∑
i=1

√
ν0,i + σ2

0 + 24d
σ2
1C1√
β2

ln d
σ2
1C1√
β2

+ C2.

Based on Lemma 3, we can derive the estimation of
∑T

t=1 E[‖
4
√
ν̃t‖2] since ν̃t is close to νt. The

proof is then completed by combining the estimation of
∑T

t=1 E[‖
4
√
ν̃t‖2] (Eq. (6)) and Eq. (7).

5 Gap-closing upper bound on the iteration complexity of Adam

In this section, based on a refined proof of Stage II of Theorem 1 (see Appendix C) under the specific
case η = Θ(1/

√
T ) and β2 = 1−Θ(1/T ), we show that the logarithmic factor in Theorem 1 can be

removed and the lower bound can be achieved. Specifically, we have the following theorem.
Theorem 2. Let Assumption 1 and Assumption 2 hold. Then, select the hyperparameters of Adam as
η = a√

T
, β2 = 1− b

T and β1 = c
√
β2, where a, b > 0 and 0 ≤ c < 1 are independent of T . Then,

let wτ be the output of Adam in Algorithm 1, and we have

E‖∇f(wr)‖ ≤

√√√√2

d∑
i=1

√
ν0,i + 3bσ2

0 +
4D2σ2

1b√
T

+
256σ2

1b

(1− c)2T

d∑
i=1

E
G2

1,i√
ν̃1,i

+
16D1σ2

1b√
T

ln

(
e+

4D̃σ2
1b√
T

)

×

√√√√√√√√√√
2D1√
T

d∑
i=1

ln

(
2

d∑
i=1

√
ν0,i + 3bσ2

0 +
4D2σ

2
1b√

T
+

256σ2
1b

(1− c)2T

d∑
i=1

E
G2

1,i√
ν̃1,i

+
16D1σ

2
1b√

T
ln

(
e+

4D̃σ2
1b√
T

))

+
64

(1− c)2T

d∑
i=1

E
G2

1,i√
ν̃1,i

+
D2√
T

,

where

D1 ,
32La

b

(1 + c)3

(1− c)3
+

32σ0√
b(1− c)3

+
(1 + σ2

1)σ
2
1L

2da2

(1− c)4σ0

√
b3

, D2 ,
8

a
f(u1) +D1

(
bd−

d∑
i=1

lnν0,i

)
.

As a result, let A be Adam in Algorithm 1, we have Cε(A,∆, L, σ2) = O( 1
ε4 ).

The proof of Theorem 2 is based on a refined solution of Challenge II in the proof of Theorem 1
under the specific hyperparameter settings, and we defer the concrete proof to Appendix D. Below
we discuss on Theorem 2, comparing it with practice, with Theorem 1 and existing convergence rate
of Adam, and with the convergence rate of AdaGrad.
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Alignment with the practical hyperparameter choice. The hyperparameter setting in Theorem
2 indicates that to achieve the lower bound of iteration complexity, we need to select small η and
close-to-1 β2, with less requirement over β1. This agrees with the hyperparameter setting in deep
learning libaries, for example, η = 10−3, β2 = 0.999, and β1 = 0.9 in PyTorch.

Comparison with Theorem 1 and existing works. To our best knowledge, Theorem 2 is the
first to derive the iteration complexity O( 1

ε4 ). Previously, the state-of-art iteration complexity is
O( log 1/ε

ε4 ) [10] where they additionally assume bounded gradient. Theorem 2 is also tighter than
Theorem 1 (while Theorem 1 holds for more general hyperparameter settings). As discussed in
Section 4.1, if applying the hyperparameter setting in Theorem 2 (i.e., η = a√

T
, β2 = 1 − b

T

and β1 = c
√
β2) to Theorem 1, we will obtain that E‖∇f(wτ )‖ ≤ O(poly(log T )/ 4

√
T ) and

Cε(A,∆, L, σ2) = O( log 1/ε
ε4 ), worse than the upper bound in Theorem 2 and the lower bound in

Proposition 1 by a logarithmic factor.

Comparison with AdaGrad. AdaGrad [12] is another popular adaptive optimizer. Under Assump-
tions 1 and 2, the state-of-art iteration complexity of AdaGrad is O( log 1/ε

ε4 ) [13], which is worse
than Adam by a logarithmic factor. Here we show that such a gap may be not due to the limitation
of analysis, and can be explained by analogizing AdaGrad to Adam without momentum as SGD
with diminishing learning rate to SGD with constant learning rate. To start with, the update rule of
AdaGrad is given as

νt = νt−1 + g�2
t ,wt+1 = wt − η

1
√
νt

� gt. (8)

We first show that in Algorithm 1, if we allow the hyperparameters to be dynamical, i.e.,

νt = β2,tνt−1 + (1− β2,t)g
�2
t ,mt = β1,tmt−1 + (1− β1,t)gt,wt+1 = wt − ηt

1√
νt

�mt, (9)

then Adam is equivalent to AdaGrad by setting ηt =
η√
t
, β1,t = 0, and β2,t = 1− 1

t . Specifically, by
setting µt = tνt in Eq. (9), we have Eq. (9) is equivalent to with Eq. (8) (by replacing νt by µt in
Eq. (8)). Comparing the above hyperparameter setting with that in Theorem 2, we see that the above
hyperparameter setting can be obtained by changing T to t and setting c = 0 in Theorem 2. This
is similar to the relationship between SGD with diminishing learning rate Θ(1/

√
t) and SGD with

diminishing learning rate Θ(1/
√
T ). Recall that the iteration complexity of SGD with diminishing

learning rate Θ(1/
√
t) also has an additional logarithmic factor than SGD with constant learning rate,

which may explain the gap between AdaGrad and Adam.

6 Limitations

Despite that our work provides the first result closing the upper bound and lower bound of the iteration
complexity of Adam, there are several limitations listed as follows:

Dependence over the dimension d. The bounds in Theorem 1 and Theorem 2 is monotonously
increasing with respect to d. This is undesired since the upper bound of iteration complexity of SGD
is invariant with respect to d. Nevertheless, removing such an dependence over d is technically hard
since we need to deal with every coordinate separately due to coodinate-wise learning rate, while the
descent lemma does not hold for a single coordinate but combines all coordinates together. To our
best knowledge, all existing works on the convergene of Adam also suffers from the same problem.
We leave removing the dependence over d as an important future work.

No better result with momentum. It can be observed that in Theorem 1 and Theorem 2, the tightest
bound is achieved when β1 = 0 (i.e., no momentum is applied). This contradicts with the common
wisdom that momentum helps to accelerate. Although the benefit of momentum is not very clear even
for simple optimizer SGD with momentum, we view this as a limitation of our work and defer proving
the benefit of momentum in Adam as a future work. Also, our result does not imply that setting β1 is
not as critical as setting β2 . The primary objective of this paper is to characterize the dependence on
ε , and the importance of setting β1 might be justified in other ways or characterizations. To help
readers gain a deeper understanding of this issue, we include experiments to illustrate the dependence
of performance on β1 in Appendix E.
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A Other Related works

Section 3 has provided a detailed discussion over existing convergence analysis of Adam. In this
section, we briefly review other related works. Adam is proposed with a convergence analysis in
online optimization [20]. The proof, however, is latter shown to be flawed in Reddi et al. [26] as it
requires the adaptive learning rate of Adam to be non-increasing. This motivates a line of works
modifying Adam to ensure convergence. The modifications include enforcing the adaptive learning
rate to be non-increasing [26, 5], imposing upper bound and lower bound of the adaptive learning
rate [23], and using different approach to estimate second-order momentum [35, 7]. Recently, Chen
et al. [6] discover a new optimizer Lion through Symbolic Discovery, which uses sign operation to
replace the adaptive learning rate in Adam, achieving comparable performance of Adam with less
memory costs.

B Auxilliary Lemmas

The following two lemmas are useful when bounding the second-order term.

Lemma 4. Assume we have 0 < β2 < 1 and a sequence of real numbers (an)∞n=1. Let b0 > 0 and
bn = β2bn−1 + (1− β2)a

2
n. Then, we have

T∑
n=1

a2n
bn

≤ 1

1− β2

(
ln

(
bT
b0

)
− T lnβ2

)
.

Lemma 5. Assume we have 0 < β2
1 < β2 < 1 and a sequence of real numbers (an)∞n=1. Let b0 > 0,

bn = β2bn−1 + (1− β2)a
2
n, c0 = 0, and cn = β1cn−1 + (1− β1)an. Then, we have

T∑
n=1

|cn|2

bn
≤ (1− β1)

2

(1− β1√
β2
)2(1− β2)

(
ln

(
bT
b0

)
− T lnβ2

)
.

Proof. To begin with,

|cn|√
bn

≤ (1− β1)

n∑
i=1

βn−i
1 |ai|√

bn
≤ (1− β1)

n∑
i=1

βn−i
1 |ai|√

bn
≤ (1− β1)

n∑
i=1

(
β1√
β2

)n−i |ai|√
bi
.

Applying Cauchy’s inequality, we obtain

|cn|2

bn
≤ (1− β1)

2

(
n∑

i=1

(
β1√
β2

)n−i |ai|√
bi

)2

≤(1− β1)
2

(
n∑

i=1

(
β1√
β2

)n−i
)(

n∑
i=1

(
β1√
β2

)n−i |ai|2

bi

)
≤ (1− β1)

2

1− β1√
β2

(
n∑

i=1

(
β1√
β2

)n−i |ai|2

bi

)
.

Summing the above inequality over n from 1 to T then leads to

T∑
n=1

|cn|2

bn
≤ (1− β1)

2

1− β1√
β2

T∑
n=1

(
n∑

i=1

(
β1√
β2

)n−i |ai|2

bi

)
=

(1− β1)
2

1− β1√
β2

T∑
n=1

|an|2

bn

(
T−n∑
i=0

(
β1√
β2

)i
)

≤ (1− β1)
2

(1− β1√
β2
)2

T∑
n=1

|an|2

bn
≤ (1− β1)

2

(1− β1√
β2
)2(1− β2)

(
ln

(
bT
b0

)
− T lnβ2

)
.

The proof is completed.

The following lemma bound the update norm of Adam.

Lemma 6. We have ∀t ≥ 1, |wt+1,i −wt,i| ≤ η 1−β1

√
1−β2

√
1− β2

1
β2

≤ η 1−β1

√
1−β2

√
1− β1√

β2

.
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Proof. We have that

|wt+1,i −wt,i| = η

∣∣∣∣mt,i√
νt,i

∣∣∣∣ ≤ η

∑t−1
i=0(1− β1)β

i
1|gt−i,l|√∑t−1

i=0(1− β2)βi
2|gt−i,l|2 + βt

2ν0,i

≤η
1− β1√
1− β2

√∑t−1
i=0 β

i
2|gt−i,l|2

√∑t−1
i=0

β2i
1

βi
2√∑t−1

i=0 β
i
2|gt−i,l|2

≤ η
1− β1

√
1− β2

√
1− β2

1

β2

.

Here the second inequality is due to Cauchy’s inequality. The proof is completed.

C Proof of Theorem 1

This section collects the proof of Theorem 1. As a part of the proof, we first provide formal
descriptions of Lemma 1, Lemma 2, and Lemma 3, and their corresponding proofs. We then proceed
to prove Theorem 1 leveraging these lemmas.

C.1 Formal description of Lemma 1, Lemma 2, and Lemma 3 and their proof

Lemma 7 (Formal version of Lemma 1). Let all conditions in Theorem 1 hold. Then, we have

E

[〈
Gt,−

η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
�mt

〉]
≤ 5

8

d∑
i=1

η
1− β1

1− β1√
β2

E
|Gt,i|2√

ν̃t,i

+
2η

√
1− β2σ0(

1− β2
1

β2

)2 d∑
i=1

E
g2
t,i

νt,i

+ η
4(1− β1)

(1− β1√
β2
)2
√
β2

σ2
1

d∑
i=1

E

(
G2

t−1,i√
β2ν̃t,i

−
G2

t,i√
ν̃t+1,i

)
+

d∑
i=1

2η
√
1− β2σ0

(1− β1)(1− β1√
β2
)
E
[(

|mt,i|2

νt,i

)]

+
64(1 + σ2

1)σ
2
1L

2η3d

β2
2(1−

β1√
β2
)3(1− β1)σ0

√
1− β2

E
∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2 .

Proof. To start with,

E|Ft

[〈
Gt,−

η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
�mt

〉]

=E|Ft

[〈
Gt,−

η

1− β1√
β2

(
(1− β2)(σ

2
01d − g�2

t )
√
νt

√
ν̃t(

√
νt +

√
ν̃t)

)
�mt

〉]

≤
d∑

i=1

η

1− β1√
β2

E|Ft

[
|Gt,i|

(
(1− β2)(σ

2
0 + g2

t,i)
√
νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]

=

d∑
i=1

η

1− β1√
β2

E|Ft

[
|Gt,i|

(
(1− β2)g

2
t,i

√
νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]
︸ ︷︷ ︸

I.1.1

+

d∑
i=1

η

1− β1√
β2

E|Ft

[
|Gt,i|

(
(1− β2)σ

2
0√

νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]
︸ ︷︷ ︸

I.1.2

.
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As for I.1.1, we have

d∑
i=1

η

1− β1√
β2

E|Ft

[
|Gt,i|

(
(1− β2)g

2
t,i

√
νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]
(∗)
≤

d∑
i=1

η(1− β1)(√
1− β1√

β2

)3E|Ft

[
|Gt,i|

( √
1− β2g

2
t,i√

ν̃t,i(
√
νt,i +

√
ν̃t,i)

)]

(◦)
≤

d∑
i=1

η(1− β1)(√
1− β1√

β2

)3 |Gt,i|√
ν̃t,i

√
E|Ftg2

t,i

√
E|Ft

g2
t,i

(
√
νt,i +

√
ν̃t,i)2

(•)
≤

d∑
i=1

η(1− β1)
√
1− β2(√

1− β1√
β2

)3 |Gt,i|√
ν̃t,i

√
σ2
0 + σ2

1G
2
t,i

√
E|Ft

g2
t,i

(
√
νt,i +

√
ν̃t,i)2

≤
d∑

i=1

η(1− β1)
√
1− β2(√

1− β1√
β2

)3 |Gt,i|√
ν̃t,i

(σ0 + σ1|Gt,i|)

√
E|Ft

g2
t,i

(
√
νt,i +

√
ν̃t,i)2

,

where inequality (∗) uses Lemma 6, inequality (◦) is due to Holder’s inequal-
ity, and inequality (•) is due to Assumption 3. Applying mean-value in-

equality respectively to
∑d

i=1
η(1−β1)

√
1−β2(√

1− β1√
β2

)3 E|Ft |Gt,i|√
ν̃t,i

σ0

√
E|Ft

g2
t,i

(
√
νt,i+

√
ν̃t,i)2

and

∑d
i=1

η(1−β1)
√
1−β2(√

1− β1√
β2

)3 E|Ft |Gt,i|√
ν̃t,i

σ1|Gt,i|
√
E|Ft

g2
t,i

(
√
νt,i+

√
ν̃t,i)2

, we obtain that the right-hand-side of

the above inequality can be bounded by

1

8

d∑
i=1

η
1− β1

1− β1√
β2

√
1− β2σ0

|Gt,i|2

ν̃t,i
+

2η
√
1− β2σ0(

1− β1√
β2

)2 d∑
i=1

E|Ft
g2
t,i

(
√
νt,i +

√
ν̃t,i)2

+
1

8

d∑
i=1

η
1− β1

1− β1√
β2

|Gt,i|2√
ν̃t,i

+ 2η
(1− β2)(1− β1)

(1− β1√
β2
)2

σ2
1

|Gt,i|2√
ν̃t,i

E|Ft

d∑
i=1

g2
t,i

(
√
νt,i +

√
ν̃t,i)2

≤1

8

d∑
i=1

η
1− β1

1− β1√
β2

|Gt,i|2√
ν̃t,i

+
2η

√
1− β2σ0(

1− β1√
β2

)2 d∑
i=1

E|Ft
g2
t,i

νt,i

+
1

8

d∑
i=1

η
1− β1

1− β1√
β2

|Gt,i|2√
ν̃t,i

+ 2η
(1− β2)(1− β1)

(1− β1√
β2
)2

σ2
1

|Gt,i|2√
ν̃t,i

E|Ft

d∑
i=1

g2
t,i

(
√
νt,i +

√
ν̃t,i)2

. (10)

Here the inequality is due to ν̃t,i = (1− β2)σ
2
0 + β2νt−1,i ≥ (1− β2)σ

2
0 . Meanwhile, we have

(
1√
β2ν̃t,i

− 1√
ν̃t+1,i

)
G2

t,i

=
G2

t,i((1− β2)
2σ2

0 + β2(1− β2)g
2
t,i)√

β2ν̃t,i

√
ν̃t+1,i(

√
β2ν̃t,i +

√
ν̃t+1,i)

≥
G2

t,iβ2(1− β2)g
2
t,i√

β2ν̃t,i

√
ν̃t+1,i(

√
β2ν̃t,i +

√
ν̃t+1,i)

≥
√
β2

2

G2
t,i(1− β2)g

2
t,i√

ν̃t,i(
√
νt,i +

√
ν̃t,i)2

.
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Applying the above inequality back to Eq. (10), we obtain that

d∑
i=1

η

1− β1
E|Ft

[
|Gt,i|

(
(1− β2)g

2
t,i

√
νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]

≤1

4

d∑
i=1

η
1− β1

1− β1√
β2

|Gt,i|2√
ν̃t,i

+
2η

√
1− β2σ0(

1− β2
1

β2

)2 d∑
i=1

E|Ft
g2
t,i

νt,i

+ η
4(1− β1)

(1− β1√
β2
)2
√
β2

σ2
1

d∑
i=1

E|Ft

(
1√
β2ν̃t,i

− 1√
ν̃t+1,i

)
G2

t,i. (11)

Furthermore, due to Assumption 1, we have (we define G0 , G1)

G2
t,i ≤G2

t−1,i + 2|Gt,i||Gt,i −Gt−1,i|+ 2(Gt,i −Gt−1,i)
2

≤G2
t−1,i + 2L|Gt,i|‖wt −wt−1‖+ 2L2‖wt −wt−1‖2,

which further leads to

1√
β2ν̃t,i

G2
t,i

≤ 1√
β2ν̃t,i

(
G2

t−1,i + 2L|Gt,i|‖wt −wt−1‖+ 2L2‖wt −wt−1‖2
)

(◦)
≤ 1√

β2ν̃t,i

G2
t−1,i +

(1− β1√
β2
)(1− β1)

√
β2

16σ2
1

|Gt,i|2√
ν̃t,i

+
16L2σ2

1

β
3
2
2 (1−

β1√
β2
)(1− β1)

√
ν̃t,i

‖wt −wt−1‖2

+
2L2√
β2ν̃t,i

‖wt −wt−1‖2

≤ 1√
β2ν̃t,i

G2
t−1,i +

(1− β1√
β2
)(1− β1)

√
β2

16σ2
1

|Gt,i|2√
ν̃t,i

+
16L2σ2

1η
2

β
3
2
2 (1−

β1√
β2
)(1− β1)σ0

√
1− β2

∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2

+
2L2η2

σ0

√
β2(1− β2)

∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2
≤ 1√

β2ν̃t,i

G2
t−1,i +

(1− β1√
β2
)(1− β1)

√
β2

16σ2
1

|Gt,i|2√
ν̃t,i

+
16(1 + σ2

1)L
2η2

β
3
2
2 (1−

β1√
β2
)(1− β1)σ0

√
1− β2

∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2 .
Applying the above inequality back to Eq. (11) leads to that

I.1.1 =

d∑
i=1

η

1− β1
E|Ft

[
|Gt,i|

(
(1− β2)g

2
t,i

√
νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]

≤1

2

d∑
i=1

η
1− β1

1− β1√
β2

|Gt,i|2√
ν̃t,i

+
2η

√
1− β2σ0(

1− β2
1

β2

)2 d∑
i=1

E|Ft
g2
t,i

νt,i

+ η
4(1− β1)

(1− β1√
β2
)2
√
β2

σ2
1

d∑
i=1

E|Ft

(
G2

t−1,i√
β2ν̃t,i

−
G2

t,i√
ν̃t+1,i

)

+
64d(1 + σ2

1)σ
2
1L

2η3

β2
2(1−

β1√
β2
)3(1− β1)σ0

√
1− β2

∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2 . (12)
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As for I.1.2, we have

I.1.2 =

d∑
i=1

η

1− β1√
β2

E|Ft

[
|Gt,i|

(
(1− β2)σ

2
0√

νt,i

√
ν̃t,i(

√
νt,i +

√
ν̃t,i)

)
|mt,i|

]

≤
d∑

i=1

η

1− β1√
β2

E|Ft

[
|Gt,i|

(
4
√
1− β2

√
σ0

4
√
ν̃t,i

√
νt,i

)
|mt,i|

]

≤ 1− β1

8(1− β1√
β2
)

d∑
i=1

η
|Gt,i|2√

ν̃t,i

+

d∑
i=1

2η
√
1− β2σ0

(1− β1)(1− β1√
β2
)
E|Ft

[(
|mt,i|2

νt,i

)]
. (13)

With Inequalities (12) and (13), we conclude that

I.1 ≤5

8

d∑
i=1

η
1− β1

1− β1√
β2

E
|Gt,i|2√

ν̃t,i

+
2η

√
1− β2σ0(

1− β2
1

β2

)2 d∑
i=1

E
g2
t,i

νt,i

+ η
4(1− β1)

(1− β1√
β2
)2
√
β2

σ2
1

d∑
i=1

E

(
G2

t−1,i√
β2ν̃t,i

−
G2

t,i√
ν̃t+1,i

)
+

d∑
i=1

2η
√
1− β2σ0

(1− β1)(1− β1√
β2
)
E
[(

|mt,i|2

νt,i

)]

+
64(1 + σ2

1)σ
2
1L

2η3d

β2
2(1−

β1√
β2
)3(1− β1)σ0

√
1− β2

E
∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2 .

Lemma 8 (Formal version of Lemma 2). Let all conditions in Theorem 1 holds. Then,

Ef(ut+1)

≤Ef(ut)−
η

4

1− β1

1− β1√
β2

E
[
η

〈
Gt,−

1√
ν̃t

�Gt

〉]
+

2η
√
1− β2σ0(

1− β2
1

β2

)2 d∑
i=1

E
g2
t,i

νt,i

+ η
4

(1− β1√
β2
)2
√
β2

σ2
1

d∑
i=1

E
(

1√
β2

ξt−1 − ξt

)
+

d∑
i=1

2η
√
1− β2σ0

(1− β1)(1− β1√
β2
)
E
[(

|mt,i|2

νt,i

)]

+
64(1 + σ2

1)σ
2
1L

2η3d

β2
2(1−

β1√
β2
)3(1− β1)σ0

√
1− β2

E
∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2 + 2η
√
1− β2β

2
1σ0

(1− β1)(1− β1√
β2
)β2

d∑
i=1

E
[
|mt−1,i|2

νt−1,i

]

+ LE

4( β1√
β2

1− β1√
β2

)2

η2
∥∥∥∥ 1
√
νt−1

�mt−1

∥∥∥∥2 + 3

(
1

1− β1√
β2

)2

η2
∥∥∥∥ 1
√
νt

�mt

∥∥∥∥2
 .
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Proof. According to the definition of ut, we have

ut+1 − ut =
wt+1 −wt

1− β1√
β2

− β1√
β2

wt −wt−1

1− β1√
β2

=− η

1− β1√
β2

1
√
νt

�mt + β1
η

1− β1√
β2

1√
β2νt−1

�mt−1

=− η

1− β1√
β2

1√
ν̃t

�mt + β1
η

1− β1√
β2

1√
ν̃t

�mt−1

− η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
�mt + β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
�mt−1

(∗)
= − η

1− β1

1− β1√
β2

1√
ν̃t

� gt

− η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
�mt + β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
�mt−1,

where Eq. (∗) is due to mt = β1mt−1 + (1− β1)gt.

Applying the above equation to the "First Order" term, we find that it can be decomposed as
E [〈∇f(ut),ut+1 − ut〉]

=E [〈Gt,ut+1 − ut〉] + E [〈∇f(ut)−Gt,ut+1 − ut〉]

=E
[〈

Gt,−η
1√
ν̃t

� gt

〉]
+ E

[〈
Gt,−

η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
�mt

〉]

+ E

[〈
Gt, β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
�mt−1

〉]
+ E [〈∇f(ut)−Gt,ut+1 − ut〉]

=− η
1− β1

1− β1√
β2

E
∥∥∥∥ 1

4
√
ν̃t

�Gt

∥∥∥∥2 + E

[〈
Gt,−

η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
�mt

〉]
︸ ︷︷ ︸

I.1

+ E

[〈
Gt, β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
�mt−1

〉]
︸ ︷︷ ︸

I.2

+E [〈∇f(ut)−Gt,ut+1 − ut〉]︸ ︷︷ ︸
I.3

.

Here we apply Lemma 7 to bound I.1. We proceed by bounding I.2 and I.3 respectively.

As for I.2, we have

I.2 =E

[〈
Gt, β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
�mt−1

〉]

≤ ηβ1

1− β1√
β2

d∑
i=1

E

[
|Gt,i|

∣∣∣∣∣ 1√
β2νt−1,i

− 1√
ν̃t,i

∣∣∣∣∣ |mt−1,i|

]

=
ηβ1

1− β1√
β2

d∑
i=1

E

[
|Gt,i|

∣∣∣∣∣ (1− β2)σ
2
0√

β2νt−1,i

√
ν̃t,i(

√
ν̃t,i +

√
β2νt−1,i)

∣∣∣∣∣ |mt−1,i|

]

=
ηβ1

1− β1√
β2

d∑
i=1

E

[
|Gt,i|

∣∣∣∣∣ 4
√
1− β2

√
σ0√

β2νt−1,i
4
√

ν̃t,i

∣∣∣∣∣ |mt−1,i|

]

≤1

8

1− β1

1− β1√
β2

d∑
i=1

ηE
|Gt,i|2√

ν̃t,i

+
2η

√
1− β2β

2
1σ0

(1− β1)(1− β1√
β2
)β2

d∑
i=1

E
[
|mt−1,i|2

νt−1,i

]
.
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As for I.3, we directly apply Assumption 1 and obtain

I.3 =E [〈∇f(ut)−Gt,ut+1 − ut〉]
≤E [‖∇f(ut)−Gt‖‖ut+1 − ut‖]
≤LE [‖ut −wt‖‖ut+1 − ut‖]

=LE

[ β1√
β2

1− β1√
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( β1√
β2
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β1√
β2
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β2

‖wt −wt−1‖

)]
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1
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1− β1√
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)2
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1

4

(
1
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β2

)2
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)2
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∥∥∥∥ 1
√
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∥∥∥∥2 + 1

4

(
1

1− β1√
β2

)2

η2
∥∥∥∥ 1
√
νt

�mt

∥∥∥∥2
 .

All in all, we summarize that the "First Order" term can be bounded by

− η

4

1− β1

1− β1√
β2

E
∥∥∥∥ 1

4
√
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�Gt

∥∥∥∥2 + 2η
√
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1
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E
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+ η
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√
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d∑
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E

(
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t−1,i√
β2ν̃t,i

−
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t,i√
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)
+

d∑
i=1

2η
√
1− β2σ0

(1− β1)(1− β1√
β2
)
E
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|mt,i|2

νt,i

)]

+
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1)σ
2
1L

2η3d
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 .

Furthermore, the "Second Order" term can be directly bounded by

L

2
E‖ut+1 − ut‖2 =

L

2

∥∥∥∥∥wt+1 −wt
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∥∥∥∥∥
2
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∥∥∥∥∥
2
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∥∥∥∥∥ β1√
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∥∥∥∥∥
2

.
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Applying the estimations of the first-order term and the second-order term to the descent lemma then
gives

Ef(ut+1)

≤Ef(ut)−
η

4

1− β1

1− β1√
β2

d∑
i=1

E
G2
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+
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1
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E
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t,i

νt,i
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4
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√
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1
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E

(
G2
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−
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)
+
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2η
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(1− β1)(1− β1√
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)
E
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+
64(1 + σ2

1)σ
2
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(
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∥∥∥∥2
 .

The proof is completed.

Lemma 9 (Lemma 3, restated). Let all conditions in Theorem 1 hold. Then,

T+1∑
t=1

d∑
i=1

E
√
ν̃t,i ≤ 2(T + 1)

d∑
i=1

√
ν0,i + σ2

0 + 24d
σ2
1C1√
β2

ln d
σ2
1C1√
β2

+
12σ2

1√
β2

C2.

Proof of Lemma 3. To begin with, we have that

T∑
t=1

E

[
|Gt,i|2√

ν̃t,i

1|Gt,i|≥σ0
σ1

]
≤

T∑
t=1

E

[
|Gt,i|2√

ν̃t,i

]
. (14)

On the other hand, we have that

|Gt,i|2√
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1|Gt,i|≥σ0
σ1

≥
2
3 |Gt,i|2 + 1

3
σ2
0
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1√
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1|Gt,i|≥σ0
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≥
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3σ2
1
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0
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3σ2
1
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3σ2
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0√
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√
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1
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3σ2
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√
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.

As a conclusion,

T∑
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≥
√
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√
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On the other hand, as stated in Section 4.2, we define {ν̄t,i}∞t=0 as ν̄0,i = ν0,i, ν̄t,i = β2ν̄t−1,i +
(1− β2)|gt,i|21|Gt,i|<

σ2
0

σ2
1

. One can easily observe that ν̄t,i ≤ νt,i, and thus

T∑
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E

[(√
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√
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)
1
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1

]

=
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√
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1
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1

≤
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E
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β2
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√
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0)

)
1
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1

≤
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E
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2 ν̄t−1,i + β2(1− β2)|gt,i|21|Gt,i|<
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0
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1

+ (1− β2)σ2
0 −

√
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)

=
T∑
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E
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0 −

√
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)

=E
√
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0 + (1−
√
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T−1∑
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E
√

β2ν̄t,i + (1− β2)σ2
0 − E

√
β2(β2ν̄0,i + (1− β2)σ2

0).

All in all, summing the above two inequalities together, we obtain that

E
√

ν̃t+1,i + (1 −
√
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T∑
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E
√

ν̃t,i −
√
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√
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(√
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√
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σ1

+

T∑
t=1

E
(√
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√
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√
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Since ∀t,

E
√
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√
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√
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√
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√
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√
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E
√
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√
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√
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√
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Leveraging Eq. (16), we then obtain that
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d∑
i=1

√
ν0,i + σ2

0

≤ 6σ2
1√
β2

1− β1√
β2

1− β1

8

η
f(u1) +

32

β2

(
1− β1√

β2

)2 d∑
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where in the last inequality we use the concavity of h(x) = lnx. Solving the above inequality with
respect to
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∑d
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√
ν̃t,i then gives
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The proof is then completed by applying the definition of C2.
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C.2 Proof of Theorem 1

Proof of Theorem 1. Summing the inequality in Lemma 8 over t from 1 to T and collecting the terms,
we obtain
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Combining the above inequality and Eq. (17) gives(
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The proof is then completed.

D Proof of Theorem 2

Proof. To start with, we have that
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where the last inequality is due to that
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Furthermore, we have
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Conclusively, we obtain
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Secondly, as β2 → 1 as T → ∞, β1 ≤
√
β2 − 8σ2

1(1− β2)β
−2
2 holds for large enough T , and thus

Theorem 1 holds. Applying the value of β1, β2, and η to Eq. (16), we obtain that
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Summing Eq. (19) with respect to i then gives
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where the second inequality is due to Eq. (20), the second-to-last inequality is due to Eq. (18),
and the last inequality is due to Jensen’s inequality. Solving the above ineqaulity with respect to
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(21)

Therefore, by Cauchy’s inequality, we have
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The proof is completed.

E Experiments

Table 1: Exploring effect of β1 of Adam. We explore the dataset of Cifar10 using VGG13[28] and
ResNet18[17] and WiKiText2[24] using Transforemer[29]. We show the training loss after 50 epochs

β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 0.9999
Cifar10 ResNet18 0.2268 0.2197 0.2158 0.2197 0.2182 0.2198 0.2217 0.2204 0.2218 0.2222 0.2351 0.3620 0.6187
Cifar10 VGG13 0.1416 0.1605 0.1428 0.1453 0.1391 0.1421 0.1387 0.1457 0.1417 0.1419 0.1551 0.3497 0.6645

WikiText2 3.3600 3.3589 3.3586 3.3573 3.3565 3.3599 3.3627 3.3634 3.3659 3.3749 3.4314 6.3274 7.5384

As mentioned in Section 6, one of the limitations of our theory is that it can not provide better results
when momentum is present. To complement such a limitation, we initialize a empirical study of the
effect of momentum in Adam as follows.

Experimental setting. We use Adam training on Cifar 10 with ResNet18 [28] and VGG13 [17]
and wikitext2 with two-layer Transformer [29] for 50 epoch and record its training loss at 50 epoch
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as a measure for the optimization speed. Smaller loss indicates better optimization. The batch size is
set 1024 for Cifar10 dataset and 100 for WikiText2 Dataset.

The results are given in Table 1. Our discoveries are:

• Momentum can benefit the optimization when the β is not too large.
• For all datasets, larger β1 (Setting β1 close to 1) will worse the optimization.

Connection with Theorem 1. One can easily observe that in Theorem 1 both C1 and C2 polyno-
mially depend on 1

1−β1
and thus so does E

∑T
t=1 ‖∇f(wt)‖ = Õ( 1

1−β1
). Therefore, Theorem 1

is aligned with the experimental results in the sense that both our theory and the experimental
results indicate that the Adam will become worse when the β1 is close to 1. However, Theorem 1
cannot explain the benefit of using momentum (by setting β1 larger than 0). This may be due to
that our Theorem 1 is a worst-case analysis. We conjecture that theoretically deriving the benefit of
momentum requires restricting the underlying objective function to a more specific range, which we
leave as a future work.
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