
A Stationary distribution of the generator438

Let PG denote the transition probability of the generator, where PG(x | r = x′) denote probability439

of generating x condition on the prompt being x′. We want to create a Markov chain to simulate a440

random walk within the user’s distribution (Pi). Specifically, we begin with a user-provided seed441

data point x and use it as a prompt for G to generate a new data point x′. If Pi(x
′) > 0, we accept x′,442

otherwise we remain at x and repeat the process. We are interested in conditions under which the443

stationary distribution of this markov chain is Pi444

Let’s assume that support of Pi is finite and denote it by S, let P ′
G(x

′|x) be the transition function445

over S × S where P ′
G(x | x) = PG(x | x) +

∑
PG(x

′ | x)I[Pi(x
′) = 0] and for x, x′ ∈ S where446

x ̸= x′ we have P ′
G(x | x′) = PG(x | x′).447

If the transition graph generated by P ′ is irreducible (any state can be reached from any other state)448

and all its states are positive recurrent (the expected time to return to a state is finite), then the unique449

stationary distribution using G is Pi if the following equality holds:450

Ex∼Pi
[P ′(x′ | x)] = Pi(x

′) (1)

The above statement states that the probability of a data point (Pi(x)) should be proportional to the451

probability of reaching to that point with the transition function of P ′.452

If instead of only one data point we use m data points for prompt, we can create a graph where453

each node is m data points, and then analyse the stationary distribution of Markov chain on such454

graph. In this case, when we start from a node with m examples and prompt the language model455

with them in this case the probability of going to (x′, xm, . . . , x2) from (xm, . . . , x1) is equal to456

P ′
G(x

′ | r = (xm, . . . , x1)).457

B Linear regression analysis458

In this section, we examine the performance of CoDev in a simple linear regression scenario.459

Specifically, we aim to investigate following aspects: (1) the number of data points required to teach460

a local concept to a global model, and (2) the reasons behind interference among concepts and the461

number of steps necessary to resolve it.462

B.1 Setup463

We consider each input x ∈ Rd where only some of the data points are valid. There exist a true464

function θ⋆ ∈ Rd such that y = θ⋆⊤x. The support of each concept (Pi) lays on a subspace (Si) and465

all valid data points on that subspace belongs to Ci. Given k examples in Ci, let Sobv
i denote the466

subspace observed by the training data, Suno
i denote the unobserved subspace, thus Si = Sobv

i +Suno
i467

is the smallest subspace containing all data points in Ci. Finally Sinv
i denote the subspace that concept468

i does not have any variation in it.469

As a running example, let x ∈ R3 and consider a concept where data points belonging to that concept470

satisfies x1 = x2. Recall that only some of the data points in this subspace are valid e.g., a point is471

valid if x1 is odd thus [1, 1, 0] is valid while [2, 2, 1] is not. Let’s assume we observed x = [1, 1, 0]472

in that subspace with label y = 2. In this case we have: Sobv
1 = [1, 1, 0], Suno

1 = [0, 0, 1] and473

Sinv
1 = [1,−1, 0].474

We consider the overparametrized noiseless linear regression, where number of features (d) is larger475

than number of acquired training examples (n) ( therefore, we can always interpolate all the training476

data) and there is no noise in observed targets. Following work of [30] which showed gradient descent477

on linear regression lead to min L2-norm, we assume local and global models infer the min L2 norm478

interpolant. As an example, for our running example the min-norm solution interpolating the concept479

is θ̂ = [1, 1, 0].480

B.2 Operationalizing a concept: from disagreement to convergence481

An alternate interpretation of the min-norm involves inferring the parameters by taking into account482

explicit constraints that require θ̂’s projection on Suno
i and Sinv

i to be zero. For instance, in our483
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current example, we can deduce the min-norm solution by solving these linear equations: ([0, 0, 1]θ =484

0, [1,−1, 0]θ = 0, [1, 1, 0]θ = 2).485

These constraints are generally valid as the unseen directions often do not affect the output. However,486

these constraints may be violated when we combine local concept data with global data, as the487

projection of Suno
i and Sobv

0 may not be zero. This implies that the output could change with488

variations in the unseen directions, leading to local models typically outperforming global models489

within a local concept.490

To ensure both local and global models perform equally well in the local concept, we need to enforce491

the invariance constraints explicitly. This involves adding new data that exhibit variations in the492

unseen directions and demonstrating that these variations do not affect the output. Furthermore,493

we presume that Suno
i is significantly large, making methods that attempt to examine all possible494

directions inefficient. Therefore, it’s more advantageous to only verify directions that are affected by495

the merge.496

Consider the previous example where we observed x = [1, 1, 0], y = 2 for the local concept. Now,497

imagine the we observed x = [0, 1, 1], y = 2 in global dataset. When we combine this data point498

with the concept data point, we get θ̂global = [ 23 ,
4
3 ,

2
3 ]. This causes a disagreement in data points that499

vary in the [0, 0, 1] direction within the local concept, the local model predicts 0 while the global500

model predicts 2
3 . Note that both the global and local predictions align for variations in the [1, 1, 0]501

direction.502

In the event of such a disagreement, we have two options: (1) The variation in this direction is indeed503

non-zero, suggesting the local model requires further refinement - a frequent occurrence in early504

stages, or (2) The variation is zero, but it needs to be specified as such; otherwise, the global model505

assumes other values due to its implicit bias towards generating the simplest model. Note that there is506

no disagreements in the common directions between Suno
0 and Suno

i or their orthogonal subspaces.507

Referring to the above example, the generator identifies a data point where the two models disagree.508

Let’s assume this data point is x = [0, 0, 1], where the local model predicts 0, but the global model509

predicts 2
3 . In such a case, we present this data point to the user. Let’s assume user specify that the510

label for this data point is 0. In this case by adding this new data point the global prediction adjusts to511

θ̂global = [0, 2, 0].512

After we learn the local concept (i.e., all the unobserved directions are indeed zero), how many of513

them do we need to add as explicit constraints? the following proposition shows maximum number514

of disagreements after learning a local concept.515

Proposition 1. If projSuno
i

(θ⋆) = 0, then the maximum number of disagreement between local and516

global models is dim(projSobv
0

(Suno
i ∩ (Suno

i ∩ Sobv
0 )⊥)).517

Proof. The global and local models agree on all observed directions (i.e., Sobv
i and Sobv

0 ). However,518

there is a disagreement for any vector u in Suno
i such that θ̂global = projSobv

0
(θ⋆)⊤u ̸= 0 since519

θ̂⊤i u = 0. Let’s assume we add k examples such that local and global disagree. We now prove that520

k ≤ dim(projSobv
0

(Suno
i ∩ (Suno

i ∩ Sobv
0 )⊥)).521

For the k added examples, only consider their components in (Suno
i ∩ (Suno

i ∩ Sobv
0 )⊥) (we can522

remove the Sobv
i components by subtracting their projection on Sobv

i similarly remove any component523

in (Suno
i ∩ Sobv

0 ) by subtracting their projection in Sobv
0 ). In order to have a disagreement these data524

points should have non-zero projection on Sobv
i otherwise there will be no disagreements. As a result525

the maximum number of data points is dim(projSobv
0

(Suno
i ∩ (Suno

i ∩ Sobv
0 )⊥)).526

B.3 Handling interference between concepts527

In previous section, we explained why disagreement can happen between local and global model and528

how we can resolve the disagreements by querying user of the local concept. We bound number of529

disagreement with dimension of projection of Suno
i on Sobv

0 . In previous section we did not need530

to change Sobv
0 but when concept j has conflicts with concept i we also add data to concept j (thus531

changing Sobv
j ) which can lead to new conflicts with concept i.532
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Concept Examples Example of bugs found by CoDev

X person = not X person How can I become a positive person?
How can I become a person who is not negative?

predicts duplicate
shortcut bugs

{
How can I become a mysterious person?
How can I become someone with no mystery?

predicts non-duplicate
overfit bugs

{
How can I become a blind person?
How can I become someone who has lost his (physical) vision?

Modifiers changes question
intent

Is Mark Wright a photographer?
Is Mark Wright an accredited photographer?

predicts not-duplicate
shortcut bugs

{
Is he an artist?
Is he an artist among other people?

predicts duplicate
overfit bugs

{
Is Joe Bennett a famous court case?
Is Joe Bennett a famous American court case?

Table 5: Examples of bugs found by CoDev in the concepts introduced by CheckList, which were
subsequently “debugged” using AdaTest, demonstrating that AdaTest had not yet fully operationalized
these concepts.

The following proposition state that in addition to the dimension of projection of Suno
i on observed533

subspace we also need to calculate projection on the unobserved space of different concepts as they534

might get added in the future. With notation of Sobv
0:k denoting sum of all the Sobv

i , and S−i denotes535

sum of all subspaces except i, the following proposition bounds number of times users need to add536

data to their concepts due to interference.537

Proposition 2. If for all i, projSuno
i

(θ⋆) = 0 then the maximum number of times that we need to538

handle interference is
∑k

i=1 dim
(
projS−i

(
Suno
i ∩ (Suno

i ∩ Sobv
0:k )

⊥)).539

Proof. The proof is similar to Proposition 1. Here we need to deal with conflicts with all other540

topics and since it is possible that we add their unobserved subspace as well we need to compute the541

dimension of Suno
i on the whole Sj subspace not only Sobv

j .542

Let assume we added t example from concept i to handle interference, we now prove that t ≤543

dim(projS−i
(Suno

i ∩ (Suno
i ∩ Sobv

0:k )
⊥)). For every data point that we add we first remove Sobv

0:k544

components by removing its projection on Sobv
0:k . Now in order to have a conflict this data point should545

have non-zero projection on S−i. As a result the maximum number of data points we can add is546

less or equal than dim(projS−i
(Suno

i ∩ (Suno
i ∩ Sobv

0:k )
⊥)), summing over all the concept result in547

maximum number of interference that needs to be handled.548

549

C Extra Figures550

Table 5 shows some example of bugs discovered by CoDev that AdaTest was unable to find.551

D Extended Version of Broader Impact and Limitations552

CoDev aids in operationalizing concepts without filtering the values a user wishes the model to align553

with. This might inadvertently allow a malicious user to encode harmful behavior into the NLP554

model, a risk for which we currently have no safeguards.555

CoDev’s functionality greatly depends on the interconnectedness of data points within the generator556

(we used GPT-3 in our experiments). Consequently, in situations where we lack data for specific557

concepts, CoDev may not assist users in putting their concept into action, an example being the558

operationalization of concepts in low resource languages.559

It is important to mention that we do not employ LLM for labeling tasks, hence the biases present in560

the Language Model (LLM) will not propagate into our model. Indeed, CoDev can be used as a tool561

to tackle these biases in the LLM. However, if biases exist within the LLM (e.g., sentences pertaining562

to certain religious contexts being closely related to those discussing violence) the user may need to563

engage more intensively with the system to accurately operatinalize the concept. On the other hand, a564

user working with a concept without any particular bias in the LLM will require less effort.565

In terms of interference management, we only handled interference that arises from machine learning566

shortcomings and can be addressed by adding more data. However, there might be literal disagree-567
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ments between users (i.e., two users assign different labels to the same sentence). Although our568

method can surface such disagreements, we lack a definitive solution to resolve disagreements569

between users.570

Finally, our theoretical framework is limited but our goal was to gain some initial insights into why571

interference occurs and estimates the number of instances required to address it.572

Tackling these challenges - safeguarding against malicious users, resolving literal disagreements,573

and conducting a more comprehensive theoretical analysis of alignment - are valuable directions for574

future research.575
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