
The Emergence of Essential Sparsity in
Large Pre-trained Models: The Weights that Matter

Ajay Jaiswal1, Shiwei Liu1,2, Tianlong Chen1, Zhangyang Wang1

1University of Texas at Austin, 2Eindhoven University of Technology
{ajayjaiswal, shiwei.liu, tianlong.chen, atlaswang}@utexas.edu

Abstract

Large pre-trained transformers are show-stealer in modern-day deep learning,
and it becomes crucial to comprehend the parsimonious patterns that exist within
them as they grow in scale. With exploding parameter counts, Lottery Ticket
Hypothesis (LTH) and its variants, have lost their pragmatism in sparsifying them
due to high computation and memory bottleneck of repetitive train-prune-retrain
routine of iterative magnitude pruning (IMP) which worsens with increasing model
size. This paper comprehensively studies induced sparse patterns across multiple
large pre-trained vision and language transformers. We propose the existence of
– “essential sparsity” defined with a sharp dropping point beyond which the
performance declines much faster w.r.t the rise of sparsity level, when we directly
remove weights with the smallest magnitudes in one-shot without re-training.
We also find essential sparsity to hold valid for N:M sparsity patterns as well
as on modern-scale large language models (Vicuna-7B/13B). We also present
an intriguing emerging phenomenon of abrupt sparsification during the pre-
training of BERT, i.e., BERT suddenly becomes heavily sparse in pre-training after
certain iterations. Moreover, our observations also indicate a counter-intuitive
finding that BERT trained with a larger amount of pre-training data tends to have a
better ability to condense knowledge in comparatively relatively fewer parameters.
Lastly, we investigate the effect of the pre-training loss on essential sparsity and
discover that self-supervised learning (SSL) objectives trigger stronger emergent
sparsification properties than supervised learning (SL). Our codes are available at
https://github.com/VITA-Group/essential_sparsity.

1 Introduction
Enormous increases in scale often permeate systems with unique new behavior. Transformers [1],
swiftly after their introduction are scaling every day, dramatically improving the state-of-the-art per-
formance on a wide array of real-world computer vision [2, 3, 4, 5, 6, 7], natural language processing
[8, 9, 10, 11, 12, 13, 14, 15, 16] applications and leaderboards. With the astonishing explosion of
parameter counts (millions to billions) in the past few years, while chasing performance gains, fine-
tuning these large pre-trained models with non-industry standard hardware is becoming seemingly
impossible, in addition to expensive inference and steep environmental cost. For instance, GPT-3
[17] contains 175 billion parameters and requires at least five 80GB A100 GPUs for inference [18].

In the hustle of building gigantic models, a parallel and growing field of model compression has
been exploring the prospects to compress these gigantic models at the cost of marginal/no sacrifice
in performance. Among many efforts for compressing models and accelerating inference, network
pruning [19, 20, 21, 22, 23, 24, 25, 26], which removes the least important components from the
model, varying from the low granularity (e.g., individual weights) to the high granularity (such as
blocks, filters, and attention heads), stands out as one of the most effective techniques. Despite the
enormous success of the Lottery Ticket Hypothesis (LTH) [27] and its variants for small-scale neural
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networks, there still exists a large gap in its practical adoption for large pre0trained transformers
with billions of parameters because of the fully dense training routine of iterative magnitude pruning
(IMP), which exacerbates with an increase in model capacity. Recently, many works [28, 29, 30, 20]
are investigating strategies to make IMP pragmatic for large pre-trained models. However, they still
rely on train-prune-retrain routine of IMP and downstream tasks to identify subnetworks. While
chasing for gold-standard sparsity masks with computationally expensive approaches, it is critically
important to understand pre-existing high-quality sparse patterns in these large transformers.

In our work, we reveal and study an intriguing, previously overlooked property of large pre-trained
transformers – “essential sparsity”. In plain words (formal definition in Sec. 3), we define essential
sparsity as sharp dropping point, beyond which the fine-tuning performance after one-shot pruning
declines much faster w.r.t. the sparsity level rise. We directly remove weights with the smallest
magnitudes in one-shot from the pre-trained checkpoints, thereby the identified subnetwork mask
requires no extra computational overhead to spot and remains identical across all downstream tasks.

Essential sparsity is an important yet understudied induced property of large pre-trained transformers,
indicating that at any time, a significant proportion of the weights in them can be removed free
of any calibration data or post-optimization, although the proportion may vary depending on the
complexity of the downstream task. One important practical implication conveyed by this observation,
as overlooked by prior work, is summarized as: within the sparsity range induced by “essential
sparsity”, the simplest possible pruning technique as aforementioned performs the same well as any
fancy technique such as LTH, and even their identified sparse masks are highly similar.

Our work, for the first time, conducts a comprehensive study of the existence of essential spar-
sity across multiple vision and language transformers with varying scales and training strategies.
Besides, we observe essential sparsity to hold valid for various N:M sparsity patterns with hard-
ware speedup potentials. In addition, our experiments using the popular MMLU benchmark [31]
on Vicuna-7B/13B illustrate essential sparsity observations remain true for modern-scale large
language models (LLMs), indicating the existence of high-quality sparse subnetworks within dense
pre-trained checkpoint.

Next, we study the emergence of those sparsification properties during the pre-training dynamics,
using BERT as the focused subject of study. We found an intriguing phenomenon of abrupt
sparsification, i.e., BERT suddenly becomes heavily sparse after certain number of training iterations.
As we vary the pre-training dataset size. our observation indicates another counter-intuitive finding
that BERT trained with a larger amount of pre-training data tend to have a better ability to condense
knowledge in relatively fewer parameters. We also dive deep into the effect of the pre-training loss
on essential sparsity and discover that self-supervised learning (SSL) objectives trigger stronger
emergent sparsification properties than supervised learning (SL).

Key contributions for our work can be summarized as:

• We found the ubiquitous existence of essential sparsity across large pre-trained transformer
models of varying scales for vision and language, irrespective of the training strategy used
for pre-training them. High-quality sparse masks comparable to lottery tickets [27] within
the essential sparsity range can be spotted free of inference or post-optimization by merely
selecting the lowest magnitude weights, that requires no expensive repetitive train-prune-
retrain routine. The observation holds true for both unstructured and N:M sparsity patterns.

• Our comparison of the sparse masks obtained by selecting the lowest magnitude weights
with the lottery tickets within the essential sparsity range, surprisingly unveils a notably
high cosine similarity (>98%) across various downstream tasks from NLP and CV. This
observation sends a strong message that in large pre-trained models, LTH perhaps enjoys
little additional privilege despite utilizing enormous computational costs.

• While studying the emergence of sparsification properties during the pre-training dynamics in
BERTs, we found an intriguing phenomenon of abrupt sparsification, i.e., BERT suddenly
becomes heavily sparse after certain number of training iterations. We additionally found a
counter-intuitive observation that BERT pre-trained with larger amount of data tends to be
more sparser, i.e., they become better at knowledge abstraction with fewer parameters.

• We additionally study the effect of the pre-training loss on the emerging sparsity of FMs.
When we switch between supervised learning (SL) and self-supervised learning (SSL)
objectives on ViT, we observed that SSL tends to have better emergent sparsification
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properties, thereby more friendly to pruning. We further provide layer-wise visualization to
understand what the sparsity learned by SSL vs SL looks like.

2 Related Work
Sparse Neural Networks (SNNs). Sparsity in deep neural networks is usually introduced by model
compression [32, 33] which removes the redundant parameters. Based on the type of sparsity patterns,
it can be categorized into two families: (i) unstructured sparsity [33, 34, 35] where the non-zero
elements are irregularly distributed; (ii) structured sparsity [36, 37, 38] where a group of parameters
is eliminated like a convolutional kernel in convolutional neural networks or an attention head in
the transformer. In general, the former sparsity pattern obtains a better performance thanks to its
flexibility, while the latter sparse pattern tends to be more hardware friendly. Many important SNN
works start by studying the former and then turn to the latter as a special case.

Meantime, according to the timing to perform dimensionality reduction, sparsity can be obtained in
the post-training, during-training, and prior-training of deep neural networks. (i) Post-Training. To
pursue inference time efficiency, trained models can be pruned dramatically with marginal loss of
performance with respect to certain heuristics, including zero-order [33], first-order [39, 40, 41], and
second-order [32, 42, 43] criteria. Among these algorithms, the weight magnitude-based approach
(e.g. iterative magnitude pruning) is a popular option. Especially, it is frequently adopted by the
Lottery Ticket Hypothesis [19] to produce sparse NNs with undamaged trainability and expressiveness.
(ii) During-Training. On the contrary to pruning a well-trained model for inference efficiency, during-
training sparsification [44] also enjoys computational savings for model training. It normally first
optimizes a dense network for several iterations, then gradually sparsifies it with a pre-defined
schedule, and finally leads to lightweight sparse NNs. For example, [45, 46, 47] leverage ℓ0 or ℓ1
penalties to encourage weight sparsity during the network training, hoping to zero out unimportant
parameters. [48, 49] cast it as an optimization problem with reparameterization and bi-level forms,
respectively. Another fashion is dynamic sparsity exploration [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]
which allows pruned connections can be re-activated in the latter training stage. (iii) Prior-Training.
Identifying the critical sparsity patterns at the initialization is one exciting rising sub-field. It
determines the sparse connectivities in a very early stage, like one iteration [25, 60] or a few
iterations [61, 62]. In this paper, we mainly investigate post-training unstructured SNNs.

Sparsity in Pre-Trained Transformers. Pre-trained Transformers have become de facto choice
for numerous applications of natural language processing (NLP) [8, 9, 10, 15, 16] and computer
vision [2, 7, 63]. Their impressive performance is partially credited to their tremendous learning
capacity empowered by huge amounts of model parameters. Unfortunately, such successes come
with burning thousands of GPUs/TPUs for thousands of hours [64, 17], even for a single round of
model training. To address this resource-intensive concern and improve the affordability of these
transformers, plenty of pioneering researchers devote themselves in this area [40, 20, 30, 65, 66,
67, 68, 69, 70]. Rather than proposing a new sparsification method, this paper reveals the blessings
of induced essential sparsity during the pre-training and how we can capitalize it to prune large
pre-trained models without any computational overhead.

3 Experimental Settings
Network and Pre-Trained Transformers. We consider {BERTBase [64], BERTLarge [64],
OPT125M [71], OPT350M [71], and OPT1.3B [71]} and {ViTBase [2], ViTLarge [2], and
DiNOBase [63] for NLP and CV applications respectively. Their officially pre-trained models1

are adopted in our experiments. To be specific, let f(x; θp) be the output of a transformer with
pre-trained model parameters θp and input sample x.

Datasets, Training, and Evaluation. For downstream tasks in NLP, we consider {MNLI, QNLI,
QQP, SST-2} from GLUE [13], RTE from SuperGLUE [72], and SQuAD v1.1 [73]. As for vision
downstream applications, we examine {CIFAR-10, CIFAR-100, Tiny-ImageNet [74]}. We also
use the Arithmetic Reasoning task from the recently proposed SMC-Benchmark [75] and consider
popular math word problem datasets: (1) the widely used MAWPS benchmark [76] composed of
2,373 problems; (2) the arithmetic subset of ASDiv-A [77] - with 1,218 math problems; (3) the more

1Check supplementary materials for pre-trained model details.
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Figure 1: Naturally induced sparsity patterns of bert-base-uncased across the components of
transformer blocks. The pre-trained model is pruned by 21.50% using one-shot-magnitude pruning.
Yellow dots indicate the location of pruned low-magnitude weights.

Table 1: Downstream tasks fine-tuning details. Learning rate decay linearly from initial value to 0.

Settings Natural Language Processing Computer Vision

MNLI QNLI QQP RTE SST-2 SQuAD v1.1 CIFAR-10 CIFAR-100 Fashion-MNIST Tiny-ImageNet

# Training Ex 392,704 104,768 363,872 2,496 67,360 88,656 45,000 45,000 55,000 90,000
# Epoch 3 4 3 5 5 3 8 8 8 5
Batch Size 32 32 32 32 32 16 64 64 64 64
Learning Rate 2e− 5 2e− 5 2e− 5 2e− 5 2e− 5 3e− 5 2e− 5 2e− 5 2e− 5 2e− 5
Optimizer AdamW with decay (α) = 1× 10−8 AdamW with decay (α) = 2× 10−8

Eval. Metric Matched Acc. Accuracy F1-score Accuracy (Top-1)

challenging SVAMP [78] dataset which is created by applying complex types of variations to the
samples from ASDiv-A. The task difficulty monotonically increases from MAWPS to ASDiv-A,
and to SVAMP. We adopt the default dataset split for training and evaluation for our downstream
application. More detailed configurations are collected in Table 1. For SMC-benchmark, we strictly
followed the settings proposed in the official implementation2

Sparse Neural Networks (SNNs). The weights of a SNN can be depicted as m ⊙ θ, where
m ∈ {0, 1}|θ| is a binary mask with the same dimensionality as θ and ⊙ is the elment-wise product.
Let ET (f(x; θ)) denotes the evaluation function of model outputs f(x; θ) on the corresponding task
T (which might involve fine-tuning). Pρ(·) is the sparsification algorithm which turns a portion ρ of
“1" elements in the sparse mask m into “0"s. Here is a formal definition of Essential Sparsity below.

Essential Sparsity. If ET (f(x;m⊙ θ)) ≥ ET (f(x; θ))− ϵ, and ET (f(x;Pρ(m)⊙ θ)) <

ET (f(x; θ))− ϵ where the value of ρ and ϵ are small. Then, the according sparsity 1− ∥m∥0

|m|
is named as Essential Sparsity for the model f on task T .

As detailed above, the model at the essential sparsity usually has a turning point performance, which
means further pruning even a small portion ρ of weights leads to at least ϵ performance drop, compared
to its dense counterpart ET (f(x, θ)). In our case, ϵ is set as 1%. In plain language, the turning
point of essential sparsity defines a sparsity range with two characteristics: (i) within this range, the
one-shot pruned model performs as well as or better than dense baseline, without re-training; (ii)
beyond this range, a notable accuracy drop becomes observable after one-shot magnitude pruning.

Pruning Methods. To find the desired sparse mask m, we use two classic weight magnitude pruning
algorithms [33, 19]. One-shot Magnitude Pruning (OMP): we directly eliminate a pre-defined portion
of parameters from θp with the least absolute magnitude. Lottery Tickets Pruning (LTP): (i)
we first train the model to converge on a downstream task T ; (ii) then remove a portion of the
smallest weights and reset the remaining weight to their initialized value from pre-training θp; (iii)
such processes will be repeated until reaching the desired sparsity.

Two crucial facts are noteworthy. First, starting from the pre-trained model, unlike LTP which seeks
downstream-specific masks with additional training, the OMP sparse masks require no additional
training to identify and are agnostic to downstream applications. Since they are estimated directly
from the pre-trained weight checkpoint, the OMP sparse mask remains the same for all downstream
applications (we only continue to fine-tune the non-zero weights with the same mask, over different
downstream datasets). Second, for the same above reason, a higher-sparsity OMP mask is naturally
nested within a lower-sparsity mask, as long as they are pruned from the same pre-trained checkpoint
using OMP. The same nested property does not hold for LTP-obtained masks.

2SMC-Benchmark fine-tuning setting details: Arithmetic Reasoning
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Figure 2: Fine-tuning performance drop estimated with respect to dense counterpart for various
downstream tasks of NLP pre-trained models (bert-base, OPT-125m, OPT-350m, OPT-1.3B).
Note that for fair evaluation, we have used exactly same fine-tuning settings across all pruning ratios.

Figure 3: Fine-tuning performance drop estimated with respect to dense counterpart for various
downstream tasks of CV pre-trained models (ViT-base & ViT-large).

4 Essential Sparsity Exists in Pre-trained Language and Vision Models

Revisiting sparsity in Pre-trained Transformers: The unconstrained growth in parameters has
resulted in significant computational costs and excessive memory demands. The trend undoubtedly
continues with transformers on the forefront, where more and more layers are stacked with dense
attention blocks (eg. GPT-3 has surprisingly 175 billion parameters) necessitating substantial compu-
tational resources and extended training or fine-tuning durations. Unlike extensive efforts explored
in the past for pruning ResNets and related families of networks, pruning large-scale pre-trained
transformer models hasn’t received enough attention.

Lottery Ticket Hypothesis (LTH) based approaches have been recently explored to prune BERT-base
size pre-trained models. However, they lose their pragmatism due to the expensive dense train-prune-
retrain routine of IMP and non-transferable characteristics of identified subnetworks across similar
tasks [20]. oBERT [66] proposes second-order to BERT-level scale by allowing for pruning blocks
of weights. Note that, although these methods provide interesting approaches to prune BERT scale
transformers, they fail to sufficiently recognize the strength of pre-existing, more easily accessible
high-quality sparse patterns in pre-trained large models invariant of the scale, training data modality,
and strategy. This paper’s primary goal is to bring the sparse community’s attention towards the
strength of ubiquitously induced sparse patterns during the pre-training of large transformers and
encourage them to effectively capitalize it during the design of more sophisticated pruning algorithms.

Essential Sparsity: As defined in Section 3, essential sparsity indicates the presence of naturally
induced sparse structures in large pre-trained models with respect to the lowest magnitude weights.
Figure 1 represents the induced sparsity distribution of bert-base-uncased pre-trained model with
21.50% close to zero weights, which we have been able to remove without ANY drop of performance
across any of our evaluation downstream datasets. This sought a strong message about the existence of
free, universal, and available to consume sparse mask (m · θp) without any computational overhead
induced by sophisticated pruning algorithms. In addition, a closer observation of the distributed
sparsity ratios across different modules of the transformer block indicates that the majority of the
low-magnitude weights are concentrated in the dense feed-forward layers. Such findings conform
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with the success of Mixture-of-Experts [79] and provide cues for future development of pruning
algorithms to exploit the over-parameterization of dense feed-forward layers.

We now enlist our key findings related to essential sparsity in large pre-trained transformer models:

• In all vision and language models, we find the existence of essential sparsity and the sharp
turning point of the sparsity-performance curve.

• The sharp turning point of essential sparsity is downstream task-dependent and can vary
depending on the task complexity.

• The sharpness behavior of essential sparsity is more profound in vision pre-trained models
in comparison with language models.

• Essential sparsity holds valid for recently proposed pruning benchmark SMC-bench [75].

• Essential sparsity holds valid for N:M structured sparsity patterns [80] with potential speedup.

• Self-supervised learning objective triggers stronger emergent sparsification properties than
supervised learning in models having exactly the same architecture.

Figure 4: Fine-tuning performance drop
of bert-base on Arithmetic Reasoning
datasets in the SMC-benchmark [75].

Universal Existence of Essential Sparsity: We com-
prehensively evaluate the extent to which essential spar-
sity exists in the large pre-trained language models
(CV and NLP) with a standard pre-trained initializa-
tion θp. For NLP, we studied bert-base, OPT-125M,
OPT-350M, OPT-1.3B and used MNLI, QNLI, QQP,
SST-2, RTE, and SQuAD1.1 to estimate the effect
the removing low-magnitude weights on downstream
performance. On the other hand, for CV, we rely on
ViT-Base and ViT-Large models and use CIFAR-10,
CIFAR-100, TinyImageNet datasets. Figure 2 illus-
trate the performance drop (y-axis) of various NLP
downstream task fine-tuning with mask (m·θx%p ), when
we remove x% of lowest magnitude weights. Similarly,
Figure 3 illustrates the effect of pruning x% low-magnitude weights on the fine-tuning performance
of CV downstream tasks. Moreover, Figure 4 presents the existence of essential sparsity for a recently
proposed sparsity benchmark, named SMC-Bench [75]. It is interesting to observe that essential
sparsity exists in all CV and NLP pre-trained models, and ∼ 30− 50% of weights can be removed
at free without any significant drop in performance. Note that these masks are identified prior to
fine-tuning, on the pre-trained weights and thereby remain the same for all the downstream tasks,
indicating no requirement for bookkeeping LTH-type task-specific masks. It is also important to
appreciate the significance of removing ∼ 40% (which translates to > 500 million parameters) of
OPT-1.3B at no cost without any significant performance drop.

Figure 5: Fine-tuning performance drop of
OPT-350M at GLUE dataset wrt. dense counter-
part on multiple N:M sparsity patterns [80] masks.

Eseential Sparsity for Structured N:M Sparse
Patterns: Considering the demand for practi-
cal speedup, we also conduct evaluations to un-
derstand the essential sparsity for the hardware-
friendly structured N:M sparsity. A neural net-
work with N:M sparsity satisfies that, in each
group of M consecutive weights of the network,
there are at most N weights have non-zero val-
ues. We studied OPT-350M and used MNLI,
QNLI, RTE, SST-2 to estimate the effect of
removing low-magnitude weights in structured
N:M fashion following [80]. Figure 5 illustrates
the performance drop (y-axis) of OPT-350M on
various downstream datasets with multiple N:M sparse mask (m · θx%p ). It can be in general ob-
served essential sparsity holds valid for structured N:M sparsity patterns, and a large fraction of
low-magnitude weights can be removed at free without significant drop in downstream performance.
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Figure 6: Essential Sparsity and performance comparison ViT-base and DINO-base which share the
same architecture but pre-trained using supervised (SL) and self-supervised learning (SSL) objectives.
It can be observed that the SSL induces a better sparsification ability in the pre-trained checkpoint.

Figure 7: Layer-wise weight distribution of ViT-base and DINO-base trained using supervised and
self-supervised learning objective. Note that the weights of both pre-trained models are normalized
using sklearn for fair comparison. Additionally, DINO has 14.37% more zero weights than ViT.

Essential Sparsity and Sharp Turning Behaviour: In this section, we attempt to bring attention
towards the sharp turning point behavior of essential sparsity. Across all our vision and language
models and related downstream tasks (Figure 2, 3, & 4), we observed that after a certain removal
of a certain proportion of low-magnitude weights, the downstream fine-tuning ability of pre-trained
models sharply drops. This is a clear indication that the pre-training knowledge resides in a fraction
of high-magnitude weight regions and if we our one-shot pruning touches that region, it non-linearly
impacts the transfer learning ability of the pre-trained checkpoint. Our experiments reveal that this
sharp-turning behavior is not dependent on model size but on the downstream task. Larger model
doesn’t implicate that it can be pruned for a higher proportion of low-magnitude weight, without
observing the sharp drop. For example, bert-base observes the sharp turning point at around 60%
sparsity while OPT-1.3B can not be pruned beyond 40% without observing the sharp performance
drop on RTE task, although it has ∼ 10 times more parameters than bert-base. Also, it is interesting
to observe that although OPT-125M and bert-base have similar performance count, bert-base
illustrate more friendly behavior to pruning, and can be pruned to comparatively higher sparsity ratio
than OPT-125M on all our evaluation downstream tasks.

Influence of Supervised versus Self-supervised Learning Objectives: With the recent success
of self-supervised learning (SSL) in pre-training large transformer models and its ability to scale to
enormous internet-size data, it is interesting to understand how SSL learning objectives favor sparsity.
Due to the unavailability of supervised datasets to pre-train BERT-scale models, we switch to Vision
transformers, and use ViT-base and its self-supervised version DINO-base which inherit exactly
the same architecture. Figure 6 illustrates fine-tuning performance drop of ViT-base and DINO with
an increase in the proportion of low-magnitude weight removal from pre-trained checkpoints. Across
all tasks, fine-tuning performance doesn’t suffer any drop till 30− 40% weights are removed.

One interesting observation is that DINO-base tends to be more robust to low-weight removal, and
has comparatively better essential sparsity across all tasks. To further investigate why we can prune
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Figure 8: Plot Description in order left-right. (i) Zero-weight count of 5 pre-training experiments
of Bert-base using bookcorpus dataset from HuggingFace with varying percentages of randomly
selected data volume with exactly the same pre-training setting. (ii) Downstream performance of the
pre-trained Bert-base models with varying data volume across different sparsity ratios on MNLI.
(iii) Downstream performance of 5 dense pre-trained models on QNLI, QQP, RTE.

DINO-base more than ViT-base, we examine the weight magnitude distribution across the layers of
the transformer blocks from the pre-trained checkpoints. Figure 7 presents the normalized layer-wise
weight distribution of DINO-base and ViT-base. It can be clearly observed that SSL-based DINO
tends to have a weight distribution more friendly to pruning with a significantly large amount of
weights concentrated around zero magnitudes. More concretely, we found that DINO-base have
∼ 14% more zero weights than ViT-base, which justifies its higher essential sparsity.

5 How Essential Sparsity Emerges during the Pre-Training Dynamics

Scaling the volume of pre-training data volume is widely believed to favor transfer performance in
many downstream tasks in a desirable way [81]. Although, this relationship has been extensively
studied recently in many works [81, 82, 83, 84], pre-training data volume role in inducing sparse
properties in the large transformers is still unexplored. In this section, we ask an important question:
How does the volume of pre-training data impact the emerging sparse patterns in large transformers,
and if it improvises their prunability?

To this end, we designed custom experiments to pre-train bert-base from scratch using HuggingFace
bookcorpus with a vocabulary size of 30,522. We created 5 different pre-training datasets by
randomly selecting 100%, 90%, 80%, 70%, 60% of the training samples from bookcorpus and pre-
train for 50k iteration each to ensure that all models receive the same amount of gradients. Note
that we maintain exactly same training settings for all models to retain fair comparison and save the
pre-training checkpoints every 1000 iterations. We now enlist our key findings related to pre-training
data volume and induced sparse patterns in transformers:

• We observe an interesting new phenomenon of abrupt sparsification, i.e., the introduction
of sudden high sparsity, during pre-training bert-base models, regardless of data size.

• We additionally observed a counter-intuitive finding that bert-base trained with a larger
amount of pre-training data tends to have better emergence of induced sparsity.

• Across all sparsity level, we found bert-base trained with a larger volume of training data,
enjoys better prunability, and achieve better performance on the downstream task (MNLI).

Figure 8(i) illustrate the emergence of sparse patterns during pre-training of bert-base with different
pre-training data volume. We plotted the number of zero weights that emerged in the pre-training
checkpoints every 1k iterations. It can be clearly observed that in all settings, the number of
zero weights suddenly grow up, indicating the models start abstracting pre-training data knowl-
edge into fewer parameter set. For instance, we find this sharp turn around 22-25k iterations for
100%, 90%, 80% settings while around 40k iterations for 70%, 60% settings. In addition, we found
that bert trained with a larger amount of pre-training data tends to have better emergence of induced
sparsity. We argue that bert-base tend to learn more generalizable features and develop the capa-
bility to abstract knowledge To further investigate how this sparsity emergence further influences
the prunability of the pre-trained models, we examined their performance across multiple sparsity
ratios (Figure 8(ii)) on MNLI and found it to be in harmony with the magnitude of induced sparsity,
i.e., models with high induced sparsity patterns during pre-training tend to perform better when
we remove the existing low magnitude weights and fine-tune them on downstream tasks. In dense
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Figure 9: Performance difference comparison of fine-tuning of masks identified by LTH and OMP
from bert-base (left) and ViT-base (right) across multiple downstream tasks.

settings on QNLI, QQP, RTE (Figure 8(iii)), we found that an increase in pre-training data volume
has favorable benefits on the downstream performance with similar fine-tuning hyperparameters.

6 Essential Sparsity and Lottery Ticket Hypothesis

Lottery Ticket Hypothesis deviates from the convention of after-training pruning, and points to the ex-
istence of independently trainable sparse subnetworks from scratch that can match the performance of
dense networks. Since its introduction, it has been very successful and widely adopted in compressing
small-scale (eg. ResNet family) models. However, it is significantly limited in the practical adoption
for large pre-trained models due to train-prune-retrain routine of IMP. In this section, we ask: How
effective LTH is within the essential sparsity range, and does it bring any additional privilege which
can substantiate its computational cost? Our key takeaway can be summarized as:

• Within the essential sparsity range of bert-base and ViT-base, we do not find any
significant fine-tuning performance difference of the mask identified by LTH and one by
removing lowest magnitude weights (OMP) across multiple downstream tasks.

• We surprisingly found the existence of high cosine similarity(> 96%) across the masks
identified by LTH and OMP within the essential sparsity range.

• Mask similarity between LTH and OMP decreases with an increase in the sparsity ratio.
This corroborates with the benefit of LTH in the high sparsity range, where LTH is able to
identify task-fitting masks to retain performance due to repetitive prune and retrain routine.

Figure 9 illustrates the performance difference comparison of fine-tuning of masks identified by
LTH and OMP from bert-base and ViT-base across multiple downstream tasks. It can be clearly
observed that for sparsity ratio below 50%, we do not find any significant difference in performance
between expensive LTH and free-of-cost OMP pruning within the essential sparsity range. A deeper
analysis (Figure 10) across the masks from LTH and OMP unveils a surprising observation about
the existence of significantly high cosine similarity across. This observation supports the findings
in Figure 9 about the matching performance of LTH and OMP and convey a strong and impressive
message that with the essential sparsity range, LTH doesn’t provide any additional privilege. However,
it is important to note that LTH is very effective in the high sparsity range beyond essential sparsity,
due to its ability to find task-fitting mask using train-prune-retrain procedure but they tend to be
non-transferable across different downstream tasks [20]. Moreover, it can be observed from Figure
10, even in the essential sparsity range, mask similarity across tasks by LTH is comparatively low
than OMP based masks due to the strong intertwine of LTH with the downstream tasks.

7 Scaling Essential Sparsity to Modern-Scale LLMs: A Case Study

Large Language Models (LLMs) recently reshape the field of NLP with remarkable performance
benefits across a range of complex language benchmarks. However, due to their gigantic size and
computational costs; they still remain out of reach for many researchers and small industries. In this
section, we investigate the presence of essential sparsity in two popular LLM (Vicuna-7B & 13B)
with one-shot magnitude pruning. Note that unlike our previous setting, where we perform sparse
fine-tuning after the mask is identified; here we do not perform downstream task-specific fine-tuning
and evaluate the performance directly “zero-shot" on the sparsified pre-trained checkpoint.

Figure 11(a) illustrates the performance drop of Vicuna-7B and Vicuna-13B on popular MMLU
benchmark (Stem, Humanities, Social Science, Others) when x% of the lowest magnitude weights
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Figure 10: Cosine similarity between the masks obtained by LTH (depending on downstream task) and
OMP on bert-base (Row 1) and ViT-base (Row 2) for sparsity ratio s ∈ {10%, 20%, 30%, 40%}.
High cosine similarity indicate masks identified by LTH and OMP are significantly similar.
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Figure 11: Performance drop of Vicuna-7B and 13B on MMLU benchmark [31] w.r.t. the dense coun-
terpart, using OMP and the recently proposed SparseGPT [85]. This indicates a notable fraction of
weights of Vicuna-7B/13B can also be removed at free without any significant drop in performance.

are removed from the dense pre-trained checkpoint. It is interesting to see that our essential sparsity
observations hold true even for modern LLMs, sending a favorable signal about the hidden existence
of high-quality sparse subnetwork which can be identified free of calibration data or post-optimization,
in dense pre-trained checkpoints. To further enrich our study, we replaced OMP with the recently
proposed SparseGPT [85] and found it to have generally consistent trends with OMP (Figure 11(b)).

Compared to SparseGPT, our research uncovers the surprising simplicity of LLM pruning within a
specific sparsity range. The remarkable effectiveness of one-shot, magnitude-based pruning not only
establishes a robust baseline but also suggests considerable practical value, for instance, in enabling
economical “on-the-fly" LLM pruning that adapts to fluctuating resource availability during testing.
Nonetheless, it’s worth noting that more refined pruning strategies like SparseGPT can further push
the boundary of essential sparsity and identify better sparse subnetworks at comparatively higher
sparsity ratios, albeit at relatively higher expenses. Bridging the performance divide between OMP
and SparseGPT remains an intriguing avenue for future investigation.

8 Conclusion

We comprehensively study induced sparse patterns across large pre-trained vision and language
transformers. We experimentally validated the ubiquitous existence of essential sparsity across
large pre-trained transformer models of varying scales for vision and language (including LLMs),
irrespective of the training strategy used for pre-training them. We also present an intriguing emerging
phenomenon of abrupt sparsification during the pre-training of transformers and its ability to abstract
knowledge within few parameter subset with increasing pre-training data volume. Lastly, we studied
the performance of LTH with respect to essential sparsity. Our future work will aim to extend our
essential sparsity observations to more gigantic models, and to push for higher sparsity ranges.
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