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Abstract

False arrhythmia alarms in intensive care units (ICUs) are a continuing problem
despite considerable effort from industrial and academic algorithm developers. Of
all life-threatening arrhythmias, ventricular tachycardia (VT) stands out as the
most challenging arrhythmia to detect reliably. We introduce a new annotated
VT alarm database, VTaC (Ventricular Tachycardia annotated alarms from ICUs)
consisting of over 5,000 waveform recordings with VT alarms triggered by bedside
monitors in the ICUs. Each VT alarm in the dataset has been labeled by at least
two independent human expert annotators. The dataset encompasses data collected
from ICUs in three major US hospitals and includes data from three leading bedside
monitor manufacturers, providing a diverse and representative collection of alarm
waveform data. Each waveform recording comprises at least two electrocardiogram
(ECG) leads and one or more pulsatile waveforms, such as photoplethysmogram
(PPG or PLETH) and arterial blood pressure (ABP) waveforms. We demonstrate
the utility of this new benchmark dataset for the task of false arrhythmia alarm
reduction, and present performance of multiple machine learning approaches,
including conventional supervised machine learning, deep learning, contrastive
learning and generative approaches for the task of VT false alarm reduction.

1 Introduction

Within intensive care units (ICUs), bedside monitors generate a substantial number of alarms, a
considerable proportion of which are false [Drew et al., 2014]. These false alarms not only burden
clinicians with heightened cognitive strain but also have the potential to obscure genuine alarms,
thereby endangering patient safety. Arrhythmia alarms, accounting for 45% of overall ICU alarms,
in particular, pose a significant challenge, contributing to alarm fatigue that increases the risk of
healthcare providers potentially overlooking true life-threatening events [Drew et al., 2014, Cvach,
2012].

Accurate and reliable algorithms that can distinguish between true vs. false arrhythmia alarms can
improve the overall effectiveness of monitoring systems in ICUs. However, the development and
evaluation of such algorithms rely on the availability of high-quality and representative datasets with
ground-truth labels from human experts.
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We focus on the problem of detecting false alarms for one of the life-threatening arrhythmias,
ventricular tachycardia (VT), defined as five or more ventricular beats with a heart rate higher than
100 bpm (beats-per-minute) [Clifford et al., 2015a, 2016]. Among all the life-threatening arrhythmia
alarms, VT alarms are one of the most commonly occurring alarms [Drew et al., 2014, Aboukhalil
et al., 2008] and false VT alarms have proven to be the most challenging to detect reliably [Aboukhalil
et al., 2008, Clifford et al., 2015a, 2016, Zhou et al., 2022].

In this study, we present a new annotated VT database designed to address the challenges associated
with false arrhythmia alarm reduction. The dataset consists of a total of over 12,000 labeling
decisions from six experts who reviewed over 5,000 waveform recordings with VT alarms triggered
by patient bed-side monitors in an ICU setting. These records were sourced from multiple ICUs
from three major hospitals in the United States, providing a diverse and representative collection
of waveform data. Each waveform recording comprises electrocardiogram (ECG) leads and one or
more pulsatile waveforms, such as photoplethysmogram (PPG or PLETH) and arterial blood pressure
(ABP) waveforms.

One important aspect of our dataset is the inclusion of labeling decisions from multiple independent
human annotators. This approach helps to ensure the robustness of the dataset by reducing the
potential impact of individual subjectivity and variability among annotators. The availability of such
a comprehensive and annotated dataset enables researchers and practitioners to evaluate and compare
the performance of various machine learning approaches for false arrhythmia alarm reduction.
We demonstrate the utility of our benchmark dataset by evaluating multiple machine learning
approaches, including conventional supervised machine learning, deep learning, contrastive learning,
and generative approaches.

By addressing the challenges of false arrhythmia alarms and providing a benchmark dataset, this
research contributes to the ongoing efforts to improve patient safety, reduce alarm fatigue, and
enhance the efficiency of monitoring systems in ICUs. The introduced dataset VTaC, to the best
of our knowledge, represents the largest open-access, multi-center VT alarm dataset, meticulously
annotated by highly skilled clinical experts. It provides a valuable resource for developing algorithms
to reduce false VT alarms, a longstanding and unsolved challenge in ICUs. Data will be available on
PhysioNet at www.physionet.org/content/vtac/.

2 Background and Machine Learning Challenges

In this section, we outline challenges in developing machine learning approaches for false VT alarm
reduction.

Artifact or noise. Erroneous triggers of VT alarms typically occur due to noise and ECG-related
artifacts, such as electrode movements, poor electrode contact, or other technical reasons. Ventricular
arrhythmias are characterized by distortion of beat morphology with a broader QRS complex.
However, a challenge to be overcome is that noise and artifacts can exhibit morphologies similar
to abnormal QRS complexes, almost indistinguishable from the periodic anomalies from a true VT
episode [Clifford et al., 2015a].

Other rhythms with similar appearance. VT and other rhythms, such as atrial fibrillation (A-Fib)
and aberrantly conducted supra ventricular tachycardia (SVT) may exhibit similar characteristics on
an ECG, making it difficult to distinguish them [Littmann et al., 2019]. For example, both VT and
SVT with aberrant conduction can have wide QRS complexes on the ECG. In some cases, patients
may have multiple simultaneous rhythms, further complicating the interpretation. For instance, VT
may coexist with A-Fib or SVT, making it challenging to identify and differentiate each rhythm
component.

Individual differences and variable morphology. VT can have variable morphologies, which
means it can appear differently in different patients or even within the same patient. This variability
can make it challenging to identify VT solely based on ECG characteristics immediately prior to the
alarm onset. Inspection of the same individual patient’s prior ECG characteristics at baseline may be
necessary.

Long sequence with complex patterns and Missing Channels. In the false alarm reduction problem,
one major challenge stems from the long time-series sequence and the sparse availability of labeled
data [Clifford et al., 2015a, Kiyasseh et al., 2021a, Zhou et al., 2022]. At a sampling frequency of
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250 Hz, a 5-minute segment of a single channel of ECG contains 75000 samples. The label of each
record, on the other hand, is just TRUE and FALSE, providing limited supervised information to train
a deep learning model. Additionally, missing channels pose a significant challenge for false alarm
reduction.

Sparse availability of high-quality labeled data. While machine learning and deep learning have
made significant advances in many domains, including image and voice analyses, the application
of deep learning in physiological waveform analysis has had limited success, partly due to limited
availability of high-quality labeled data. The best performing approaches for false arrhythmia alarm
detection in the 2015 PhysioNet Challenge rely on a combination of expert-defined rule-based
logic analysis [Plesinger et al., 2015] and simple machine-learning models, while, in comparison,
conventional deep learning approaches generally under-performed in the 2015 PhysioNet Challenge
[Clifford et al., 2015a].

3 Related Works

3.1 Related Works in Annotated Arrhythmia Datasets

Several efforts have been made in the development and curation of annotated arrhythmia datasets,
which serve as valuable resources for the development and evaluation of algorithms aimed at ar-
rhythmia detection and classification. These datasets contribute to advancing the field of cardiac
monitoring and have facilitated the progress of machine learning techniques in arrhythmia analysis. In
this section, we highlight some notable related works in the domain of annotated arrhythmia datasets.

One seminal dataset widely used in arrhythmia research is the MIT-BIH Arrhythmia Database
[Moody and Mark, 2001]. It comprises 48 ECG records (each slightly more than 30 minutes)
obtained from long-term Holter recordings. These records include a mix of randomly selected and
specifically chosen cases, showcasing a broad spectrum of typical clinical waveforms, artifacts, and
complex arrhythmias, both ventricular and supraventricular. The dataset has been instrumental in
benchmarking different algorithms for arrhythmia classification and contributed to the evaluation of
signal processing and machine learning techniques. The MIT-BIH Arrhythmia Database does not
include annotations for arrhythmia alarms generated by commercial bed-side monitors.

The 2015 PhysioNet Challenge event [Clifford et al., 2015b, 2016] focused on five types of life-
threatening arrhythmias, including ventricular tachycardia, asystole, extreme bradycardia, extreme
tachycardia, and ventricular fibrillation/flutter. The goal of the Challenge was to reduce the number
of false alarms, while avoiding suppression of true alarms. The Challenge consists of two events: (1)
real-time classification using only data up to the alarm onset; (2) retrospective analysis in which the
contestants are allowed to use the 10-second data after the alarm onset for classification.

The 2017 PhysioNet/CinC Challenge [Clifford et al., 2017] is a collection of single-lead ECG
recordings (each between 30 to 60 seconds) from wearable devices. The primary objective of this
dataset is to facilitate the development of algorithms for the classification of cardiac rhythms into
four main categories: normal sinus rhythm, atrial fibrillation (AF), an alternative rhythm, or noisy
recordings that cannot be classified.

Most recently, [Pelter et al., 2023] introduced the UCSF VT dataset comprising 18,455 annotated
VT alarms from 858 ICU patients at UCSF. Their research differs from ours in several key aspects.
The UCSF VT dataset was exclusively collected from a single hospital, utilizing patient monitors
from a single commercial bed-side monitoring vendor. In contrast, VTaC comprises a multi-center
collection, incorporating data from monitors manufactured by three major vendors of commercial
monitoring systems. As a result, VTaC provides a more diverse and comprehensive representation,
which is crucial for the development of VT false alarm reduction algorithms. Furthermore, the UCSF
VT dataset, as indicated by [Pelter et al., 2023], is not shared or made publicly available to the
research community. Conversely, VTaC is an open-access resource, freely accessible to the research
community.

3.2 Machine Learning Approaches to False Arrhythmia Alarm Reduction

Multiple algorithms and machine learning approaches have been proposed for arrhythmia analyses
and false alarm reduction. Conventional algorithms [Aboukhalil et al., 2008, Li and Clifford, 2012]
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and the best performing entries in the 2015 PhysioNet Challenge for false arrhythmia alarm reduction
[F Plesinger et al., 2016, Kalidas and Tamil, 2015, Clifford et al., 2015a] rely on signal processing
and expert-defined rule-based logic to analyze physiological signals, or using manually engineered
features as inputs for machine learning classifiers. Due to the sparse availability of labeled data,
much of the recent machine learning approaches for false alarm reduction focus on techniques that
enable label-efficient learning, using e.g. multi-task learning [Schwab et al., 2018], supervised
representation learning [Lehman et al., 2018], and self-supervised or contrastive learning [Kiyasseh
et al., 2021b, Zhou et al., 2022]. Lehman et al. [2018] focus on VT false alarm detection, and
use FFT-transformation of individual ECG beats for scalable learning. Kiyasseh et al. propose a
family of self-supervised pretraining mechanisms based on contrastive learning for physiological
signals[Kiyasseh et al., 2021b]. Zhou et al. [2022] proposed a contrastive learning framework to
reduce five types of life-threatening arrhythmia alarms. More recently, Wu et al. [2023] proposed
a conditional generative modeling approach for the task of VT false alarm reduction, and showed
promising results from a diffusion contrastive learning model using an annotated arrhythmia dataset
[Aboukhalil et al., 2008] from the MIMIC II database [Saeed et al., 2011].

4 Data Collection and Annotation Methodology

In this section, we briefly outline our data collection methodology and the annotation process. For
detailed description, please refer to the Appendix.

4.1 Data

We extracted and compiled a total of 18,465 waveform VT alarm events, corresponding to 2,376
unique patient waveform records from bed-side monitors from three leading commercial vendors.
These records were sourced from multiple ICUs from three major hospitals in the United States,
providing a diverse and representative collection of waveform data. Each waveform recording in our
dataset consists of a 10-minute segment that encompasses the onset of the ventricular tachycardia
(VT) alarm. This segment includes 5 minutes of waveform data preceding the alarm onset and 5
minutes following it. To maintain diversity, we randomly selected a maximum of five alarm events
from any particular patient waveform record, yielding a total of 5,742 events for annotation. This
ensures that a reasonable number of events were sampled from different patient records, preventing an
over-representation of events from any single patient record. Waveform records were de-identified to
ensure the anonymization of all identifiable information, including patient names, dates, and medical
record numbers. All signals were resampled to 250 Hz, and all signal labels were adjusted to match
the nomenclature used in the PhysioNet Challenge 2015 database.

4.2 Annotation Process

Following the PhysioNet Challenge 2015, a VT episode is defined as five or more consecutive
ventricular beats with heart rate higher than 100 beats-per-minute (bpm) [Clifford et al., 2015a]. Each
event was reviewed and labeled by at least two annotators independently. For our task, annotators
were given the options of “True” for when they believe the alarm was correct, “False” for when they
believe the alarm was incorrect, “Uncertain” for when they were unsure which annotation to assign,
“Reject” for when the alarm was unreadable due to noise, artifacts, or other reasons. In order to
reconcile conflicts between two annotator decisions, an adjudication process was implemented to
resolve the conflicts. These disagreements were resolved either through direct one-on-one discussions
between the annotators involved or by an adjudicator’s vote to break the tie.

A total of 5,742 events were annotated by at least two independent annotators. Two independent
annotators reached unanimous decisions on 4,534 (78.96%) events, whereas 21.04% (N=1,208) of
the events received conflicting labeling decisions by two human annotators. Among the events with
conflicting decisions, 816 (66.55%) were adjudicated. After removing 392 un-adjudicated events,
a total of 5,350 alarm events received final labeling decisions. See Table 5 in Appendix for the
breakdown of the 5,742 events based on the annotation decisions.

Data Composition by Labeling Decisions Table 1 lists a summary of alarms categorized by
annotation decisions among the 5,350 alarms with final labeling decisions. A total of 102 (1.91%) and
211 (3.94%) events received Uncertain and Reject decisions respectively. After excluding "Rejected"
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Table 1: Composition of the alarms categorized by labeling decisions.

Unanimous Adjudicated Total

Total Alarm Events 4,534 816 5,350

Uncertain 19 83 102
Reject 120 91 211
True (T) 1,222 219 1,441
False (F) 3,173 423 3,596

Final (T/F) Events Included 4,395 642 5,037
Percent True Alarms 27.80% 34.11% 28.61%

and "Uncertain" events, the final dataset used for modeling contains 5,037 events, among which 4,395
events had unanimous annotation decisions, and the final labeling decisions of the 642 adjudicated
events were based on the final decisions from the adjudicators. Figure 2 in the Appendix A illustrates
the VTaC data collection and event sampling process.

Annotation Team The annotation team consists of six annotators, including a highly-experienced
board certified cardiac arrhythmia technician, and a leading arrhythmia analysis expert physician
who built the MIT-BIH Arrhythmia database. The team also includes three clinicians, and one
biomedical signal processing engineer specializing in arrhythmia. We describe below expertise
of three of the annotators who had contributed the most number of annotations. Annotator 1:
Board certified cardiac arrhythmia technician with over 40 years of experience in interpreting and
annotatingarrhythmias from ECG recordings. Annotator 2: Developed the MIT-BIH Arrhythmia
database; physician in internal medicine with decades of experience in real-time arrhythmia analyses
and clinical interpretation of Holter recordings. Annotator 3: Endocrinologist and Internist with
extensive experience in Emergency Medicine and cardiovascular intensive care. Additional details of
the annotation team can be found in the Appendix.

Example True vs False VT Alarms in VTaC In Figure 1, we show waveform plots for two example
VT alarms that have been labeled as a true vs. a false alarm respectively. In each figure, waveform
recordings from the final 10-seconds prior to the VT alarm onset were shown.

(a) True VT alarm (b) False VT alarm

Figure 1: Example true vs. false VT alarms. Each plot shows data in the 10-second interval
immediately prior to the VT alarm onset. The alarm onset is marked with a vertical red-line at time 0.
Figure (b) shows an example false VT alarm – the event corresponds to an episode of atrial fibrillation
with rate-related aberration instead of a ventricular tachycardia.

4.3 Comparison with Other Annotated VT Databases

In Table 2, we compare our newly developed VT alarm dataset with existing annotated VT databases
on PhysioNet, including the training and hidden test sets from the PhysioNet Challenge 2015
[Clifford et al., 2015a], and an annotated arrhythmia alarm dataset from MIMIC II [Saeed et al.,
2011, Goldberger et al., 2000] as reported in Aboukhalil et al. [2008]. We compare these datasets in
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terms of annotated alarm events, the percentage of true alarms, as well as percentage of alarm events
with ECG, ABP, and PLETH. We note that VTaC is a federated database sourced from waveform
recordings collected from multiple commercial bed-side monitors (as such, multi-vendor) across
multiple ICUs in three US hospitals. We also note that the current dataset provides fine-grained
pre-adjudication labeling decisions from human experts, which are not included in prior datasets.
As we randomly select VT alarm events from available recordings in constructing our dataset, the
federated VT alarm dataset contains a false alarm rate that closely reflects the actual false alarm rate
in a real-world ICU setting [Drew et al., 2004].

Table 2: Comparison of Annotated VT Databases on PhysioNet. Pre-Adj Decisions indicate whether
labeling decisions before the adjudication processes are available.

Challenge’15 Train Challenge’15 Test MIMIC II VTaC

N (# VT alarms) 341 221 1,900 5,037
% True 26.67% 20.36% 53.40% 28.61%

Open Access∗ Y N Y Y
Multi-Vendor Y Y N Y
Pre-Adj. Decisions N N N Y

ECG (% events) 100% 100% 100% 100%
ABP (% events) 54% 57% 100% 36%
PLETH (% events) 83% 81% 0% 91%

5 Models & Evaluation

We demonstrate the utility of this new benchmark dataset for the task of false VT alarm reduction,
and present performance of multiple machine learning approaches in both real-time and retrospective
settings following PhysioNet Challenge 2015 [Clifford et al., 2015a]. In the real-time setting, the
goal is to reduce false alarms in "real-time" without using information after the alarm onset. In the
retrospective setting, algorithms are allowed to utilize data within a brief time interval following the
alarm, such as the 30-second interval specified in the PhysioNet Challenge 2015. However, in the
context of this study, the retrospective setting incorporates data up to 5 seconds after the alarm.

5.1 Dataset

The final dataset used for modeling consists of 5,037 annotated VT alarms. The channels used for
modeling included ECG, ABP, and PLETH (or PPG). We employed an 80-10-10 split for the train,
validation, and test sets. The splits were performed at the patient record level rather than the individual
alarm events level to ensure that events belonging to the same patient record are not distributed across
the train, validation, and test sets. Table 3 displays the distribution of true alarms and signal types
across the train, validation, and test set.

For the real-time event, 10-second window of waveform data immediately prior to the alarm onset
were used as input to all of our models, with the exception that the generative models used a smaller
window of data due to computational constraints. The retrospective events used 15-second window of
waveform data to include the additional 5-second window of data immediately after the alarm onset.
For each VT event, the model was fed with a total of four channels of waveform data, comprising
two ECG leads, one ABP, and one PPG, all at a frequency of 250 Hz.

Data Preprocessing For ECG, we perform the following filtering: 1) a high-pass filter with 1-Hz
cutoff frequency to suppress residual baseline wander; 2) a second-order 30 Hz Butterworth low-pass
filter to reduce high frequency noise; and 3) a notch filter to eliminate power line interference. For
PPG signal, we utilize a high-pass filter with a stopband frequency of 0.3 Hz and a passband frequency
of 0.5 Hz, along with a low-pass filter with a passband frequency of 5 Hz and a stopband frequency
of 8 Hz. We conduct z-normalization for all signals by utilizing the mean and standard deviation
of each individual signal segment before feeding them into the model. In cases where signals are
missing, we impute them with a value of 0.
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Table 3: Composition of the train, validation and test splits. Unanimous decisions had two annotators
who were both in agreement.

Overall Train Validation Test

Alarms (count) 5,037 4,060 495 482
Records (count) 2,260 1,808 226 226
True Alarms (count) 1,441 1,163 141 137
% True 28.61% 28.65% 28.90% 28.48%

ECG (% events) 100% 100% 100% 100%
ABP (% events) 35.7% 35.6% 36.5% 35.6%
PLETH (% events) 90.6% 90.42% 89.83% 92.32%

Adjudicated 642 542 46 54
Unanimous 4,395 3,518 449 438

5.2 Models

Models and Baselines. We compare the performance of the following baseline and models. 1)
Rule-Based Method: For the rule-based approach, we used the implementation from Plesinger
et al. [2015], a winning entry in the PhysioNet 2015 challenge for false arrhythmia alarm reduction.
Plesinger et al. [2015] test each channel in the record for regular heart activity using the QRS detection
and derived R-R information [Plesinger et al., 2015]. 2) MLP: We apply the multi-layer perceptron as
a feature extractor of the input waveform and then use a dense layer to classify. 3) SAE (supervised
autoencoder): We use autoencoder to learn a lower dimensional representation from 10-second
waveform signals, and simultaneously minimize the reconstruction loss from autoencoder and the
cross entropy loss as described in [Lehman et al., 2018]. One notable difference from [Lehman et al.,
2018] is that we utilize the entire 10-second waveform segment as the model input, without heartbeat
detection for learning beat-by-beat representations. 4) Transformers: We utilize the Transformer
encoder [Vaswani et al., 2017] as the feature extractor of the input waveform. 5) CNN: We use a
light-weight 1-D convolutional neural network as a feature extractor [Zhou et al., 2022]. 6) CNN+CL:
We use a light-weight 1-D convolutional neural network as a feature extractor and augment it with
contrastive learning [Zhou et al., 2022]. 7) FCN: We use a fully-connected convolutional network
as the feature extractor of the input waveform [Zhou et al., 2022]. 8) FCN+CL: We use a fully-
connected convolutional network as the feature extractor of the input waveform and augment it with
contrastive learning [Zhou et al., 2022]. 9) BeatGAN: BeatGAN [Zhou et al., 2019] is an GAN-based
unsupervised anomaly detection algorithm for time series data. 10) TanoGAN: TanoGAN [Bashar
and Nayak, 2020] is a novel GAN-based unsupervised method for detecting anomalies when a small
number of data points are available. 11) Diffusion+CL: we use a diffusion model to reconstruct
trajectories of physiological signal and classify alarms based on distances between the reconstructed
and the actual trajectories [Wu et al., 2023].

5.3 Experiments

Training

For the supervised approaches, including their variants with contrastive learning, we conducted
model training for a maximum of 500 epochs. For the real-time events, hyperparameters were chosen
through a grid search, and the Adam optimizer [Kingma and Ba, 2014] with a weight decay of 0.005
was employed to minimize both binary cross-entropy (BCE) loss and the discriminative constraint.
Hyperparameter tuning was carried out, and a comprehensive description of the hyperparameter
settings for all models can be found in the Appendix. For each machine learning model, we identified
the hyperparameter setting with the best validation performance and proceeded to train the model
with that setting using 10 different random seeds. We report the mean and standard deviation from the
5 random seeds with best validation performance. Model selection was based on the best Challenge
Score on the validation set.

For retrospective events, we used the optimal hyper-parameter setting from the grid search of the
real-time event, and proceeded to train the model with that setting using 10 different random seeds.
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Table 4: Real-Time event performance from the VTaC database. Mean and standard deviation from 5
seeds shown. Top-performing models for each specific metric highlighted in bold. CL=Contrastive
Learning.

Methods TPR TNR PPV F1 Score AUC

Rule-based 0.942 0.629 0.502 0.655 67.32 –

Supervised

MLP 0.597±0.087 0.691±0.09 0.441±0.037 0.502±0.015 45.58±1.10 0.706±0.008

SAE 0.848± 0.028 0.790±0.032 0.617± 0.028 0.713±0.012 68.77±1.11 0.896±0.007

Transformer 0.837±0.039 0.707±0.060 0.535±0.048 0.651±0.030 62.73±2.78 0.852±0.006

CNN 0.928±0.006 0.782±0.019 0.629±0.019 0.750±0.013 76.17±1.20 0.936±0.009

FCN 0.920±0.025 0.855±0.018 0.717±0.024 0.805±0.016 80.08±2.46 0.949±0.006

Supervised+CL CNN+CL 0.930±0.016 0.823±0.012 0.676±0.012 0.783±0.003 79.07±0.99 0.943±0.005

FCN+CL 0.931±0.028 0.811±0.046 0.666±0.048 0.775±0.024 78.41±0.87 0.932±0.008

Generative
BeatGAN 0.597±0.100 0.597±0.091 0.373±0.033 0.455±0.037 41.02±2.71 0.597±0. 028

TAnoGAN 0.704±0.053 0.611±0.076 0.421±0.027 0.524±0.008 47.61±0.87 0.657±0.012

Diffusion+CL 0.853±0.054 0.517±0.040 0.412±0.013 0.555±0.016 52.51±2.61 0.685±0.017

Evaluation The evaluation metrics for false alarm reduction are true positive rate (TPR), true
negative rate (TNR), positive predictive value (PPV), F1-score, and area under the ROC (receiver
operating characteristic) curve (AUC). The PhysioNet Challenge 2015 also provides an official scoring
mechanism for evaluating [Clifford et al., 2015a]. It is defined as score = (TP + TN)/(TP +
TN + FP + 5 ∗ FN), where TP is true positives, FP is false positives, FN is false negatives,
and TN is true negatives. The Challenge Score focuses more on the TPR value, since mistakenly
classifying a true alarm as false results in significantly more severe consequences. The PPV, F1, TPR,
TNR and Challenge Score are determined based on a threshold value of predicted probability that
maximizes the validation Challenge Score as a cut-off value to determine true vs. false alarms in the
test set.

6 Performance in Real-Time VT Alarm Classification

In this section, we present the experimental results of eleven models for the real-time event as outlined
in Table 4. Results for the retrospective event are presented in the Appendix Table 8. The winning
entry of the 2015 PhysioNet challenge using a Rule-based approach serves as a reference point for
benchmarking, achieving a Challenge Score of 67.32 in the real-time event.

Our findings indicate that both FCN and CNN, along with their contrastive learning variants, demon-
strated superior performance when compared to other models. Notably, FCN emerged as the top
performer, achieving the highest Challenge Score (80.08±2.46) and AUC (0.949±0.006), surpassing
other models. Contrastive learning enhanced the performance of 1-D CNN, as evidenced by a notable
improvement in the Challenge Score from 76.17 to 79.07. However, this performance boost was not
observed in the case of FCN.

Our study reveals distinctive findings when contrasted with Zhou et al. [2022]. In their investigation,
the application of FCN to a considerably smaller dataset from the 2015 PhysioNet Challenge resulted
in significantly inferior performance compared to the lightweight 1-D CNN and CNN+CL. In contrast,
our analysis, conducted on the VTaC dataset, demonstrated that FCN outperformed 1-D CNN in
terms of AUCs and Challenge Scores. This difference in outcomes could potentially be attributed
to the common observation that increasing the size of the labeled dataset often leads to improved
performance in more complex models.

Generative approaches that previously demonstrated superior performance [Wu et al., 2023] using the
MIMIC II annotated arrhythmia dataset [Saeed et al., 2011, Aboukhalil et al., 2008] faced challenges
when applied to the VTaC dataset. In particular, the diffusion model with contrastive learning [Wu
et al., 2023] outperformed other baselines when applied to the MIMIC dataset but under-performed
with the current VTaC dataset. The performance gap can be attributed to several potential factors.
Firstly, the imbalanced label distribution in VTaC, with a relatively lower rate of true alarms at 28.6%,
in comparison to over 50% true alarms in the MIMIC II dataset, presents a potential limitation,
particularly for generative approaches proposed in [Wu et al., 2023], which depended on training
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with abundant samples of true positives. Secondly, less than 40% of alarm records in VTaC included
arterial blood pressure (ABP) waveforms, in contrast to the MIMIC annotated arrhythmia dataset,
which had a higher percentage of ABP records due to its specific sampling criteria. Finally, the
MIMIC II arrhythmia dataset is a single-center, relatively homogeneous dataset collected from patient
monitors of a single monitoring system, whereas VTaC is a multi-center dataset.

7 Discussion

Previous algorithm development in false arrhythmia reduction has been hampered by the use of small,
single-center, or relatively homogeneous datasets. This limitation hinders their generalizability and
real-world applicability. The introduction of this large-scale annotated VT alarm dataset provides a
valuable opportunity to address this challenge. The VTaC dataset presented in this study, encompasses
data collected from ICUs in three major US hospitals and incorporates data from three major
bedside monitor manufacturers. By encompassing data from diverse sources, this dataset enables
the evaluation and refinement of algorithms in a broader context, across a more diverse monitoring
devices and clinical settings. Furthermore, the random selection of VT alarm events from the available
data for annotation ensures that the dataset’s distribution and the proportion of true alarms closely
resemble those observed in real ICU settings. This approach enhances the dataset’s representativeness
and allows for a more accurate evaluation of the models’ performance in practical clinical scenarios.

Safety & Ethical Discussion We raise several safety and ethical considerations. Firstly, as the
dataset contains waveform recordings from real patients, we acknowledge the importance of patient
privacy and data protection. To ensure privacy, we have de-identified the data by removing any
personally identifiable information. Secondly, the process of labeling the dataset involved clinical
experts reviewing waveform recordings and making labeling decisions. We recognize the potential
influence of individual subjectivity and variability among annotators. To mitigate this, we have sought
to ensure robustness by obtaining labeling decisions from multiple experts for each alarm event. This
approach helps to capture diverse perspectives and minimize potential bias in the annotations. We
have made efforts to curate a diverse and representative dataset, but there might still be underlying
biases that could impact the performance of the machine learning models.

Limitations & Future Work The newly introduced annotated VT alarm database is specifically
designed to tackle the challenges related to reducing false VT alarms. The VT alarm events are
randomly sampled, and thus the selected VT events cannot be viewed as a comprehensive collection
of all VT alarm events for an individual patient. As such, the database is not designed for long-term
forecasting of arrhythmia episode onset. Another limitation of our study is the absence of detailed
clinical information accompanying the waveform recordings. We leave the collection of matched
clinical data for future research endeavors. Finally, while the biases from expert annotators in this
dataset is greatly reduced from having multiple annotators, we acknowledge that biases can still be
present if two or more annotators have the same bias.

In our analyses, we have opted to construct our machine learning models by utilizing data from
up to 10 seconds before the alarm onset (except the contrastive learning based approaches, which
sample data from prior to 10 seconds before the alarm onset). Additionally, this study involved
the inclusion of a maximum of four channels of available waveforms per event to formulate our
models. For future investigations, we aim to explore models capable of more effectively handling
higher-dimensional multi-channel waveform data encompassing longer sequences. This will enable
us to fully leverage data from earlier time points and identify patterns across multiple channels of
physiological waveforms.

8 Conclusion

Ventricular tachycardia is the most challenging arrhythmia to detect reliably, and remains a continuing
problem in ICUs despite decades of effort from industrial and academic algorithm developers. We
present a new annotated VT database to address the challenges associated with reducing false VT
alarms. We conducted a comprehensive benchmarking of various machine learning models utilizing
this annotated VT dataset. By providing this resource as an open-access database, freely available to
the research community, we aim to foster collaboration, facilitate benchmarking, and encourages the
advancement of research efforts in the field of arrhythmia alarm analysis.
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Appendix A Additional VT Alarm Dataset Description

This dataset is a compilation of patient waveforms sourced from multiple institutions, and the process
of collecting this data has received approval from the respective Institutional Review Boards (IRBs)
of each participating institution. Requirement for individual patient consent was waived because
the project did not impact clinical care and all protected health information was de-identified. It is
important to emphasize that the alarms and waveform records included in this dataset encompass
data collected up until 2022 and do not overlap with those of the PhysioNet Challenge 2015.

Continuous multi-channel waveform recordings were collected from ICUs of three major US hospitals.
The dataset consists of a total of 20,158 continuous waveform recordings collected between 2013 and
2022, and represents data collected from three major bedside monitor manufacturers. The average
duration of the patient waveform recording is 4.5 days. We randomly extracted recordings with
at least one VT alarm. The resulting dataset consists of a total of 18,465 waveform alarm events,
sourced from a randomly selected 2,376 unique patient waveform recordings (with at least one VT
alarm). The annotated VT alarm events (5,742 alarms from 2,376 patient records) were randomly
drawn from this collection, with the constraint that no more than a maximum of five VT alarms can
be sampled from the same patient waveform records to ensure diversity. After removing confirmed
Reject/Uncertain events (by at least two independent annotators), 5,037 alarm events (from 2,260
unique patient records) remain for algorithm training and evaluation. Table 5 displays the number of
events receiving unanimous vs conflicting decisions respectively. Unanimous category represents
events with decisions from two independent annotators in agreement. Figure 2 illustrates the VTaC
data collection and annotation process.

Table 5: Annotated VT alarm events categorized by annotation agreement.

Unanimous (79%) Conflicts (21%) Total
Adjudicated Un-Adjudicated

Alarm Events 4,534 816 392 5,742
Labeling Decisions 4,534x2 816x3 392x2 12,300

Events with Final Decisions 4,534 816 0 5,350

20,158 continuous 
waveform records 
from 3 major US 

hospitals

(Average duration / 
record: 4.5 days)

2,376 continuous 
waveform 

records with 
18,465 VT 

alarms

Annotated 5,742 
VT alarms from 
2,376 waveform 
records

5,350 VT alarms 
with unanimous 
or adjudicated  

labeling 
decisions

Final Labeled Data

5,037 VT alarms 
from 2,260 

waveform records

Random selection from 
records with at least 1 
VT alarms

Exclude 
unadjudicated 
alarm events

Random selection 
of max 5 alarms 
per record

Exclude alarms with 
Reject or Uncertain 
decisions

Figure 2: VTaC data collection, event sampling and annotation pipeline.

ECG and pulsatile signals were recorded by the bedside monitor at various sampling frequencies
ranging from 100 Hz to 250 Hz. ECG signals were recorded at a minimum of 240 Hz. ABP and PPG
were all sampled at the same rate which would be either 100 / 125 / 240 Hz. All of the signals were
resampled to 250 Hz for consistency.

Among the annotated 5,037 VT events, all events have at least two channels of ECG, and 36% and
91% of those events also had ABP and PPG respectively. The median number of ECG leads per
waveform recording is 3. In Table 6, we show the summary statistics of the number of ECG leads per
waveform recording in the dataset.

Appendix B Annotation Tool and Team

Annotation was performed using an open-source annotation platform, PhysioTag, which enables
experts to collaboratively annotate physiological waveform records using a standard web browser.
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Table 6: Summary statistics for the number of ECG leads per waveform recording in the VTaC
dataset.

# of ECG Leads
Average 3.4
Median 3
25% percentile 3
75% percentile 4

Table 7: Real-Time event: Test set performance of the model that exhibited the best validation
performance among the 10 random seeds. Top-performing models for each specific metric highlighted
in bold. CL=Contrastive Learning.

Methods TPR TNR PPV F1 Score AUC

Rule-based 0.942 0.629 0.502 0.655 67.32 –

Supervised

MLP 0.708 0.562 0.391 0.503 45.33 0.703
SAE 0.847 0.803 0.630 0.723 69.43 0.905
Transformer 0.796 0.719 0.529 0.636 60.10 0.844
CNN 0.927 0.788 0.635 0.754 76.43 0.936
FCN 0.949 0.835 0.695 0.802 81.96 0.948

Supervised + CL CNN+CL 0.912 0.835 0.687 0.784 77.92 0.946
FCN+CL 0.912 0.829 0.680 0.779 77.55 0.922

Generative
BeatGAN 0.803 0.473 0.377 0.513 46.27 0.638
TAnoGAN 0.723 0.580 0.406 0.520 47.16 0.651
Diffusion+CL 0.883 0.499 0.412 0.561 53.66 0.691

The software is freely available on PhysioNet (https://physionet.org/content/physiotag/).
Events are assigned to annotators dynamically. When a new annotator joins the project, they are
assigned 100 randomly-selected events that have not yet been annotated. After they have finished
reviewing the assigned events, they can assign themselves a new batch of events. For our VT
annotation task, users were given the options of “True” for when they believe the alarm was correct,
“False” for when they believe the alarm was incorrect, “Uncertain” for when they are unsure which
annotation to assign, “Reject” for when the alarm is unreadable due to noise, artifacts, or other
hindrance, and “Save for Later” for when the user would like to return to annotate this event at
another time. For more detailed description of the annotation platform for this project, please see
[McCullum et al., 2023].

The annotation team consists of six annotators, including a leading arrhythmia analysis expert
physician who built the MIT-BIH Arrhythmia database, and a highly-experienced board certified
cardiac arrhythmia technician. The remaining three clinical annotators had the following expertise: an
endocrionologist and internist with extensive experience in Emergency Medicine and cardiovascular
intensive care; an inpatient physician, board certified in nephrology and internal medicine, with
substantial experience managing patients in critical care and telemetry settings; and an anesthesiologist
working in an ICU setting. The annotation team also included a senior biomedical research engineer
with decades of experience in arrhythmia analyses.

Appendix C Additional Results on Model Performance

C.1 Real-time event

In this section, we present additional results for the real-time VT alarm classification task. Table 7
displays the test set performance of the model that exhibited the best validation performance among
the 10 random seeds. Model selection was based on the best Challenge Score on the validation set. In
Figure 3 we plot the ROC curves and their operating points for a subset of the models in the real-time
event.
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Figure 3: ROC curves and their operating points for a subset of models in the real-time event.
Operating point (marked as dots) for each model on the ROC curve was selected using the threshold
that resulted in the best validation Challenge Score.

Table 8: Retrospective event performance from the VTaC database. Mean and standard deviation from
5 seeds shown. Top-performing models for each specific metric highlighted in bold. CL=Contrastive
Learning.

Methods TPR TNR PPV F1 Score AUC

Rule-based 0.964 0.571 0.471 0.633 65.54 –

Supervised

MLP 0.585±0.064 0.711±0.162 0.445±0.168 0.505±0.034 46.02±2.85 0.695±0.016

SAE 0.836± 0.046 0.761±0.053 0.585± 0.043 0.687±0.022 66.01±2.37 0.878±0.0159

Transformer 0.802±0.075 0.677±0.066 0.500±0.031 0.613±0.007 58.20±2.07 0.811±0.029

CNN 0.923±0.020 0.803±0.025 0.651±0.026 0.763±0.015 76.94±1.61 0.942±0.003

FCN 0.923±0.012 0.786±0.025 0.632±0.025 0.750±0.016 75.84±1.86 0.925±0.014

Supervised+CL CNN+CL 0.920±0.023 0.837±0.021 0.692±0.025 0.789±0.014 78.85±1.95 0.946±0.007

FCN+CL 0.921±0.013 0.836±0.011 0.691±0.013 0.789±0.001 78.95±1.41 0.933±0.007

Generative
BeatGan 0.781±0.093 0.497±0.114 0.385±0.023 0.513±0.013 46.22±1.77 0.639±0.017

TAnoGAN 0.749±0.051 0.546±0.056 0.397±0.014 0.518±0.004 46.97±0.49 0.648±0.005

Diffusion+CL 0.630±0.183 0.503±0.046 0.462±0.069 0.518±0.038 49.70±2.42 0.569±0.093

C.2 Performance in Retrospective Event

In the context of the retrospective event, machine learning models were assessed for their ability to
reduce false arrhythmia alarms using not only the data preceding the alarm but also five seconds of
data after the alarm. For retrospective events, we used the optimal hyper-parameter setting from the
grid search of the real-time event, and trained the model with that setting using 10 different random
seeds. Table 8 displays the performance averaged over the models from the 5 random seeds with the
best validation performance.

The winning entry of the 2015 PhysioNet challenge using a Rule-based approach achieved a Challenge
Score of 65.54 in the retrospective event. The CNN and FCN models and their contrastive learning
variants remained consistently strong performers in the retrospective event. In comparing the
performance of the real-time and retrospective events, FCN with contrastive learning had noticeable
improvement in the challenge scores. Other models did not benefit significantly from the additional
five seconds of post-alarm data as input to the model.
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Appendix D Machine Learning Model Setting

D.1 Supervised Models

Table 9 displays the range of hyperparameter settings employed during the grid search as part of the
hyperparameter tuning process. To overcome the problem of imbalanced classes, a positive class
weight was added to the positive samples in the BCE loss function.

The Multilayer Perceptron (MLP) consists of three hidden layers with node sizes of 1024, 256, and
64, respectively. The Supervised Autoencoder (SAE) architecture utilizes an encoder and decoder,
both composed of four convolutional layers. A four layer MLP operates on the 32 dim vector to
produce model predictions. Learning rate, dropout probability and positive class weight were chosen
from hyperparam tuning via grid search based on best validation set performance.

The Convolutional Neural Network (CNN) architecture employed in this study consists of four
1-dimensional convolutional feature extractors. Each extractor is composed of two convolutional
layers with window sizes of 50, 100, 200, and 400, respectively. Dropout regularization is applied to
mitigate overfitting. The resulting feature maps are then flattened and passed through a hidden layer
with 128 nodes before being used to make the model’s final prediction. The FCN used 3 convolution
layers followed by an adaptive pooling layer. Between each convolution, batch normalization was
used. Lastly, we used adaptive max pooling followed by a dense layer which is used to make the
model’s final prediction.

The Transformer model consists of 1 single-layer Transformer encoders. The dimensionality of
the representations is set to 128, and number of attention head is set to 8. The input time steps are
first mapped to a 128-dimensional feature space using a linear layer. The processed features are
then passed through the Transformer layers and activated using the GELU activation function. The
Transformer model use dropout with 0.1. The models are trained using BCE loss as the loss function
and please refer to Table.9 for specific hyperparameter settings.

Code is available at https://github.com/ML-Health/VTaC/. Code for the rule-based approach
[Plesinger et al., 2015] is from the Challenge 2015 PhysioNet website 2.

D.2 Conditional Generative Models

In addition to conventional classification models, we also employed conditional generative models
[Wu et al., 2023, Zhou et al., 2019, Bashar and Nayak, 2020] to classify the VT alarms as true or false.
The generative models generate waveform trajectories conditioned on a patient’s observed waveform
data. Specifically, conditioned on an observed waveform segment from a patient, our generative
approach predicts what the subsequent trajectory of the patient’s waveform would look like if it were
a true alarm. Thus, in the case of a false alarm, the predicted waveform (simulating a true alarm) will
differ significantly from the observed ground truth. The distance between the generated trajectory
and the original waveform is thus calculated to determine the type of alarm. Since false alarms can
be caused by various factors, while true alarms have specific pathological features, we choose to
generate trajectories for true alarms to calculate the anomaly scores. If the candidate observed sample
is from a genuine arrhythmia alarm, the distance between the generated waveforms and the observed
samples will be small; on the other hand, if the alarm is false, the discrepancy between the two will
be large. Unlike the classification models, we need to generate physiological waveforms using time
intervals that correspond to the true event as much as possible. For BeatGAN [Zhou et al., 2019]
and TanoGAN [Bashar and Nayak, 2020], We used their Github repository’s settings3 4 and modified
the input channels to fit the number of channels in our dataset, and we changed the threshold setting
from a fixed threshold to a threshold search approach using validation data. In the BeatGAN and
TanoGAN models, the learning rate is set to 0.0001, the weight decay is set to 0.0005, and the batch
size is 128.

The diffusion-based generative model consists of a network of 36 residual layers with 256 residual
and skip channels. The diffusion embedding layer have three level of diffusion embedding of 128,
256, and 256 dimensions. Each layer are connected by a swish activation function. Then, we leverage

2https://www.physionet.org/static/published-projects/challenge-2015/1.0.0/sources/
3https://github.com/hi-bingo/BeatGAN
4https://github.com/mdabashar/TAnoGAN
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two Transformer encoders for extracting the noise input and conditional input. Each encoder contains
one encoder layer and the “dmodel” of each encoder layer is 512 and “nhead” is 4, and feed forward
layer between each encoder layer have 512 dimensions. The number of negative samples is 32 and
the temperature parameter of total loss lamda is 0.5. In the inference stage, we used 200-time steps
on a linear schedule for diffusion configuration from a beta of 0.0001 to 0.02. We utilize an Adam as
the optimizer with the learning rate of 1e-4. We randomly mask the half part of data for train and
mask the first half of data for test. Because of the xnoise ∼ N (0, I) where I = 1, we scaled down
the ABP channel by a factor of 10 to solve the problem of sample value out of range. We use the
MSE Loss to calculate the distance between the generated results and the original waveforms. The
threshold used for the test set is the one corresponding to the optimal score obtained on the validation.

Table 9: Model Hyperparameters and their Search Range. Parameter settings with the best validation
Score underlined.

Hyperparameters Search Range

MLP
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Dropout Probability 0.0, 0.1, 0.3
Positive Class Weight 3.54, 4

SAE
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Reconstruction Loss Weight 0.5, 1.0, 1.5
Dropout Probability 0.0, 0.1, 0.3
Positive Class Weight 3.54, 4

CNN
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Dropout Probability 0.0, 0.1, 0.3
Positive Class Weight 3.54, 4

CNN + CL
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Dropout Probability 0.1, 0.3, 0.5
Contrastive Loss Weight 0.5, 1.0, 1.5
Positive Class Weight 3.54, 4

FCN
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Dropout Probability 0.0, 0.1, 0.3
Positive Class Weight 3.54, 4

FCN + CL
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Dropout Probability 0.1, 0.3, 0.5
Contrastive Loss Weight 0.5, 1.0, 1.5
Positive Class Weight 3.54, 4

Transformer
Batch Size 32, 64, 128
Learning Rate 0.0001, 0.001
Dropout Probability 0.0, 0.1, 0.3
Positive Class Weight 3.54, 4
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D.3 Hardware and Software

In our experiments, we used NVIDIA Tesla V100 GPUs with 32 GB of VRAM and IBM Power9
CPUs, running on Red Hat Enterprise Linux 8.3.1. We used Python version 3.8.18, Pytorch version
1.9.0 using a CUDA version 12.2 backend and WFDB version 4.1.1.
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