
Recovering from Out-of-sample States via Inverse
Dynamics in Offline Reinforcement Learning

Ke Jiang1,2, Jia-yu Yao3, Xiaoyang Tan1,2∗
1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

2 MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
3 School of Electronic and Computer Engineering, Peking University

ke_jiang@nuaa.edu.cn, jiayu_yao@pku.edu.cn, x.tan@nuaa.edu.cn

Abstract

We deal with the state distributional shift problem commonly encountered in offline
reinforcement learning during test, where the agent tends to take unreliable actions
at out-of-sample (unseen) states. Our idea is to encourage the agent to follow
the so called state recovery principle when taking actions, i.e., besides long-term
return, the immediate consequences of the current action should also be taken
into account and those capable of recovering the state distribution of the behavior
policy are preferred. For this purpose, an inverse dynamics model is learned and
employed to guide the state recovery behavior of the new policy. Theoretically,
we show that the proposed method helps aligning the transited state distribution of
the new policy with the offline dataset at out-of-sample states, without the need
of explicitly predicting the transited state distribution, which is usually difficult in
high-dimensional and complicated environments. The effectiveness and feasibility
of the proposed method is demonstrated with the state-of-the-art performance on
the general offline RL benchmarks.

1 Introduction

Reinforcement learning has made significant advances in recent years, but it has to collect experience
actively to gain understanding of the underlying environments. However, such online interaction is
not always practical, due to either the potential high cost of data collection procedure or its possible
dangerous consequences in applications as autonomous driving or healthcare. To address these issues,
offline reinforcement learning aims to learn a policy from offline datasets without doing any actual
interaction with the environments [19, 13, 1].

However, directly deploying online RL algorithms, such as Deep Deterministic Policy Gradient [18],
to learn the new policy from the offline dataset without proper constraints would highly likely suffer
from action distributional shift due to the change in the actions generated by the new policy. This
would result in the so called extrapolation error [8], i.e., the TD target could be wrongly estimated
when querying those out-of-distribution (OOD) actions generated by the new policy. To address these
issues, methods like Conservative Q-Learning (CQL) [16], TD3+BC [7] and Implicit Q-Learning
(IQL) [14], treat the OOD actions as conterfactual queries and try to avoid performing such queries
completely during learning, hence suppressing the Q-function extrapolation error. However, such
pessimism for out-of-sample data could be too restricted and sample inefficient, as not all out-of-
sample(unseen) states are not generalizable [20].

To effectively generalize to out-of-sample or even OOD states, it is necessary to constrain the behavior
of agent at those states, otherwise the policy extrapolation error that occurs at test stage may drive the

∗Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: An example of CQL agent’s failure for the accumulative error due to state distributional
shift on a Walker2d robotic agent. The interval between every two images is ten steps.

agent’s transited state distribution away from the offline dataset, referred as the state distributional
shift problem - a problem has not been paid enough attention as most previous works focus on
addressing the issues of OOD actions during training [16, 7]. The problem of state distributional shift
is likely to arise in those extensive and non-stationary environments, where it is impossible for the
agent to cover the entire state space during training. A brief example is illustrated in Figure 1, where
a robotic agent, trained using offline RL frameworks like CQL, is knocked by some external force
unintentionally and falls into an out-of-sample state during test, which leads to failure finally due to
the unreliable actions taken at this out-of-sample(unseen) state [3] and the error confounding effects.

To deal with the above problem, a natural idea is to teach the agent to recover from these out-of-
sample states to their familiar regions, i.e., the demonstration of offline datasets. For this purpose, we
propose the Out-of-sample State Recovery (OSR) method to implement this state recovery principle.
Our idea is to estimate the actions whose consequence would be in the support region of the offline
dataset using inverse dynamics model (IDM) [2]. The estimated IDM can be interpreted as an
extended policy with pre-defined consequences, hence being suitable for guiding the learning of the
new policy. Theoretically, we show that the proposed OSR makes the transited state distribution
of the learnt policy at out-of-sample states align well with the offline dataset, without the need of
building any forward dynamics models. We also propose a modified OSR-v that suppresses the
probability of selecting actions according to the risk of OOD consequences through imposing extra
value-constraints when decision making. We experimentally2 demonstrated that the proposed OSR
outperforms several closely related state-of-the-art methods in offline AntMaze/MuJoCo control
suites with various settings.

In what follows, after an introduction and a review of related works, Section 3 provides a concise
introduction to the background of offline RL and our work. The OSR method is presented in detail
with theoretical analysis of its effectiveness in Section 4.2. The variant of OSR, called OSR-v, is then
introduced with theoretical analysis of its advantages in Section 4.3. In Section 4.4, the practical
implementation of both methods is described, including the loss function used. Experimental results
are presented in Section 5 to evaluate the effectiveness of both methods under various settings. Finally,
the paper concludes with a summary of the findings and contributions.

2 Related work

Robust offline reinfocement learning. Robustness is critical for offline RL methods to implement
in real-world applications. Recent work RORL [25] adds smoothing term to relax the conservatism
of algorithms like Conservative Q-Learning, making the agent generalize to out-of-sample states.
ROMI [23] introduce reverse mechanism to build links between isolated data clusters based on
out-of-sample data. However, it is still possible that the agent would drift away from the dataset as the
results of the well-known error compounding effects due to the myopic of the new policy, referred as
state distributional shift problem, which is more important in practical applications. For example, in
healthcare [12], it is critical for the agent to make decisions with safe consequences, i.e., generating
reliable trajectories. Theoretically, it is shown that control the divergence of the learnt policy from
the behavior policy helps to bound the state distributional shift [22], but the bound is actually very
loose [15]. Recently model-based State Deviation Correction (SDC) [27] builds a dynamics model
and a transition model to guide the agent to generate in-distribution trajectories, through which to
enhance the agent’s safety and controllability. However, building a high-capacity dynamics model is
not always practical in complicated applications, highlighting the necessity to constraint the agent’s
behavior without constructing any forward model to predict the high-dimensional observations.

2Our code is available at https://github.com/Jack10843/OSR

2



Inverse dynamics model. An inverse dynamics model I(a|s′, s) predicts the action distribution
that explains the transition between a given pair of states. Inverse dynamics models haven been
applied to improving generalization to real-world problems [6], Markov representation learning [2],
defining intrinsic rewards for exploration [5]. In our work, the inverse dynamics model is interpreted
as a consequence-constraint policy that generates action distributions with predictable consequences,
which in turn plays the role of supervision to the new policy.

3 Background

A reinforcement learning problem is usually modeled as a Markov Decision Process (MDP), which
can be represented by a tuple of the form (S,A, P,R, γ), where S is the state space, A is the action
space, P is the transition probability matrix, R and γ are the reward function and the discount factor.
A policy is defined as π : S → A and trained to maximize the expected cumulative discounted reward
in the MDP:

max
π

E
[ ∞∑
t=0

γR(st, π(at|st))
]

(1)

In general, we define a Q-value function Qπ(s, a) = E[
∑∞

t=0 γR(st, π(at|st))|s, a] to represent the
expected cumulative rewards. Q-learning is a classic method that trains the Q-value function by
minimizing the Bellman error over Q [24]. In the setting of continuous action space, Q-learning
methods use exact or an approximate maximization scheme, such as CEM [11] to recover the greedy
policy, as follows,

Q← argmin
Q

E
[
R(s, a) + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

]2
π ← argmax

π
EsEa∼π(·|s)Q(s, a) (2)

In offline setting, Q-Learning algorithms learns a Q-value function Qπ(s, a) and a policy π from a
dataset D, which is collected by a behavior policy πβ . Since there is always an action distributional
shift of the new policy π and the behavior policy πβ , this basic recipe fails to estimate the Q-values
for OOD state-action pairs. Conservative Q-Learning (CQL), as a representative OOD-constraint
offline RL algorithm, tries to underestimate the Q-values for OOD state-action pairs to prevent the
agent from extrapolation error [16]. The CQL term is as follows,

min
Q

[
Es∼D,a∼π(·|s)Q(s, a)− Es,a∼DQ(s, a)

]
(3)

However, at test stage, there still exists a static state distributional shift of the new policy π and the
behavior policy πβ , which may accumulate the discrepancy between the agent and demonstration of
the dataset. To migrate this, State Deviation Correction (SDC) [27] aims to train a policy choosing
actions whose visited states are as closer to the dataset as possible. Specifically, the SDC trains a
dynamics model M and a transition model U , to optimize the new policy, as follows,

min
π

λ · Es∼DD
(
M(·|ŝ, π(·|ŝ)), U(·|s)

)
(4)

where ŝ is a perturbed version of the original state s, λ > 0 is the weight for the SDC regularization,
and D is a distance measure, which is maximum mean discrepancy (MMD) in [27].

4 Out-of-sample state recovery using inverse dynamics

In this section, we first describe our Out-of-sample State Recovery (OSR) method in detail, as a policy
regularization onto the actor loss, which is introduced in detail in section 4.2. Then we also propose a
variant of OSR, OSR via value-constraints (OSR-v), for the purposes to reduce the hyperparameters
and test the feasibility of practising state recovery principle in different modes, in section 4.3. Finally,
we specifically describe how to implement OSR and OSR-v in practice in section 4.4.

4.1 Noise injection onto dataset

It is well-known that noise injection is helpful to address the covariate shift problem in deep learn-
ing [17]. While this technique is adopted in [27] to simulate the OOD states, in this work we interpret

3



the states perturbed with linear Gaussian noise as counter-examples on how to recover from those
states into in-sample states. Given an offline dataset D, which consists of quadruples (s, a, r, s′), we
first perform data augmentation onto it to form a mixed dataset.

Specifically, given a quadruple (s, a, r, s′), we perturb the state s to obtain a noisy state,

ŝ = s+ β · ϵ (5)

where ϵ is sampled from the standard Gaussian distribution N (0, 1) and β is usually set to be a small
constant. Besides, we could also utilize more complex methods to perturb the states, such as the
adversarial attacks in [25]. In this way, we obtain a set of perturbed quadruples (ŝ, a, r, s′) , and
group them into a new perturbed dataset D̃. Note that we do not perturb the next state s′, to preserve
the destination we wish the agent to jump from ŝ.

Finally we combine the two datasets D and D̃ to form a new dataset Dtot, i.e., Dtot = D+ D̃, where
each element in Dtot is denoted as (s̃, a, r, s′). Next we describe how to train a inverse dynamics
model to learn how to safely perform transition from {s̃} to s′.

4.2 Learning to recover from out-of-sample states via policy-constraints

A inverse dynamics model (IDM), denoted as Iπβ (a|s, s′), is defined in terms of the behavior policy
πβ , dynamics model P (s′|s, a) and the transition function P (s′|s, πβ) via Bayes’ theorem, as follows,

Iπβ (a|s, s′) = πβ(a|s)P (s′|s, a)
P (s′|s, πβ)

(6)

where P (s′|s, πβ) =
∑
a∈A

P (s′|s, a)πβ(a|s). Note that to learn a IDM model, we don’t have to

estimate the dynamic model of the environment but only needs to treat this task as a usual function
approximation problem using a neural network. In particular, using the quadruples (s̃, a, r, s′) in
Dtot, the needed IDM Iπβ (a|s, s′) can be estimated using a probabilistic regression model with s̃, s′

as input and action a as output.

With the estimated IDM model available, we interpreted it as an extended policy with desired
immediate consequence known, illustrating how to recover from out-of-samples into in-sample(safe)
states, then use it to guide the learning of the new policy. In this work, we use the Kullback-
Leibler(KL) divergence to measure the divergence between two distributions. In particular, we
minimize the KL divergence between Iπβ (a|s̃, s′) and the new policy π(a|s̃), as follows,

min
π

Es̃∼DtotKL
(
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′)
∥∥∥π(a|s̃)) (7)

where the s̃ is sampled from the mixed dataset Dtot and s′ is its in-sample consecutive state.
(7) is the OSR term aiming to play the same role of traditional model-based SDC, but with-
out modeling the high-dimensional observations. Obviously, (7) utilizes a forward KL diver-
gence, in which the difference between Iπβ (a|s̃, s′) and π(a|s̃) is weighted by Iπβ (a|s̃, s′).
Minimizing this forward KL divergence is equivalent to maximizing the policy likelihood as,
maxπ Es̃∼Dtot,s′∼P (s′|s,πβ),a∼Iπβ (a|s̃,s′)[log π(a|s̃)], which is easy to achieve by the definition of
KL divergence. In this manner, the learnt policy π is able to recover the average behavior of the IDM
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′) with greatest probability.

To further explain the feasibility of OSR term, Theorem 1 shows that the OSR term aligns the transited
state distribution of the learnt policy with the offline dataset at out-of-sample states in the setting of
bounded action space, which is enough to meet the requirements of most RL environments. First, two
assumptions are given to serve Theorem 1 in Appendix A, where the assumptions give the continuity
and positivity for the transition function of πβ , and the positivity for the new policy we train. Then,
Theorem 1. Given two consecutive state s and s′, the out-of-sample state ŝ within the ϵ-
neighbourhood of s and the behavior policy πβ . Given an inverse dynamics model Iπβ (a|s, s′).
In bounded action space setting, the following two optimization formulas are equivalent,

min
π

KL
(
Es′∼P (s′|s,πβ)I

πβ (a|ŝ, s′)
∥∥∥π(a|ŝ))⇐⇒ min

π
KL

(
P (s′|s, πβ)

∥∥∥P (s′|ŝ, π)
)

, that is, the two optimization formulas achieve the same policy.

4



The proof of Theorem 1 is conducted in Appendix B.1. It theoretically guarantees that OSR have
the effect that the learnt policy is regularized to recover the transited state distribution P (s′|ŝ, π) at
out-of-sample state ŝ aligned well with the transited state distribution P (s′|s, πβ) of the behavior
policy πβ at the corresponding in-sample state s. For the fact that the offline dataset is generated
via the behavior policy πβ , then P (s′|s, πβ) is the in-distributional transited state distribution of
the offline dataset. Therefore, we remark that OSR helps aligning the new policy’s transited state
distribution P (s′|ŝ, π) at out-of-sample state ŝ with the offline dataset. Interestingly, we find that the
term minπ KL

(
P (s′|s, πβ)

∥∥P (s′|ŝ, π)
)

could also be termed as a KL-divergence version of SDC
introduced in (4).

4.3 Value-constraint out-of-sample state recovery: a variant

In this section, we propose Out-of-sample State Recovery via value-constraints (OSR-v) as a variant
of OSR proposed before. The proposed OSR-v penalizes the Q-values of those actions that prefer
transiting to OOD states at out-of-sample states, which drives the agent able to choose the actions that
transits to in-sample states, recovering from out-of-sample states. In particular, given two consecutive
states s̃ and s′ sampled from the mixed dataset Dtot constructed before, we overestimate the Q-values
of actions that transits to in-sample states, i.e., actions generated by the IDM Iπβ (·|s̃, s′), while
suppressing the Q-values of actions with unknown consequences, i.e., actions generated by the new
policy π, as follows,

min
Q

Es̃,s′∼Dtot

(
Eâ∼π(·|s̃)Q(s̃, â)− Eâtar∼Iπβ (·|s̃,s′)Q(s̃, âtar)

)
(8)

where âtar refers to the action sampled from IDM, which is referred as target action.

In practice, we observe that OSR-v enable the agent to follow the state recovery principle as well. In
order to rigorously explain this phenomenon, we give Theorem 2 under the assumptions mentioned
in Appendix A to show that performing OSR-v is equivalent to underestimating the value of OOD
states while overestimating the value of in-sample states, which guides the agent prefer to transit to
those in-sample(safe) states, avoiding error accumulated via state distributional shift.
Theorem 2. Given two consecutive state s and s′, the out-of-sample state ŝ within the ϵ-
neighbourhood of s and the behavior policy πβ . π is the new policy. Define Q(s, a) as a approximal
Q-value function and V (s) as a approximal value function. Given an inverse dynamics model
Iπβ (a|s, s′). Then the following two optimization formulas are approximately equivalent:

min
Q

Eâ∼π(·|ŝ)Q(ŝ, â)− Eâtar∼Iπβ (·|ŝ,s′)Q(ŝ, âtar) (9)

∼⇔min
V

Es′∼P (s′|ŝ,π)V (s′)− Es′∼P (s′|s,πβ)V (s′) (10)

, that is, they achieve the same policy approximately. Then the difference of the two optimization
formulas is no larger than 2δ

∑
a πβ(a|ŝ)Q(ŝ, a).

The proof of Theorem 2 is conducted in Appendix B.4. Theorem 2 demonstrates the approximate
equivalence of (9) and (10). There is actually a little gap between (9) and (10) which is caused by
the existence of the continuous gap δ, so when δ is large, (9) and (10) are quite different. However,
if we assume the infinite norm of reward function ∥R∥∞ ≤ 1, then 2δ

∑
a πβ(a|ŝ)Q(ŝ, a) ≤ 2δ

1−γ ,
where γ is the discount factor, and by the conservative selection of the magnitude of the noise ϵ, the δ
would be a quite tiny value in practice.

The s′ sampled from P (s′|s, πβ), the state distribution aligned with the offline datasetD, is in-sample,
then overestimating of such s′ increases the agent’s preference to transiting to in-sample states, which
is supported by the reasoning presented in Proposition 1, as follows,
Proposition 1. Given an arbitrary state s and its target state s′. Q is an approximal Q-value function
and V is its value function. πQ is the learnt policy according to Q. Let πQ(a|s) is positive correlated
to Q(s, a), noted as πQ(a|s) ∝ Q(s, a), and assume ∃a, P (s′|s, a) > 0, then P (s′|s, πQ) ∝ V (s′).

The proof and more discussion of Proposition 1 is conducted in Appendix B.2. For the fact that
out-of-sample(noisy) state ŝ is close to s, the in-sample prior of s′, so we assume ∃a, P (s′|ŝ, a) > 0,
and via Proposition 1, Es′∼P (s′|s,πβ)P (s′|ŝ, π) ∝ Es′∼P (s′|s,πβ)V (s′). Therefore, the result of
Theorem 2 and Proposition 1 guarantees that OSR-v can align the transited state distribution of the
new policy with the offline dataset, avoiding compounding state distributional shift as well.

5



4.4 Implementation and algorithm summary

We implement our methods, OSR and OSR-v, introduced in previous sections based on an Conserva-
tive Q-Learning(CQL) framework to practice the state recovery principle in the setting of countinuous
action space, without modeling the dynamics of the environment. To be specific, we would implement
OSR in policy-constraint mode and OSR-v in value-constraint mode.

Policy-constraint mode (OSR). The policy-constraint based method, OSR proposed in (7), could
be implemented as SR loss Lsr in (11), where the detailed derivation is presented in Appendix B.5.

Lsr = Es̃,s′∼DtotKL
(
Iπβ (a|s̃, s′)

∥∥∥π(a|s̃)) (11)

Then the problem is to estimate the KL divergence in (11) under the condition of continuous
action space. In general, we often model the policy as π(a|s̃) = N (µπ, σπ; s̃) and the IDM as
Iπβ (a|s̃, s′) = N (µI , σI ; s̃, s

′), where N notes Gaussian distribution. First, we construct the SR
loss for the policy network to estimate the KL divergence mentioned in (11).

There is an analytical solution for calculating the KL divergence between two Gaussian distributions,
the Gaussian policy π(a|s̃) = N (µπ, σπ; s̃) and the Gaussian IDM Iπβ (a|s̃, s′) = N (µI , σI ; s̃, s

′),
so we can transfer (11) as the following SR loss:

Lsr = Es̃,s′∼Dtot

[ D∑
d=1

(log
σd
I

σd
π

+
(σd

I )
2 + (µd

I − µd
π)

2

2(σd
π)

2
)
]

(12)

where subscript d represents the value of dth dimension of the D − dimensional variable. After
constructing the term of OSR in the settings of both discrete and continuous action space, we construct
the actor loss function of the policy network as follows,

Lπ = Es̃∼Dtot,â∼π(·|s̃)

[
Q(s̃, â)

]
+ λLsr

where λ is the balance-coefficient and the Lsr is as (12) in the setting of continuous action space.
Lsr imply a behavior cloning from the target distribution estimated via the inverse dynamics model
Iπβ (·|s̃, s′) to our new policy to enable the agent always transits to those in-sample states s′ from no
matter in-sample s or out-of-sample ŝ, i.e., s̃ from the mixed dataset Dtot mentioned in section 4.1.
Then the critic loss function for the Q-networks is,

LQ = Es,a,r,s′∼D

[
α ·

(
Eâ∼π(â|s)Q(s, â)−Q(s, a)

)
+
(
r + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

)2]
where α is the balance-coefficient; The second term is an one-step Bellman error, as (2) shows.

Value-constraint mode (OSR-v). We note the term of (8) mentioned in section 4.3, as Lsr−v, to
regularize the Q-networks. Then the critic loss function for the Q-networks is as follows,

LQ = α · Lsr−v + Es,a,r,s′∼D

[
r + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

]
where Lsr−v = Es̃,s′∼Dtot

(
Eâ∼π(·|s̃)Q(s̃, â)− Eâtar∼Iπβ (·|s̃,s′)Q(s̃, âtar)

)
where α is the balance-coefficient. We replace the CQL regularization, because Lsr−v would degrade
to CQL regularization when it performs on the in-sample part(the original offline dataset D) of the
mixed dataset Dtot, as Proposition 2 shows.
Proposition 2. When training on the original dataset D, Lsr−v is equivalent to CQL regularization.

The proof of Proposition 2 is conducted in Appendix B.3. Proposition 2 shows the feasibility of
replacing the term of CQL by the OSR term, so that fewer hyperparameters are introduced. Lsr−v

overestimates the actions that prefer transiting to in-sample sates to avoid error accumulation. Then
the actor loss Lπ we use in OSR-v is as follows,

Lπ = Es̃∼Dtot,â∼π(·|s̃)
[
Q(s̃, â)

]
To sum up, both OSR and OSR-v optimize actor loss Lπ to update the policy network π and critic
loss LQ to update our Q-networks, and output the learnt policy network π. The whole process of
OSR is summarized in Algorithm 1 in Appendix C while the whole process of OSR-v is summarized
as Algorithm 2 in Appendix C.

6



Table 1: Results of OSR(ours), OSR-v(ours), SDC, RAMBO, MOPO, IQL and CQL on offline
MuJoCo and AntMaze control tasks averaged over 4 seeds. * indicates the average without ’expert’
datasets. The top-2 highest scores in each benchmark are bolded.

Task name CQL IQL MOPO RAMBO SDC OSR OSR-v

Halfcheetah-r. 35.4 13.1 31.9 40.0 36.2 35.2± 1.2 35.9± 1.0
Walker2d-r. 7.0 5.4 13.3 11.5 14.3 13.5± 2.8 14.1± 3.9
Hopper-r. 10.8 7.9 13.0 21.6 10.6 10.3± 3.1 13.5± 3.4
Halfcheetah-m. 44.4 47.4 40.2 77.6 47.1 48.8± 0.2 49.1± 0.4
Walker2d-m. 79.2 78.3 26.5 86.9 81.1 85.7± 0.6 85.1± 0.7
Hopper-m. 58.0 66.2 14.0 92.8 91.3 83.1± 1.9 95.2± 1.1
Halfcheetah-m.-r. 46.2 44.2 54.0 68.9 47.3 46.8± 0.4 48.5± 0.6
Walker2d-m.-r. 26.7 73.8 92.5 85.0 30.3 87.9± 1.1 87.8± 1.0
Hopper-m.-r. 48.6 94.7 42.7 96.6 48.2 96.7± 1.7 101.2± 0.8
Halfcheetah-m.-e. 62.4 86.7 57.9 93.7 101.3 94.7± 0.9 99.1± 0.4
Walker2d-m.-e. 98.7 109.6 51.7 68.3 105.3 114.3± 1.5 112.9± 0.8
Hopper-m.-e. 111.0 91.5 55.0 83.3 112.9 113.1± 0.6 113.2± 0.6
Halfcheetah-e. 104.8 95.0 - - 106.6 97.7± 0.7 102.1± 0.8
Walker2d-e. 153.9 109.4 - - 108.3 110.3± 0.4 111.4± 0.8
Hopper-e. 109.9 109.9 - - 112.6 113.1± 0.5 112.9± 0.4
MuJoCo-v2 Avg. 66.5 68.9 41.1* 68.5* 70.2 76.7(69.2*) 78.9(71.5*)
AntMaze-u. 74.0 87.5 0.0 25.0 89.0 89.9±1.9 92.0±0.8
AntMaze-m.-p. 61.2 71.2 0.0 16.4 71.9 66.0±2.5 71.3±1.3
AntMaze-l.-p. 15.8 39.6 0.0 0.0 37.2 37.9±2.7 38.3±2.5
AntMaze-u.-d. 84.0 62.2 0.0 0.0 57.3 74.0±2.8 69.0±2.5
AntMaze-m.-d. 53.7 70.0 0.0 23.2 78.7 80.0±2.7 77.0±2.4
AntMaze-l.-d. 14.9 47.5 0.0 2.4 33.2 37.9±1.5 34.0±2.2
AntMaze-v0 Avg. 50.6 63.0 0.0 22.3 61.2 64.3 63.4

5 Experiments

In experiments we aim to answer: 1) Does the proposed OSR help to achieve the state-of-the-art
performance in offline RL? 2) Is the inverse dynamics model able to guide the policy recovering from
out-of-sample states? 3) Is OSR able to improve the agent’s robustness for out-of-sample situations?
4) Does OSR generalize well if the offline dataset only covers limited valuable area of the state space.
Our experiments are organized as follows: Firstly, we conduct a comparative study on the MuJoCo
and AntMaze benchmarks in the D4RL datasets for different versions of our method; then we design
an out-of-sample MuJoCo setting to evaluate the generalization ability of CQL, SDC, the proposed
OSR and OSR-v, and explore the behavior of the inverse dynamics model(IDM) and OSR policy;
finally, we test the efficacy of OSR when presented with limited valuable data. A brief introduction
of our code is available in Appendix D.9. MuJoCo. There are three types of high-dimensional
control environments representing different robots in D4RL: Hopper, Halfcheetah and Walker2d,
and five kinds of datasets: ’random’, ’medium’, ’medium-replay’, ’medium-expert’ and ’expert’.
The ’random’ is generated by a random policy and the ’medium’ is collected by an early-stopped
SAC [9] policy. The ’medium-replay’ collects the data in the replay buffer of the ’medium’ policy.
The ’expert’ is produced by a completely trained SAC. The ’medium-expert’ is a mixture of ’medium’
and ’expert’ in half. AntMaze. AntMaze in D4RL is a maze-like environment where an ant agent
must navigate through obstacles to reach a goal location. There are three different layouts of maze:
’umaze’, ’medium’ and ’large’, and different dataset types: ’fixed’, ’play’ and ’diverse’ which has
different start and goal locations used to collect the dataset. Hyperparameter Details. We base
the hyperparameters for OSR on those used in CQL [16]. We observe the performance of OSR is
influenced by the noise magnitude β and SR weighting λ. Therefore, we conduct a sensitivity analysis
of OSR in Appendix D.1.

Other experiments, including Sensitive Analysis, Ablation study, Comparison Study of implementa-
tions with Q-ensemble trick and so on, are attached in Appendix D.

7



5.1 Comparative study on offline MuJoCo/AntMaze suite

In this section, we compare our methods with several significant methods, including MOPO [26],
RAMBO [21], IQL [14], CQL [16] and SDC [27], on the D4RL dataset in the MuJoCo benchmarks.
Part of the results for the comparative methods are obtained by [27, 21]. All these methods are
implemented without Q-ensemble trick [4] and results are shown in Table 1, where the proposed
OSR and OSR-v achieve the similar or better performance than other methods on most tasks and
the best average score, and we also remark that OSR and OSR-v generalize significantly better on
the ’medium-expert’ datasets where limited high-valuable data is available. More training details of
OSR/OSR-v could be achieved in Appendix D.3. Besides, we also implement OSR with Q-ensemble
trick of 10 Q-functions [4], termed as OSR-10, to compare with Q-ensemble based methods like
RORL [25], SAC-10 and EDAC-10 [4], in Appendix D.4. From the results above, we conclude that
OSR helps to achieve the state-of-the-art performance in offline RL.

5.2 Out-of-sample MuJoCo setting

To evaluate whether the inverse dynamics model and the proposed OSR policy enable the agent to
recover from out-of-sample situations, we design Out-of-sample MuJoCo (OOSMuJoCo) benchmarks
by adding different steps of random actions (Gaussian noise with magnitude of 1e-3) to simulate
external force to knock the agent into out-of-sample states on Halfcheetah, Walker2d and Hopper.
There are 3 levels of external force: slight(s) takes 5 steps of random actions, moderate(m) takes 10
steps and large(l) takes 20 steps. The visualization of OOSMuJoCo is shown in Figure 2.

Figure 2: The visualizations of the 9 OOSMuJoCo benchmarks. The red arrows represent the
direction the agents move after external force, and the agents fall into out-of-sample states then.

We evaluate the performance of policies trained by CQL, SDC, OSR and OSR-v on ’medium-
expert’ datasets in the three benchmarks. The score and performance decrease of these policies
across the 9 OOSMuJoCo benchmarks are shown in Table 2, where the performance decrease
is measured as the percentage reduction in scores from OOSMuJoCo compared to the results of
standard MuJoCo environments in Table 1. Our results indicate that the proposed OSR/OSR-v
experiences significantly less performance degradation than the other two methods across most of the
OOSMuJoCo benchmarks, demonstrating better robustness against perturbation for out-of-sample
situations in the complicated and non-stationary real-world environments.

Table 2: Results of CQL, SDC, OSR/OSR-v in OOSMuJoCo setting on the normalized return and
decrease metric averaged over 4 seeds. The hightest score and lowest decrease are bolded.

CQL SDC OSR OSR-v
Task name score dec.(%) score dec.(%) score dec.(%) score dec.(%)

Halfcheetah-OOS-s. 56.2 10.0 100.9 0.4 94.1 0.6 98.4 0.7
Halfcheetah-OOS-m. 52.9 15.3 99.8 1.5 92.7 2.1 98.4 0.7
Halfcheetah-OOS-l. 42.1 32.5 83.3 17.8 91.7 3.2 79.8 19.5
Walker2d-OOS-s. 81.1 47.3 102.7 2.5 113.3 0.9 110.3 2.3
Walker2d-OOS-m. 77.4 21.6 102.2 2.9 113.2 1.0 110.9 1.8
Walker2d-OOS-l. 52.0 47.3 95.6 9.2 110.1 3.7 106.7 5.5
Hopper-OOS-s. 110.4 0.6 112.0 0.6 111.4 1.5 112.5 0.6
Hopper-OOS-m. 97.3 12.3 110.8 1.9 109.2 3.4 112.2 0.9
Hopper-OOS-l. 54.4 51.0 89.2 20.9 106.1 6.2 105.6 6.7

Besides, as a toy example, we visualize the Halfcheetah agent within an expert trajectory produced
by the behavior policy πβ on the offline dataset D, as is shown in Figure 3, then we also visualize
the trajectories generated by the policy of OSR and the inverse dynamics model(IDM) guided from

8



the behavior policy, where we set the target state of IDM to the corresponding state in the expert
trajectory. We add external force to knock the agent into an out-of-sample state and we observe
that the agents equiped with IDM and OSR policy are both able to recover from the out-of-sample
states. The state recovery processes of other 2 benchmarks is shown in Appendix D.5.2 and the
visualizations of state distribution is shown in Appendix D.5.1. The results above demonstrate that
the the inverse dynamics model is able to guide the policy recovering from out-of-sample state and
OSR is able to improve the agent’s robustness for out-of-sample situations.

Figure 3: The state recovery process via IDM and OSR on the ’Halfcheetah-OOS-large’ benchmark.
The interval between every two images is ten steps.

5.3 Limited valuable data setting

In this section, we test our method’s feasibility when only limited valuable data is available for
training, which is a novel task with the mixture of the expert dataset and random dataset with different
ratios [27], aiming to evaluate the robustness of ORL algorithms on the condition that the offline
dataset only covers limited valuable state space. In this paper, the proportions of random samples
are 0.5, 0.6, 0.7, 0.8 and 0.9 and the ratios of expert samples decline, for Halfcheetah, Hopper and
Walker2d. All datasets contain 1,000,000 samples.

Figure 4: The curve of CQL, SDC and OSR in the setting of limited valuable data.

We compare the proposed OSR with CQL and SDC in a limited valuable data setting. The results,
shown in Figure 4, demonstrate that all methods experience performance degradation when expert
samples are limited. However, our proposed method, OSR, achieves the lowest performance decrease
with the raise of the random sample ratio among the three methods in most tasks, which suggests that
our method is less sensitive to the quality of training data. The results above mean that even if the
dataset covers only limited valuable area of the extensive state space, the proposed OSR still works.

6 Conclusion

In this paper, we proposed a simple yet effective method, named Out-of-sample State Recovery
(OSR), for offline reinforcement learning. The proposed method follows the state recovery principle
to deal with the state distributional shift issue commonly encountered in offline RL. Unlike previous
methods, we address this in a way that does not need to explicitly model the transition of the
underlying environment by treating the inverse dynamics model as a guidance with desired immediate
consequence for the new policy. Our theoretical results show that the proposed OSR is equivalent to
aligning the transition distribution of the learnt policy with the offline dataset. The proposed method
is evaluated on several offline AntMaze/MuJoCo settings and achieved the SOTA performance.

9



Acknowledgement

This work is partially supported by National Key R&D program of China (2021ZD0113203), National
Science Foundation of China (61976115).

References
[1] Mohammad Mehdi Afsar, Trafford Crump, and Behrouz H. Far. Reinforcement learning based

recommender systems: A survey. CoRR, abs/2101.06286, 2021.

[2] Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state
abstractions for deep reinforcement learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 8229–8241, 2021.

[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. CoRR, abs/1606.06565, 2016.

[4] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 7436–7447, 2021.

[5] Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi,
and Honglak Lee. Contingency-aware exploration in reinforcement learning. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[6] Paul F. Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin,
Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to real world through learning
deep inverse dynamics model. CoRR, abs/1610.03518, 2016.

[7] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 20132–20145, 2021.

[8] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 2052–2062.
PMLR, 2019.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pages 1856–1865. PMLR, 2018.

[10] Geoffrey E. Hinton and Sam T. Roweis. Stochastic neighbor embedding. In Suzanna Becker,
Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing
Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver,
British Columbia, Canada], pages 833–840. MIT Press, 2002.

[11] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scal-
able deep reinforcement learning for vision-based robotic manipulation. In 2nd Annual Conference
on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87
of Proceedings of Machine Learning Research, pages 651–673. PMLR, 2018.

10



[12] Hao-Cheng Kao, Kai-Fu Tang, and Edward Y. Chang. Context-aware symptom checking for
disease diagnosis using hierarchical reinforcement learning. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 2305–2313. AAAI Press, 2018.

[13] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Ku-
mar Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Trans. Intell. Transp. Syst., 23(6):4909–4926, 2022.

[14] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[15] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 11761–11771,
2019.

[16] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

[17] Michael Laskey, Jonathan Lee, Roy Fox, Anca D. Dragan, and Ken Goldberg. DART: noise
injection for robust imitation learning. In 1st Annual Conference on Robot Learning, CoRL 2017,
Mountain View, California, USA, November 13-15, 2017, Proceedings, volume 78 of Proceedings
of Machine Learning Research, pages 143–156. PMLR, 2017.

[18] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[19] Andrew Lobbezoo, Yanjun Qian, and Hyock-Ju Kwon. Reinforcement learning for pick and
place operations in robotics: A survey. Robotics, 10(3):105, 2021.

[20] Michael W. McCracken. Robust out-of-sample inference. Journal of Econometrics, 99(2):195–
223, 2000.

[21] Marc Rigter, Bruno Lacerda, and Nick Hawes. RAMBO-RL: robust adversarial model-based
offline reinforcement learning. CoRR, abs/2204.12581, 2022.

[22] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis R. Bach and David M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 1889–1897. JMLR.org, 2015.

[23] Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang.
Offline reinforcement learning with reverse model-based imagination. arXiv e-prints, 2021.

[24] Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Mach. Learn.,
8:279–292, 1992.

[25] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. RORL:
robust offline reinforcement learning via conservative smoothing. CoRR, abs/2206.02829, 2022.

11



[26] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: model-based offline policy optimization. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[27] Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, Guanwen Zhang, and Xi-
angyang Ji. State deviation correction for offline reinforcement learning. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, pages 9022–9030. AAAI Press, 2022.

12


	Introduction
	Related work
	Background
	Out-of-sample state recovery using inverse dynamics
	Noise injection onto dataset
	Learning to recover from out-of-sample states via policy-constraints
	Value-constraint out-of-sample state recovery: a variant
	Implementation and algorithm summary

	Experiments
	Comparative study on offline MuJoCo/AntMaze suite
	Out-of-sample MuJoCo setting
	Limited valuable data setting

	Conclusion
	Two assumptions
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 2
	Explanation of the difference between the theory and implementation

	Alogrithms
	More experimental results
	Sensitive analysis over hyperparameters
	Ablation study
	Ablation study on the CQL term
	Ablation study on the noise injection

	Training details
	Hyperparameters
	Neural network structures
	Compute resources

	Comparison study of methods with Q-ensemble trick
	More experimental details on OOSMuJoCo
	State distributional visualized results
	Other state recovery processes
	Comparison with other robust offline RL framework

	Comparison with offline RL works with reverse model
	Comparison on the MuJoCo benchmark with adversarial attacks
	Experiments on out-of-distribution MuJoCo benchmark
	Code

	Discussion

