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Abstract

High-quality labels are often very scarce, whereas unlabeled data with inferred
weak labels occurs more naturally. In many cases, these weak labels dictate the
frequency of each respective class over a set of instances. In this paper, we develop
a unified approach to learning from such weakly-labeled data, which we call count-
based weakly-supervised learning. At the heart of our approach is the ability
to compute the probability of exactly k out of n outputs being set to true. This
computation is differentiable, exact, and efficient. Building upon the previous
computation, we derive a count loss penalizing the model for deviations in its
distribution from an arithmetic constraint defined over label counts. We evaluate
our approach on three common weakly-supervised learning paradigms and observe
that our proposed approach achieves state-of-the-art or highly competitive results
across all three of the paradigms.

1 Introduction

Weakly supervised learning [56] enables a model to learn from data with restricted, partial or
inaccurate labels, often known as weakly-labeled data. Weakly supervised learning fulfills a need
arising in many real-world settings that are subject to privacy or budget constraints, such as privacy
sensitive data [45], medical image analysis [12], clinical practice [39], personalized advertisement [9]
and knowledge base completion [21, 59], to name a few. In some settings, instance-level labels are
unavailable. Instead, instances are grouped into bags with corresponding bag-level labels that are
a function of the instance labels, e.g., the proportion of positive labels in a bag. A key insight that
we bring forth is that such weak supervision can very often be construed as enforcing constraints on
label counts of data.

More concretely, we consider three prominent weakly supervised learning paradigms. The first
paradigm is known as learning from label proportions [38]. Here the weak supervision consists in
the proportion of positive labels in a given bag, which can be interpreted as the count of positive
instances in such a bag. The second paradigm, whose supervision is strictly weaker than the former,
is multiple instance learning [35, 17]. Here the bag labels only indicate the existence of at least one
positive instance in a bag, which can be recast as to whether the count of positive instances is greater
than zero. The third paradigm, learning from positive and unlabeled data [16, 31], grants access to
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∑

yi/k

0

1/3

3/5

(b) LLP

{xi}ki=1 ỹ = max{yi}
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Table 1: A comparison of the tasks considered in the three weakly supervised settings, LLP (cf.
Section 2.1), MIL (cf. Section 2.2) and PU learning (cf. Section 2.3), against the classical fully
supervised setting for binary classification, using digits from the MNIST dataset.

the ground truth labels for a subset of only the positive instances, providing only a class prior for
what remains. We can recast the class prior as a distribution of the count of positive labels.

Leveraging the view of weak supervision as a constraint on label counts, we utilize a simple, efficient
and probabilistically sound approach to weakly-supervised learning. More precisely, we train a
neural network to make instance-level predictions that conform to the desired label counts. To this
end, we propose a differentiable count loss that characterizes how close the network’s distribution
comes to the label counts; a loss which is surprisingly tractable. Compared to prior methods, this
approach does not approximate probabilities but computes them exactly. Our empirical evaluation
demonstrates that our proposed count loss significantly boosts the classification performance on all
three aforementioned settings.

2 Problem Formulations

In this section, we formally introduce the aforementioned weakly supervised learning paradigms.
For notation, let X ∈ Rd be the input feature space over d features and Y = {0, 1} be a binary label
space. We write x ∈ X and y ∈ Y for the input and output random variables respectively. Recall that
in fully-supervised binary classification, it is assumed that each feature and label pair (x, y) ∈ X ×Y
is sampled independently from a joint distribution p(x, y). A classifier f is learned to minimize the
risk R(f) = E(x,y)∼p[ℓ(f(x), y)] where ℓ : [0, 1] × Y → R≥0 is the cross entropy loss function.
Typically, the true distribution p(x, y) is implicit and cannot be observed. Therefore, a set of n
training samples, D = {(xi, yi)}ni=1, is used and the empirical risk, R̂(f) = 1

n

∑n
i=1 ℓ(f(xi), yi),

is minimized in practice. In the count-based weakly supervised learning settings, the supervision is
given at a bag level instead of an instance level. We formally introduce these settings as below.

2.1 Learning from Label Proportions

Learning from label proportions (LLP) [38] assumes that each instance in the training set is assigned
to bags and only the proportion of positive instances in each bag is known. One example is in light
of the coronavirus pandemic, where infection rates were typically reported based on geographical
boundaries such as states and counties. Each boundary can be treated as a bag with the infection rate
as the proportion annotation.

The goal of LLP is to learn an instance-level classifier f : X → [0, 1] even though it is trained on bag-
level labeled data. Formally, the training dataset consists of m bags, denoted by D = {(Bi, ỹi)}mi=1

where each bag Bi = {xj}kj=1 consist of k instances and this k could vary among different bags.
The bag proportions are defined as ỹi =

∑k
j=1 yj/k with yj being the instance label that cannot

be accessed and only ỹi is available during training. An example is shown in Figure 1b. We do
not assume that the bags are non-overlapping while some existing work suffers from this limitation
including Scott and Zhang [40].
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Table 2: A summary of the labels and objective functions for all the settings considered in the paper.

TASK LABEL LABEL LEVEL OBJECTIVE

Classical Fully Supervised Binary y Instance Level −y log p(y)− (1− y) log(1− p(y))

Learning from Label Proportion Continuous ỹ =
∑

i yi/k Bag Level − log p(
∑

ŷi = kỹ)

Multiple Instance Learning Binary ỹ = max{yi} Bag Level −ỹ log p(
∑

ŷi ≥ 1)− (1− ỹ) log p(
∑

i ŷi = 0)

Learning from Positive
and Unlabeled Data Binary ỹ Instance Level 1) DKL(Bin(k, β) ∥ p(

∑
i ŷi))

2) − log p(
∑

ŷi = kβ)

2.2 Multiple Instance Learning

Multiple instance learning (MIL) [35, 17] refers to the scenario where the training dataset consists
of bags of instances, and labels are provided at bag level. However, in MIL, the bag label is a
single binary label indicating whether there is a positive instance in the bag or not as opposed to
a bag proportion defined in LLP. A real-world application of MIL lies in the field of drug activity
[17]. We can observe the effects of a group of conformations but not for any specific molecule,
motivating a MIL setting. Formally, in MIL, the training dataset consists of m bags, denoted by
D = {(Bi, ỹi)}mi=1, with a bag consisting of k instances, i.e., Bi = {xj}kj=1. The size k can vary
among different bags. For each instance xj , there exists an instance-level label yj which is not
accessible. The bag-level label is defined as ỹi = maxj{yj}. An example is shown in Figure 1c.

The main goal of MIL is to learn a model that predicts a bag label while a more challenging goal is to
learn an instance-level predictor that is able to discover positive instances in a bag. In this work, we
aim to tackle both by training an instance-level classifier whose predictions can be combined into a
bag-level prediction as the last step.

2.3 Learning from Positive and Unlabeled Data

Learning from positive and unlabeled data or PU learning [16, 31] refers to the setting where the
training dataset consists of only positive instances and unlabeled data, and the unlabeled data can
contain both positive and negative instances. A motivation of PU learning is persistence in the case
of shifts to the negative-class distribution [37], for example, a spam filter. An attacker may alter the
properties of a spam email, making a traditional classifier require a new negative dataset [37]. We
note that taking a new unlabeled sample would be more efficient, motivating PU learning. Formally,
in PU learning, the training dataset D = Dp ∪ Du where Dp = {(xi, ỹi = 1)}np

i=1 is the set of
positive instances with xi from p(x | y = 1) and ỹ denoting whether the instance is labeled, and
Du = {(xi, ỹi = 0)}nu

i=1 the unlabeled set with xi from

pu(x) = β p(x | y = 1) + (1− β) p(x | y = 0), (1)

where the mixture proportion β := p(y = 1 | ỹ = 0) is the fraction of positive instances among the
unlabeled population. Although the instance label y is not accessible, its information can be inferred
from the binary selection label ỹ: if the selection label ỹ = 1, it belongs to the positively labeled set,
i.e., p(y = 1 | ỹ = 1) = 1; otherwise, the instance x can be either positive or negative. An example
of such a dataset is shown in Figure 1d.

The goal of PU learning is to train an instance-level classifier. However, it is not straightforward
to learn from PU data and it is necessary to make assumptions to enable learning with positive and
unlabeled data [9]. In this work, we make a commonly-used assumption for PU learning, selected
completely at random (SCAR), which lies at the basis of many PU learning methods.
Definition 2.1 (SCAR). Labeled instances are selected completely at random, independent from input
features, from the positive distribution p(x | y = 1), that is, p(ỹ = 1 | x, y = 1) = p(ỹ = 1 | y = 1).

3 A Unified Approach: Count Loss

In this section, we derive objectives for the three weakly supervised settings, LLP, MIL, and PU
learning, from first principles. Our proposed objectives bridge between neural outputs, which can
be observed as counts, and arithmetic constraints derived from the weakly supervised labels. The
idea is to capture how close the classifier is to satisfying the arithmetic constraints on its outputs.
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Algorithm 1 Count Probability p(
∑k

i=1 ŷi = s)

Input: A set of k log probabilities {ti}ki=1 with ti := log p(ŷi = 1), the number of instances k, and
a label sum s
Output: log probabilities log p(

∑k
i=1 ŷi = s) or a set of log probability {log p(

∑k
i=1 ŷi = s)}ks=0

// A[i,m] = log p(
∑i

j=1 yj = m) ∀i, m
Initialize an array A to be −Inf everywhere
A[0, 0] = 0 // p(

∑0
j=1 yj = 0) = 1

Compute t′i ← log1mexp(ti) // log p(yi = 0)
for i = 1 to k do

for m = 0 to s do
a+ = A[i− 1,m− 1] + ti
a− = A[i− 1,m] + t′i
A[i,m] = logsumexp(a+, a−)

return A[k, s] or A[k, :]

They can be easily integrated with deep learning models, and allow them to be trained end-to-end.
For the three objectives, we show that they share the same computational building block: given
k instances {xi}ki=1 and an instance-level classifier f that predicts p(ŷi | xi) with ŷ denoting the
prediction variable, the problem of inferring the probability of the constraint on counts

∑k
i=1 ŷi = s

is to compute the count probability defined below:

p(

k∑
i=1

ŷi = s | {xi}ki=1) :=
∑
ŷ∈Yk

J
k∑

i=1

ŷi = sK
k∏

i=1

p(ŷi | xi)

where J·K denotes the indicator function and ŷ denotes the vector (ŷ1, · · · , ŷk). For succinctness,
we omit the dependency on the input and simply write the count probability as p(

∑k
i=1 ŷi = s).

Next, we show how the objectives derived from first principles can be solved by using the count
probability as an oracle. We summarize all proposed objectives in Table 2. Later, we will show how
this seemingly intractable count probability can be efficiently computed by our proposed algorithm.

LLP setting. Given a bag B = {xi}ki=1 of size k and its weakly supervised label ỹ, by definition,
it can be inferred that the number of positive instances (count) in the bag is kỹ. Our objective is to
minimize the negative log probability − log p(

∑
i ŷi = kỹ). Notice that when each bag consists of

only one instance, that is, when the bag-level supervisions are reduced to instance-level ones, this
objective is exactly cross-entropy loss. We further show that our method is risk-consistent, that is, the
optimal classifier under our proposed loss provides predictions consistent with the underlying risk as
in the supervised learning setting. Details of the risk analysis can be found in Appendix A.

MIL setting. Given a bag B = {xi}ki=1 of size k and a single binary label ỹ as its weakly supervised
label, we propose a cross-entropy loss as below

ℓ(B, ỹ) = −ỹ log p(
∑

ŷi ≥ 1)− (1− ỹ) log p(
∑

ŷi = 0).

Notice that in the above loss, the probability term p(
∑

ŷi = 0) is accessible to the oracle for
computing count probability, and the other probability term p(

∑
ŷi ≥ 1) can simply be obtained

from 1− p(
∑

ŷi = 0), i.e., the same call to the oracle since all prediction variables ŷi are binary.

PU Learning setting. Recall that for the unlabeled data Du in the training dataset, an unlabeled
instance xi is drawn from a mixture distribution as shown in Equation 1 parameterized by a mixture
proportion β = p(y = 1 | ỹ = 0). Under the SCAR assumption, even though only a class prior is
given, we show that the mixture proportion can be estimated from the dataset.
Proposition 3.1. With SCAR assumption and a class prior α := p(y = 1), the mixture proportion
β := p(y = 1 | ỹ = 0) can be estimated from dataset D.

Proof. First, the label frequency p(ỹ = 1 | y = 1) denoted by c can be obtained by

c =
p(ỹ = 1, y = 1)

p(y = 1)
=

p(ỹ = 1)

p(y = 1)
(by the definition of PU learning).
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Figure 1: An example of how to compute the count probability in a dynamic programming manner.
Assume that an instance-level classifier predicts three instances to have p(y1 = 1) = 0.1, p(y2 =
1) = 0.2, and p(y3 = 1) = 0.3 respectively. The algorithm starts from the top-left cell and
propagates the results down right. A cell has its probability p(

∑i
j=0 yj = s) computed by inputs

from p(
∑i−1

j=0 yj = s) weighted by p(yi = 0), and p(
∑i−1

j=0 yj = s − 1) weighted by p(yi = 1)
respectively, as indicated by the arrows.

that is, c = p(ỹ = 1)/α. Notice that p(ỹ = 1) can be estimated from the dataset D by counting the
proportion of the labeled instances. Thus, we can estimate the mixture proportion as below,

β =
p(ỹ = 0 | y = 1)p(y = 1)

p(ỹ = 0)
=

(1− p(ỹ = 1 | y = 1))p(y = 1)

1− p(ỹ = 1)
=

(1− c)α

1− αc
.

The probabilistic semantic of the mixture proportion is that if we randomly draw an instance xi from
the unlabeled population, the probability that the true label yi is positive would be β. Further, if we
randomly draw k instances, the distribution of the summation of the true labels

∑k
i=1 yi conforms to

a binomial distribution Bin(k, β) parameterized by the mixture proportion β, i.e.,

p(

k∑
i=1

yi = s) =

(
k

s

)
βs(1− β)k−s. (2)

Based on this observation, we propose an objective to minimize the KL divergence between the
distribution of predicted label sum and the binomial distribution parameterized by the mixture
proportion for a random subset drawn from the unlabeled population, that is,

DKL

(
Bin(k, β) ∥ p(

k∑
i=1

ŷi)

)
=

k∑
s=0

Bin(s; k, β) log
Bin(s; k, β)

p(
∑k

i=1 ŷi = s)

where Bin(s; k, β) denotes the probability mass function of the binomial distribution Bin(k, β).
Again, the KL divergence can be obtained by k+1 calls to the oracle for computing count probability
p(
∑k

i=1 ŷi = s). The KL divergence is further combined with a cross entropy defined over labeled
data Dp as in the classical binary classification training as the overall objective.

As an alternative, we propose an objective for the unlabeled data that requires fewer calls to the oracle:
instead of matching the distribution of the predicted label sum with the binomial distribution, this
objective matches only the expectations of the two distributions, that is, to maximize p(

∑k
i=1 ŷi = kβ)

where kβ is the expectation of the binomial distribution Bin(k, β). We present empirical evaluations
of both proposed objectives in the experimental section.

4 Tractable Computation of Count Probability

In the previous section, we show how the count probability p(
∑k

i=1 ŷi = s) serves as a computational
building block for the objectives derived from first principles for the three weakly supervised learning
settings. With a closer look at the count probability, we can see that given a set of instances, the
classifier predicts an instance-level probability for each and it requires further manipulation to obtain
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count information; actually, the number of joint labelings for the set can be exponential in the
number of instances. Intractable as it seems, we show that it is indeed possible to derive a tractable
computation for the count probability based on a result from Ahmed et al. [6].

Proposition 4.1. The count probability p(
∑k

i=1 ŷi = s) of sampling k prediction variables that sums
to s from an unconstrained distribution p(y) =

∏k
i=1 p(ŷi) can be computed exactly in time O(ks).

Moreover, the set {p(
∑k

i=1 ŷi = s)}ks=0 can also be computed in time O(k2).

The above proposition can be proved in a constructive way where we show that the count probability
p(
∑k

i=1 ŷi = s) can be computed in a dynamic programming manner. We provide an illustrative
example of this computation in Figure 1. In practice, we implement this computation in log space
for numeric stability which we summarized as Algorithm 1, where function log1mexp provides a
numerically stable way to compute log1mexp(x) = log(1 − exp(x)) and function logsumexp a
numerically stable way to compute logsumexp(x, y) = log(exp(x) + exp(y)). Notice that since we
show it is tractable to compute the set {p(

∑k
i=1 ŷi = s)}ks=0, for any two given label sum s1 and s2,

a count probability p(s1 ≤
∑

i ŷi ≤ s2) where the count lies in an interval, can also be exactly and
tractably computed. This implies that our tractable computation of count probabilities can potentially
be leveraged by other count-based applications besides the three weakly supervised learning settings
in the last section.

5 Related Work

Weakly Supervised Learning. Besides settings explored in our work there are many other weakly-
supervised settings. One of which is semi-supervised learning, a close relative to PU Learning with
the difference being that labeled samples can be both positive and negative [57, 58]. Another is
label noise learning, which occurs when our instances are mislabeled. Two common variations
involve whether noise is independent or dependent on the instance [20, 42]. A third setting is partial
label learning, where each instance is provided a set of labels of which exactly one is true [14]. An
extension of this is partial multi-label learning, where among a set of labels, a subset is true [46].

Unified Approaches. There exists some literature in regards to “general" approaches for weakly
supervised learning. One example being the method proposed in Hüllermeier [23], which provides
a procedure that minimizes the empirical risk on “fuzzy” sets of data. The paper also establishes
guarantees for model identification and instance-level recognition. Co-Training and Self-Training are
also examples of similar techniques that are applicable to a wide variety of weakly supervised settings
[11, 49]. Self-training involves progressively incorporating more unlabeled data via our model’s
prediction (with pseudo-label) and then training a model on more data as an iterative algorithm [25].
Co-Training leverages two models that have different “views” of the data and iteratively augment
each other’s training set with samples they deem as “well-classified”. They are traditionally applied
to semi-supervised learning but can extend to multiple instance learning settings [33, 47, 32].

LLP. Quadrianto et al. [38] first introduced an exponential family based approach that used an
estimation of mean for each class. Others seek to minimize “empirical proportion risk” or EPR as in
Yu et al. [50], which is centered around creating an instance-level classifier that is able to reproduce
the label proportions of each bag. As mentioned previously, more recent methods use bag posterior
approximation and neural-based approaches [8, 43]. One such method is Proportion Loss (PL) [43],
which we contrast to our approach. This is computed by binary cross entropy between the averaged
instance-level probabilities and ground-truth bag proportion.

MIL. MIL finds its earlier approaches with SVMs, which have been used quite prolifically and still
remain one of the most common baselines. We start with MI-SVM/mi-SVM [7] which are examples
of transductive SVMs [13] that seek a stable instance classification through repeated retraining
iterations. MI-SVM is an example of an instance space method [13], which identifies methods
that classify instances as a preliminary step in the problem. This is in contrast to bag-space or
embedded-space methods that omit the instance classification step. Furthermore, Wang et al. [44]
remains one of the hallmarks of the use of neural networks for Multi-Instance Learning. Ilse et al.
[24], utilize a similar approach but with attention-based mechanisms.

PU learning. Bekker and Davis [9] groups PU Learning paradigms into three main classes: two step,
biased, and class prior incorporation. Biased learning techniques train a classifier on the entire dataset
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Table 3: LLP results across different bag sizes. We report the mean and standard deviation of the test
AUC over 5 seeds for each setting. The highest metric for each setting is shown in boldface.

Dataset Dist Method 8 32 128 512

Adult [0, 1
2
] PL 0.8889± 0.0024 0.8782± 0.0036 0.8743 ± 0.0039 0.8678± 0.0085

Adult [0, 1
2
] LMMCM 0.8728± 0.0019 0.8693± 0.0047 0.8669± 0.0041 0.8674± 0.0040

Adult [0, 1
2
] CL (Ours) 0.8984 ± 0.0013 0.8848 ± 0.0041 0.8743 ± 0.0052 0.8703 ± 0.0070

Adult [ 1
2
, 1] PL 0.8781± 0.0038 0.8731± 0.0035 0.8699 ± 0.0057 0.8556± 0.0180

Adult [ 1
2
, 1] LMMCM 0.8584± 0.0164 0.8644± 0.0052 0.8601± 0.0045 0.8500± 0.0186

Adult [ 1
2
, 1] CL (Ours) 0.8854 ± 0.0022 0.8738 ± 0.0039 0.8675± 0.0043 0.8607 ± 0.0056

Adult [0, 1] PL 0.8884± 0.0030 0.8884± 0.0008 0.8879 ± 0.0025 0.8828 ± 0.0051
Adult [0, 1] LMMCM 0.8831± 0.0026 0.8819± 0.0006 0.8821± 0.0017 0.8786± 0.0052
Adult [0, 1] CL (Ours) 0.8985 ± 0.0010 0.8891 ± 0.0013 0.8871± 0.0021 0.8790± 0.0056

Magic [0, 1
2
] PL 0.8900± 0.0095 0.8510± 0.0032 0.8405± 0.0110 0.8332± 0.0149

Magic [0, 1
2
] LMMCM 0.8918± 0.0077 0.8799± 0.0113 0.8753± 0.0157 0.8734± 0.0092

Magic [0, 1
2
] CL (Ours) 0.9088 ± 0.0056 0.8830 ± 0.0097 0.8926 ± 0.0049 0.8864 ± 0.0107

Magic [ 1
2
, 1] PL 0.9066± 0.0016 0.8818± 0.0108 0.8769± 0.0101 0.8429± 0.0443

Magic [ 1
2
, 1] LMMCM 0.8911± 0.0083 0.8790± 0.0091 0.8684± 0.0046 0.8567± 0.0292

Magic [ 1
2
, 1] CL (Ours) 0.9105 ± 0.0020 0.8980 ± 0.0059 0.8851 ± 0.0255 0.8816 ± 0.0083

Magic [0, 1] PL 0.9039± 0.0029 0.8870± 0.0037 0.9002± 0.0092 0.8807± 0.0200
Magic [0, 1] LMMCM 0.9070± 0.0026 0.9048± 0.0058 0.9113± 0.0058 0.8934± 0.0097
Magic [0, 1] CL (Ours) 0.9173 ± 0.0018 0.9102 ± 0.0057 0.9146 ± 0.0051 0.9088 ± 0.0039

with the understanding that negative samples are subject to noise [9]. We will focus on a subset of
biased learning techniques (Risk Estimators) as they are considered state-of-the-art and relevant to
us as baselines. The Unbiased Risk Estimator (uPU) provides an alternative to the inefficiencies in
manually biasing unlabeled data [18, 37]. Later, Non-negative Risk Estimator (nnPU) [26] accounted
for weaknesses in the unbiased risk estimator such as overfitting.

Count Loss. To our knowledge, viewing the computation of the “bag posterior” as probabilistic is
new. However, the prior approaches do this implicitly. Many approaches have tried to approximate
the “bag posterior” by averaging the instance-level probabilities in a bag [8, 43]. In MIL settings,
among instance-level approaches, the MIL-pooling is an implicit “bag posterior” computation. These
include mean, max, and log-sum-exp pooling to approximate the likelihood that a bag has at least
one positive instance [44]. But again, these are all approximations of what our computation does
exactly. In PU Learning, to our best knowledge, the view of unlabeled data as a bag annotated with
the mixture proportion is new.

Neuro-Symbolic Losses. In this paper, we have dealt with a specific form of distributional constraint.
Conversely, there has been a plethora of work exploring the integration of hard symbolic constraints
into the learning of neural networks. This can take the form of enforcing a hard constraint [3],
whereby the network’s predictions are guaranteed to satisfy the pre-specified constraints. Or it can
take the form of a soft constraint [48, 34, 1, 4, 2, 5] whereby the network is trained with an additional
loss term that penalizes the network for placing any probability mass on predictions that violate the
constraint. While in this work we focus on discrete linear inequality constraints defined over binary
variables, there is existing work focusing on hybrid linear inequality constraints defined over both
discrete and continuous variables and their tractability [10, 55, 54]. The development of inference
algorithms for such constraints and their applications such as Bayesian deep learning remain an active
topic [52, 28, 53, 51].

6 Experiments

In this section, we present a thorough empirical evaluation of our proposed count loss on the three
weakly supervised learning problems, LLP, MIL, and PU learning.1 We refer the readers to the
appendix for additional experimental details.

1Code and experiments are available at https://github.com/UCLA-StarAI/CountLoss
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Table 4: MIL experiment on the MNIST dataset. Each block represents a different distribution
from which we draw bag sizes—First Block: N (10, 2), Second Block: N (50, 10), Third Block:
N (100, 20). We run each experiment for 3 runs and report mean test AUC with standard error. The
highest metric for each setting is shown in boldface.

Training Bags 50 100 150 200 300 400 500

Gated Attention 0.775± 0.034 0.894± 0.012 0.935± 0.005 0.939± 0.006 0.963 ± 0.002 0.959± 0.002 0.966 ± 0.003
Attention 0.807± 0.026 0.913 ± 0.006 0.940 ± 0.004 0.942± 0.007 0.957± 0.002 0.961± 0.005 0.965± 0.004
CL (Ours) 0.818 ± 0.024 0.906± 0.009 0.929± 0.005 0.946 ± 0.001 0.952± 0.004 0.962 ± 0.002 0.963± 0.002

Gated Attention 0.943 ± 0.005 0.949± 0.009 0.970 ± 0.005 0.977 ± 0.001 0.983± 0.002 0.986± 0.004 0.987 ± 0.002
Attention 0.936± 0.010 0.962 ± 0.006 0.970 ± 0.001 0.977 ± 0.002 0.981± 0.002 0.987 ± 0.001 0.987 ± 0.002
CL (Ours) 0.939± 0.010 0.960± 0.002 0.964± 0.007 0.972± 0.002 0.982 ± 0.003 0.982± 0.001 0.987 ± 0.002

Gated Attention 0.975± 0.003 0.981± 0.004 0.992± 0.002 0.987± 0.004 0.996 ± 0.001 0.998 ± 0.001 0.990± 0.004
Attention 0.984 ± 0.001 0.982± 0.001 0.996 ± 0.000 0.987± 0.007 0.992± 0.004 0.994± 0.002 0.998± 0.000
CL (Ours) 0.981± 0.007 0.989 ± 0.000 0.996 ± 0.002 0.995 ± 0.001 0.996 ± 0.002 0.993± 0.003 0.999 ± 0.001

Table 5: MIL: We report mean test accuracy, AUC, F1, precision, and recall averaged over 5 runs
with std. error on the Colon Cancer dataset. The highest value for each metric is shown in boldface.

Method Accuracy AUC F1 Precision Recall

Gated Attention 0.909± 0.014 0.908± 0.013 0.886± 0.021 0.916± 0.020 0.879± 0.020
Attention 0.893± 0.015 0.890± 0.008 0.876± 0.017 0.908± 0.016 0.879± 0.018

CL (Ours) 0.915 ± 0.008 0.912 ± 0.010 0.903 ± 0.010 0.936 ± 0.014 0.898 ± 0.007

6.1 Learning from Label Proportions

We experiment on two datasets: 1) Adult with 8192 training samples where the task is to predict
whether a person makes over 50k a year or not given personal information as input; 2) Magic Gamma
Ray Telescope with 6144 training samples where the task is to predict whether the electromagnetic
shower is caused by primary gammas or not given information from the atmospheric Cherenkov
gamma telescope [19].2

We follow Scott and Zhang [40] where two settings are considered: one with label proportions
uniformly on [0, 1

2 ] and the other uniformly on [ 12 , 1]. Additionally, we experiment on a third setting
with label proportions distributing uniformly on [0, 1] which is not considered in Scott and Zhang
[40] but is the most natural setting since the label proportion is not biased toward either 0 or 1. We
experiment on four bag sizes n ∈ {8, 32, 128, 512}.
Count loss (CL) denotes our proposed approach using the loss objective defined in Table 2 for LLP.
We compare our approach with a mutual contamination framework for LLP (LMMCM) [40] and
against Proportion Loss (PL) [43].

Results and Discussions We show our results in Table 3. Our method showcases superior results
against the baselines on both datasets and variations in bag sizes. Especially in cases with lower bag
sizes, i.e., 8, 32, CL greatly outperforms all other methodologies. Among our baselines are methods
that approximate the bag posterior (PL), which we show to be less effective than optimizing the exact
bag posterior with CL.

6.2 Multiple Instance Learning

We first experiment on the MNIST dataset [30] and follow the MIL experimental setting in Ilse
et al. [24]: the training and test set bags are randomly sampled from the MNIST training and test set
respectively; each bag can have images of digits from 0 to 9, and bags with the digit 9 are labeled
positive. Moreover, the dataset is constructed in a balanced way such that there is an equal amount
of positively and negatively labeled bags as in Ilse et al. [24]. The task is to train a classifier that
is able to predict bag labels; the more challenging task is to discover key instances, that is, to train
a classifier that identifies images of digit 9. Following Ilse et al. [24], we consider three settings
that vary in the bag generation process: in each setting, bags have their sizes generated from a
normal distribution being N (10, 2),N (50, 10),N (100, 20) respectively. The number of bags in

2Publicly available at archive.ics.uci.edu/ml
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Figure 2: MIL MNIST dataset experiments with decreased numbers of training bags and lower bag
size. Left: bag sizes sampled from N (10, 2); Right: bag sizes sampled from N (5, 1). We plot the
mean test AUC (aggregated over 3 trials) with standard errors for 4 bag sizes. Best viewed in color.

training set n is in {50, 100, 150, 200, 300, 400, 500}. Thus, we have 3 × 7 = 21 settings in total.
Additionally, we introduce experimental analysis on how the performance of the learning methods
would degrade as the number of bags and total samples in training set decreases, by modulating the
number of training bags n to be {10, 20, 30, 40} and selecting bag sizes from N (5, 1) and N (10, 2).

< 10−6 0.9997 < 10−6 < 10−6 6×10−6 < 10−6 < 10−6

< 10−6 < 10−6 < 10−6 < 10−6 1.0000 < 10−6

Figure 3: A test bag from our MIL experiments, where we
set only the digit 9 as a positive instance. Highlighted in
red are digits identified to be positive with corresponding
probability beneath.

We also experiment on the Colon Can-
cer dataset [41] to simulate a setting
where bag instances are not indepen-
dent. The dataset consists of 100 total
hematoxylin-eosin (H&E) stained im-
ages, each of which contains images of
cell nuclei that are classified as one of:
epithelial, inflammatory, fibroblast, and
miscellaneous. Each image represents
a bag and instances are 27× 27 patches
extracted from the original image. A
positively labeled bag or image is one that contains the epithelial nuclei. For both datasets, we include
the Attention and Gated Attention mechanism [24] as baselines. We also use the MIL objective
defined in Table 2.

Results and Discussions For the MNIST experiments, CL is able to outperform all other baselines
or exhibit highly comparable performance for bag-level predictions as shown in Table 4. A more
interesting setting is to compare how robust the learning methods are if the number of training bags
decreases. Wang et al. [44] claim that instance-level classifiers tend to lose against embedding-based
methods. However, we show in our experiment that this is not true in all cases as seen in Figure 2.
While Attention and Gated Attention are based on embedding, they suffer from a more severe drop
in predictive performance than CL when the number of training bags drops from 40 to 10; our
method shows great robustness and consistently outperforms all baselines. The rationale we provide
is that with a lower number of training instances, we need more supervision over the limited samples
we have. Our constraint provides this additional supervision, which accounts for the difference in
performance.

We provide an additional investigation in Figure 3 to show that our approach learns effectively and
delivers accurate instance-level predictions under bag-level supervision. In Figure 3, we can see that
even though the classifier is trained on feedback about whether a bag contains the digit 9 or not, it
accurately discovers all images of digit 9. To reinforce this, Table 7 and Table 8, in Appendix B,
show that our approach outperforms existing instance-space methods on instance-level classification.

Our experimental results on the Colon Cancer dataset are shown in Table 5. We show that both our
proposed objectives are able to consistently outperform baseline methods on all metrics. Interestingly,
we do not expect CL to perform well when instances in a bag are dependent; however, the results
indicate that our count loss is robust to these settings.
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Table 6: PU Learning: We report accuracy and standard deviation on a test set of unlabeled data,
which is aggregated over 3 runs. The results from CVIR, nnPU, and uPU are aggregated over 10
epochs, as in Garg et al. [22], while we choose the single best epoch based on validation for our
approaches. The highest metric for each setting is shown in boldface.

Dataset Network CL-expect (Ours) CL (Ours) CVIR nnPU nPU
Binarized MNIST MLP 95.9± 0.15 96.4± 0.01 96.3± 0.07 96.1± 0.14 95.2± 0.19
MNIST17 MLP 98.7± 0.17 99.0± 0.19 98.7± 0.09 98.4± 0.20 98.4± 0.09
Binarized CIFAR ResNet 79.2± 0.27 80.1± 0.34 82.3± 0.18 77.2± 1.03 76.7± 0.74
CIFAR Cat vs. Dog ResNet 76.5± 1.86 74.8± 1.64 73.3± 0.94 71.8± 0.33 68.8± 0.53

6.3 Learning from Positive and Unlabeled Data

Figure 4: MNIST17 setting for PU Learning: We
compute the average discrete distribution for CL
and CVIR, over 5 test bags, each of which contain
100 instances. A ground truth binomial distribution
of counts is also shown.

We experiment on dataset MNIST and CIFAR-
10 [29], following the four simulated settings
from Garg et al. [22]: 1) Binarized MNIST: the
training set consist of images of digits 0− 9 and
images with digits in range [0, 4] are positive
instances while others as negative; 2) MNIST17:
the training set consist of images of digits 1 and
7 and images with digit 1 are defined as positive
while 7 as negative; 3) Binarized CIFAR: the
training set consists of images from ten classes
and images from the first five classes is defined
as positive instances while others as negative;
4) CIFAR Cat vs. Dog: the training set consist
of images of cats and dogs and images of cats
are defined as positive while dogs as negative.
The mixture proportion is 0.5 in all experiments.
The performance is evaluated using the accuracy
on a test set of unlabeled data.

As shown in Table 2, we propose two objectives
for PU learning. Our first objective is denoted by CL whereas the second approach is denoted
by CL-expect. We compare against the Conditional Value Ignoring Risk approach (CVIR) [22],
nnPU [26], and uPU [37].

Results and Discussions Accuracy results are presented in Table 6 where we can see that our
proposed methods perform better than baselines on 3 out of the 4 simulated PU learning settings.
CL-expect builds off a similar “exactly-k” count approach, which we have shown to work well in
the label proportion setting. The more interesting results are from CL where we fully leverage the
information from a distribution as supervision instead of simply using the expectation. We think of
this as applying a loss on each count weighted by their probabilities from the binomial distribution.
We provide further evidence that our proposed count loss effectively guides the classifier towards
predicting a binomial distribution as shown in Figure 4: we plot the count distributions predicted
by CL and CVIR as well as the ground-truth binomial distribution. We can see that CL is able to
generate the expected distribution, proving the efficacy of our approach.

7 Conclusions

In this paper, we present a unified approach to several weakly-supervised tasks, i.e., LLP, MIL,
PU. We construct our approach based on the idea of using weak labels to constrain count-based
probabilities computed from model outputs. A future direction for our work can be to extend to
multi-class classification as well as explore the applicability to other weakly-supervised settings, e.g.
label noise learning, semi-supervised learning, and partial label learning [15, 36, 58].
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