
ALIM: Adjusting Label Importance Mechanism for
Noisy Partial Label Learning

Mingyu Xu1,2∗, Zheng Lian1∗, Lei Feng3, Bin Liu1,2, Jianhua Tao4,5
1The State Key Laboratory of Multimodal Artificial Intelligence Systems,

Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3School of Computer Science and Engineering, Nanyang Technological University
4Department of Automation, Tsinghua University

5Beijing National Research Center for Information Science and Technology, Tsinghua University
{xumingyu2021, lianzheng2016}@ia.ac.cn

Abstract

Noisy partial label learning (noisy PLL) is an important branch of weakly su-
pervised learning. Unlike PLL where the ground-truth label must conceal in the
candidate label set, noisy PLL relaxes this constraint and allows the ground-truth
label may not be in the candidate label set. To address this challenging problem,
most of the existing works attempt to detect noisy samples and estimate the ground-
truth label for each noisy sample. However, detection errors are unavoidable. These
errors can accumulate during training and continuously affect model optimization.
To this end, we propose a novel framework for noisy PLL with theoretical interpre-
tations, called “Adjusting Label Importance Mechanism (ALIM)”. It aims to reduce
the negative impact of detection errors by trading off the initial candidate set and
model outputs. ALIM is a plug-in strategy that can be integrated with existing PLL
approaches. Experimental results on multiple benchmark datasets demonstrate that
our method can achieve state-of-the-art performance on noisy PLL. Our code is
available at: https://github.com/zeroQiaoba/ALIM.

1 Introduction

Partial label learning (PLL) [1, 2] (also called ambiguous label learning [3, 4] and superset label
learning [5, 6]) is a typical type of weakly supervised learning. Unlike supervised learning where
each sample is associated with a ground-truth label, PLL needs to identify the ground-truth label
from a set of candidate labels. Due to the low annotation cost of partially labeled samples, PLL has
attracted increasing attention from researchers and has been applied to many areas, such as object
recognition [4], web mining [7], and ecological informatics [8].

The basic assumption of PLL is that the ground-truth label must be in the candidate label set [9].
However, this assumption may not be satisfied due to the unprofessional judgment of annotators [10].
Recently, some researchers have relaxed this assumption and focused on a more practical setup called
noisy PLL [11]. In noisy PLL, the ground-truth label may not be in the candidate label set. To deal
with this task, Lv et al. [11] utilized noise-tolerant loss functions to avoid overemphasizing noisy
samples. However, they cannot fully exploit the useful information in noisy data. To this end, Lian et
al. [12] and Wang et al. [13] proposed to detect noisy samples and estimate pseudo labels for these
samples. However, detection errors are unavoidable. These errors will accumulate and continuously
affect model optimization, thereby limiting their performance on noisy PLL.
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Figure 1: The core structure of ALIM. The network receives an input x and produces softmax
prediction probabilities P (x). Different from traditional PLL that fully trusts the candidate set, our
method can deal with noisy samples through a weighting mechanism.

To alleviate this problem, we propose a novel framework for noisy PLL called “Adjusting Label
Importance Mechanism (ALIM)”. Although we may make mistakes in noisy sample detection, it
allows us to leverage the initial candidate set and restart correction. To reduce manual efforts in hyper-
parameter tuning, we propose an adaptive strategy to determine the weighting coefficient for ALIM.
To further improve noise tolerance, we equip ALIM with mixup training [14], a powerful technique
in noisy label learning [15]. We also perform theoretical analysis from the perspective of objective
functions and EM algorithms and prove the feasibility of our method. To verify its effectiveness,
we conduct experiments on multiple benchmark datasets. Experimental results demonstrate that
ALIM outperforms currently advanced approaches, setting new state-of-the-art records. The main
contributions of this paper can be summarized as follows:

• We propose a plug-in framework for noisy PLL with theoretical interpretations. Our method
can deal with noisy samples by trading off the initial candidate set and model outputs.

• We propose an adaptive strategy to adjust the weighting coefficient for ALIM. Furthermore,
we combine our method with the mixup training to improve noise robustness.

• Experimental results on multiple datasets demonstrate the effectiveness of our method.
ALIM is superior to currently advanced approaches on noisy PLL.

2 Methodology

2.1 Problem Definition

Let X be the input space and Y be the label space with c distinct categories. We consider a dataset D
containing N partially labeled samples {(x, S(x))}. Here, S(x) ∈ {0, 1}c is the candidate set for
the sample x ∈ X . We denote the ith element of S(x) as Si(x), which is equal to 1 if the label i is in
the candidate set, and 0 otherwise. Meanwhile, we denote P (x) ∈ Rc, w(x) ∈ Rc, and y(x) ∈ R1

as the prediction probabilities, the pseudo label, and the ground-truth label of the sample x. The
ith elements of P (x) and w(x) are represented as Pi(x) and wi(x), respectively. In this paper, all
product operations between matrices are Hadamard products.

The goal of noisy PLL is to learn a classifier that can minimize the classification risk on D. Unlike
PLL, noisy PLL allows the ground-truth label may not be in the candidate set. For a fair comparison,
we adopt the same data generation procedure as previous works [12]. Specifically, to generate
candidate labels, we first flip incorrect labels into false positive labels with a probability q and
aggregate the flipped ones with the ground-truth label. Then, we assume that each sample has a
probability η of being the noisy sample. For each noisy sample, we further select a label from the
non-candidate set, move it into the candidate set, and move the ground-truth label out of the candidate
set. We denote the probability q as the ambiguity level and the probability η as the noise level.
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2.2 Motivation

First, let us review our own exam experience. When we are unfamiliar with a test, we believe that the
correct answer must be in the candidate set. Even if every option is wrong, we still choose the most
likely answer. But as we become more familiar with the test, we learn to question the correctness of
the candidate set. If we believe every option is wrong, we will consider answers outside the candidate
set. In noisy PLL, this strategy can also be used to handle noisy samples.

2.3 ALIM Framework

Inspired by the above idea, we propose a simple yet effective framework called ALIM. The overall
structure is shown in Figure 1. Specifically, we first predict the softmax probabilities P (x) for each
sample x. In traditional PLL, we fully trust the candidate set and generate the pseudo label as follows:

w(x) = Normalize (S(x)P (x)) , (1)

where Normalize(·) is a normalization function that ensures
∑c

i=1 wi(x) = 1. Different from
traditional PLL, ALIM introduces a coefficient λ to control the reliability of the candidate set:

S̃(x) = S(x) + λ (1− S(x)) , (2)

w(x) = Normalize
(
S̃(x)P (x)

)
. (3)

Here, λ = 0 means that we fully trust the given candidate set S(x); λ = 1 means that we don’t
believe the candidate set but trust our own judgment P (x). According to Eq. 2, the time complexity
of this process is mere O(cN), where c is the number of categories and N is the number of samples.

In this paper, we discuss two choices of normalization functions: Onehot(·) and Scale(·). Specifically,
Onehot(·) sets the maximum value to 1 and others to 0; Scale(·) introduces a scaling factor K > 0
and normalizes the probabilities as follows:

Scale(z) =

{
z
1/K
i∑
j z

1/K
j

}c

i=1

, (4)

where zi is the ith element of z.

2.4 Theoretical Analysis

To verify the feasibility of our method, we conduct theoretical analysis from two perspectives: (1) the
manually-designed objective function; (2) the classic expectation-maximization (EM) algorithm [16].

2.4.1 Interpretation from Objective Functions

Let Pi, Si, and wi be abbreviations for Pi(x), Si(x), and wi(x), respectively. During training, we
should optimize the following objectives:

• Minimize the classification loss on w(x) and P (x).

• w(x) should be small at non-candidate labels.

• Entropy regularization on w(x) to avoid overconfidence of pseudo labels.

• w(x) should satisfy 0 ≤ wi ≤ 1 and
∑c

i=1 wi = 1.

Then, the final objective function is calculated as follows:

max
c∑

i=1

wi logPi +M

(
c∑

i=1

wiSi − 1

)
−K

c∑
i=1

wi logwi

s.t.

c∑
i

wi = 1, wi ≥ 0, (5)
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where M and K are penalty factors. By using Lagrange multipliers, we can observe that the penalty
factor K is different for two normalization functions: K = 0 for Onehot(·) and K > 0 for Scale(·).
The penalty factor M has a strong correlation with the weighting coefficient λ in Eq. 2, i.e., λ = e−M .
Larger M (or smaller λ) means that we have tighter constraints on (

∑c
i=1 wiSi − 1), and therefore

we should trust the given candidate set more. It is identical to the meaning of λ in our ALIM (see
Section 2.3).

2.4.2 Interpretation from EM Perspective

EM aims to maximize the likelihood of the corpus D. Following previous works [5, 17], we first
make a mild assumption:

Assumption 1 In noisy PLL, the ground-truth label may not be in the candidate set S(x). We assume
that each candidate label {i|Si(x) = 1} has an equal probability α(x) of generating S(x) and each
non-candidate label {i|Si(x) = 0} has an equal probability β(x) of generating S(x).

Besides the interpretation from objective functions, we further explain ALIM from the EM perspec-
tivein Appendix B. We prove that the E-step aims to predict the ground-truth label for each sample
and the M-step aims to minimize the classification loss. Meanwhile, ALIM is a simplified version of
the results derived from EM. Specifically, EM uses an instance-dependent λ(x) = β(x)/α(x), while
ALIM uses a global λ. In the future, we will explore the performance of the instance-dependent λ(x)
for noisy PLL. Additionally, EM connects traditional PLL with noisy PLL. In traditional PLL, we
assume that the ground-truth label must be in the candidate set, i.e., β(x) = 0. Then, our noisy PLL
approach ALIM will degenerate to the classic PLL method RC [18].

2.5 Optional Key Components

We further introduce several key components to make our method more effective, including the
adaptively adjusted strategy and the mixup training.

2.5.1 Adaptively Adjusted Strategy

Appropriate λ is important for ALIM. Too small λ makes us fully trust the candidate set, thus easily
over-fitting on noise samples; too large λ makes us ignore the prior information in the candidate set,
thus limiting the classification performance. Therefore, we propose a manually adjusted strategy to
find a proper λ in a predefined parameter space.

To further reduce manual efforts, we also propose an adaptively adjusted strategy. Specifically, we
first estimate the noise level of the dataset. Intuitively, we can randomly select a subset from D,
annotate the ground-truth labels by professional annotators, and estimate the noise level of the dataset.
Alternatively, we can automatically estimate noise rate via the Gaussian mixture model [19, 20] or
cross-validation [21, 22]. The estimated noise level is represented as η. Based on Appendix C, we
prove that the value of Eq. 6 can be viewed as a metric, and the η-quantile of this value can be treated
as the adaptively adjusted λ. {

maxi Si(x)Pi(x)

maxi(1− Si(x))Pi(x)

}
x∈D

. (6)

In Section 3.2, We further present results without noise rate estimation and manually adjust λ as
a hyper-parameter. Through experimental analysis, this approach can also achieve competitive
performance. Therefore, the adaptively adjusted strategy is optional. Its main advantage is to reduce
manual efforts in hyper-parameter tuning and realize a more automatic approach for noisy PLL.

2.5.2 Mixup Training

Since the mixup training is powerful in noisy label learning [14, 15], we further combine this strategy
with ALIM for noisy PLL. Consider a pair of samples xi and xj whose pseudo labels are denoted as
w(xi) and w(xj), respectively. Then, we create a virtual training sample by linear interpolation:

xmix = αxi + (1− α)xj , (7)

wmix = αw(xi) + (1− α)w(xj). (8)

4



Algorithm 1: Pseudo-code of ALIM.
Input: Dataset D with the estimated noise level η, predictive model f , warm-up epoch e0, number of epoch

Emax, weighting coefficient λ, trade-off between losses λmix.
Output: The optimized model f .

1 for e = 1, · · · , e0 do
2 Warm up by training f with Lpll;
3 end
4

5 for e = e0, · · · , Emax do
6 for {xi, S(xi)} ∈ D do
7 Calculate the output of the predictive model f(xi);
8 Obtain the pseudo label w(xi) by Eq. 2∼3;
9 Get the PLL loss Lpll between f(xi) and w(xi);

10 if mixup training then
11 Sample α ∼ Beta(ζ, ζ) and sample xj from D;
12 Create the virtual sample (xmix, wmix) by Eq. 7∼8;
13 Calculate the mixup loss Lmix between f(xmix) and wmix;
14 Get the final loss L = Lpll + λmixLmix;
15 else
16 Get the final loss L = Lpll;
17 end
18 end
19 Optimize f by minimizing L;
20

21 if adaptively adjusted λ then
22 Create an empty list G;
23 for {xi, S(xi)} ∈ D do
24 Calculate the output of the predictive model f(xi);
25 Store the value in Eq. 6 to G;
26 end
27 λ← η−quantile of the list G;
28 end
29 end

α ∼ Beta(ζ, ζ), where ζ is a parameter in the beta distribution. We define the mixup objective Lmix
as the cross-entropy loss on P (xmix) and wmix. During training, we combine the mixup loss Lmix
and the PLL loss Lpll into a joint objective function L = Lpll + λmixLmix, where λmix controls the
trade-off between two losses. The pseudo-code of ALIM is summarized in Algorithm 1.

3 Experiments

3.1 Experimental Setup

Corpus Description In the main experiments, we evaluate the performance on two benchmark
datasets of noisy PLL, CIFAR-10 [23] and CIFAR-100 [23]. We choose the noise level η from
{0.1, 0.2, 0.3}. Since CIFAR-100 has more classes than CIFAR-10, we consider q ∈ {0.1, 0.3, 0.5}
for CIFAR-10 and q ∈ {0.01, 0.03, 0.05} for CIFAR-100. In Section 3.2, we also conduct experi-
ments on fine-grained datasets (CUB-200 [17] and CIFAR-100H [24]) and consider severe noise.

Baselines To verify the effectiveness of our method, we implement the following state-of-the-art
methods as baselines: 1) CC [18]: a classifier-consistent PLL method under the uniform candidate
label generation assumption; 2) RC [18]: a risk-consistent PLL method under the same assumption
as CC; 3) LWC [25]: a PLL method that considers the trade-off between losses on candidate and
non-candidate sets; 4) LWS [25]: a PLL method that combines the weighted loss with the sigmoid
activation function; 5) PiCO [17]: a PLL method using contrastive learning; 6) CRDPLL [26]: a PLL
method that exploits consistency regularization on the candidate set and supervised learning on the
non-candidate set; 7) IRNet [12]: a noisy PLL method that progressively purifies noisy samples; 8)
PiCO+ [13]: a noisy PLL method using a semi-supervised contrastive framework.
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Table 1: Performance of different methods. ♢ denotes the models without mixup training, and ♡
denotes the models with mixup training. By default, we combine ALIM with PiCO for noisy PLL.

CIFAR-10 q = 0.1 q = 0.3 q = 0.5
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

♢CC 79.81±0.22 77.06±0.18 73.87±0.31 74.09±0.60 71.43±0.56 68.08±1.12 69.87±0.94 59.35±0.22 48.93±0.52
♢RC 80.87±0.30 78.22±0.23 75.24±0.17 79.69±0.37 75.69±0.63 71.01±0.54 72.46±1.51 59.72±0.42 49.74±0.70
♢LWC 79.13±0.53 76.15±0.46 74.17±0.48 77.47±0.56 74.02±0.35 69.10±0.59 70.59±1.34 57.42±1.14 48.93±0.37
♢LWS 82.97±0.24 79.46±0.09 74.28±0.79 80.93±0.28 76.07±0.38 69.70±0.72 70.41±2.68 58.26±0.28 39.42±3.09
♢PiCO 90.78±0.24 87.27±0.11 84.96±0.12 89.71±0.18 85.78±0.23 82.25±0.32 88.11±0.29 82.41±0.30 68.75±2.62
♢CRDPLL 93.48±0.17 89.13±0.39 86.19±0.48 92.73±0.19 86.96±0.21 83.40±0.14 91.10±0.07 82.30±0.46 73.78±0.55
♢PiCO+ 93.64±0.19 93.13±0.26 92.18±0.38 92.32±0.08 92.22±0.01 89.95±0.19 91.07±0.02 89.68±0.01 84.08±0.42
♢IRNet 93.44±0.21 92.57±0.25 92.38±0.21 92.81±0.19 92.18±0.18 91.35±0.08 91.51±0.05 90.76±0.10 86.19±0.41
♢ALIM-Scale 94.15±0.14 93.41±0.04 93.28±0.08 93.40±0.03 92.69±0.11 92.01±0.19 92.52±0.12 90.92±0.10 86.51±0.21
♢ALIM-Onehot 94.15±0.15 94.04±0.16 93.77±0.27 93.44±0.16 93.25±0.08 92.42±0.17 92.67±0.12 91.83±0.08 89.80±0.38
♡PiCO+ 94.58±0.02 94.74±0.13 94.43±0.19 94.02±0.03 94.03±0.01 92.94±0.24 93.56±0.08 92.65±0.26 88.21±0.37
♡ALIM-Scale 95.71±0.01 95.50±0.08 95.35±0.13 95.31±0.16 94.77±0.07 94.36±0.03 94.71±0.04 93.82±0.13 90.63±0.10
♡ALIM-Onehot 95.83±0.13 95.86±0.15 95.75±0.19 95.52±0.15 95.41±0.13 94.67±0.21 95.19±0.24 93.89±0.21 92.26±0.29

CIFAR-100 q = 0.01 q = 0.03 q = 0.05
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

♢CC 53.63±0.46 48.84±0.19 45.50±0.28 51.85±0.18 47.48±0.30 43.37±0.42 50.64±0.40 45.87±0.36 40.87±0.47
♢RC 52.73±1.05 48.59±1.04 45.77±0.31 52.15±0.19 48.25±0.38 43.92±0.37 46.62±0.34 45.46±0.21 40.31±0.55
♢LWC 53.16±0.87 48.64±0.33 45.51±0.28 51.69±0.28 47.60±0.44 43.39±0.18 50.55±0.34 45.85±0.28 39.83±0.30
♢LWS 56.05±0.20 50.66±0.59 45.71±0.45 53.59±0.45 48.28±0.44 42.20±0.49 45.46±0.44 39.63±0.80 33.60±0.64
♢PiCO 68.27±0.08 62.24±0.31 58.97±0.09 67.38±0.09 62.01±0.33 58.64±0.28 67.52±0.43 61.52±0.28 58.18±0.65
♢CRDPLL 68.12±0.13 65.32±0.34 62.94±0.28 67.53±0.07 64.29±0.27 61.79±0.11 67.17±0.04 64.11±0.42 61.03±0.43
♢PiCO+ 71.42±0.25 70.22±0.33 66.14±0.32 70.89±0.13 69.03±0.01 64.22±0.23 69.40±0.12 66.67±0.18 62.24±0.38
♢IRNet 71.17±0.14 70.10±0.28 68.77±0.28 71.01±0.43 70.15±0.17 68.18±0.30 70.73±0.09 69.33±0.51 68.09±0.12
♢ALIM-Scale 74.35±0.18 73.36±0.05 72.50±0.13 74.33±0.11 72.60±0.19 71.69±0.39 73.77±0.05 72.39±0.04 71.68±0.14
♢ALIM-Onehot 72.26±0.23 71.98±0.29 71.04±0.31 71.43±0.21 70.79±0.43 70.14±0.25 72.28±0.28 70.60±0.44 70.05±0.43
♡PiCO+ 75.04±0.18 74.31±0.02 71.79±0.17 74.68±0.19 73.65±0.23 69.97±0.01 73.06±0.16 71.37±0.16 67.56±0.17
♡ALIM-Scale 77.37±0.32 76.81±0.05 76.45±0.30 77.60±0.18 76.63±0.19 75.92±0.14 76.86±0.23 76.44±0.12 75.67±0.17
♡ALIM-Onehot 76.52±0.19 76.55±0.24 76.09±0.23 77.27±0.23 76.29±0.41 75.29±0.57 76.87±0.20 75.23±0.42 74.49±0.61

Implementation Details There are mainly three user-specific parameters in ALIM: λ, λmix, and e0.
Among them, λ controls the trade-off between the initial candidate set and model outputs. This paper
proposes two selection strategies for λ, i.e., manually and adaptively adjusted strategies. For the first
one, we treat λ as a hyper-parameter and select it from {0.1, 0.2, 0.3, 0.4, 0.5, 0.7}. For the second
one, we automatically determine λ using the estimated noise level. λmix controls the trade-off between
the PLL loss and the mixup loss, and we set λmix = 1.0 as the default parameter. e0 is the start epoch
of ALIM, and we select it from {20, 40, 80, 100, 140}. Following the standard experimental setup
in PLL [17, 25], we split a clean validation set from the training set to determine hyper-parameters.
Then, we transform the validation set back to its original PLL form and incorporate it into the training
set to accomplish model optimization. To optimize all trainable parameters, we choose the SGD
optimizer with a momentum of 0.9 and set the weight decay to 0.001. We set the initial learning rate
to 0.01 and adjust it using the cosine scheduler. To eliminate the randomness of the results, we run
each experiment three times and report the average result and standard deviation on the test set. All
experiments are implemented with PyTorch [27] and carried out with NVIDIA Tesla V100 GPU.

3.2 Experimental Results and Discussion

Main Results For a fair comparison, we reproduce all baselines using the same data generation
strategy as previous works [12]. In Table 1, we observe that a large portion of improvement is due to
mixup training rather than model innovation. To this end, we compare different approaches under the
same mixup strategy. Experimental results demonstrate that our method succeeds over all baselines
under varying ambiguity levels and noise levels. The main reason lies in two folds. On the one
hand, existing PLL methods are mainly designed for clean samples but ignore the presence of noisy
samples. Our method can deal with noisy samples by trading off the initial candidate set and model
outputs. On the other hand, existing noisy PLL methods generally need to detect noisy samples, but
detection errors are unavoidable. These errors can accumulate and continuously affect the training
process. Differently, ALIM can deal with this problem by taking advantage of the initial candidate
set and restarting correction. These results prove the effectiveness of ALIM in noisy PLL.

Compatibility of ALIM Since ALIM is a plug-in strategy, we integrate it with existing PLL
methods and report results in Table 2. We observe that ALIM always brings performance improvement
under noisy conditions, verifying the effectiveness and compatibility of our method. Meanwhile,
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Table 2: Compatibility of ALIM on different PLL methods.

PLL ALIM
CIFAR-10

q = 0.1 q = 0.3 q = 0.5
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

♢RC × 80.87±0.30 78.22±0.23 75.24±0.17 79.69±0.37 75.69±0.63 71.01±0.54 72.46±1.51 59.72±0.42 49.74±0.70
♢RC

√
88.81±0.17 87.16±0.20 85.53±0.05 86.21±0.17 83.64±0.07 79.83±0.43 77.40±0.31 69.13±0.71 56.75±1.59

♢PiCO × 90.78±0.24 87.27±0.11 84.96±0.12 89.71±0.18 85.78±0.23 82.25±0.32 88.11±0.29 82.41±0.30 68.75±2.62
♢PiCO

√
94.15±0.15 94.04±0.16 93.77±0.27 93.44±0.16 93.25±0.08 92.42±0.17 92.67±0.12 91.83±0.08 89.80±0.38

♢CRDPLL × 93.48±0.17 89.13±0.39 86.19±0.48 92.73±0.19 86.96±0.21 83.40±0.14 91.10±0.07 82.30±0.46 73.78±0.55
♢CRDPLL

√
96.03±0.23 95.01±0.32 93.36±0.10 95.32±0.13 93.27±0.29 91.20±0.06 93.82±0.05 90.20±0.04 84.24±0.28

PLL ALIM
CIFAR-100

q = 0.01 q = 0.03 q = 0.05
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

♢RC × 52.73±1.05 48.59±1.04 45.77±0.31 52.15±0.19 48.25±0.38 43.92±0.37 46.62±0.34 45.46±0.21 40.31±0.55
♢RC

√
61.46±0.26 60.10±0.23 55.67±0.28 57.43±0.20 52.98±0.27 48.74±0.37 56.40±0.60 51.91±0.12 46.87±0.74

♢PiCO × 68.27±0.08 62.24±0.31 58.97±0.09 67.38±0.09 62.01±0.33 58.64±0.28 67.52±0.43 61.52±0.28 58.18±0.65
♢PiCO

√
72.26±0.23 71.98±0.29 71.04±0.31 71.43±0.21 70.79±0.43 70.14±0.25 72.28±0.28 70.60±0.44 70.05±0.43

♢CRDPLL × 68.12±0.13 65.32±0.34 62.94±0.28 67.53±0.07 64.29±0.27 61.79±0.11 67.17±0.04 64.11±0.42 61.03±0.43
♢CRDPLL

√
69.98±0.30 68.58±0.16 66.90±0.16 69.60±0.20 67.67±0.22 66.15±0.12 68.75±0.06 67.07±0.29 64.69±0.23

Table 3: Performance on fine-grained datasets.
Method CUB-200 CIFAR-100H

(q = 0.05, η = 0.2) (q = 0.5, η = 0.2)
♢CC 26.98±1.16 34.57±0.99
♢RC 44.74±2.47 48.03±0.47
♢LWS 18.65±2.15 22.18±6.12
♢GCE 5.13±38.65 33.21±2.03
♢MSE 20.92±1.20 35.20±1.03
♢CRDPLL 44.19±0.72 53.72±0.21
♢PiCO 53.05±2.03 59.81±0.25
♡PiCO+ 60.65±0.79 68.31±0.47
♡ALIM-Scale 68.38±0.47 73.42±0.18
♡ALIM-Onehot 63.91±0.35 72.36±0.20

Table 4: Performance with severe noise.
Method

CIFAR-100 CIFAR-100
(q = 0.05, η = 0.4) (q = 0.05, η = 0.5)

♢RC 33.64±0.82 26.91±0.83
♢PiCO 44.17±0.08 35.51±1.14
♢CRDPLL 57.10±0.24 52.10±0.36
♢ALIM-Scale 70.37±0.06 64.74±0.16
♢ALIM-Onehot 68.82±0.37 63.39±0.82
♡PiCO+ 66.41±0.58 60.50±0.99
♡ALIM-Scale 74.98±0.16 72.26±0.25
♡ALIM-Onehot 71.76±0.56 69.59±0.62

integrating ALIM with PiCO generally achieves better performance under severe noise (η = 0.3). In
noisy label learning, self-training suffers from accumulated errors caused by sample-selection bias
[28]. To address this issue, researchers propose co-training [29], which contains multiple branches
and cross-updates these branches. Among all PLL methods, PiCO is a natural co-training network
with two branches: one for classification and one for clustering [17]. The output of the classification
branch guides the model to update the clustering prototypes; the output of the clustering branch affects
the update of the pseudo label for classification. These results verify the effectiveness of co-training
under noisy conditions. Therefore, we combine ALIM with PiCO in the following experiments.

Fine-Grained Classification Performance Considering that similar categories are more likely to be
added to the candidate set, we conduct experiments on more challenging fine-grained datasets, CIFAR-
100H [17] and CUB-200 [24]. Different from previous works [12] that generate candidate labels
from the entire label space, this section considers the case of generating candidate labels belonging to
the same superclass. Experimental results in Table 3 demonstrate that ALIM outperforms existing
methods on fine-grained classification tasks, verifying the effectiveness of our method.

Robustness with Severe Noise To demonstrate noise robustness, we conduct experiments under
severe noise conditions. In this section, we compare ALIM with the most competitive baselines (RC,
PiCO, CRDPLL, and PiCO+) under η ∈ {0.4, 0.5}. Experimental results in Table 4 show that ALIM
succeeds over all baselines under severe noise. Taking the results on η = 0.5 as an example, our
method outperforms the currently advanced approaches by 11.76%. These results demonstrate that
our ALIM is more robust to noise than existing PLL and noisy PLL methods.

Discussion on Normalization Functions In this section, we compare the performance of two
normalization functions. In Table 1, we observe that Onehot(·) performs slightly better on CIFAR-10
and Scale(·) performs slightly better on CIFAR-100. In Table 3∼4, Scale(·) generally achieves better
performance in fine-grained datasets and severe noise conditions. The main difference between these
normalization functions is that Onehot(·) compresses estimated probabilities into a specific class,
while Scale(·) preserves prediction information for all categories. For simple datasets like CIFAR-10,
the class with the highest probability is likely to be correct. Therefore, the compression operation can
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(a) 100 epoch (b) 200 epoch (c) 400 epoch (d) 800 epoch

Figure 2: Distribution of the value in Eq. 6 for clean and noise subsets with increasing training
iterations. We conduct experiments on CIFAR-10 (q = 0.3, η = 0.3) with e0 = 80.

(a) CIFAR-10 (w/o mixup) (b) CIFAR-10 (w/ mixup) (c) CIFAR-100 (w/o mixup) (d) CIFAR-100 (w/ mixup)

Figure 3: Classification performance of manually adjusted λ and adaptively adjusted λ. We conduct
experiments on CIFAR-10 (q = 0.3, η = 0.3) and CIFAR-100 (q = 0.05, η = 0.3). We mark the
results of the adaptively adjusted strategy with red lines.

(a) λmix on CIFAR-10 (e0 = 80) (b) e0 on CIFAR-10 (λmix = 1) (c) λmix on CIFAR-100 (e0 = 80) (d) e0 on CIFAR-100 (λmix = 1)

Figure 4: Parameter sensitivity analysis on CIFAR-10 (q = 0.3) and CIFAR-100 (q = 0.05) with
mixup training. The noise level of these datasets is fixed to η = 0.3.

reduce the negative impact of other categories and achieve better performance on noisy PLL. For
challenging datasets, the class with the highest predicted value has a low probability of being correct.
Therefore, this compression operation may lead to severe information loss. More importantly, ALIM
consistently outperforms existing methods regardless of the normalization function. Therefore, the
main improvement comes from our ALIM rather than normalization functions.

Rationality of Adaptively Adjusted Strategy In this section, we further explain the rationality
of our adaptively adjusted strategy. Figure 2 visualizes the distribution of the value in Eq. 6 for
clean and noise subsets with increasing training iterations. We observe that this value is an effective
indicator for distinguishing clean samples from noisy samples. At the same time, our adaptively
adjusted λ serves as a suitable boundary for clean and noisy subsets.

Role of Adaptively Adjusted Strategy It is important to select a proper λ in ALIM. In this paper,
we propose two selection strategies: adaptively and manually adjusted strategies. Figure 3 presents
the classification performance of these strategies. Experimental results show that different strategies
can achieve similar performance. Therefore, the main advantage of this adaptively adjusted strategy
is to reduce manual efforts in hyper-parameter tuning. The performance improvement still comes
from ALIM, which exploits a coefficient to control the reliability of the candidate set.
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Parameter Sensitivity Analysis In this section, we perform parameter sensitivity analysis on two
key hyper-parameters: the warm-up epoch e0, and the trade-off between the PLL loss and the mixup
loss λmix. In Figure 4, we observe that choosing an appropriate λmix is important for ALIM, and
λmix = 1.0 generally achieves competitive results. Meanwhile, with the gradual increase of e0,
the test accuracy first increases and then decreases. This phenomenon indicates that ALIM needs
warm-up training. But too large e0 can also cause the model to overfit noise samples.

4 Related Work

In PLL, the ground-truth label is concealed in the candidate set. To deal with this task, the core is
to disambiguate the candidate labels. In this section, we first introduce two typical disambiguation
strategies, i.e., average-based methods and identification-based methods. Then, we briefly review
some recent works on noisy PLL.

Average-based PLL The most intuitive solution is the average-based approach, which assumes
that each candidate label has an equal probability of being the ground-truth label. For example,
Hüllermeier et al. [30] utilized k-nearest neighbors for label disambiguation. For each sample, they
treated all candidate labels of its neighborhood equally and predicted the ground-truth label through
the majority vote. Differently, Cour et al. [31] maximized the average output of candidate labels and
non-candidate labels in parametric models. However, these average-based methods can be severely
affected by false positive labels [9].

Identification-based PLL To address the shortcomings of the above methods, researchers have
focused on identification-based methods. Different from average-based methods that treat all candi-
date labels equally, identification-based methods treat the ground-truth label as a latent variable and
maximize its estimated probability by maximum margin [32] or maximum likelihood [5] criteria.

Recently, deep learning has been applied to identification-based methods and achieved promising
results. For example, Lv et al. [33] proposed a self-training strategy to disambiguate candidate labels.
Feng et al. [18] introduced classifier- and risk-consistent algorithms under the uniform candidate
label generation assumption. Wen et al. [25] relaxed this assumption and proposed a family of loss
functions for label disambiguation. To learn more discriminative representations, Wang et al. [17]
exploited contrastive learning to deal with partially labeled samples. More recently, Wu et al. [26]
used consistency regularization on the candidate set and supervised learning on the non-candidate
set, achieving promising results under varying ambiguity levels. The above methods rely on a basic
assumption that the ground-truth label must be in the candidate set. But this assumption may not be
satisfied due to the unprofessional judgment of annotators.

Noisy PLL Recently, noisy PLL has attracted increasing attention from researchers due to its more
practical setup. Its core challenge is how to deal with noisy samples. For example, Lv et al. [11]
utilized noise-tolerant loss functions to avoid overemphasizing noisy samples during training. Lian et
al. [12] proposed an iterative refinement network to purify noisy samples and reduce the noise level
of the dataset. Wang et al. [13] detected clean samples through a distance-based sample selection
mechanism and dealt with noisy samples via a semi-supervised contrastive framework. These noisy
PLL methods generally need to detect noisy samples, but detection errors are unavoidable. These
errors can accumulate and continuously affect model training. To reduce the negative impact of
prediction errors, we propose a novel framework for noisy PLL. Experimental results on multiple
datasets demonstrate the effectiveness of our method under noisy conditions.

5 Conclusion

This paper introduces a novel framework for noisy PLL called ALIM. To deal with noisy samples,
it exploits the weighting mechanism to adjust the reliability of the initial candidate set and model
outputs. To verify its effectiveness, we conduct experiments on multiple benchmark datasets under
varying ambiguity levels and noise levels. Experimental results demonstrate that our ALIM achieves
state-of-the-art classification performance on noisy PLL, especially in severe noise conditions and
fine-grained datasets. Meanwhile, ALIM is a low-computation plug-in strategy that can be easily
integrated with existing PLL frameworks. Furthermore, we interpret the rationality and effectiveness
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of the adaptively adjusted strategy. We also conduct parameter sensitivity analysis and reveal the
impact of different hyper-parameters. It is worth noting that this paper leverages a global λ to measure
the reliability of the candidate set. In the future, we will explore the instance-dependent λ(x) during
training. At the same time, we will investigate the performance in more experimental settings, such
as class-imbalanced conditions.
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A Interpretation from Objective Functions

In this section, we provide proofs of the Onehot(·) normalization function and the Scale(·) normal-
ization function from the perspective of objective functions.

A.1 Proof for Onehot Normalization

For K = 0, we choose the following objective function during training:

max

c∑
i=1

wi logPi +M

(
c∑

i=1

wiSi − 1

)

s.t.

c∑
i

wi = 1, wi ≥ 0. (9)

Introduce Lagrange multipliers δi, i ∈ [1, c] and γ into Eq. 9, we have:

L =

c∑
i=1

wi logPi +M

(
c∑

i=1

wiSi − 1

)
+ γ

(
1−

c∑
i=1

wi

)
+

c∑
i=1

δiwi. (10)

Combined with the Karush-Kuhn-Tucker (KKT) conditions, the optimal point should satisfy:

logPi +MSi − γ + δi = 0, (11)

c∑
i=1

wi = 1, δi ≥ 0, wi ≥ 0, δiwi = 0. (12)

Since Si ∈ {0, 1}, we have MSi = log(eMSi + (1− Si)). The equivalent equation of Eq. 11 is:

δi = γ − log(eMSi + (1− Si))Pi. (13)

Combined with δi ≥ 0 in Eq. 12, we have:

γ ≥ max
i

(
log(eMSi + (1− Si))Pi

)
. (14)

δi > 0 is true if γ > maxi
(
log(eMSi + (1− Si))Pi

)
. According to δiwi = 0, we always have

wi = 0, which conflicts with
∑c

i=1 wi = 1. Therefore, we get:

γ = max
i

(
log(eMSi + (1− Si))Pi

)
. (15)

We assume that only one i0 ∈ [1, c] reaches the maximum γ, then we have wi = 0, i ∈ [1, c]/i0.
Combined with

∑c
i=1 wi = 1, we get wi0 = 1. Therefore, w(x) should satisfy:

w(x) = Onehot
(
log(eMS(x) + (1− S(x)))P (x)

)
. (16)

We mark λ = e−M and convert Eq. 16 to its equivalent version:

w(x) = Onehot ((S(x) + λ(1− S(x))P (x)) . (17)

A.2 Proof for Scale Normalization

For K > 0, logwi ensures that wi must be positive. Therefore, the constraint wi ≥ 0 can be excluded.
Then, the objective function can be converted to:

max

c∑
i=1

wi logPi +M

(
c∑

i=1

wiSi − 1

)
−K

c∑
i=1

wi logwi

s.t.

c∑
i

wi = 1. (18)

13



Introduce the Lagrange multiplier γ in Eq. 18, we have:

L =

c∑
i=1

wi logPi +M

(
c∑

i=1

wiSi − 1

)
−K

c∑
i=1

wi logwi + γ

(
1−

c∑
i

wi

)
. (19)

Since the optimal point should satisfy ∇wL = 0, we have:

logPi +MSi −K (1 + logwi)− γ = 0. (20)

Since Si ∈ {0, 1}, we have MSi = log(eMSi + (1− Si)). The equivalent equation of Eq. 20 is:

log(eMSi + (1− Si))Pi − (K + γ)−K logwi = 0, (21)

wK
i =

(
eMSi + (1− Si)

)
Pi

eK+γ
. (22)

We mark λ = e−M . Then, we have:

wi =
((Si + λ(1− Si))Pi)

1/K

e1+(γ−M)/K
. (23)

Since
∑c

i wi = 1, we have:

c∑
i=1

((Si + λ(1− Si))Pi)
1/K

e1+(γ−M)/K
= 1, (24)

e1+(γ−M)/K =

c∑
i=1

((Si + λ (1− Si))Pi)
1/K

. (25)

Combine Eq. 23 and Eq. 25 and we have:

wi =
((Si + λ(1− Si))Pi)

1/K∑c
i=1 ((Si + λ(1− Si))Pi)

1/K
. (26)

Combined with the definition of Scale(·) in Eq. 4, this equation can be converted to:

w(x) = Scale ((S(x) + λ(1− S(x)))P (x)) . (27)

B EM Perspective of ALIM

EM aims to maximize the likelihood of the dataset D:

max
θ

∑
x∈D

logP (x, S(x); θ) = max
θ

∑
x∈D

log

c∑
i=1

P (x, S(x), y(x) = i; θ)

= max
θ

∑
x∈D

log

c∑
i=1

wi(x)
P (x, S(x), y(x) = i; θ)

wi(x)

≥ max
θ

∑
x∈D

c∑
i=1

wi(x) log
P (x, S(x), y(x) = i; θ)

wi(x)
, (28)

where θ is the trainable parameter. The last step of Eq. 28 utilizes Jensen’s inequality. Since the
log(·) function is strictly concave, the equal sign takes when P (x, S(x), y(x) = i; θ)/wi(x) is some
constant C, i.e.,

wi(x) =
1

C
P (x, S(x), y(x) = i; θ). (29)
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Considering that
∑c

i=1 wi(x) = 1, we can further get:

C =

c∑
i=1

P (x, S(x), y(x) = i; θ). (30)

Then, we have:

wi(x) =
P (x, S(x), y(x) = i; θ)∑c
i=1 P (x, S(x), y(x) = i; θ)

=
P (x, S(x), y(x) = i; θ)

P (x, S(x); θ)
= P (y(x) = i|x, S(x); θ).

(31)

In the EM algorithm [16], the E-step aims to calculate wi(x) and the M-step aims to maximize the
lower bound of Eq. 28:

argmax
θ

∑
x∈D

c∑
i=1

wi(x) log
P (x, S(x), y(x) = i; θ)

wi(x)

= argmax
θ

∑
x∈D

c∑
i=1

wi(x) logP (x, S(x), y(x) = i; θ). (32)

E-Step. In this step, we aim to predict the ground-truth label for each sample:

wi(x) = P (y(x) = i|x, S(x); θ) = P (S(x)|y(x) = i, x; θ)P (y(x) = i|x; θ)
P (S(x)|x; θ)

=
P (S(x)|y(x) = i, x; θ)P (y(x) = i|x; θ)∑c
i=1 P (S(x)|y(x) = i, x; θ)P (y(x) = i|x; θ)

. (33)

According to Assumption 1, we have:

P (S(x)|y(x), x) =
{
α(x), Sy(x)(x) = 1

β(x), Sy(x)(x) = 0.
(34)

It can be converted to:

P (S(x)|y(x), x) = α(x)Sy(x)(x) + β(x)
(
1− Sy(x)(x)

)
. (35)

Then, we get the equivalent equation of Eq. 33:

wi(x) =
(α(x)Si(x) + β(x)(1− Si(x)))P (y(x) = i|x; θ)∑c
i=1 (α(x)Si(x) + β(x)(1− Si(x)))P (y(x) = i|x; θ)

. (36)

We mark λ(x) = β(x)/α(x) and Pi(x) = P (y(x) = i|x; θ). Then, we get:

wi(x) =
(Si(x) + λ(x)(1− Si(x)))Pi(x)∑c
i=1 (Si(x) + λ(x)(1− Si(x)))Pi(x)

. (37)

It connects traditional PLL and noisy PLL. In traditional PLL, we assume that the ground-truth label
must be in the candidate set, i.e., β(x) = 0. Since λ(x) = β(x)/α(x) = 0, Eq. 37 degenerates to:

wi(x) =
Si(x)Pi(x)∑c
i=1 Si(x)Pi(x)

, (38)

which is identical to the classic PLL method, RC [18].

M-Step. The objective function of this step is:

argmax
θ

∑
x∈D

c∑
i=1

wi(x) logP (x, S(x), y(x) = i; θ)

=argmax
θ

∑
x∈D

c∑
i=1

wi(x) logP (x; θ)P (y(x) = i|x; θ)P (S(x)|y(x) = i, x; θ). (39)
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Considering that P (x; θ) = P (x) and P (S(x)|y(x) = i, x; θ) = P (S(x)|y(x) = i, x), the equiva-
lent version of Eq. 39 is:

argmax
θ

∑
x∈D

c∑
i=1

wi(x) logP (y(x) = i|x; θ). (40)

Therefore, the essence of the M-step is to minimize the classification loss.

C Adaptively Adjusted λ

Since η controls the noise level of the dataset, we have:

P (Sy(x)(x) = 0) = η. (41)

After the warm-up training, we assume that the predicted label generated by ALIM ŷ(x) =
argmax1≤i≤c w(x) is accurate, i.e., ŷ(x) = y(x). Then we have:

P (Sŷ(x)(x) = 0) = η. (42)

To estimate the value of λ, we first study the equivalent meaning of Sŷ(x)(x) = 0:

max
Si(x)=0

(Si(x) + λ (1− Si(x)))Pi(x) ≥ max
Si(x)=1

(Si(x) + λ (1− Si(x)))Pi(x). (43)

We simplify the left and right sides of Eq.43 as follows:

max
Si(x)=0

(Si(x) + λ(1− Si(x)))Pi(x)

= max
Si(x)=0

λ(1− Si(x))Pi(x)

=max
i

λ(1− Si(x))Pi(x), (44)

max
Si(x)=1

(Si(x) + λ(1− Si(x)))Pi(x)

= max
Si(x)=1

Si(x)Pi(x)

=max
i

Si(x)Pi(x). (45)

Then, we have:

max
i

λ(1− Si(x))Pi(x) ≥ max
i

Si(x)Pi(x), (46)

λ ≥ maxi Si(x)Pi(x)

maxi(1− Si(x))Pi(x)
. (47)

Therefore, P (Sŷ(x)(x) = 0) = η can be converted to:

P

(
λ ≥ maxi Si(x)Pi(x)

maxi (1− Si(x))Pi(x)

)
= η. (48)

It means that λ is the η-quantile of{
maxi Si(x)Pi(x)

maxi(1− Si(x))Pi(x)

}
x∈D

. (49)
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D Effect of Scaling Factor

Larger K produces smoother pseudo labels. To investigate its impact, we perform a parameter
sensitivity analysis in Table 5. We observe that a suitable K is between 0 and 1. Too large K will
produce over-smoothed pseudo labels and leads to performance degradation. In this paper, we choose
K = 1 as the default parameter for the Scale(·) normalization function.

Table 5: Parameter sensitivity analysis on the scaling factor.

K
CIFAR-10 CIFAR-100

(q = 0.3, η = 0.3) (q = 0.05, η = 0.3)
0.1 94.87±0.08 75.29±0.44
0.2 94.72±0.18 75.60±0.41
0.5 94.69±0.15 75.47±0.03
1.0 94.36±0.03 75.67±0.17
1.5 93.04±0.65 72.82±0.23
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