
Glossary of Notation and Symbols

The next list describes several symbols that will be later used within the body of the document

{{·, ·}} (Irreversible) double bracket on functions with generator L2

[·, ·] Degenerate (irreversible) metric bracket on functions with generator M| = M

{·, ·} Poisson (reversible) bracket on functions with generator L| = �L

N (i),N (i) Neighbors of node i 2 V , neighbors of node i 2 V including i

[S] Indicator function of the statement S

�f,rf Adjoint of df with respect to h·, ·i, adjoint of df with respect to (·, ·)

�k Hodge Laplacian dkd⇤k + d⇤kdk

�ij Kronecker delta

ḟ Derivative of f with respect to time

(·, ·)k Learnable metric inner product on k-cliques with matrix representation Ak

h·, ·ik Euclidean `2 inner product on k-cliques

G,V, E Oriented graph, set of nodes, set of edges

Gk,⌦k Set of k-cliques, vector space of real-valued functions on k-cliques

d, dk Exterior derivative operator on functions, exterior derivative operator on k-cliques

d|k, d
⇤
k Adjoint of dk with respect to h·, ·ik, adjoint of dk with respect to (·, ·)k

A Mathematical foundations

This Appendix provides the following: (1) an introduction to the ideas of graph exterior calculus,
A.1, and bracket-based dynamical systems, A.2, necessary for understanding the results in the body,
(2) additional explanation regarding adjoints with respect to generic inner products and associated
computations, A.3, (3) a mechanism for higher-order attention expressed in terms of learnable inner
products, A.4, (4) a discussion of GATs in the context of exterior calculus, A.5, and (5) proofs which
are deferred from Section 4, A.6.

A.1 Graph exterior calculus

Here some basic notions from the graph exterior calculus are recalled. More details can be found in,
e.g., [11, 51, 64].
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Figure 3: A toy graph with six 0-cliques (nodes), six 1-cliques (edges), and one 2-clique.

As mentioned in Section 3, an oriented graph G = {V, E} carries sets of k-cliques, denoted Gk, which
are collections of ordered subgraphs generated by (k + 1) nodes. For example, the graph in Figure 3
contains six 0-cliques (nodes), six 1-cliques (edges), and one 2-clique. A notion of combinatorial
derivative is then given by the signed incidence matrices dk : ⌦k ! ⌦k+1, operating on the space
⌦k of differentiable functions on k-cliques, whose entries (dk)ij are 1 or -1 if the jth k-clique is
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incident on the ith (k + 1)-clique, and zero otherwise. For the example in Figure 3, these are:

d0 =

0

BBBBB@

�1 1 0 0 0 0
0 �1 1 0 0 0
0 �1 0 1 0 0
0 0 0 �1 1 0
0 1 0 0 �1 0
0 0 0 0 �1 1

1

CCCCCA
, d1 = (0 0 1 1 1 0) .

Remark A.1. While the one-hop neighborhood of node i in G, denoted N (i), does not include node
i itself, many machine learning algorithms employ the extended neighborhood N (i) = N (i) [ {i}.
Since this is equivalent to considering the one-hop neighborhood of node i in the self-looped graph
G, this modification does not change the analysis of functions on graphs.

It can be shown that the action of these matrices can be conveniently expressed in terms of totally
antisymmetric functions f 2 ⌦k, via the expression

(dkf) (i0, i1, ..., ik+1) =
k+1X

j=0

(�1)jf
⇣
i0, ..., bij , ..., ik+1

⌘
,

where (i0, ..., ik+1) denotes a (k + 1)-clique of vertices v 2 V . As convenient shorthand, we often
write subscripts, e.g., (dkf)i0i1...ik+1

, instead of explicit function arguments. Using [S] to denote the
indicator function of the statement S, it is straightforward to check that d � d = 0,

(dkdk�1f)i0,...,ik+1
=

k+1X

j=0

(�1)j (dk�1f)i0,...,bij ,...,ik+1

=
k+1X

j=0

k+1X

l=0

[l < j] (�1)j+l fi0...bil...bij ...ik+1

+
k+1X

j=0

k+1X

l=0

[l > j] (�1)j+l�1 fi0...bij ...bil...ik+1

=
X

l<j

(�1)j+l fi0...bil...bij ...ik+1

�

X

l<j

(�1)j+l fi0...bil...bij ...ik+1
= 0,

since (�1)j+l�1 = (�1)�1(�1)j+l = (�1)(�1)j+l and the final sum follows from swapping the
labels j, l. This shows that the k-cliques on G form a de Rham complex [53]: a collection of function
spaces ⌦k equipped with mappings dk satisfying Im dk�1 ⇢ Ker dk as shown in Figure 4. When

⌦0 ⌦1 ⌦2 · · · ⌦K

d0 d1 d2 dK�1

Figure 4: Illustration of the de Rham complex on G induced by the combinatorial derivatives, where
K > 0 is the maximal clique degree.

K = 3, this is precisely the graph calculus analogue of the de Rham complex on R3 formed by the
Sobolev spaces H1, H(curl), H(div), L2 which satisfies div � curl = curl � grad = 0.

While the construction of the graph derivatives and their associated de Rham complex is purely
topological, building elliptic differential operators such as the Laplacian relies on a dual de Rham
complex, which is specified by an inner product on ⌦k. In the case of `2, this leads to dual derivatives
which are the matrix transposes of the dk having the following explicit expression.
Proposition A.1. The dual derivatives d|k : ⌦k+1 ! ⌦k adjoint to dk through the `2 inner product
are given by

(d|kf) (i0, i1, ..., ik) =
1

k + 2

X

ik+1

k+1X

j=0

f (i0, ..., [ij , ..., ik+1]) ,

where [ij , ..., ik+1] = ik+1, ij , ..., ik indicates a cyclic permutation forward by one index.
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Proof. This is a direct calculation using the representation of dk in terms of antisymmetric functions.
More precisely, let an empty sum ⌃ denote summation over all unspecified indices. Then, for any
g 2 ⌦k,

hdkf, gi =
X

i0...ik+12Gk+1

(dkf)i0...ik+1
gi0...,ik+1

=
1

(k + 2)!

X
0

@
k+1X

j=0

(�1)jfi0...bij ...ik+1

1

A gi0...ik+1

=
1

(k + 2)!

X
fi0...ik

0

@
X

ik+1

k+1X

j=0

(�1)jgi0...[ij ...ik+1]

1

A

=
1

k + 2

X

i0i1...ik2Gk

fi0...ik

0

@
X

ik+1

k+1X

j=0

(�1)jgi0...[ij ...ik+1]

1

A

=
X

i0i1...ik2Gk

fi0...ik (d
|
kg)i0...ik = hf, d|kgi ,

which establishes the result.

Proposition A.1 is perhaps best illustrated with a concrete example. Consider the graph gradient,
defined for edge ↵ = (i, j) as (d0f)↵ = (d0f)ij = fj � fi. Notice that this object is antisymmetric
with respect to edge orientation, and measures the outflow of information from source to target nodes.
From this, it is easy to compute the `2-adjoint of d0, known as the graph divergence, via

hd0f, gi =
X

↵=(i,j)

(fj � fi) gij =
X

i

X

(j>i)2N (i)

gijfj � gijfi

=
1

2

X

i

X

j2N (i)

fi (gji � gij) = hf, d|0gi ,

where we have re-indexed under the double sum, used that i 2 N (j) if and only if j 2 N (i), and
used that there are no self-edges in E . Therefore, it follows that the graph divergence at node i is
given by

(d|0g)i =
X

↵3i

g�↵ � g↵ =
1

2

X

j2N (i)

gji � gij ,

which reduces to the common form (d|0g)i = �
P

j gij if and only if the edge feature gij is
antisymmetric.
Remark A.2. When the inner product on edges E is not L2, but defined in terms of a nonnegative,
orientation-invariant, and (edge-wise) diagonal weight matrix W = (wij), a similar computation
shows that the divergence becomes

(d⇤0f)i =
1

2

X

j2N (i)

wij (fji � fij) .

The more general case of arbitrary inner products on V, E is discussed in section A.3.

The differential operators d|k induce a dual de Rham complex since d|k�1d
|
k = (dkdk�1)

| = 0, which
enables both the construction of Laplace operators on k-cliques, �k = d|kdk + dk�1d

|
k�1, as well as

the celebrated Hodge decomposition theorem, stated below. For a proof, see, e.g., [11, Theorem 3.3].
Theorem A.3. (Hodge Decomposition Theorem) The de Rham complexes formed by dk, d

|
k induce

the following direct sum decomposition of the function space ⌦k,
⌦k = Im dk�1 �Ker�k � Im d|k.

In the case where the dual derivatives d⇤k are adjoint with respect to a learnable inner product which
does not depend on graph features, the conclusion of Theorem A.3 continues to hold, leading to an
interesting well-posedness result proved in [11] involving nonlinear perturbations of a Hodge-Laplace
problem in mixed form.
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Theorem A.4. ([11, Theorem 3.6]) Suppose fk 2 ⌦k, and g (x; ⇠) is a neural network with parame-
ters ⇠ which is Lipschitz continuous and satisfies g(0) = 0. Then, the problem

wk�1 = d⇤k�1uk + ✏g
�
d⇤k�1uk; ⇠

�
,

fk = dk�1wk�1 + d⇤kdkuk,

has a unique solution on ⌦k/Ker�k.

This result shows that initial-value problems involving the Hodge-Laplacian are stable under nonlinear
perturbations. Moreover, when �0 is the Hodge Laplacian on nodes, there is a useful connection
between �0 and the degree and adjacency matrices of the graph G. Recall that the degree matrix
D = (dij) is diagonal with entries dii =

P
j2N (i) 1, while the adjacency matrix A = (aij) satisfies

aij = 1 when j 2 N (i) and aij = 0 otherwise.
Proposition A.2. The combinatorial Laplacian on V , denoted �0 = d|0d0, satisfies �0 = D�A.

Proof. Notice that

(d|0d0)ij =
X

↵2E
(d0)↵i (d0)↵j = [i = j]

X

↵2E
((d0)↵i)

2 + [i 6= j]
X

↵=(i,j)

(d0)↵i (d0)↵j

= [i = j] dii � [i 6= j] aij = dij � aij = D�A,

where we used that D is diagonal, A is diagonal-free, and (d0)↵i (d0)↵j = �1 whenever ↵ = (i, j)
is an edge in E , since one of (d0)↵i , (d0)↵j is 1 and the other is -1.

A.2 Bracket-based dynamical systems

Here we mention some additional facts regarding bracket-based dynamical systems. More information
can be found in, e.g., [50, 65, 66, 67].

As mentioned before, the goal of bracket formalisms is to extend the Hamiltonian formalism to
systems with dissipation. To understand where this originates, consider an action functional A(q) =R b
a L (q, q̇) dt on the space of curves q(t), defined in terms of a Lagrangian L on the tangent bundle to

some Riemannian manifold. Using Lq, Lq̇ to denote partial derivatives with respect to the subscripted
variable, it is straightforward to show that, for any compactly supported variation �q of q, we have

dA(q)�q =

Z b

a
dL (q, q̇) �q =

Z b

a
Lq�q + Lq̇�q̇ =

Z b

a
(Lq � @tLq̇) �q,

where the final equality follows from integration-by-parts and the fact that variational and temporal
derivatives commute in this setting. It follows that A is stationary (i.e., dA = 0) for all variations
only when @tLq̇ = Lq. These are the classical Euler-Lagrange equations which are (under some
regularity conditions) transformed to Hamiltonian form via a Legendre transformation,

H(q, p) = sup
q̇

(hp, q̇i � L(q, q̇)) ,

which defines the Hamiltonian functional H on phase space, and yields the conjugate momentum
vector p = Lq̇. Substituting L = hp, q̇i �H into the previously derived Euler-Lagrange equations
leads immediately to Hamilton’s equations for the state x = (q p)

|,

ẋ =

✓
q̇
ṗ

◆
=

✓
0 1
�1 0

◆✓
Hq

Hp

◆
= JrH,

which are an equivalent description of the system in question in terms of the anti-involution J and the
functional gradient rH.

An advantage of the Hamiltonian description is its compact bracket-based formulation, ẋ = JrH =
{x,H}, which requires only the specification of an antisymmetric Poisson bracket {·, ·} and a
Hamiltonian functional H. Besides admitting a direct generalization to more complex systems such
as Korteweg-de Vries or incompressible Euler, where the involved bracket is state-dependent, this
formulation makes the energy conservation property of the system obvious. In particular, it follows
immediately from the antisymmetry of {·, ·} that

Ḣ = hẋ,rHi = {H,H} = 0,
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while it is more difficult to see immediately that the Euler-Lagrange system obeys this same property.
The utility and ease-of-use of bracket formulations is what inspired their extension to other systems
of interest which do not conserve energy. On the opposite end of this spectrum are the generalized
gradient flows, which can be written in terms of a bracket which is purely dissipative. An example
of this is heat flow q̇ = �q := � [q,D], which is the L2-gradient flow of Dirichlet energy D(q) =

(1/2)
R b
a |q0|2 dt (c.f. Appendix A.3). In this case, the functional gradient rD = �@tt is the negative

of the usual Laplace operator, so that the positive-definite bracket [·, ·] is generated by the identity
operator M = id. It is interesting to note that the same system could be expressed using the usual
kinetic energy E(q) = (1/2)

R b
a |q|2 dt instead, provided that the corresponding bracket is generated

by M = ��. This is a good illustration of the flexibility afforded by bracket-based dynamical
systems.

Since physical systems are not always purely reversible or irreversible, other useful bracket formalisms
have been introduced to capture dynamics which are a mix of these two. The double bracket
ẋ = {x, E}+{{x, E}} = LrE+L2

rE is a nice extension of the Hamiltonian bracket particularly
because it is Casimir preserving, i.e., those quantities which annihilate the Poisson bracket {·, ·}
also annihilate the double bracket. This allows for the incorporation of dissipative phenomena into
idealized Hamiltonian systems without affecting desirable properties such as mass conservation, and
has been used to model, e.g., the Landau-Lifschitz dissipative mechanism, as well as a mechanism
for fluids where energy decays but entrophy is preserved (see [65] for additional discussion). A
complementary but alternative point of view is taken by the metriplectic bracket formalism, which
requires that any dissipation generated by the system is accounted for within the system itself
through the generation of entropy. In the metriplectic formalism, the equations of motion are
ẋ = {x, E}+ [x, S] = LrE +MrS, along with important and nontrivial compatibility conditions
LrS = MrE = 0, also called degeneracy conditions, which ensure that the reversible and
irreversible mechanisms do not cross-contaminate. As shown in the body of the paper, this guarantees
that metriplectic systems obey a form of the first and second thermodynamical laws. Practically,
the degeneracy conditions enforce a good deal of structure on the operators L,M which has been
exploited to generate surrogate models [29, 68, 31]. In particular, it can be shown that the reversible
and irreversible brackets can be parameterized in terms of a totally antisymmetric order-3 tensor
⇠ = (⇠ijk) and a partially symmetric order-4 tensor ⇣ = (⇣ik,jl) through the relations (Einstein
summation assumed)

{A,B} = ⇠ijk @iA @jB @kS,

[A,B] = ⇣ik,jl @iA @kE @jB @lE.

Moreover, using the symmetries of ⇣, it follows (see [67]) that this tensor decomposes into the product
⇣ik,jl = ⇤m

ikDmn⇤n
jl of a symmetric matrix D and an order-3 tensor ⇤ which is skew-symmetric in its

lower indices. Thus, by applying symmetry relationships, it is easy to check that {·, S} = [·, E] = 0.

Remark A.5. In [29], trainable 4- and 3- tensors ⇠ijk and ⇣ik,jl are constructed to achieve the
degeneracy conditions, mandating a costly O(N3) computational complexity. In the current work we
overcome this by instead achieving degeneracy through the exact sequence property.

A.3 Adjoints and gradients

Beyond the basic calculus operations discussed in section A.1 which depend only on graph topology,
the network architectures discussed in the body also make extensive use of learnable metric infor-
mation coming from the nodal features. To understand this, it is useful to recall some information
about general inner products and the derivative operators that they induce. First, recall that the usual
`2 inner product on node features a,b 2 R|V|, ha,bi = a|b, is (in this context) a discretization
of the standard L2 inner product

R
V ab dµ which aggregates information from across the vertex set

V . While this construction is clearly dependent only on the graph structure (i.e., topology), any
symmetric positive definite (SPD) matrix A0 : ⌦0 ! ⌦0 also defines an inner product on functions
a 2 ⌦0 through the equality

(a,b)0 := ha,A0bi = a|A0b,

which gives a different way of measuring the distance between a and b. The advantage of this
construction is that A0 can be chosen in a way that incorporates geometric information which
implicitly regularizes systems obeying a variational principle. This follows from the following
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intuitive fact: the Taylor series of a function does not change, regardless of the inner product on its
domain. For any differentiable function(al) E : ⌦0 ! R, using d to denote the exterior derivative,
this means that the following equality holds

dE(a)b := lim
"!0

E(a+ ✏b)� E(a)

"
= h�E(a),bi = (rE(a),b)0 ,

where �E denotes the `2-gradient of E and rE denotes its A0-gradient, i.e., its gradient with
respect to the derivative operator induced by the inner product involving A0. From this, it is clear
that �E = A0rE, so that the A0-gradient is just an anisotropic rescaling of the `2 version. The
advantage of working with r over � in the present case of graph networks is that A0 can be learned
based on the features of the graph. This means that learnable feature information (i.e., graph attention)
can be directly incorporated into the differential operators governing our bracket-based dynamical
systems by construction.

The prototypical example of where this technique is useful is seen in the gradient flow of Dirichlet
energy. Recall that the Dirichlet energy of a differentiable function u : Rn

! R is given by
D(u) = (1/2)

R
|ru|2 dµ, where r now denotes the usual `2-gradient of the function u on Rn.

Using integration-by-parts, it is easy to see that dD(u)v = �
R
v�u for any test function v with

compact support, implying that the L2-gradient of D is �� and u̇ = �u is the L2-gradient flow of
Dirichlet energy: the motion which decreases the quantity D(u) the fastest as measured by the L2

norm. It can be shown that high-frequency modes decay quickly under this flow, while low-frequency
information takes much longer to dissipate. On the other hand, we could alternatively run the
H1-gradient flow of D, which is motion of fastest decrease with respect to the H1 inner product
(u, v) =

R
hru,rvi dµ. This motion is prescribed in terms of the H1-gradient of D, which by the

discussion above with A0 = �� is easily seen to be the identity. This means that the H1-gradient
flow is given by u̇ = �u, which retains the minimizers of the L2-flow but with quite different
intermediate character, since it functions by simultaneously flattening all spatial frequencies. The
process of preconditioning a gradient flow by matching derivatives is known as a Sobolev gradient
method (c.f. [69]), and these methods often exhibit faster convergence and better numerical behavior
than their L2 counterparts [70].

Returning to the graph setting, our learnable matrices Ak on k-cliques will lead to inner products
(·, ·)k on functions in ⌦k, and this will induce dual derivatives as described in Appendix A.1. However,
in this case we will not have d⇤0 = d|0 , but instead the expression given by the following result:
Proposition A.3. The Ak-adjoints d⇤k to the graph derivative operators dk are given by d⇤k =
A�1

k d|kAk+1. Similarly, for any linear operator B : ⌦k ! ⌦k, the Ak-adjoint B⇤ = A�1
k B|A.

Proof. Let q,p denote vectors of k-clique resp. (k + 1)-clique features. It follows that
(dkq,p)k+1 = hdkq,Ak+1pi = hq, d|kAk+1pi = hq,Akd

⇤
kpi = (q, d⇤kp)k .

Therefore, we see that d|kAk+1 = Akd⇤k and hence d⇤k = A�1
k d|kAk+1. Similarly, if q,q0 denote

vectors of k-clique features, it follows from the `2-self-adjointness of Ak that�
q,Bq0�

k
=
⌦
q,AkBq0↵ = hB|Akq,q

0
i =

⌦
A�1

k B|Akq,Akq
0↵ = (B⇤q,q0)k ,

establishing that B⇤ = A�1
k B|Ak.

Remark A.6. It is common in graph theory to encounter the case where ai > 0 are nodal weights
and wij > 0 are edge weights. These are nothing more than the (diagonal) inner products A0,A1 in
disguise, and so Proposition A.3 immediately yields the familiar formula for the induced divergence

(d⇤0p)i =
1

ai

X

j:(i,j)2E

wij (pji � pij) .

Note that all of these notions extend to the case of block inner products in the obvious way. For
example, if q,p are node resp. edge features, it follows that A = diag (A0,A1) is an inner product
on node-edge feature pairs, and the adjoints of node-edge operators with respect to A are computed
as according to Proposition A.3.
Remark A.7. For convenience, this work restricts to diagonal matrices A0,A1. However, note that
a matrix which is diagonal in “edge space” G2 is generally full in a nodal representation. This is
because an (undirected) edge is uniquely specified by the two nodes which it connects, meaning that
a purely local quantity on edges is necessarily nonlocal on nodes.
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A.4 Higher order attention

As mentioned in the body, when f = exp and ã(qi,qj) = (1/d) hWKqi,WQqji, defining the
learnable inner products A0 = (a0,ii) ,A1 = (a1,ij) as

a0,ii =
X

j2N (i)

f (ã (qi,qj)) , a1,ij = f (ã (qi,qj)) ,

recovers scaled dot product attention as A�1
0 A1.

Remark A.8. Technically, A1 is an inner product only with respect to a predefined ordering of
the edges ↵ = (i, j), since we do not require A1 be orientation-invariant. On the other hand, it is
both unnecessary and distracting to enforce symmetry on A1 in this context, since any necessary
symmetrization will be handled automatically by the differential operator d⇤0.

Similarly, other common attention mechanisms are produced by modifying the pre-attention function
ã. While A�1

0 A1 never appears in the brackets of Section 4, letting ↵ = (i, j) denote a global edge
with endpoints i, j, it is straightforward to calculate the divergence of an antisymmetric edge feature
p at node i,

(d⇤0p)i =
�
A�1

0 d|0A1p
�
i
= a�1

0,ii

X

↵

(d|0)i↵ (A1p)↵

= a�1
0,ii

X

↵3i

(A1p)�↵ � (A1p)↵ = �

X

j2N (i)

a1,ji + ai,ij
a0,ii

pij .

This shows that b(qi,qj) = (a1,ij + a1,ji) /a0,ii appears under the divergence in d⇤0 = A�1
0 d|0A1,

which is the usual graph attention up to a symmetrization in A1.
Remark A.9. While A1 is diagonal on global edges ↵ = (i, j), it appears sparse nondiagonal in
its nodal representation. Similarly, any diagonal extension A2 to 2-cliques will appear as a sparse
3-tensor A2 = (a2,ijk) when specified by its nodes.

This inspires a straightforward extension of graph attention to higher-order cliques. In particular, de-
note by K > 0 the highest degree of clique under consideration, and define AK�1 = (aK�1,i1i2...iK )
by

aK�1,i1i2...iK = f (W (qi1 ,qi2 , ...,qiK )) ,

where W 2 R⌦KnV is a learnable K-tensor. Then, for any 0  k  K � 2 define Ak =�
ak,i1i2...ik+1

�
by

ak,i1i2...ik+1 =
X

iK ,...,iK�k�1

aK�1,i1i2...iK .

This recovers the matrices A0,A1 from before when K = 2, and otherwise extends the same core
idea to higher-order cliques. It’s attractive that the attention mechanism captured by d⇤k remains
asymmetric, meaning that the attention of any one node to the others in a k-clique need not equal the
attention of the others to that particular node.
Remark A.10. A more obvious but less expressive option for higher-order attention is to let

ak,i1i2...ik+1 =
aK�1,i1i2...iKP

iK ,...,iK�k�1
aK�1,i1i2...iK

,

for any 0  k  K � 2. However, application of the combinatorial codifferential d|k�1 appearing in
d⇤k�1 will necessarily symmetrize this quantity, so that the asymmetry behind the attention mechanism
is lost in this formulation.

To illustrate how this works more concretely, consider the extension K = 3 to 2-cliques, and let
N (i, j) = N (i)\N (j). We have the tensors A2 = (a2,ijk), A1 = (a1,ij), and A0 = (a0,i) defined
by

a2,ijk = f (W (qi,qj ,qk)) , a1,ij =
X

k2N (i,j)

a2,ijk, a0,i =
X

j2N (i)

X

k2N (i,j)

a2,ijk.

This provides a way for (features on) 3-node subgraphs of G to attend to each other, and can be
similarly built-in to the differential operator d⇤1 = A�1

1 d|0A2.
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A.5 Exterior calculus interpretation of GATs

Let N (i) denote the one-hop neighborhood of node i, and let N (i) = N (i)[{i}. Recall the standard
(single-headed) graph attention network (GAT) described in [12], described layer-wise as

qk+1
i = �

0

@
X

j2N (i)

a
�
qk
i ,q

k
j

�
Wkqk

j

1

A , (1)

where � is an element-wise nonlinearity, Wk is a layer-dependent embedding matrix, and a (qi,qj)
denotes the attention node i pays to node j. Traditionally, the attention mechanism is computed
through

a (qi,qj) = Softmaxj ã (qi,qj) =
eã(qi,qj)

�i
,

where the pre-attention coefficients ã (qi,qj) and nodal weights �i are defined as

ã (qi,qj) = LeakyReLU (a| (W|qi ||W
|qj)) , �i =

X

j2N(i)

eã(qi,qj).

However, the exponentials in the outer Softmax are often replaced with other nonlinear functions, e.g.
Squareplus, and the pre-attention coefficients ã appear as variable (but learnable) functions of the
nodal features. First, notice that (1) the attention coefficients a (qi,qj) depend on the node features
q and not simply the topology of the graph, and (2) the attention coefficients are not symmetric,
reflecting the fact that the attention paid by node i to node j need not equal the attention paid by node j
to node i. A direct consequence of this is that GATs are not purely diffusive under any circumstances,
since it was shown in Appendix A.1 that the combinatorial divergence d|0 will antisymmetrize the
edge features it acts on. In particular, it is clear that the product a (qi,qj) (qi � qj) is asymmetric
in i, j under the standard attention mechanism, since even the pre-attention coefficients ã (qi,qj)
are not symmetric, meaning that there will be two distinct terms after application of the divergence.
More precisely, there is the following subtle result.

Proposition A.4. Let q 2 R|V|⇥nV denote an array of nodal features. The expression
X

j2N (i)

a (qi,qj) (qi � qj) ,

where a = A�1
0 A1 is not the action of a Laplace operator whenever A1 is not symmetric.

Proof. From Appendix A.3, we know that any Laplace operator on nodes is expressible as d⇤0d0 =
A�1

0 d|0A1d0 for some positive definite A0,A1. So, we compute the action of the Laplacian at node
i,

(�0q)i = (d⇤0d0q)i =
�
A�1

0 d|0A1d0q
�
i
= a�1

0,ii

X

↵

(d|0)i↵ (A1d0q)↵

= a�1
0,ii

X

↵3i

(A1d0q)�↵ � (A1d0q)↵ = �
1

2

X

j2N (i)

a1,ji + ai,ij
a0,ii

(qj � qi) ,

=
X

j2N (i)

a (qi,qj) (qj � qi) ,

which shows that a (qi,qj) = (1/2) (a1,ji + a1,ij) /a0,ii must have symmetric numerator.

While this result shows that GATs (and their derivatives, e.g., GRAND) are not purely diffusive, it
also shows that it is possible to get close to GAT (at least syntactically) with a learnable diffusion
mechanism. In fact, setting � = Wk = I in (1) yields precisely a single-step diffusion equation
provided that a

�
qki , q

k
j

�
is right-stochastic (i.e.,

P
j a (qi,qj) 1j = 1i) and built as dictated by

Proposition A.4.
Theorem A.11. The GAT layer (1) is a single-step diffusion equation provided that � = Wk = I,
and the attention mechanism a (qi,qj) = (1/2) (a1,ji + a1,ij) /a0,ii is right-stochastic.
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Proof. First, notice that the Laplacian with respect to an edge set which contains self-loops is
computable via

(�0q)i = �

X

j2N (i)

a (qi,qj) (qj � qi) = qi �

X

j2N (i)

a (qi,qj)qj .

Therefore, taking a single step of heat flow q̇ = ��0q with forward Euler discretization and time
step ⌧ = 1 is equivalent to

qk+1
i = qk

i � ⌧
�
�0q

k
�
i
=

X

j2N (i)

a
�
qk
i ,q

k
j

�
qk
j ,

which is just a modified and non-activated GAT layer with Wk = I and attention mechanism a.

Remark A.12. Since Softmax and its variants are right-stochastic, Theorem A.11 is what establishes
equivalence between the non-divergence equation

q̇i =
X

j2N (i)

a (qi,qj) (qj � qi) ,

and the standard GAT layer seen in, e.g., [49], when a(qi,qj) is the usual attention mechanism.
Remark A.13. In the literature, there is an important (and often overlooked) distinction between
the positive graph/Hodge Laplacian �0 and the negative “geometer’s Laplacian” � which is worth
noting here. Particularly, we have from integration-by-parts that the gradient r = d0 is L2-adjoint to
minus the divergence �r· = d|0 , so that the two Laplace operators �0 = d|0d0 and � = r ·r differ
by a sign. This is why the same `2-gradient flow of Dirichlet energy can be equivalently expressed as
q̇ = �q = ��0q, but not by, e.g., q̇ = �0q.

This shows that, while they are not equivalent, there is a close relationship between attention and
diffusion mechanisms on graphs. The closest analogue to the standard attention expressible in this
format is perhaps the choice a1,ij = f (ã (qi,qj)), a0,ii =

P
j2N̄ (i) a1,ij , discussed in Section 4

and Appendix A.4, where f is any scalar-valued positive function. For example, when f(x) = ex, it
follows that

(�0q)i = �
1

2

X

j2N (i)

eã(qi,qj) + eã(qj ,qi)

�i
(qj � qi)

= �
1

2

X

j2N (i)

✓
a (qi,qj) +

eã(qj ,qi)

�i

◆
(qj � qi) ,

which leads to the standard GAT propagation mechanism plus an extra term arising from the fact that
the attention a is not symmetric.
Remark A.14. Practically, GATs and their variants typically make use of multi-head attention,
defined in terms of an attention mechanism which is averaged over some number |h| of independent

“heads”,

a (qi,qj) =
1

|h|

X

h

ah (qi,qj) ,

which are distinct only in their learnable parameters. While the results of this section were presented
in terms of |h| = 1, the reader can check that multiple attention heads can be used in this framework
provided it is the pre-attention ã that is averaged instead.

A.6 Bracket derivations and properties

Here the architectures in the body are derived in greater detail. First, it will be shown that L⇤ = �L,
G⇤ = G, and M⇤ = M, as required for structure-preservation.
Proposition A.5. For L,G,M defined in Section 4, we have L⇤ = �L, G⇤ = G, and M⇤ = M.
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Proof. First, denoting A = diag (A0,A1), it was shown in section A.3 that B⇤ = A�1B|A for
any linear operator B of appropriate dimensions. So, applying this to L, it follows that

L⇤ =

✓
A�1

0 0
0 A�1

1

◆✓
0 �d⇤0
d0 0

◆|✓
A0 0
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0 d|0A1

�A�1
1 (d⇤0)

| A0 0

◆
=

✓
0 d⇤0

�d0 0

◆
= �L.

Similarly, it follows that
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0 0
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1
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A0 0
0 A1

◆

=

✓
A�1

0 d|0 (d
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| A0 0
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1 d|1 (d
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◆
= G,
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◆
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◆
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where the second-to-last equality used that A1A
�1
1 = I.

Remark A.15. Note that the choice of zero blocks in L,G is sufficient but not necessary for these
adjointness relationships to hold. For example, one could alternatively choose the diagonal blocks of
L to contain terms like B�B⇤ for an appropriate message-passing network B.

Next, we compute the gradients of energy and entropy with respect to (·, ·).
Proposition A.6. The A-gradient of the energy

E(q,p) =
1

2

⇣
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1

2
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Moreover, given the energy and entropy defined as

E(q,p) = fE (s(q)) + gE (s (d0d
|
0p)) ,

S(q,p) = gS (s (d|1d1p)) ,

where fE : RnV ! R acts on node features, gE , gS : RnE ! R act on edge features, and s denotes
sum aggregation over nodes or edges, the A-gradients are

rE(q,p) =

✓
A�1

0 1⌦rfE (s(q))
A�1

1 d0d
|
01⌦rgE (s (d0d

|
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◆
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A�1
1 d|1d11⌦rgS (s (d|1d1p))

◆
,

Proof. Since the theory of A-gradients in section A.3 establishes that rE = A�1�E, it is only
necessary to compute the L2-gradients. First, letting x = (q p)

|, it follows for the first definition
of energy that

dE(x) =
X

i2V
hqi, dqii+

X

↵2E
hp↵, dp↵i = hq, dqi+ hp, dpi = hx, dxi ,

showing that �E(q,p) = (q p)
|, as desired. Moving to the metriplectic definitions, since each

term of E,S has the same functional form, it suffices to compute the gradient of f (s (Bq)) for some
function f : Rnf ! R and matrix B : R|V|

! R|V|. To that end, adopting the Einstein summation
convention where repeated indices appearing up-and-down in an expression are implicitly summed,
if 1  a, b  nf and 1  i, j  |V|, we have

d (s(q)) =
X

i2|V|

dqi =
X

i2|V|

�ji dqj = 1jdqaj ea = (1⌦ I) : dq = r (s(q)) : dq,
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implying that rs(q) = 1⌦ I. Continuing, it follows that

d (f � s �Bq) = f 0 (s (Bq))a s
0 (Bq)ai B

ijdqaj = f 0 (s (Bq))a ea (B
|)ij 1j dqai

= hrf (s (Bq))⌦B|1, dqi = hr (f � s �Bq) , dqi ,

showing that r (f � s �B) decomposes into an outer product across modalities. Applying this
formula to the each term of E,S then yields the L2-gradients,
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from which the desired A-gradients follow directly.

Finally, we can show that the degeneracy conditions for metriplectic structure are satisfied by the
network in Section 4.
Theorem A.16. The degeneracy conditions LrS = MrE = 0 are satisfied by the metriplectic
bracket in Section A.6.

Proof. This is a direct calculation using Theorem 3.1 and Proposition A.6. In particular, it follows
that
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since d1d0 = 0 as a consequence of the graph calculus. These calculations establish the validity of the
energy conservation and entropy generation properties seen previously in the manuscript body.

Remark A.17. Clearly, this is not the only possible metriplectic formulation for GNNs. On the other
hand, this choice is in some sense maximally general with respect to the chosen operators L,G, since
only constants are in the kernel of d0 (hence there is no reason to include a nodal term in S), and
only elements in the image of d|1 (which do not exist in our setting) are guaranteed to be in the kernel
of d|0 for any graph. Therefore, M is chosen to be essentially G without the �0 term, whose kernel
is graph-dependent and hence difficult to design.

B Experimental details and more results

This Appendix provides details regarding the experiments in Section 5, as well as any additional
information necessary for reproducing them. We implement the proposed algorithms with PYTHON
and PYTORCH [71] that supports CUDA. The experiments are conducted on systems that are equipped
with NVIDIA RTX A100 and V100 GPUs. For NODEs capabilities, we use the TORCHDIFFEQ
library [16].

B.1 Damped double pendulum

The governing equations for the damped double pendulum can be written in terms of four coupled
first-order ODEs for the angles that the two pendula make with the vertical axis ✓1, ✓2 and their
associated angular momenta !1,!2 (see [72]),

✓̇i = !i, 1  i  2, (2)

!̇1 =
m2l1!2

1 sin (2�✓) + 2m2l2!2
2 sin (�✓) + 2gm2 cos ✓2 sin�✓ + 2gm1 sin ✓1 + �1
�2l1

�
m1 +m2 sin

2 �✓
� , (3)

!̇2 =
m2l2!2

2 sin (2�✓) + 2 (m1 +m2) l1!2
1 sin�✓ + 2g (m1 +m2) cos ✓1 sin�✓ + �2

2l2
�
m1 +m2 sin

2 �✓
� , (4)
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where m1,m2, l1, l2 are the masses resp. lengths of the pendula, �✓ = ✓1 � ✓2 is the (signed)
difference in vertical angle, g is the acceleration due to gravity, and

�1 = 2k1✓̇1 � 2k2✓̇2 cos�✓.

�2 = 2k1✓̇1 cos�✓ �
2 (m1 +m2)

m2
k2✓̇2,

for damping constants k1, k2.

Dataset. A trajectory of the damped double pendulum by solving an initial value problem associated
with the ODE 2. The initial condition used is (1.0, ⇡/2, 0.0, 0.0), and the parameters are m1 = m2 =
1, g = 1, l1 = 1, l2 = 0.9, k1 = k2 = 0.1. For time integrator, we use the TorchDiffeq library [16]
with Dormand–Prince 5 (DOPRI5) as the numerical solver. The total simulation time is 50 (long
enough for significant dissipation to occur), and solution snapshots are collected at 500 evenly-spaced
temporal indices.

To simulate the practical case where only positional data for the system is available, the double
pendulum solution is integrated to time T = 50 (long enough for significant dissipation to occur)
and post-processed once the angles and angular momenta are determined from the equations above,
yielding the (x, y)-coordinates of each pendulum mass at intervals of 0.1s. This is accomplished
using the relationships

x1 = l1 sin ✓1
y1 = �l1 cos ✓1
x2 = x1 + l2 sin ✓2 = l1 sin ✓1 + l2 sin ✓2
y2 = y1 � l2 cos ✓2 = �l1 cos ✓1 � l2 cos ✓2.

The double pendulum is then treated as a fully connected three-node graph with positional coordinates
qi = (xi, yi) as nodal features, and relative velocities p↵ = (d0q)↵ as edge features. Note that the
positional coordinates (x0, y0) = (0, 0) of the anchor node are held constant during training. To
allow for the necessary flexibility of coordinate changes, each architecture from Section 4 makes
use of a message-passing feature encoder before time integration, acting on node features and edge
features separately, with corresponding decoder returning the original features after time integration.

To elicit a fair comparison, both the NODE and NODE+AE architectures are chosen to contain
comparable numbers of parameters to the bracket architectures (⇠ 30k), and all networks are trained
for 100,000 epochs. For each network, the configuration of weights producing the lowest overall
error during training is used for prediction.

Hyperparameters. The networks are trained to reconstruct the node/edge features in mean absolute
error (MAE) using the Adam optimizer [73]. The NODEs and metriplectic bracket use an initial
learning rate of 10�4, while the other models use an initial learning rate of 10�3. The width of the
hidden layers in the message passing encoder/decoder is 64, and the number of hidden features for
nodes/edges is 32. The time integrator used is simple forward Euler.

Network architectures. The message passing encoders/decoders are 3-layer MLPs mapping, in
the node case, nodal features and their graph derivatives, and in the edge case, edge features and
their graph coderivatives, to a hidden representation. For the bracket architectures, the attention
mechanism used in the learnable coderivatives is scaled dot product. The metriplectic network uses
2-layer MLPs fE , gE , gS with scalar output and hidden width 64. For the basic NODE, node and
edge features are concatenated, flattened, and passed through a 4-layer fully connected network of
width 128 in each hidden layer, before being reshaped at the end. The NODE+AE architecture uses a
3-layer fully connected network which operates on the concatenated and flattened latent embedding
of size 32 ⇤ 6 = 192, with constant width throughout all layers.

B.2 Mujoco

We represent an object as a fully-connected graph, where a node corresponds to a body part of the
object and, thus, the nodal feature corresponds to a position of a body part or joint. To learn the
dynamics of an object, we again follow the encoder-decoder-type architecture considered in the
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(a) q (b) p (c) E and S

Figure 5: [Double pendulum] Trajectories of q and p: ground-truth (solid lines) and predictions of
the metriplectic bracket model (dashed lines). The evolution of the energy E and the entropy S over
the simulation time. Note that slight fluctuations appear in E due to the fact that forward Euler is not
a symplectic integrator.

double-pendulum experiments. First we employ a node-wise linear layer to embed the nodal feature
into node-wise hidden representations (i.e., the nodal feature qi corresponds to a position of a body
part or an angle of a joint.). As an alternative encoding scheme for the nodal feature, in addition to the
position or the angle, nodal velocities are considered as additional nodal features, i.e., qi = (qi, vi).
The experimental results of the alternative scheme is represented in the following section B.2.2.

The proposed dynamics models also require edge features (e.g., edge velocity), which are not
presented in the dataset. Thus, to extract a hidden representation for an edge, we employ a linear
layer, which takes velocities of the source and destination nodes of the edge as an input and outputs
edge-wise hidden representations, i.e., the edge feature correspond to a pair of nodal velocities
p↵ = (vsrc(↵), vdst(↵)), where vsrc(↵) and vdst(↵) denote velocities of the source and destination nodes
connected to the edge.

The MuJoCo trajectories are generated in the presence of an actor applying controls. To handle the
changes in dynamics due to the control input, we introduce an additive forcing term, parameterized
by an MLP, to the dynamics models, which is a similar approach considered in dissipative SymODEN
[32]. In dissipative SymODEN, the forcing term is designed to affect only the change of the
generalized momenta (also known as the port-Hamiltonian dynamics [74]). As opposed to this
approach, our proposed forcing term affects the evolution of both the generalized coordinates that are
defined in the latent space. Once the latent states are computed at specified time indices, a node-wise
linear decoder is applied to reconstruct the position of body parts of the object. Then the models are
trained based on the data matching loss measured in mean-square errors between the reconstructed
and the ground-truth positions.

B.2.1 Experiment details

We largely follow the experimental settings considered in [23].

Dataset. As elaborated in [23], the standard Open AI Gym [75] environments preprocess observa-
tions in ad-hoc ways, e.g., Hopper clips the velocity observations to [�10, 10]d. Thus, the authors in
[23] modified the environments to simply return the position and the velocity (q, v) as the observation
and we use the same dataset, which is made publicly available by the authors. The dataset consists of
training and test data, which are constructed by randomly splitting the episodes in the replay buffer
into training and test data. Training and test data consist of ⇠40K and ⇠300 or ⇠ 85 trajectories,
respectively. For both training and test data, we include the first 20 measurements (i.e., 19 transitions)
in each trajectory.

Hyperparameters. For training, we use the Adam optimizer [73] with the initial learning rate 5e-3
and weight decay 1e-4. With the batch size of 200 trajectories, we train the models for 256 epochs.
We also employ a cosine annealing learning rate scheduler with the minimum learning rate 1e-6. For
time integrator, we use the Torchdiffeq library with the Euler method.

Network architectures. The encoder and decoder networks are parameterized as a linear layer
and the dimension of the hidden representations is set to 80. For attention, the scaled dot-product
attention is used with 8 heads and the embedding dimension is set to 16. The MLP for handling the
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forcing term consists of three fully-connected layers (i.e., input, output layers and one hidden layer
with 128 neurons). The MLP used for parameterizing the “black-box” NODEs also consists of three
fully-connected layers with 128 neurons in each layer.

B.2.2 Additional results

Figure 6 reports the loss trajectories for all considered dynamics models. For the given number of
maximum epochs (i.e., 256), the Hamiltonian and double bracket models tend to reach much lower
training losses (an order of magnitude smaller) errors than the NODE and Gradient models do. The
metriplectic model produces smaller training losses compared to the NODE and gradient models
after a certain number of epochs (e.g., 100 epochs for Hopper).

(a) HalfCheetah (b) Hopper (c) Swimmer

Figure 6: [Mujoco] Train MSE over epoch for all considered dynamics models. For the nodal feature,
only the position or the angle of the body part/joint is considered.

In the next set of experiments, we provide not only positions/angles of body parts as nodal features,
but also velocities of the body parts as nodal features (i.e., qi = (qi, vi)). Table 6 reports the
relative errors measured in L2-norm; again, the Hamiltonian, double bracket, and metriplectic
outperform other dynamics models. In particular, the metriplectic bracket produces the most accurate
predictions in the Hopper and Swimmer environments. Figure 7 reports the loss trajectories for all
considered models. Similar to the previous experiments with the position as the only nodal feature,
the Hamiltonian and Double bracket produces the lower training losses than the NODE and Gradient
models do. For the Hopper and Swimmer environments, however, among all considered models, the
metriplectic model produces the lowest training MSEs after 256 training epochs.

Dataset HalfCheetah Hopper Swimmer
NODE+AE 0.0848 ± 0.0011 0.0421 ± 0.0041 0.0135 ± 0.00082
Hamiltonian 0.0403 ± 0.0052 0.0294 ± 0.0028 0.0120 ± 0.00022
Gradient 0.0846 ± 0.00358 0.0490 ± 0.0013 0.0158 ± 0.00030
Double Bracket 0.0653 ± 0.010 0.0274 ± 0.00090 0.0120 ± 0.00060
Metriplectic 0.0757 ± 0.0021 0.0269 ± 0.00035 0.0114 ± 0.00067

Table 6: Relative errors of the network predictions of the MuJoCo environments on the test set,
reported as avg±stdev over 4 runs.

B.3 Node classification

To facilitate comparison with previous work, we follow the experimental methodology of [61].
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(a) HalfCheetah (b) Hopper (c) Swimmer

Figure 7: [Mujoco] Train MSE over epoch for all considered dynamics models. For the nodal feature,
along with the position or the angle of the body part/joint, the node velocities are also considered.

B.3.1 Experiment details

Datasets. We consider the three well-known citation networks, Cora [58], Citeseer [59], and
Pubmed [60]; the proposed models are tested on the datasets with the original fixed Planetoid
traing/test splits, as well as random train/test splits. In addition, we also consider the coauthor graph,
CoauthorCS [61] and the Amazon co-purchasing graphs, Computer and Photo [62]. Table 7 provides
some basic statistics about each dataset.

Dataset Cora Citeseer PubMed CoauthorCS Computer Photo
Classes 7 6 3 15 10 8
Features 1433 3703 500 6805 767 745
Nodes 2485 2120 19717 18333 13381 7487
Edges 5069 3679 44324 81894 245778 119043

Table 7: Dataset statistics.

Hyperparameters The bracket architectures employed for this task are identical to those in
Section 4 except for that the right-hand side of the Hamiltonian, gradient, and double bracket
networks is scaled by a learnable parameter Sigmoid (↵) > 0, and the matrix A2 = I is used as the
inner product on 3-cliques. It is easy to verify that this does not affect the structural properties or
conservation character of the networks. Nodal features qi are specified by the datasets, and edge
features p↵ = (d0q)↵ are taken as the combinatorial gradient of the nodal features. In order to
determine good hyperparameter configurations for each bracket, a Bayesian search is conducted using
Weights and Biases [76] for each bracket and each dataset using a random 80/10/10 train/valid/test
split with random seed 123. The number of runs per bracket was 500 for CORA, CiteSeer, and
PubMed, and 250 for CoauthorCS, Computer, and Photo. The hyperparameter configurations leading
to the best validation accuracy are used when carrying out the experiments in Table 4 and Table 5.

Specifically, the hyperparameters that are optimized are as follows: initial learning rate (from 0.0005
to 0.05), number of training epochs (from 25 to 150), method of integration (rk4 or dopri5), integration
time (from 1 to 5), latent dimension (from 10 to 150 in increments of 10), pre-attention mechanism ã
(see below), positive function f (either exp or Squareplus), number of pre-attention heads (from 1 to
15, c.f. Remark A.14), attention embedding dimension (from 1⇥ to 15⇥ the number of heads), weight
decay rate (from 0 to 0.05), dropout/input dropout rates (from 0 to 0.8), and the MLP activation
function for the metriplectic bracket (either relu, tanh, or squareplus). The pre-attention is chosen
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from one of four choices, defined as follows:

ã (qi,qj) =
(WKqi)

| WQqj

d
scaled dot product,
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cosine similarity,
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�| �
WQqj �WQqj

�
��WKqi �WKqi

�� ��WQqj �WQqj

�� , Pearson correlation
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Network architectures. The architectures used for this experiment follow that of GRAND [49],
consisting of the learnable affine encoder/decoder networks �, and learnable bracket-based dynam-
ics in the latent space. However, recall that the bracket-based dynamics require edge features, which
are manufactured as p↵ = (d0q)↵. In summary, the inference procedure is as follows:

q(0) = �(q) (nodal feature encoding),
p(0) = d0q(0) (edge feature manufacturing),

(q(T ),p(T )) = (q(0),p(0)) +

Z T

0
(q̇, ṗ) dt, (latent dynamics)

q̃ =  (q(T )) , (nodal feature decoding)
y = c(q̃). (class prediction)

Training is accomplished using the standard cross entropy

H (t,y) =

|V|X

i=1

t|i logyi,

where ti is the one-hot truth vector corresponding to the ith node. In the case of the metriplectic
network, the networks fE , gE , gS are 2-layer MLPs with hidden dimension equal to the latent feature
dimension and output dimension 1.

B.3.2 Additional depth study

Here we report the results of a depth study on Cora with the Planetoid train/val/test split. Table 8
shows the train/test accuracy of the different bracket architectures as the number of layers (rk4
timesteps) is increased. It is interesting to note that both the purely reversible Hamiltonian bracket
and the purely dissipative Gradient bracket achieve almost perfect training accuracy despite the
number of layers, but that the Hamiltonian bracket observes a steep decrease in test accuracy with
increasing number of layers while the gradient bracket does not. This could be partially due to the fact
that the Hamiltonian bracket structure depends on edge feature information, which is manufactured
for these examples and may not correlate with node classification performance. Notice that the double
bracket and metriplectic formulations exhibit noticeable drops in both training and testing accuracy
as depth increases, and that the double bracket system, which is the most performant at low numbers
of layers, becomes too stiff to solve once the number of layers is sufficiently large.
Remark B.1. It is interesting that the architecture most known for oversmoothing (i.e., gradient)
exhibits the most stable classification performance with increasing depth. This is perhaps due to the
fact that the gradient system decouples over nodes and edges, while the others do not, meaning that
the gradient network does not have the added challenge of learning a useful association between the
manufactured edge feature information and the nodal labels.
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Depth study 1 layer 2 layers 4 layers 8 layers 16 layers 32 layers 64 layers
Hamiltonian 98.4± 1.3 99.6± 0.9 99.1± 0.6 100± 0.0 99.6± 0.4 99.9± 0.3 100± 0.0
Gradient 99.1± 1.5 100± 0.0 100± 0.0 99.4± 0.9 99.1± 0.9 100± 0.0 100± 0.0
Double Bracket 97.4± 1.9 98.0± 2.6 98.1± 1.3 97.6± 0.8 71.6± 1.5 - -
Metriplectic 98.7± 1.8 99.1± 0.6 98.1± 3.0 62.4± 8.7 63.3± 7.6 64.1± 16.4 57.4± 7.5

Hamiltonian 80.1± 0.8 74.0± 1.8 33.9± 2.1 32.8± 0.8 28.1± 1.1 27.5± 0.9 31.3± 3.1
Gradient 71.3± 2.2 76.2± 1.4 77.9± 0.9 79.3± 1.2 81.4± 1.6 80.6± 1.0 80.9± 0.3
Double Bracket 78.4± 1.2 81.2± 0.7 82.9± 0.3 81.7± 0.6 65.0± 1.0 - -
Metriplectic 60.3± 2.2 60.4± 1.8 58.6± 6.7 31.0± 4.3 33.2± 1.9 34.3± 7.8 29.8± 3.8

Table 8: Results of a depth study on Cora. Accuracies reported as mean±stdev over 5 randomly
initialized runs. Top/bottom groups are training/testing.

CORA networks Trainable Parameters Integration Time
Hamiltonian 60723 1.49625
Gradient 160772 14.82404
Double Bracket 30718 5.36151
Metriplectic 104088 7.53107

Table 9: The integration time and number of trainable parameters corresponding to the best networks
trained on CORA. Note that integration time can be considered as a surrogate for depth, since the
temporal step-size of each network is fixed to 1.

Depth study (acc) 1 layer 2 layers 4 layers 8 layers 16 layers 32 layers 64 layers
Hamiltonian 75.0± 1.4 77.9± 1.0 62.0± 0.6 38.8± 1.0 32.0± 0.8 25.4± 0.5 17.1± 1.3
Gradient 69.6± 1.1 72.7± 1.0 74.5± 1.1 77.7± 1.0 80.2± 1.2 81.4± 1.0 82.0± 1.2
Double Bracket 77.8± 1.1 81.2± 0.8 83.9± 1.1 83.8± 1.0 80.1± 1.3 58.9± 1.0 19.3± 1.4
Metriplectic 61.0± 1.6 62.4± 1.9 62.0± 0.8 61.9± 1.3 61.6± 1.0 60.6± 1.3 61.2± 1.0

Hamiltonian 77.2± 0.8 77.5± 1.2 77.4± 1.2 77.0± 0.6 78.0± 0.7 77.8± 1.2 77.4± 0.7
Gradient 79.9± 1.4 79.9± 0.6 79.6± 0.6 79.6± 1.1 80.4± 1.1 80.5± 0.9 79.8± 1.1
Double Bracket 84.2± 0.9 84.5± 1.3 84.1± 0.5 84.2± 1.3 84.1± 0.8 83.8± 0.9 84.2± 1.0
Metriplectic 61.7± 1.4 61.0± 0.9 61.0± 1.0 61.4± 1.3 61.6± 1.4 61.7± 1.2 61.9± 1.1

Table 10: Accuracy results of a depth study on CORA. Test accuracies reported as mean±stdev over
10 runs with random train/valid/test splits. Top/bottom groups correspond to tasks 1 and 2 of the
study, respectively, where task 1 uses a fixed step-size while task 2 uses a fixed integration domain.

Depth study (time) 1 layer 2 layers 4 layers 8 layers 16 layers 32 layers 64 layers
Hamiltonian 0.038± 0.003 0.060± 0.006 0.106± 0.011 0.191± 0.035 0.308± 0.035 0.497± 0.045 0.874± 0.035
Gradient 0.053± 0.005 0.091± 0.011 0.159± 0.015 0.273± 0.023 0.470± 0.031 0.809± 0.037 1.44± 0.038
Double Bracket 0.068± 0.007 0.125± 0.010 0.232± 0.023 0.434± 0.039 0.770± 0.068 1.36± 0.098 2.52± 0.103
Metriplectic 0.161± 0.010 0.305± 0.011 0.574± 0.014 1.10± 0.012 2.13± 0.040 4.11± 0.075 7.86± 0.129

Hamiltonian 0.052± 0.009 0.067± 0.013 0.114± 0.021 0.200± 0.040 0.350± 0.054 0.613± 0.056 1.17± 0.084
Gradient 0.365± 0.020 0.680± 0.012 1.26± 0.022 2.26± 0.058 4.22± 0.069 8.38± 0.451 19.4± 0.152
Double Bracket 0.241± 0.036 0.394± 0.046 0.731± 0.057 1.44± 0.132 2.98± 0.286 5.42± 0.609 9.44± 0.487
Metriplectic 1.05± 0.051 2.05± 0.097 3.87± 0.100 7.35± 0.149 14.1± 0.332 27.2± 0.378 53.8± 0.370

Table 11: Runtime results of a depth study on CORA. Wall clock times reported as mean±stdev over
10 runs with random train/valid/test splits. Top/bottom groups correspond to tasks 1 and 2 of the
study, respectively, where task 1 uses a fixed step-size while task 2 uses a fixed integration domain.
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