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Abstract

In scientific research, the ability to effectively retrieve relevant documents based on
complex, multifaceted queries is critical. Existing evaluation datasets for this task
are limited, primarily due to the high cost and effort required to annotate resources
that effectively represent complex queries. To address this, we propose a novel task,
Scientific DOcument Retrieval using Multi-level Aspect-based quEries (DORIS-
MAE), which is designed to handle the complex nature of user queries in scientific
research. We developed a benchmark dataset within the field of computer science,
consisting of 100 human-authored complex query cases. For each complex query,
we assembled a collection of 100 relevant documents and produced annotated
relevance scores for ranking them. Recognizing the significant labor of expert
annotation, we also introduce Anno-GPT, a scalable framework for validating the
performance of Large Language Models (LLMs) on expert-level dataset annotation
tasks. LLM annotation of the DORIS-MAE dataset resulted in a 500x reduction in
cost, without compromising quality. Furthermore, due to the multi-tiered structure
of these complex queries, the DORIS-MAE dataset can be extended to over 4,000
sub-query test cases without requiring additional annotation. We evaluated 17
recent retrieval methods on DORIS-MAE, observing notable performance drops
compared to traditional datasets. This highlights the need for better approaches
to handle complex, multifaceted queries in scientific research. Our dataset and
codebase are available at https://github.com/Real-Doris-Mae/Doris-Mae-Dataset.

1 Introduction

Scientists often have complex questions that require thorough exploration within various parts
of their field (Figure 1). Finding relevant scientific literature, one of many challenges in this
process, can be especially difficult when dealing with multi-faceted queries. These queries typically
encompass numerous interconnected topics and require an information retrieval (IR) system capable
of recognizing and responding to this level of complexity.
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Figure 1: Example from the DORIS-MAE dataset. Each query is broken down into aspects and
sub-aspects. Aspects are semantically distinct components of the query, and sub-aspects are minimal
requirements that can be extracted from the aspects.

Information retrieval, especially query-based document retrieval [78, 3, 34], is integral to many
applications, from search engines [9, 13, 29] and content recommendations [58, 31, 41], to open-
domain question answering (QA) [82, 33, 15]. A persistent challenge, however, is the low accuracy
in processing complex and multi-intent user queries. Despite advanced search engines using semantic
understanding and user behavior data in addition to keyword matching [13], these systems still
fall short when dealing with complex, multi-intent queries. Neural Information Retrieval (NIR)
models [63, 85, 75, 23, 66, 85, 47] are primarily trained on relatively simple queries [57, 17, 64,
61, 87]. Moreover, MacAvaney et al. [49] creates a variety of diagnostic probes, revealing NIR
models’ instability when processing out-of-distribution textual inputs, potentially because they do not
comprehend the deeper semantics of text. These limitations can lead to inadequate performance with
more complex queries. While open-domain QA models like ChatGPT [11] have shown significant
capability, they frequently produce incorrect or even fabricated responses [4, 46, 50, 39, 89], and are
prohibitively expensive if directly applied to an entire corpus of scientific documents.

To address these challenges, we introduce a novel task, Scientific Document Retrieval for Multi-level
Aspect-based quEries (DORIS-MAE). DORIS-MAE extends query-based and example-based IR
paradigms [20, 44], aiming to give users more control in formulating queries using natural language.
In order to advance research in this area, we present the DORIS-MAE dataset, comprising 100 unique
complex queries in the computer science domain, paired with ranked pools of relevant CS article
abstracts. Each query is organized into a hierarchical structure of aspects/sub-aspects, which aids
annotation.

A distinguishing feature of the DORIS-MAE dataset is its aspect-based hierarchical structure shown
in Figure 1. This feature aids automation of the annotation process, expands the test case volume
without additional annotation, and opens up exploration into the usefulness of aspect information for
retrieval methods.

Furthermore, we introduce Anno-GPT, a pipeline for validating Large Language Model (LLM)
annotations in a statistically sound manner. Our tests reveal that LLM annotations achieve quality
comparable to those produced by human annotators, but with considerable savings in both time and
cost. Additionally, the design of our pipeline lends itself to easy adaptation for different domains.

In our experiments, we evaluated 17 IR/NIR (Information Retrieval/Neural Information Retrieval)
methods using the DORIS-MAE dataset. The methods have worse performance on DORIS-MAE
compared to traditional document retrieval datasets, highlighting the complexity of DORIS-MAE,
and the need for more sophisticated retrieval methods.

Our main contributions are three-fold. First, by formulating the DORIS-MAE task we are shedding
a new light on tackling complex, multi-faceted queries during scientific research. Second, we propose
Anno-GPT, a procedure for rigorously evaluating the ability of LLMs to replace human experts for
challenging annotation tasks. Third, we demonstrate the value of breaking complex queries down
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to an Multi-level Aspect-based hierarchical structure, for both annotation accuracy and potential
improvements in retrieval methods.

2 Related Work

A range of methods have been developed for document retrieval and re-ranking. Classic retrieval
methods like TF-IDF [67] and BM25 [72] utilize keyword matching between queries and documents,
and fall short when the necessary key phrases are not known to users. To address this, researchers have
applied deep learning techniques to develop NIR models, including RocketQA-v2 [63], ColBERT-v2
[66], SimLM [75], and SPLADE-v2 [23]. These models generate latent vector representations for
queries and documents, which are effective for many retrieval tasks, but may not be able to handle
textual inputs that are outside of their training distributions [49].

Other models such as SPECTER [18] and aspect-based ASPIRE [54] focus on calculating document-
level similarity. These models are designed to retrieve given an existing paper as input, which makes
them less suited for open-ended queries. Other retrieval models, such as text-embedding models
(ada-002 by OpenAI [28] and E5-large-v2 [74]) and sentence-embedding model Sentence-BERT
[62], all face similar limitations as NIR methods in that they struggle to simultaneously represent
multiple aspects of a query. Despite these challenges, they tend to perform better on our dataset than
specialized NIR models for efficient dense passage retrieval, indicating their potential for complex
tasks like DORIS-MAE.

Large-scale traditional IR datasets [57, 86, 40, 66, 69] primarily contain simple, web-based queries.
Models performing well on these datasets often struggle on DORIS-MAE. In contrast, more special-
ized IR datasets [56, 14, 53] require human expert annotation, and consequently are more limited in
their scale. Mysore et al. [53] and Chan et al. [14] introduce the concept of "aspect" in document
retrieval tasks. These datasets provide pre-defined categories for aspects such as "background" or
"method". DORIS-MAE extends this work by allowing for open-ended aspects based on the context
of the queries. In Narrative-Driven Recommendation (NDR) research [6, 2, 55], user queries are
descriptions that capture a range of users’ needs. These queries are related to everyday tasks, such as
finding restaurants and entertainment.

Progress in LLMs [11] and prompt-engineering [24, 45, 59, 79, 65] has made it feasible to leverage
LLMs such as ChatGPT for annotating NLP tasks [90, 21], even outperforming crowd-workers in
some cases [60, 70, 27]. However, these tasks do not necessitate domain-specific knowledge, and the
annotations produced may not measure up to expert annotations. Faggioli et al. [22], MacAvaney
and Soldaini [48] explored the notion of using LLMs to assist human in relevance judgements, and
evaluated on TREC-DL datasets [19], which have single-faceted queries. Our work seeks to extend
these efforts to new annotation tasks requiring domain expertise, while introducing a separate pipeline
stage and a hypothesis testing stage.

3 Dataset Description

The DORIS-MAE task uses a dataset of 100 complex, human-written queries, each containing
between 95 to 226 words. Each complex query is broken down into a hierarchy of aspects and sub-
aspects, with aspects representing significant semantic components of the original query, typically
a sentence or a few sentences. Sub-aspects further decompose an aspect into simpler, verifiable
requirements. Both aspects and sub-aspects are generally one sentence long, though their semantic
complexity varies. A complex query can have up to 9 aspects, and each aspect can further contain up
to 6 sub-aspects. Figure 1 shows an example.

For each complex query Q, we created a pool P of approximately 100 potentially relevant scientific
abstracts to evaluate the re-ranking performance of various retrieval/reranking methods. Within the
context of Q and its P , the collection of aspects and sub-aspects is together denoted as (with slight
abuse of notation) Q := {ai}. For any aspect or sub-aspect ai 2 Q, and any paper abstract pj 2 P ,
they form a question pair (ai, pj). We generated a total of 165,144 question pairs from the 100
queries, together denoted as D := {(ai, pj)}.

To compute the relevance of a paper pj for a query Q, we first break the query down into its aspects.
We then compute the relevance score S(ai, pj), which measures the relevance of paper pj for aspect
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ai. The relevance score S(pj |Q) for the query Q is the sum of its aspect relevance scores. An average
score S(pj |Q)

|Q| � 1 indicates pj is a relevant abstract for Q.

S(pj |Q) :=
X

ai2Q

S(ai, pj) (1)

Thus, for each complex query and candidate pool, we provide a complete ranking for the list of
abstracts. Additionally, we can choose a combination of aspects within a complex query Q and
concatenate the corresponding sentences to form a sub-query q ⇢ Q, and can calculate the relevance
score between a paper abstract pj and a sub-query q.

S(pj |q) :=
X

ai2q

S(ai, pj) (2)

Hence, for any sub-query q ⇢ Q and the candidate pool P of Q, we can also provide a complete
ground-truth ranking order for P . This allows the dataset to extend to over 4000 sub-query test cases
at no additional annotation cost.

Candidate pool abstracts are taken from a database of 360,000 computer science papers between
2011-2021 sourced from arXiv3. We complemented each arXiv paper with its corresponding citation
information by cross-matching it on Semantic Scholar [37].

3.1 Query Formation

The DORIS-MAE task aims to mirror real-world scenarios where a researcher has an incomplete
concept for a research project and needs to explore the breadth of existing research to establish a
solid starting point. The 100 complex queries in our dataset simulate this scenario.

Each query is based on one or more existing research papers. We randomly selected 140 papers
from AI, NLP, ML, and CV categories on arXiv. We examined each selected paper’s motivation,
background, related work, methodology, and experimental results. Using this information, we reverse-
engineered a complex query designed to reflect the early thought process of the paper’s authors.
Overall, DORIS-MAE contains 80 queries derived from single paper abstracts, with 20 queries from
each of AI, NLP, ML and CV. We created an additional 20 composite queries, each integrating ideas
from 2-3 abstracts. These composite queries are designed to simulate more interdisciplinary and
unexplored research ideas than the other 80 queries.

3.2 Decomposing Queries to Aspects

In this section, we discuss our process of decomposing queries into a list of aspects and further
breaking down aspects into sub-aspects. The guiding principles for determining aspects are as
follows:

(i) Each aspect must correspond to a prominent and semantically meaningful component in the
query (refer to Figure 1 for this correspondence).

(ii) Each aspect should contain sufficient context to make sense independently, eliminating
potential ambiguities.

(iii) Each aspect must be semantically distinct and unrelated to others, ensuring their contents
are disjoint and do not overlap.

Some aspects may fall into broader facets such as background, method, or result as defined in [53].
Regarding decomposing aspects to sub-aspects, our criteria are:

(i) Each sub-aspect should not contain more information than its parent aspect.

(ii) Each sub-aspect should represent a semantic segment of its parent aspect

(iii) Different sub-aspects may overlap semantically but each should pose a distinct question.

(iv) Each sub-aspect should be as simple as possible.

3https://arxiv.org/
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Given the inherent difficulty in recalling the full details of a query while ranking a large candidate
pool, the aspect-based hierarchical structure of our complex queries provides a systematic, efficient,
and interpretable approach for annotation. This leads to a more precise ranking of the candidate pool.
As each aspect corresponds to a specific part of the original query Q, combining several aspects is
equivalent to concatenating their corresponding parts in the query, forming semantically coherent
sub-queries q ⇢ Q.

3.3 Candidate Pooling

To create a candidate pool P of approximately 100 paper abstracts for each query Q, we used a
variety of IR and NIR methods, similar to the approach in [53]. More specifically, we utilized
popular IR search algorithms TF-IDF [67] and BM25 [72] at different granularities (i.e., sentence and
paragraph-level for each query) to retrieve around 80 paper abstracts. We then employed OpenAI’s
text embedding model, ada-002 [28], to extract 20 more paper abstracts. We also use citation signals
from semantic scholar [37] to included any papers that directly cite or are cited by any of the original
papers used to create that specific query. Lastly, to prevent bias towards lexicon-matching retrieval
methods, we excluded from P any papers that authors referenced during query Q’s formulation. See
Appendix C.6 for a sensitivity analysis of our candidate pool construction procedure.

4 Anno-GPT Framework

We propose Anno-GPT, a framework for developing a statistically sound annotation pipeline. We
use chatgpt-3.5-turbo-0301 to annotate all 165,144 question pairs D := {(ai, pj)} where ai is an
aspect/sub-aspect of a query, and pj is an abstract in the query’s candidate pool. This strategy
minimizes human annotation efforts. The key to this approach lies in breaking down complex queries
into simpler aspects and sub-aspects, ensuring an objective and manageable annotation task. Without
this structured approach, we found that evaluating an abstract’s relevance to a complex query was
challenging, due to variability in how partial relevance was assessed. However, the scenario changes
significantly when dealing with question pairs (ai, pj), which only look at a single aspect or sub-
aspect of the query. In such cases, assigning a coarse-scale relevance score between 0-2 becomes
feasible, maintaining a reasonable degree of objectivity.

The performance of the annotation pipeline may be influenced by several factors: the procedure for
breaking down queries into aspects, the criteria used for scoring query relevance, and the LLM prompt
selection [24, 45, 59, 79, 65]. In order to avoid overfitting in this pipeline, our methodology comprises
two distinct development and testing stages. The development stage involves optimizing all stages of
the pipeline, and using feedback and observed outcomes to iteratively refine this strategy. The testing
stage uses a prespecified hypothesis test. The null hypothesis is that there is no significant difference
between the agreement levels of ChatGPT and humans, and those among humans themselves. After
the pipeline has been optimized, we evaluate it on a test set. We compute the difference between
ChatGPT-human agreement and human-human agreement. If this difference is sufficiently close to 0,
with a small confidence interval, we can use the optimized prompt ⇡ to annotate the full dataset.

Below we give a summary of the Anno-GPT framework:

i Construct aspect-document question pairs, D := {(ai, pj)}.
ii Select development set Sdev ⇢ D, and use human annotators to score Sdev.

iii Select test set Stest ⇢ D \ Sdev based on desired power, and use human annotators to score
Stest.

iv Optimize prompting strategy ⇡ and other hyperparameters on Sdev. Fix ⇡.
v Evaluate fixed ⇡ on Stest.

vi If satisfactory performance is achieved on Stest, proceed to use ⇡ to annotate the entire
dataset D.

vii Otherwise, repeat steps iii, iv, v for Sdev  Sdev [ Stest and new Stest.

It is important to note that automated annotation for DORIS-MAE only used a single develop-
ment/testing cycle, and therefore did not go into step vii. Therefore, there was no risk of inflated
estimates of annotation accuracy due to multiple comparisons [30, 83, 1]. If multiple cycles are
necessary, then the new Stest must be sufficiently large to avoid these problems.
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4.1 Annotation Guidelines

Our team of annotators consists of three graduate students in computer science, all with at least two
years of research experience in NLP, CV, ML, and AI. Annotators, both human and ChatGPT, are
asked to score each question pair using a 3-point grading scale (0-2):

• Level 0: The abstract is unrelated or does not provide any help to the key components of the
aspect or sub-aspect.

• Level 1: The abstract answers some (or all) key components (either explicitly or within one
natural inferential step), but at least one key component is not answered explicitly.

• Level 2: The abstract directly answers all the key components of the aspect or sub-aspect.
We decided to include both direct and indirect coverage under Level 1, acknowledging that distin-
guishing between these cases could be challenging and potentially subjective. The detailed guidelines
for human annotation can be found in Appendix B.

4.2 Optimization of Annotation Pipeline

For the development stage, two annotators independently annotated a randomly selected set Sdev of
90 question pairs from the complete set D of 165,144 pairs. This annotated development set then
served as the basis for refining the prompting strategies for ChatGPT.

The quality of annotations was evaluated using three metrics: macro F1 score, exact accuracy
(agreement), and Spearman’s rank correlation coefficient (Spearman’s ⇢). These metrics measure
the agreement level between annotators, and have been used successfully in similar tasks [53].
After satisfactory agreement levels were achieved between ChatGPT and human annotations on the
development set, we transitioned to the hypothesis testing stage, with all three annotators involved.
In this stage, we employed the fixed finalized prompting strategy, ensuring no overfitting or leakage
from the test set.

Our prompting strategy development involved experimenting with recent methodologies such as
few-shot in-context learning (ICL) [16, 11, 80, 51, 91] and chain of thought (CoT) [38, 81, 77, 32].
We found that the CoT approach offered the most robust and optimal results for the task of annotating
question pairs (ai, dj) 2 D. A comprehensive description of the prompt engineering process can be
found in Appendix B.

4.3 Annotation Evaluations

Hypothesis testing was conducted using a sample of 250 question pairs Stest from D, distinct from
the development set. The selected pairs were independently annotated by three human annotators.
We used bootstrapping to estimate the 95% confidence intervals for the macro F1 score, accuracy
(agreement), and Spearman’s ⇢. Though the sampling temperature is fixed at zero, recognizing small
randomness introduced by GPU non-determinism [52], the ChatGPT annotations are run twice and
the pairwise comparisons with human annotators are averaged across these runs.

In addition to these prespecified analyses, we conducted post-hoc analyses using an adjudication
procedure to create a more stable set of human annotations [53]. We use majority voting [8] between
the three human annotators to decide the adjudicated annotation.

The results presented in Table 1 show that the rate of ChatGPT-human agreement is within range
of human-human agreement. Specifically, ChatGPT’s performance is comparable to that of human
annotators as measured by F1 and exact agreement (accuracy). The average agreement level for
ChatGPT is numerically lower than average human agreement level as measured by Spearman’s ⇢.
We note that the lowest Spearman’s ⇢ among two humans is 46.51%, which is comparable to the
average ChatGPT/human’s ⇢ = 46.61%, suggesting ChatGPT’s performance is still within the range
of human-level agreement. All p-values are larger than the ↵ = 0.05 criterion.

In a post-hoc analysis, we found that comparing ChatGPT to adjudicated human annotations numeri-
cally increased the rate of agreement. This provides qualitative evidence for ChatGPT’s performance
relative to that of human experts. We further analyzed instances where ChatGPT’s annotations
diverged from those of humans. Interestingly, the nature of these discrepancies was similar to those
found between humans, with differences largely revolving around the interpretation of key compo-
nents in aspect/sub-aspects. For example, ChatGPT occasionally differed from human annotators in
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determining the importance of a given component. Detailed examples of ChatGPT’s reasoning and a
comprehensive error analysis can be found in Appendix B.

Table 1: Annotation agreement between humans and ChatGPT. H is human, G is ChatGPT, A is Adjudication,
CI is 95% confidence interval. p-values correspond to the null hypothesis that there is no difference between avg.
H&H and avg. H&G. Higher p-values indicate less evidence of a difference between ChatGPT and humans.

Metrics G&A avg. H&H avg. G&H H&H CI G&H CI p-value
F1-score (macro) 64.17 58.33 57.46 (52.33, 63.46) (50.93, 62.79) 0.74
Accuracy 67.40 64.13 62.07 (59.73, 68.80) (57.67, 66.13) 0.41
Spearman’s ⇢ 52.63 54.31 46.61 (46.87, 61.56) (38.67, 54.41) 0.07

4.4 Scalability of Annotations

The hypothesis testing results support the use of ChatGPT for annotation. At deployment, the pipeline
annotated all 165,144 aspect-paper pairs within a span of 24 hours, at a cost under $150. By contrast,
human experts typically require approximately 4 minutes per question pair, resulting in an estimated
11,146 hours to annotate the entire dataset. The deployment resulted in a time reduction by a factor of
500, and a cost reduction by a factor of 1,000, without sacrificing annotation quality. Upon completion
of the annotation process, we utilized Equations 1 and 2 to compile the results and compute the
final rankings for both full-query and sub-query test cases. Anno-GPT could potentially utilize any
high-performance LLM to replace ChatGPT and can be adapted for other expert-level tasks, given
the availability of a small set of domain expert annotations for validation.

5 Retrieval Results

This section presents the results of testing 17 models discussed in Section 2 on the DORIS-MAE
dataset. When available, we trained the model on our CS corpus and denoted the best version as
trained in domain (ID), see full training details in Appendix D.1. To contextualize their performance
on DORIS-MAE, we compare the results with these models’ previously reported performances on
various IR datasets, including MS MARCO [57], LoTTE [66], NQ [40], and Wiki-QA [86].

5.1 DORIS-MAE Benchmarking Results

In our benchmarking process for DORIS-MAE, we use complex queries as inputs to these models.
We employ a variety of metrics common in the IR/NIR literature for the evaluation, including R@5,
R@20, R-Precision (RP), NDCGexp

10%, MRR@10, and MAP. For fairness, we adopted an alternative
approach for models like RocketQA-v2 [63] and ColBERT-v2 [66] that were not designed to handle
long queries. For these cases, we allow the models to process the input as either a single text string or
sentence-by-sentence, and report the maximum performance achieved. Uniquely among the models
that we consider, the ASPIRE models (TSApire/OTAspire) are designed to handle multi-aspect
queries. For brevity, we only report the higher number among these two options for models in Table
2. For more detailed results, refer to Appendix C.

To better interpret the results, we compare against a random ranking baseline. In general, the
models show consistent behavior, with larger and more general-purpose models (like E5-Large-
V2, RocketQA-v2, ada-002, Specter-v2) faring better than the smaller and more specialized ones
(like SciBERT [5], ColBERT-v2, BM25, TF-IDF). Though the Aspire models were designed for
multi-aspect queries, they do not have strong performance on the complex queries in DORIS-MAE.

When we compare the DORIS-MAE performance of these models with their reported results on
traditional retrieval datasets MS MARCO (in Table 3) and NQ (in Table 4), we observe a significant
reduction in their performances on DORIS-MAE. We choose metrics for comparison based on what
is available in previously published work. The results highlight the challenges posed by DORIS-MAE
and suggest gaps in the ability of existing methods to generalize well to complex query retrieval.

Finally, in Table 5, we make a comparison with the model performances on specialized retrieval
datasets such as CSFCube [53], RELISH [10], and TRECCOVID [73]. The comparison reveals a
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Table 2: Query level performance on full DORIS-MAE. Standard errors are estimated by bootstrapping. ID
means a model is trained in domain.

Method R@5 R@20 RP NDCGexp
10% MRR@10 MAP

Random 4.41 18.48 16.29 7.31 3.59 19.63

E5-L-v2[74] 16.51 ± 2.05 43.77 ± 2.14 37.46 ± 2.44 25.90 ± 2.15 14.85 ± 2.73 40.49 ± 2.32
RocketQA-v2[63] 15.63 ± 1.88 45.41 ± 2.43 34.36 ± 2.32 30.30 ± 2.26 20.87 ± 3.12 40.18 ± 2.23
ada-002[28] 15.38 ± 1.95 42.84 ± 2.53 35.81 ± 2.67 27.46 ± 2.48 19.88 ± 3.21 40.37 ± 2.55
SimCSE[25] 14.90 ± 1.89 42.62 ± 2.40 35.27 ± 2.34 26.88 ± 2.36 21.19 ± 3.47 39.02 ± 2.35
SPLADE-v2[25] 14.78 ± 1.89 40.14 ± 2.33 31.65 ± 2.38 26.08 ± 2.00 17.82 ± 2.99 37.23 ± 2.26
SPECTER-v2[18] 14.50 ± 2.15 43.36 ± 2.50 33.41 ± 2.33 25.65 ± 2.23 17.19 ± 2.96 37.12 ± 2.10
SPECTERID 13.32 ± 1.76 42.52 ± 2.37 31.55 ± 2.28 21.27 ± 2.03 14.48± 2.78 36.02 ± 2.19
TSAspire[54] 14.26 ± 1.80 41.25 ± 2.40 33.81 ± 2.47 26.63 ± 2.05 15.59 ± 2.59 37.00 ± 2.29
SentBERT[62] 14.09 ± 1.88 44.69 ± 2.47 33.79 ± 2.41 21.88 ± 2.07 13.23 ± 2.69 37.75 ± 2.28
OTAspire[54] 13.34 ± 1.56 42.25 ± 2.53 33.63 ± 2.38 25.52 ± 2.29 14.18 ± 2.66 36.70 ± 2.22
ANCEFirstP[85] 13.21 ± 2.02 34.54 ± 2.20 30.51 ± 2.50 20.30 ± 2.02 13.87 ± 2.64 34.53 ± 2.35
SPLADE-v2[23] 11.80 ± 1.86 36.59 ± 2.12 29.90 ± 2.20 21.35 ± 2.12 14.30 ± 2.77 33.98 ± 2.23
LLAMA[71] 12.74 ± 1.82 34.51 ± 2.36 28.33 ± 2.14 16.65 ± 1.68 11.78 ± 2.45 31.29 ± 1.99
SimLM[75] 12.68 ± 1.77 35.67 ± 2.49 28.90 ± 2.42 18.91 ± 1.86 11.29 ± 2.44 33.06 ± 2.34
BM25[72] 8.47 ± 1.80 30.50 ± 2.38 21.94 ± 2.03 13.23 ± 1.97 9.19 ± 2.46 25.99 ± 1.68
ColBERT-v2[66] 8.45 ± 1.46 27.86 ± 2.29 22.33 ± 2.01 12.57 ± 1.71 6.69 ± 2.15 25.80 ± 1.83
TF-IDF[67] 10.71 ± 1.48 29.22 ± 2.25 24.79 ± 2.06 18.25 ± 2.01 12.41 ± 2.53 28.77 ± 1.81
ERNIE[47] 6.49 ± 0.94 22.58 ± 1.72 20.18 ± 1.82 9.66 ± 1.18 3.77 ± 1.06 22.71 ± 1.65
SciBERT[5] 5.13 ± 1.25 17.99 ± 1.69 17.13 ± 1.88 7.50 ± 1.34 3.41 ± 1.57 20.34 ± 1.64

consistent level of difficulty between DORIS-MAE and these completely human-annotated datasets,
indicating that DORIS-MAE presents a similarly challenging retrieval task.

Table 3: Comparison with MS MARCO. Stats col-
lected from [85, 66, 63, 75, 23].

MS MARCO DORIS
Ranking Method MRR@10 MRR@10

ANCE 33.0 13.87
ColBERT-v2 39.7 6.69
RocketQA-v2 41.9 20.87
SimLM 41.1 11.29
SPLADE-v2 36.8 14.30

Table 4: Comparison with NQ. Stats collected from
[66].

NQ DORIS
Ranking Method R@20 R@20

ANCEFirstP 81.9 34.54
BM25 59.1 30.50
RocketQA-v2 83.7 45.41
SimLM 85.2 35.67

Table 5: Comparison with CSFCube, TRECCOVID, and RELISH. Results are from [53, 54].

CSFCube TRECCOVID RELISH DORIS-MAE
Ranking Method RP MAP R@20 MAP MAP RP MAP R@20

TSAspire - 40.26 - 26.24 61.29 33.81 37.00 41.25
OTAspire - 40.79 - 30.92 62.57 33.63 36.70 42.25
Specter-v2 18.32 - 52.12 28.24 60.62 33.41 37.12 43.36
TF-IDF 14.59 - 39.69 - - 24.79 28.77 29.22
BM25 13.50 - 42.73 - - 21.94 25.99 30.50

5.2 Additional Experiments

Up until now, the hierarchical aspect-based structure that Anno-GPT utilizes has been hidden from
all the evaluated models because of inability of existing methods to break down a complex query
automatically. Even though these structures are not readily available for real-life retrieval methods,
they may still hold value once this query decomposition process can be fully automated. To explore
this potential, we conduct an experiment where instead of using the original query, each retrieval
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method had access to a concatenated string of all aspects within a query, excluding sub-aspects. The
results, as illustrated in Table 6, show that Sentence-BERT performs best on four metrics: R@5/20,
RP, and MAP. These findings suggest that the use of aspect information could be potentially beneficial
to guide retrieval methods.

The hierarchical structure of our dataset can be used to create additional, less complex tasks involving
only parts of the query. For instance, by pulling out parts of the query corresponding to 2 Aspects,
we are able to generate over 1000 test cases. For this task, we found a significant increase in the
number of relevant abstracts. After re-evaluating all models for the sub-query DORIS-MAE, we
observed model performance consistent with those seen in previous benchmarks, as indicated in
Table 7. Comparing Table 7 with Table 2, we observed noticeably higher numbers for metrics
such as RP, NDCGexp

10%, MRR and MAP, which are indicators of better model performances on this
sub-query task. Since models remain unchanged, this suggest the sub-query task is less challenging
than full-query task. This is intuitive since sub-queries are less complex and contain fewer aspects.
Overall, the creation of these sub-query tasks underscores the adaptability of our dataset, which could
accommodate a range of task complexities under the setting of DORIS-MAE.

Table 6: Ranking performance given model access to aspects. Full table is in Appendix C

Method R@5 R@20 RP NDCGexp
10% MRR@10 MAP

ada-002 14.09 42.23 33.56 26.54 20.20 37.62
SentBERT 17.73 45.34 35.67 25.00 15.52 39.87
RocketQA-v2 13.83 43.81 32.59 27.45 16.08 37.90

Table 7: Ranking performance on sub-query (2 Aspects) task. Full table is in Appendix C

Method R@5 R@20 RP NDCGexp
10% MRR@10 MAP

ada-002 13.49 40.24 47.35 39.00 24.33 51.67
SentBERT 12.15 36.71 45.08 34.78 20.71 48.96
RocketQA-v2 12.79 39.19 46.47 38.78 23.72 50.81

5.3 Supervised Learning on DORIS-MAE

To assess the utility of our dataset for training IR models, we conducted an experiment where we
allocated 40 queries for training and the remaining 60 for testing. Using supervised contrastive
learning (SCL), we optimized a margin-based triplet loss as presented in Equation 3. Each triplet,
represented as (A,P,N), consisted of a query and two abstracts. The higher-ranked abstract in
the training data served as the positive instance (i.e., P ), with the other functioning as the negative
instance (i.e., N ). Given each query’s candidate pool size of� 100, we derived multiple triplets. This
process yielded 3,000 triplets from the designated 40 training queries. Subsequently, we fine-tuned
an E5-L-v2 model, a RoBERTa-based text embedding variant with 355 million parameters, over a
single epoch.

L(A,P,N) = max

 
< A,N >

||A|| · ||N || �
< A,P >

||A|| · ||P || +m, 0

!
A,P,N 2 Rn,m > 0 (3)

When evaluating the model on the 60 test queries, we noted a marked improvement across all metrics
with the SCL-trained model in contrast to the pre-trained baseline. This comparison can be found in
Table 8. These positive outcomes, achieved using supervised contrastive learning on DORIS-MAE,
underscore the utility of our train/test split for model fine-tuning.

Note that Table 2 reports models performance on the full DORIS-MAE dataset. We also report
models performance on our proposed test set of 60 queries in Appendix C.4.

6 Conclusion and Future Work

This paper introduces a novel task, Scientific DOcument Retrieval using Multi-level Aspect-based
quEries (DORIS-MAE), aimed at modeling the process of information retrieval in the context of
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Table 8: Comparison of SCL vs pretrained. Standard errors are estimated by bootstrapping.

Method R@5 R@20 RP NDCGexp
10% MRR@10 MAP

SCL-trained E5-v2 19.57 ± 2.33 52.45 ± 3.17 44.47 ± 3.11 34.67 ± 3.17 23.16 ± 4.28 49.15 ± 3.14
pretrained E5-v2 14.70 ± 1.72 42.38 ± 2.59 38.24 ± 2.94 26.31 ± 2.94 14.53 ± 3.69 40.62 ± 2.85

scientific research. We also present a dataset for DORIS-MAE generated using the Anno-GPT
framework.

The results show room for improvement in the performance of current retrieval methods when dealing
with DORIS-MAE. Future studies may explore modifications to model architectures and training
procedures to better address complex, multifaceted queries.

An understanding of how noise in aspect annotation affects the overall task is an interesting point for
future investigation, as it can shed light on how errors in the automated annotations may affect the
final candidate pool ranking in DORIS-MAE.

The hierarchical structure of complex queries, as exemplified in DORIS-MAE, is an area that warrants
further attention. Future work might include the development of more sophisticated automated
query breakdown methods, potentially drawing from advances in question decomposition [36, 92],
sequence-to-sequence modelling [42, 43] and semantic parsing [76, 88, 68].

Limitations: DORIS-MAE currently contains queries and abstracts from the computer science
domain. Consequently, models trained on this dataset may not generalize well to other disciplines.
An extended, multi-domain version of DORIS-MAE is a logical direction for future work. The task
of determining aspect relevance is challenging due to the complexity of the abstracts. Improved
annotation guidelines and training (for both humans and models) may address this challenge. Finally,
while we harnessed LLMs to streamline the annotation, the generation of queries and their aspect
decomposition remains manual. We found the development of a reliable, automated query generation
pipeline difficult, but anticipate that advances in LLMs might bridge this gap in the near future.
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