
Neural Latent Geometry Search:
Product Manifold Inference via

Gromov-Hausdorff-Informed Bayesian Optimization

Haitz Sáez de Ocáriz Borde˚

Oxford Robotics Institute
University of Oxford

Álvaro Arroyo˚

Oxford-Man Institute
University of Oxford

Ismael Morales López
Mathematical Institute
University of Oxford

Ingmar Posner
Oxford Robotics Institute

University of Oxford

Xiaowen Dong
Machine Learning Research Group

University of Oxford

Abstract

Recent research indicates that the performance of machine learning models can
be improved by aligning the geometry of the latent space with the underlying
data structure. Rather than relying solely on Euclidean space, researchers have
proposed using hyperbolic and spherical spaces with constant curvature, or combi-
nations thereof, to better model the latent space and enhance model performance.
However, little attention has been given to the problem of automatically identi-
fying the optimal latent geometry for the downstream task. We mathematically
define this novel formulation and coin it as neural latent geometry search (NLGS).
More specifically, we introduce an initial attempt to search for a latent geometry
composed of a product of constant curvature model spaces with a small number
of query evaluations, under some simplifying assumptions. To accomplish this,
we propose a novel notion of distance between candidate latent geometries based
on the Gromov-Hausdorff distance from metric geometry. In order to compute
the Gromov-Hausdorff distance, we introduce a mapping function that enables
the comparison of different manifolds by embedding them in a common high-
dimensional ambient space. We then design a graph search space based on the
notion of smoothness between latent geometries, and employ the calculated dis-
tances as an additional inductive bias. Finally, we use Bayesian optimization to
search for the optimal latent geometry in a query-efficient manner. This is a gen-
eral method which can be applied to search for the optimal latent geometry for a
variety of models and downstream tasks. We perform experiments on synthetic and
real-world datasets to identify the optimal latent geometry for multiple machine
learning problems.

1 Introduction

There has been a recent surge of research employing ideas from differential geometry and topology to
improve the performance of learning algorithms [Bortoli et al., 2022, Hensel et al., 2021, Chamberlain
et al., 2021, Huang et al., 2022, Barbero et al., 2022a,b]. Traditionally, Euclidean spaces have been the
preferred choice to model the geometry of latent spaces in the ML community [Weber, 2019, Bronstein
et al., 2021]. However, recent work has found that representing the latent space with a geometry
that better matches the structure of the data can provide significant performance enhancements in

˚Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

both reconstruction and other downstream tasks [Shukla et al., 2018]. In particular, most works
have employed constant curvature model spaces such as the Poincaré ball model [Mathieu et al.,
2019], the hyperboloid [Chami et al., 2019], or the hypersphere [Zhao et al., 2019], to encode latent
representations of data in a relatively simple and computationally tractable way.

While individual model spaces have sometimes shown superior performance when compared to their
Euclidean counterparts, more recent works [Gu et al., 2018, Skopek et al., 2019, Sáez de Ocáriz Borde
et al., 2023b,a, Zhang et al., 2020, Fumero et al., 2021, Pfau et al., 2020] have leveraged the notion
of product spaces (also known as product manifolds) to model the latent space. This idea allows
to generate more complex representations of the latent space for improved performance by taking
Cartesian products of model spaces, while retaining the computational tractability of mathematical
objects such as exponential maps or geodesic distances, see Sáez de Ocáriz Borde et al. [2023b].
Despite the success of this methodology, there exists no principled way of obtaining the product
manifold signature (i.e., the choice and number of manifold components used to generate the product
manifold and their respective dimensionalities) to optimally represent the data for downstream task
performance. This procedure is typically performed heuristically, often involving a random search
over the discrete combinatorial space of all possible combinations of product manifold signatures,
which is an exceedingly large search space that hampers computational efficiency and practical
applicability. Some other work related to latent space geometry modelling can be found in Lubold
et al. [2023], Hauberg et al. [2012], Arvanitidis et al. [2017].

Contributions. 1) In this paper, we consider a novel problem setting where we aim to search for an
optimal latent geometry that best suits the model and downstream task. As a particular instance of
this setting, we consider searching for the optimal product manifold signature. Due to the conceptual
similarity with neural architecture search (NAS) strategies [Elsken et al., 2018, Zoph and Le, 2016,
Pham et al., 2018], we coin this problem as neural latent geometry search (NLGS), which we hope
will encourage additional work in the direction of optimal latent geometry inference. We test our
framework on a variety of use cases, such as autoencoder reconstruction [Mathieu et al., 2019] and
latent graph inference [Sáez de Ocáriz Borde et al., 2023b], for which we create a set of custom
datasets.

2) To search for the product manifold signature, we must be able to compare product manifolds. This
is traditionally done by computing the Hausdorff distance between manifolds [Taha and Hanbury,
2015], which however requires manifolds to reside in the same metric space. To address this limitation,
in this work we develop to our knowledge the first computational method to mathematically compare
product manifolds. Our approach generalizes classical algorithms and allows the comparison of
manifolds existing in different spaces. This is achieved by defining an isometric embedding that maps
the manifolds to a common high-dimensional ambient space, which enables the computation of their
Gromov-Hausdorff distances.

3) Leveraging the Gromov-Hausdorff distances between candidate latent space manifolds, we design
a principled and query-efficient framework to search for an optimal latent geometry, in the sense that
it yields the best performance with respect to a given machine learning model and downstream task.

Our approach consists of constructing a geometry-informed graph search space where each node in
the graph represents a unique candidate product manifold, associated with the model performance
using this manifold as its embedding space. The strength of edges in the graph are based on the inverse
of the Gromov-Hausdorff distance, thereby encoding a notion of “closeness" between manifolds
in the search space. We then perform efficient search over this space using Bayesian optimization
(BO). We compare our proposed method with other search algorithms that lack the topological prior
inherent in our model. Empirical results demonstrate that our method outperforms the baselines by a
significant margin in finding the optimal product manifold.

Outline. In Section 2 we discuss manifold learning, and product manifolds of constant curvature
model spaces such as the Euclidean plane, the hyperboloid, and the hypersphere. We also review
relevant mathematical concepts, particularly the Hausdorff and Gromov-Hausdorff distances from
metric geometry [Gopal et al., 2020]. Section 3 presents the problem formulation, the proposed
methodology to compare product manifolds, as well as how the search space over which to perform
geometry-informed Bayesian optimization is constructed. Finally, Section 4 explains how our custom

2

synthetic and real-world datasets were obtained, and the empirical results. Lastly, in Section 5 we
conclude and discuss avenues for future work.2

2 Background
Manifold Learning Manifold learning is a sub-field of machine learning that uses tools from
differential geometry to model high-dimensional datasets by mapping them to a low-dimensional
latent space. This allows researchers to analyze the underlying structure of data and improve machine
learning models by capturing the geometry of the data more accurately. Manifold learning is based
on the assumption that most observed data can be encoded within a low-dimensional manifold
(see Figure 1) embedded in a high-dimensional space [Fefferman et al., 2013]. This has seen
applications in dimensionality reduction [Roweis and Saul, 2000, Tenenbaum et al., 2000], generative
models [Goodfellow et al., 2014, Du et al., 2021, Bortoli et al., 2022], and graph structure learning
for graph neural networks (GNNs) [Topping et al., 2021]. In all these application, the key is to
find a topological representation as an abstract encoding that describes the data optimally for the
downstream task.

ϕi

ϕ´1
i ϕ´1

j

ϕj

M

Ui
Uj

ϕipUiq

Rm

ψij

ϕjpUjq

Rm

Figure 1: Schematic of a manifold M
and open subsets Ui and Uj . An open
chart is a homeomorphism of an open
subset of the manifold onto an open sub-
set of the Euclidean hyperplane. Here,
ψij is a transition function.

Product Manifolds. In this work, we model the ge-
ometry using model space Riemannian manifolds (Ap-
pendix A.1) and Cartesian products of such manifolds.
The three so-called model spaces with constant curva-
ture are the Euclidean plane, En “ EdE

KE
“ RdE , where

the curvature KE “ 0; the hyperboloid, Hn “ HdH
KH

“

txp P RdH`1 : xxp,xpyL “ 1{KHu, where KH ă 0 and
x¨, ¨yL is the Lorentz inner product; and the hypersphere,
Sn “ SdS

KS
“ txp P RdS`1 : xxp,xpy2 “ 1{KSu, where

KS ą 0 and x¨, ¨y2 is the standard Euclidean inner prod-
uct. These have associated exponential maps and distance
functions with closed form solutions, which can be found
in Appendix A.2. A product manifold can be constructed
using the Cartesian product P “

ŚnP
i“1 M

di

Ki
of nP man-

ifolds with curvature Ki and dimensionality di. Note that
both nP and di are hyperparameters that define the product
manifold P and that must be set a priori. On the other hand,
the curvature of each model space Ki can be learned via
gradient descent. One must note that the product manifold construction makes it possible to generate
more complex embedding spaces than the original constant curvature model spaces, but it does not
allow to generate any arbitrary manifold nor to control local curvature.

Hausdorff and Gromov-Hausdorff Distances for Comparing Manifolds. The Hausdorff distance
between two subsets of a metric space refers to the greatest distance between any point on the first set
and its closest point on the second set [Jungeblut et al., 2021]. Given a metric space X with metric
dX , and two subsets A and B, we can define the Hausdorff distance between A and B in X by

dXH pA,Bq “ max

ˆ

sup
aPA

dXpa,Bq, sup
bPB

dXpb, Aq

˙

. (1)

A priori this quantity may be infinite. Hence we will restrict to compact subsets A and B. In this case,
we can equivalently define dHpA,Bq as the smallest real number c ě 0 such that for every a P A and
every b P B there exist a1 P A and b1 P B such that both dXpa, b1q and dXpa1, bq are at most c.

We note that the previous definition does not require any differentiable structures on X , A and B.
They can be merely metric spaces. This generality allows us to distinguish the metric properties of
Euclidean, hyperbolic and spherical geometries beyond analytic notions such as curvature. However,
the definition in Equation 1 only allows to compare spaces A and B that are embedded in a certain
metric space X . The notion of distance that we shall consider is the Gromov-Hausdorff distance,
which we define below in Equation 3.

Given a metric space X and two isometric embeddings f : A Ñ X and g : B Ñ X , we define
dX,f,g
H pA,Bq “ dXH pfpAq, gpBqq. (2)

2For a high level description of the proposed framework, we recommend skipping to Section 3

3

Now, given two metric spaces A and B, we denote by ESpA,Bq (standing for “embedding spaces
of A and B”) as the triple pX, f, gq where X is a metric space and f : A Ñ X and g : B Ñ X are
isometric embeddings. We define the Gromov-Hausdorff distance between A and B as:

dGHpA,Bq “ inf
pX,f,gqPESpA,Bq

dX,f,g
H pfpAq, gpBqq. (3)

We should note that, since we assume that both A and B are compact, there is a trivial upper bound
for their Gromov-Hausdorff distance in terms of their diameters. The diameter of a metric space Y is
defined to be diampY q “ supy,y1PY dY py, y1q. Given a0 P A and b0 P B, we can define the isometric
embeddings f : A Ñ A ˆ B and g : B Ñ A ˆ B given by fpaq “ pa, b0q and gpbq “ pa0, bq.
It is easy to see that dAˆB,f,g

H pA,Bq ď max pdiampAq,diampBqq. Since the triple pA ˆ B, f, gq

belongs to ESpA,Bq, we can estimate dGHpA,Bq ď max pdiampAq,diampBqq . To compare En,
Hn and Sn, we propose taking closed balls of radius one in each space. Since balls of radius one in
any of these spaces are homogeneous Riemannian manifolds, they are isometric to each other. By
estimating or providing an upper bound for their Gromov-Hausdorff distance, we can compare the
spaces. This notion of distance between candidate latent geometries will later be used to generate a
search space for our framework. With exactly an analogous argument as before, we can notice that
given two compact balls of radius one B and B1, of centres x0 and x1

0, we can embed B into B ˆB1

by the mapping f : b ÞÑ pb, x1
0q. From here, it is obvious to see that dBˆB1,f,id

H pB,B ˆ B1q “ 1.
In particular, this gives us the bound dGHpB,B1q ď 1. This is the estimation we will take as the
Gromov-Hausdorff distances of product manifolds that simply differ in one coordinate (such as, say,
E2 and E2 ˆ H2).

3 Neural Latent Geometry Search: Latent Product Manifold Inference

In this section, we leverage ideas discussed in Section 2 to introduce a principled way to find the
optimal latent product manifold. First, we introduce the problem formulation of NLGS. Next, we
outline the strategy used to compute the Gromov-Hausdorff distance between product manifolds, and
we discuss how this notion of similarity can be used in practice to construct a graph search space of
latent geometries. Lastly, we explain how the Gromov-Hausdorff-informed graph search space can
be used to perform NLGS via BO.

3.1 Problem Formulation

The problem of NLGS can be formulated as follows. Given a search space G denoting the set of all
possible latent geometries, and the objective function LT,Apgq which evaluates the performance of a
given geometry g on a downstream task T for a machine learning model architecture A, the objective
is to find an optimal latent geometry g˚:

g˚ “ argmin
gPG

LT,Apgq. (4)

In our case we model the latent space geometry using product manifolds. Hence we effectively
restrict Equation 4 to finding the optimal product manifold signature:

n˚
P , tdiu

˚

iPn˚
P
, tKiu

˚

iPn˚
P

“ argmin
nPPZ,diPZ,KiPR

LT,ApnP , tdiuiPnP , tKiuiPnP q, (5)

where nP is the number of model spaces composing the product manifold P , tdiuiPnP are the dimen-
sions of each of the model spaces of constant curvature, and tKiuiPnP their respective curvatures. We
further simplify the problem by setting di “ 2, @i, and by restricting ourselves to Ki P t´1, 0, 1u, in
order to limit the size of the hypothesis space.

3.2 Quantifying the Difference Between Product Manifolds

Motivation. From a computational perspective, we can think of the Hausdorff distance as a measure
of dissimilarity between two point sets, each representing a discretized version of the two underlying
continuous manifolds we wish to compare. Taha and Hanbury [2015] proposed an efficient algorithm
to compute the exact Hausdorff distance between two point sets with nearly-linear complexity
leveraging early breaking and random sampling in place of scanning. However, the original algorithm
assumes that both point sets live in the same space and have the same dimensionality, which is a

4

limiting requirement. Gromov-Hausdorff distances, as opposed to usual Hausdorff distances, allow
us to measure the distance between two metric spaces that a priori are not embedded in a common
bigger ambient space. However, this has the caveat that they are not computable. For instance, for
our application we must calculate the distance between each pair of the following three spaces: En,
Sn and Hn. However, Sn does not isometrically embed in En and hence in order to compare En and
Sn, we must work in a higher dimensional ambient space such as En`1. In the case of Hn, finding
an embedding to a Euclidean space is more complicated and is described in Appendix B.2 (Hn will
be embedded isometrically into E6n´6). However, in this process there will be choices made about
which embeddings to consider (in particular, we cannot exactly compute the infimum that appears in
the definition of Gromov-Hausdorff distance in Equation 3). Likewise, using the original algorithm
by Taha and Hanbury [2015] it is not possible to compute the Hausdorff distance between product
manifolds based on an unequal number of model spaces, for instance, there is no way of computing
the distance between En and En

Ś

Hn. In this section we give an upper bound for dGHpEn,Snq,
and then describe an algorithm to give an upper bound for dGHpEn,Hnq and dGHpSn,Hnq.

Strategy. The spaces En and Sn isometrically embed into E6n´6 in many ways. This may seem
redundant because both spaces already embed in En`1. However, the interest of considering this
higher dimensional Euclidean space is that Hn will also isometrically embed into it. Crucially, this
will provide a common underlying space in which to compute Hausdorff distances between our
geometries En, Sn and Hn, which will lead to an estimation of their mutual Gromov-Hausdorff
distance. The embedding of Hn into E6n´6 that we shall describe appears in Henke and Nettekoven
[1987] and is made explicit in [Blanuša, 1955]. We also refer the reader to the exposition [Brander,
2003, Chapter 5], which puts this results in a broader context while also summarising related advances
on the topic of isometrically embedding homogeneous spaces into higher dimensional ones. For
n “ 2, we name this embedding F : H2 Ñ E6 (Appendix B.2). For simplicity, in our experiments in
Section 4, we will work with product manifolds generated based on constant curvature model spaces
of dimension n “ 2.

Now we can summarise our strategy to estimate dGHpBE2 , BH2q as follows (for dGHpBH2 , BS2q it
will be entirely analogous). The first step consists of approximating our infinite smooth spaces by finite
discrete ones. For this, we consider several collections of points tPiuiPI in E2 that are sufficiently well
distributed. The exponential map can be applied to the collection of points exp : T0H2 – R2 Ñ BH2

to get several collections of points Q in BH2 (again, well distributed by construction). In addition, we
will consider several isometric embeddings fk : BE2 Ñ R6. Hence, we take

dGHpBE2 , BH2q « min
i,j,k

dR
6,fk,F

H pPi, Qjq “ min
i,j,k

dR
6

H pfkpPiq, F pQjqq. (6)

In Appendix B, we gradually unravel the previous formula and give explicit examples of the involved
elements. In particular, in Appendix B.1 we explain how to generate points in the balls of radius one,
and in Appendix B.2 how to describe the isometric embedding F : BH2 Ñ E6. The results obtained
for the Gromov-Hausdorff distances between product manifolds are used to generate the graph search
space introduced in the next section.

3.3 The Gromov-Hausdorff-Informed Graph Search Space

Table 1: Estimated Gromov-Hausdorff
distances (up to two decimal places) be-
tween model spaces and corresponding edge
weights in the graph search space.

Comparison Pair dGHp¨q wp¨q

pE2,S2q 0.23 4.35
pE2,H2q 0.77 1.30
pS2,H2q 0.84 1.20

Gromov-Hausdorff Edge Weights. In Section 2, we
used Cartesian products of constant curvature model
spaces to generate candidate latent geometries. We now
turn our attention to constructing a search space to find the
optimal latent geometry. To do so, we first consider all pos-
sible combinations of product manifolds based on a given
number of model spaces, represented by ns. Furthermore,
we denote the total number of products (model spaces)
used to form the product manifold P with np. Conceptu-
ally, ns is the number of model space types used, while np
refers to the overall number, or quantity, of model spaces
that form the resulting product space. For instance, if only
the Euclidean plane, the hyperboloid, and the hypersphere

5

are taken into account, then ns “ 3. If all product mani-
fold combinations are considered, the number of elements in the search space increases to

řnp

i“1 n
i
s.

However, we assume commutativity for latent product manifolds, implying that the output of a trained
neural network with a latent geometry Mi

Ś

Mj should be the same as that with Mj

Ś

Mi. We
refer to this concept as the symmetry of parameterization, as neural networks can rearrange the weight
matrices of their neurons to achieve optimal performance for two equivalent latent manifolds. This
assumption reduces the search space from growing exponentially to Opn2pq, assuming three constant
curvature model spaces are considered (see Appendix B.5 for a more complete explanation).

H2
Ś

H2

E2
Ś

H2S2
Ś

H2

E2
Ś

E2E2
Ś

S2S2
Ś

S2

Figure 2: Slice of the graph search space for la-
tent geometries of dimension 4: product manifolds
obtained using 2 models spaces of dimension 2.
The graph edges are shown in different colours
to depict a different degree of connectivity (black:
wE2,S2 , red: wE2,H2 , blue: wS2,H2), this is deter-
mined by the inverse of the Gromov-Hausdorff
distance between the different product manifolds.

We model the search space as a graph over which we
perform BO. More formally, we consider a graph G
given by pV, Eq, where V “ tviu

N
i“1 are the nodes

of the graph and E “ tejuMj“1 is the set of edges,
where edge ej “ pvi, vjq connects nodes vi and vj .
The topology of the graph is encoded in its adjacency
matrix, which we denote with A P RNˆN . In our
case, we focus on a weighted and undirected graph,
meaning that Ai,j “ Aj,i, and Ai,j can take any
positive real values. We consider a setting in which
the function fp¨q to minimize is defined over the nodes
of the graph, and the objective of using BO is to
find the node associated to the minimum value v˚ “

argminvPV fpvq.

In our setting, each node in the graph represents a
different latent space product manifold, and the value
at that node is the validation set performance of a
neural network architecture using this latent geometry.
We use the inverse of the Gromov-Hausdorff distance
between product manifolds to obtain edge weights.

We denote by wM1,M2 (edge weights) the inverse Gromov-Hausdorff distance between model spaces
M1 and M2. The approximate values of these coefficients are presented in Table 1. In particular,
the Gromov-Hausdorff distance dGHpE2,S2q used to compute wE2,S2 is derived analytically in
Appendix B.3, while the remaining coefficients are obtained through computational approximations
of Equation 6, which are depicted in Appendix B.4. Further, the Gromov-Hausdorff distance between
manifolds of different dimensions is one (see Section 2).

Figure 3: Example graph search space for prod-
uct manifolds composed of up to seven model
spaces. Manifolds of different dimensionality are
connected with edges coloured grey. Node labels
have been omitted for visual clarity.

In order to impose additional structure on the search
space, we only allow connections between nodes cor-
responding to product manifolds which differ by a
single model space. For example, within the same
dimension, S2 ˆ H2 and E2 ˆ H2 would be con-
nected with edge weighting wE2,S2 while S2 ˆ H2

and E2 ˆ E2 would have no connection in the graph.
Furthermore, product manifolds in different dimen-
sions follow the same rule. For instance, we would
have a connection of strength one between E2 ˆ H2

and E2 ˆ H2 ˆ H2, but no connection between, for
instance, E2 and E2 ˆ H2 ˆ H2 or S2 and E2 ˆ H2.
This construction induces a sense of directionality
into the graph and generates clusters of product man-
ifolds of the same dimension. Finally, it should
be mentioned that in practice there are only four
edge weights. For example, the connectivity strength
between E2 ˆ H2 and H2 ˆ H2 is wE2,H2 since
dGHpE2 ˆH2,H2 ˆH2q “ dGHpE2,H2q given that
dGHpH2,H2q “ 0. Visual representations of the
graph search space can be found Figures 2 and 3.
Note that both figures use the same colour scheme,
and in Figure 3 there is an increase in the dimen-

6

sionality of the product manifolds from left to right
(e.g. on the top left corner, one can see a triangle
corresponding to the three model spaces). We refer the reader to Appendix B.6 for additional
visualizations.

Bayesian Optimization over the Graph Search Space. We aim to find the minimum point within
the graph search space through the use of BO (see Appendix C). While performing BO on graphs
allows us to search for the minimum over a categorical search space, some of the key notions used
in BO over Eucledian spaces do not translate directly when operating over a graph. For example,
notions of similarity or “closeness" which are trivially found in Eucledian space through the ℓ1 or ℓ2
norms require more careful consideration when using graphs.

In our setting, we employ a diffusion kernel [Smola and Kondor, 2003, Kondor and Vert, 2004]
to compute the similarity between the nodes in the graph. The diffusion kernel is based on the
eigendecomposition of the graph Laplacian L P RNˆN , defined as L “ D´A where D is the degree
matrix of the graph. In particular, the eigendecomposition of the Laplacian is given by L “ UΛUT,
where U “ ru1, . . . ,uN s is a matrix containing eigenvectors as columns and Λ “ diagpλ1, . . . , λN q

is a diagonal matrix containing increasingly ordered eigenvalues. The covariance matrix used to
define the GP over the graph is given by

KpV,Vq “ Ue´βΛUT, (7)

where β is the lengthscale parameter. Our approach is therefore conceptually similar to that of [Oh
et al., 2019], which employ a diffusion kernel to carry out a NAS procedure on a graph Cartesian
product. We highlight, however, that the main contribution of this work is the construction of the
graph search space, and we employ this search procedure to showcase the suitability of our method
in finding the optimal latent product manifold. For reference, we note that other works employing
Bayesian optimization in graph-related settings include Cui and Yang [2018], Como et al. [2020],
Ma et al. [2019], Ru et al. [2020], Cui et al. [2020], Wan et al. [2021].

4 Experimental Setup and Results

In this section, a detailed outline of the experimental results is provided. It comprises of experiments
performed on synthetic datasets, as well as experimental validation on custom-designed real-world
datasets obtained by morphing the latent space of mixed-curvature autoencoders and latent graph
inference. The results demonstrate that the Gromov-Hausdorff-informed graph search space can be
leveraged to perform NLGS across a variety of tasks and datasets.

4.1 Synthetic Experiments on Product Manifold Inference

In order to evaluate the effectiveness of the proposed graph search space, we conduct a series of tests
using synthetic data. We wish to present a setting for which the latent optimal product manifold
is known by construction. To do so, we start by generating a random vector x and mapping it to a
“ground truth” product manifold PT , which we choose arbitrarily, using the corresponding exponential
map. The resulting projected vector is then decoded using a neural network with frozen weights,
fθ, to obtain a reference signal yPT , which we wish to recover using NLGS. To generate the rest
of the dataset, we then consider the same random vector but map it to a number of other product
manifolds tPiuiPnP with the same number of model spaces as PT but different signatures. Decoding
the projected vector through the same neural network yields a set of signal, tyPiuiPnP . We use the
aforementioned signals, to set the value associated with each node of the graph search space to be
MSEpyPT , yPiq. In this way, our search algorithm should aim to find the node in the graph that
minimizes the error and hence find the latent geometry that recovers the original reference signal.

Our method consists in using BO over our Gromov-Hausdorff-informed search space. We compare it
against random search, and what we call “Naive BO”, which performs BO over a fully-connected
graph which disregards the Gromov-Hausdorff distance between candidate latent geometries. The
figures presented, namely Figures 4 and 5, display the results. Each plot illustrates the performance
of the algorithms and baselines as they select different optimal latent product manifolds denoted as
PT . Notably, the figures demonstrate that the algorithm utilizing the Gromov-Hausdorff-informed
search space surpasses all other baselines under consideration and consistently achieves the true

7

function minimum. Figure 4 generally requires fewer iterations compared to Figure 5 to attain
the global minimum, primarily due to the smaller size of the search space. It is important to note
that our benchmark solely involves the same algorithm but with a change in the search space to a
topologically uninformative one. This modification allows us to evaluate the impact of incorporating
this information into the optimization process. We have not considered other benchmarks such as
evolutionary algorithms since they always rely on a notion of distance between sampled points.
Furthermore, as there are no existing algorithms to compute the distance between arbitrary product
manifolds, we have not included these methods in our benchmark as they would simply converge to
random search. All results are shown on a log scale, and we apply a small offset of ε “ 10´3 to the
plots to avoid computing logp0q when the reference signal is found.

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

GH BO
Naive BO
Random

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1
M

in
im

um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2
M

in
im

um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

Figure 4: Results (mean and standard deviation over 10 runs) for candidate latent geometries involving
product manifolds composed of 13 model spaces. For each plot a different ground truth product
manifold PT is used to generate the reference signal.

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

GH BO
Naive BO
Random

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

M
in

im
um

Figure 5: Results (mean and standard deviation over 10 runs) for candidate latent geometries involving
product manifolds composed of 20 model spaces. Same setup as above.

8

4.2 Experiments on Real-World Datasets

To further validate our method, we conduct additional tests using image and graph datasets.
Specifically, we focus on image reconstruction and node classification tasks.

Image Reconstruction with Autoencoder

We consider four well-known image datasets: MNIST [Deng, 2012], CIFAR-10 [Krizhevsky et al.,
2014], Fashion MNIST [Xiao et al., 2017] and eMNIST [Cohen et al., 2017]. Some of these datasets
have been shown to benefit from additional topological priors, see Khrulkov et al. [2020] and Moor
et al. [2020]. We use an autoencoder, detailed more thoroughly in Appendix D, to encode the image
in a low dimensional latent space and then reconstruct it based on its latent representation. To test the
performance of different latent geometries, we project the latent vector onto the product manifold
being evaluated and use the reconstruction loss at the end of training as the reference signal to use
in the graph search space. We consider a search space size of np “ 7 for MNIST and np “ 8 for
CIFAR-10, Fashion MNIST and eMNIST. The results are displayed in Figure 6. In line with previous
experiments, the Gromov-Hausdorff-informed search graph enables us to find better solutions in a
smaller amount of evaluations.

0 10 20 30 40 50
Iterations

−6

−5

−4

−3

−2

M
in

im
um

MNIST
GH BO
Naive BO
Random

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

CIFAR-10

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

fMNIST

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

eMNIST

Figure 6: Results (mean and standard deviation over 10 runs) for image reconstruction tasks.

Latent Graph Inference

Finally, we consider searching for the optimal product manifold for a graph neural network node
classification task using latent graph inference. In particular, we build upon previous work by Sáez de
Ocáriz Borde et al. [2023b] which used product manifolds to produce richer embeddings spaces for
latent graph inference. We consider the Cora [Sen et al., 2008] and Citeseer [Giles et al., 1998] citation
network datasets, and a search space consisting of product manifolds of up to seven model spaces
np “ 7. The aim is to find the latent space which gives the best results for the node classification
problem using minimal query evaluations. Performing BO alongside the Gromov-Hausdorff informed
search space gives a clear competitive advantage over Naive BO and random search in the case of
Cora. For Citeseer, the experiments do not give such a clear-cut improvement, which can be attributed
to the lack of smoothness of the signal on the graph search space and its incompatibility with the
intrinsic limitations of the diffusion kernel.

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

−2

−1

M
in

im
um

Cora
GH BO
Naive BO
Random

0 10 20 30 40 50
Iterations

−7

−6

−5

−4

−3

M
in

im
um

CiteSeer

Figure 7: Results (mean and standard deviation over 10 runs) for latent graph inference datasets.

9

5 Conclusion

In this work, we have introduced neural latent geometry search (NLGS), a novel problem formulation
that consists in finding the optimal latent space geometry of machine learning algorithms using
minimal query evaluations. In particular, we have modeled the latent space using product manifolds
based on Cartesian products of constant curvature model spaces. To find the optimal product manifold,
we propose using Bayesian Optimization over a graph search space. The graph is constructed based
on a principled measure of similarity, utilizing the Gromov-Hausdorff distance from metric geometry.
The effectiveness of the proposed method is demonstrated through our experiments conducted on a
variety of tasks, based on custom-designed synthetic and real-world datasets.

Limitations and Future Work. While the NLGS framework is general, we have restricted ourselves
to using product manifolds of constant curvature model spaces to model the geometry of the latent
space. Furthermore, we have only considered curvatures t´1, 0, 1u, and model spaces of dimension
two in order for the optimization problem to be tractable. In future research, there is potential to
explore alternative approaches for modeling the latent space manifold. Additionally, the field of
Bayesian Optimization over graphs is still in its early stages. Incorporating recent advancements
in the area of kernels on graphs [Borovitskiy et al., 2021, Zhi et al., 2023] could lead to improved
performance. In our current research, our emphasis is on introducing NLGS and providing an initial
solution under a set of simplifying assumptions related to the potential latent manifolds available and
the optimization algorithm. The investigation of the impact of using different similarity measures to
compare latent structures also remains a subject for future research.

Societal Impact Statement

This work is unlikely to result in any harmful societal repercussions. Its primary potential lies in its
ability to enhance and advance existing data modelling and machine learning methods.

Acknowledgement

AA thanks the Rafael del Pino Foundation for financial support. AA and HSOB thank the Oxford-Man
Institute for computational resources. AA acknowledges the G-Research grant for travel assistance.
XD acknowledges support from the Oxford-Man Institute and the EPSRC (EP/T023333/1).

References
Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of

deep generative models. arXiv preprint arXiv:1710.11379, 2017.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar Veličković,
and Pietro Liò. Sheaf neural networks with connection laplacians. In Topological, Algebraic and
Geometric Learning Workshops 2022, pages 28–36. PMLR, 2022a.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, and Pietro Liò. Sheaf attention
networks. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations,
2022b.

Danilo Blanuša. Über die Einbettung hyperbolischer Räume in euklidische Räume. Monatsh. Math.,
59:217–229, 1955.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Deisenroth,
and Nicolas Durrande. Matérn gaussian processes on graphs. In International Conference on
Artificial Intelligence and Statistics, pages 2593–2601. PMLR, 2021.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
A. Doucet. Riemannian score-based generative modeling. ArXiv, abs/2202.02763, 2022.

David Brander. Isometric embeddings between space forms. 2003. Master thesis.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021.

10

Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen Dong,
and Michael Bronstein. Beltrami flow and neural diffusion on graphs. Advances in Neural
Information Processing Systems, 34:1594–1609, 2021.

Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks, 2019.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to
handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pages
2921–2926. IEEE, 2017.

Giacomo Como, Raffaele Damiano, and Fabio Fagnani. Discrete bayesian optimization algorithms
and applications. 2020.

Jiaxu Cui and Bo Yang. Graph bayesian optimization: Algorithms, evaluations and applications.
ArXiv, abs/1805.01157, 2018.

Jiaxu Cui, Bo Yang, Bingyi Sun, Xia Ben Hu, and Jiming Liu. Scalable and parallel deep bayesian
optimization on attributed graphs. IEEE Transactions on Neural Networks and Learning Systems,
33:103–116, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Yilun Du, Katherine Collins, Joshua B. Tenenbaum, and Vincent Sitzmann. Learning signal-agnostic
manifolds of neural fields. In Neural Information Processing Systems, 2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. J.
Mach. Learn. Res., 20:55:1–55:21, 2018.

Charles Fefferman, Sanjoy K. Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
arXiv: Statistics Theory, 2013.

Marco Fumero, Luca Di Cosmo, Simone Melzi, and Emanuele Rodolà. Learning disentangled
representations via product manifold projection. ArXiv, abs/2103.01638, 2021.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Dhananjay Gopal, Aniruddha V. Deshmukh, Abhay S. Ranadive, and Shubham Yadav. An introduc-
tion to metric spaces. 2020.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. In International Conference on Learning Representations, 2018.

Søren Hauberg, Oren Freifeld, and Michael Black. A geometric take on metric learning. Advances in
Neural Information Processing Systems, 25, 2012.

Wolfgang Henke and Wolfgang Nettekoven. The hyperbolic n-space as a graph in Euclidean
p6n´ 6q-space. Manuscripta Math., 59(1):13–20, 1987.

Felix Hensel, Michael Moor, and Bastian Alexander Rieck. A survey of topological machine learning
methods. Frontiers in Artificial Intelligence, 4, 2021.

Chin-Wei Huang, Milad Aghajohari, A. Bose, P. Panangaden, and Aaron C. Courville. Riemannian
diffusion models. ArXiv, abs/2208.07949, 2022.

Paul Jungeblut, Linda Kleist, and Tillmann Miltzow. The complexity of the hausdorff distance. In
International Symposium on Computational Geometry, 2021.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Differ-
entiable graph module (DGM) for graph convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2022.

11

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6418–6428, 2020.

Risi Kondor and Jean-Philippe Vert. Diffusion kernels. kernel methods in computational biology,
pages 171–192, 2004.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55(5), 2014.

Shane Lubold, Arun G Chandrasekhar, and Tyler H McCormick. Identifying the latent space geometry
of network models through analysis of curvature. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 85(2):240–292, 2023.

Lizheng Ma, Jiaxu Cui, and Bo Yang. Deep neural architecture search with deep graph bayesian
optimization. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages
500–507, 2019.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye Teh. Contin-
uous hierarchical representations with poincaré variational auto-encoders. Advances in neural
information processing systems, 32, 2019.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for
seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In
International conference on machine learning, pages 7045–7054. PMLR, 2020.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian
optimization using the graph cartesian product. Advances in Neural Information Processing
Systems, 32, 2019.

David Pfau, Irina Higgins, Aleksandar Botev, and Sébastien Racanière. Disentangling by subspace
diffusion. ArXiv, abs/2006.12982, 2020.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. ArXiv, abs/1802.03268, 2018.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 2000.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. arXiv preprint arXiv:2006.07556,
2020.

Haitz Sáez de Ocáriz Borde, Alvaro Arroyo, and Ingmar Posner. Projections of model spaces for
latent graph inference. In ICLR 2023 Workshop on Physics for Machine Learning, 2023a.

Haitz Sáez de Ocáriz Borde, Anees Kazi, Federico Barbero, and Pietro Lio. Latent graph inference
using product manifolds. The Eleventh International Conference on Learning Representations,
2023b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Ankita Shukla, Shagun Uppal, Sarthak Bhagat, Saket Anand, and Pavan K. Turaga. Geometry of deep
generative models for disentangled representations. Proceedings of the 11th Indian Conference on
Computer Vision, Graphics and Image Processing, 2018.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoen-
coders. arXiv preprint arXiv:1911.08411, 2019.

12

Alexander J Smola and Risi Kondor. Kernels and regularization on graphs. In Learning Theory
and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings, pages 144–158.
Springer, 2003.

Abdel Aziz Taha and Allan Hanbury. An efficient algorithm for calculating the exact hausdorff
distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37:2153–2163, 2015.

Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 2000.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. ArXiv,
abs/2111.14522, 2021.

X. Wan, H. Kenlay, B. Ru, A. Blaas, M. A. Osborne, and X. Dong. Adversarial attacks on graph
classifiers via bayesian optimisation. Conference on Neural Information Processing Systems, 2021.

Melanie Weber. Curvature and representation learning: Identifying embedding spaces for relational
data. 2019.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Sharon Zhang, Amit Moscovich, and Amit Singer. Product manifold learning. In International
Conference on Artificial Intelligence and Statistics, 2020.

Deli Zhao, Jiapeng Zhu, and Bo Zhang. Latent variables on spheres for autoencoders in high
dimensions. arXiv: Learning, 2019.

Yin-Cong Zhi, Yin Cheng Ng, and Xiaowen Dong. Gaussian processes on graphs via spectral kernel
learning. IEEE Transactions on Signal and Information Processing over Networks, 2023.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. ArXiv,
abs/1611.01578, 2016.

13

A Additional Background

A.1 Differential Geometry, Riemmanian Manifolds, and Product Manifolds

Differential geometry is a mathematical discipline that employs rigorous mathematical techniques,
including calculus and other mathematical tools, to investigate the properties and structure of smooth
manifolds. These manifolds, despite bearing a local resemblance to Euclidean space, may exhibit
global topological features that distinguish them from Euclidean space. The fundamental objective
of differential geometry is to elucidate the geometric properties of these spaces, such as curvature,
volume, and length, through rigorous mathematical analysis and inquiry.

A Riemannian manifold generalizes Euclidean space to more curved spaces, and it plays a critical
role in differential geometry and general relativity. A Riemannian manifold is a smooth manifold M
equipped with a Riemannian metric g, which assigns to each point p in M an inner product on the
tangent space TpM . This inner product is a smoothly varying positive definite bilinear form on the
tangent space given by gp : TpM ˆ TpM Ñ R, which satisfies the following properties: symmetry,
gppX,Y q “ gppY,Xq for all X,Y P TpM ; linearity, gppaX ` bY, Zq “ agppX,Zq ` bgppY,Zq

for all X,Y, Z P TpM and scalars a, b P R; positive definiteness: gppX,Xq ą 0 for all non-zero
X P TpM . The metric gp induces a norm ||.||p on TpM given by ||X||p “

a

gppX,Xq. This norm
allows us to define the length of curves on the manifold, and hence a notion of distance between
points. Specifically, given a curve c : r0, 1s Ñ M and a partition 0 “ t0 ă t1 ă ... ă tn “ 1, the
length of the curve c over the partition is given by: Lpcq “

ř

||c1ptiq||cptiq, where c1ptiq denotes the
tangent vector to c at time ti, and || ¨ ||cptiq denotes the norm induced by the metric at the point cptiq.
The total length of the curve is obtained by taking the limit of the sum as the partition becomes finer.

On the other hand, a product manifold results from taking the Cartesian product of two or more
manifolds, resulting in a manifold with a natural product structure. This enables researchers to
examine the local and global geometry of the product manifold by studying the geometry of its
individual factors. Riemannian manifolds and product manifolds are essential mathematical concepts
that have far-reaching applications in diverse fields such as physics, engineering, and computer
science. In the appendix of this paper, we provide a more in-depth look at these concepts, including
their properties and significance.

A.2 Constant Curvature Model Spaces

A manifold M is a topological space that can be locally identified with Euclidean space using smooth
maps. In Riemannian geometry, a Riemannian manifold or Riemannian space pM, gq is a real and
differentiable manifold M where each tangent space has an associated inner product g known as
the Riemannian metric. This metric varies smoothly from point to point on the manifold and allows
for the definition of geometric properties such as lengths of curves, curvature, and angles. The
Riemannian manifold M Ď RN is a collection of real vectors that is locally similar to a linear space
and exists within the larger ambient space RN .

Curvature is effectively a measure of geodesic dispersion. When there is no curvature geodesics stay
parallel, with negative curvature they diverge, and with positive curvature they converge. Constant
curvature model spaces are Riemannian manifolds with a constant sectional curvature, which means
that the curvature is constant in all directions in a 2D plane (this can be generalized to higher
dimensions). These spaces include the Euclidean space, the hyperbolic space, and the sphere. The
Euclidean space has zero curvature, while the hyperbolic space has negative curvature and the sphere
has positive curvature. Constant curvature model spaces are often used as reference spaces for
comparison in geometric analysis and machine learning on non-Euclidean data.

Euclidean space,

EdE
KE

“ RdE (8)

is a flat space with curvature KE “ 0. We note that in this context, the notation dE is used to
represent the dimensionality. In contrast, hyperbolic and spherical spaces possess negative and
positive curvature, respectively. We define hyperboloids HdH

KH
as

14

HdH
KH

“ txp P RdH`1 : xxp,xpyL “ 1{KHu, (9)

where KH ă 0 and x¨, ¨yL is the Lorentz inner product

xx,yyL “ ´x1y1 `

dH`1
ÿ

j“2

xjyj , @x,y P RdH`1, (10)

and hyperspheres SdS
KS

as

SdS
KS

“ txp P RdS`1 : xxp,xpy2 “ 1{KSu, (11)

where KS ą 0 and x¨, ¨y2 is the standard Euclidean inner product

xx,yy2 “

dS`1
ÿ

j“1

xjyj , @x,y P RdS`1, (12)

Table 2 summarizes the key operators in Euclidean, hyperbolic, and spherical spaces with arbitrary
curvatures. It is worth noting that the three model spaces discussed above can cover any curvature
value within the range of p´8,8q. However, there is a potential issue with the hyperboloid and
hypersphere becoming divergent as their respective curvatures approach zero. This results in the
manifolds becoming flat, and their distance and metric tensors do not become Euclidean at zero-
curvature points, which could hinder curvature learning. Therefore, stereographic projections are
considered to be suitable alternatives to these spaces as they maintain a non-Euclidean structure and
inherit many of the properties of the hyperboloid and hypersphere.

Table 2: Relevant operators (exponential maps and distances between two points) in Euclidean,
hyperbolic, and spherical spaces with arbitrary constant curvatures.

Space Model expxp
pxq dpx,yq

E, Euclidean xp ` x ||x ´ y||2
H, hyperboloid cosh

`?
´KH||x||

˘

xp ` sinh
`?

´KH||x||
˘

x?
´KH||x||

1?
´KH

arccosh pKHxx,yyLq

S, hypersphere cos
`?
KS||x||

˘

xp ` sin
`?
KS||x||

˘

x?
KS||x||

1?
KS

arccos pKSxx,yy2q

A.3 Constructing Product Manifolds

In this appendix, we provide additional details about the generation of product manifolds. In
mathematics, a product manifold is a type of manifold obtained by taking the Cartesian product
of two or more manifolds. Informally, a product manifold can be thought of as a space formed by
taking multiple smaller spaces and merging them in a way that maintains their individual structures.
For instance, the surface of a sphere can be seen as a product manifold consisting of two real lines
that intersect at each point on the sphere. Product manifolds play a crucial role in various fields of
mathematics, including physics, topology, and geometry.

A product manifold can be defined as the Cartesian product:

P “

nP
ą

i“1

Mdi

Ki (13)

Here, Ki and di represent the curvature and dimensionality of the space, respectively. Points xp P P
are expressed using their coordinates:

15

xp “ concat
´

xp1q
p ,xp2q

p , ...,xpnPq
p

¯

: xpiq
p P Mdi

Ki
. (14)

Also, the metric of the product manifold decomposes into the sum of the constituent metrics

gP “

nP
ÿ

i“1

gi, (15)

hence, pP, gPq is also a Riemannian manifold. It should be noted that the signature of the product
space is parametrized with several degrees of freedom. These include the number of components
used in the product space, the type of model spaces employed, their dimensionality, and curvature. If

we restrict P to be composed of the Euclidean plane EdE
KE

, hyperboloids HdH
j

KH
j

, and hyperspheres Sd
S
k

KS
k

of constant curvature, we can rewrite Equation 13 as

P “ EdE
KE

ˆ

˜

nH
ą

j“1

HdH
j

KH
j

¸

ˆ

˜

nS
ą

k“1

Sd
S
k

KS
k

¸

, (16)

where KE “ 0, KH
j ă 0, and KS

k ą 0. Hence, P would have a total of 1 ` nH ` nS component
spaces, and total dimension dE ` ΣnH

j“1d
H
j ` ΣnS

k“1d
S
k. Distances between two points in the product

manifold can be computed aggregating the distance contributions di from each manifold composing
the product manifold:

dPpxp1
,xp2

q “

g

f

f

e

nP
ÿ

i“1

di

´

xpiq
p1
,xpiq

p2

¯2

. (17)

The overline denotes that the points xp1 and xp2 have been adequately projected on to the product
manifold using the exponential map before computing the distances.

A.4 The Rationale Behind using Product Manifolds of Model Spaces

Most arbitrary Riemannian manifolds do not have closed-form solutions for their exponential maps
and geodesic distances between points, as well as for other relevant mathematical notions. The
exponential map takes a point on the manifold and exponentiates a tangent vector at that point to
produce another point on the manifold. The geodesic distance between two points on a manifold is
the shortest path along the manifold connecting those points.

For simple, well-studied manifolds like Euclidean space, hyperbolic space, and spherical space,
closed-form solutions for exponential maps and geodesic distances are available. This is because these
manifolds have constant curvature, which allows for more straightforward calculations. However,
for most other manifolds, the exponential map and geodesic distances must typically be computed
numerically or approximated using specialized algorithms. These computations often involve solving
differential equations, and depending on the manifold’s curvature and geometry, these solutions can be
quite complex and may not have closed-form expressions. For certain types of manifolds, like product
manifolds where each factor is a well-understood manifold, the computation of exponential maps
and geodesic distances can sometimes be simplified due to the separability of the metric. However,
scaling these methods to more general, complex manifolds can be challenging and computationally
intensive.

As mentioned, closed-form solutions for exponential maps and geodesic distances are not common for
arbitrary Riemannian manifolds, and computational methods often rely on numerical techniques and
algorithms due to the complexity of these calculations. These properties have made product manifolds
the most attractive tool to endow the latent space with richer structure while retaining computational
traceability, see [Gu et al., 2018, Skopek et al., 2019, Sáez de Ocáriz Borde et al., 2023b,a, Zhang
et al., 2020, Fumero et al., 2021, Pfau et al., 2020]. This motivates us to use product manifolds in
our setup, which keeps our work in line with the state-of-the-art approaches in the literature. We
highlight that one of the central contributions of our paper is to shed light on the problem of NLGS,
and provide an initial solution to the problem in the context of the current state-of-the-art in geometric

16

latent space modelling. Future research avenues could explore generalizations of this which account
for new techniques that emerge in the literature, potentially comparing a more general set of latent
manifolds.

A.5 Geometry of Negative Curvature: Further Discussion

Lastly, in this appendix, we aim to provide an intuition regarding closed balls in spaces of curvature
smaller than zero. The hyperbolic spaces we consider in this article are hyperbolic manifolds (that
is, hyperbolic in the differentiable sense). However, there are other generalisations of the notion of
hyperbolicity that carry over to the setting of geodesic metric spaces (such as Gromov hyperbolicity).
This theory unifies the two extremes of spaces of negative curvature, the real hyperbolic spaces
Hn and trees. Recall that a tree is a simple graph that does not have closed paths. Trees provide a
great intuition for the metric phenomena that we should expect in spaces of negative curvature. For
example, let us denote by G an infinite planar grid (observe that this graph is far from being a tree),
and let us denote by T a regular tree of valency 4 (this means that every vertex in T is connected to
exactly other four vertices). The 2-dimensional Euclidean space E2 is quasi-isometric to G and the
2-dimensional real hyperbolic space H2 is quasi-isometric (but not isometric) to T . This observation
is due to Švarc and Milnor. Recall that the graphs G and T are endowed with the natural path metric.
A ball of radius n ą 0 in G has between n2 and 4n2 points (polynomial in n), while a ball of radius
n in T has exactly p4n ´ 1q{3 points (exponential in n). Now let us come back to H3, where the
“continuous” analogue of this principle is also true; that is, that there exists a constant c ą 1 such that
for every n ą 0, one needs at least cn balls of radius one to cover a ball of radius n in H3. If we only
want to understand the local geometry of H3, we can re-scale this principle to say the following. Let
BH3

1 denote the ball of radius one in H3. For all positive integers n ą 0, one needs at least cn balls
of radius 1{n to cover BH3

1 . This tree-like behaviour should be compared with the opposite principle
that holds in E3, being that for all n ą 0, one needs at most 8n3 (a polynomial bound) of balls of
radius one to cover BE3

1 . Essentially, we should think of BH3
1 as a manifold that is isomorphic to BE3

1
which is difficult to cover by balls of smaller radius, in fact, it will be coarsely approximated by a
finite tree of balls of small radius (the underlying tree being bigger as the chosen radius is smaller).
Furthermore, the philosophy that travelling around BH3

1 becomes more and more expensive as we
leave the origin is made accurate with the consideration of divergence functions: geodesics in H3

witness exponential divergence. More precisely, there exists a constant c ą 1 such that for every
r ą 0 and for every geodesic γ : R ÝÑ H3 passing through the origin at time t “ 0 it is true that if
α is a path that connects γp´rq and γprq and that lies entirely outside of the ball of radius dp0, γprqq,
then α must have length at least cr. Again, this is better appreciated when put in comparison with the
Euclidean space E3. Any geodesic (any line) γ : R ÝÑ E3 passing through the origin at time t “ 0
will have the property that for all r ą 0 there is a path of length πr ` ε, with ε ą 0 arbitrarily small,
that lies entirely outside of the ball of radius r with centre at the origin. The length πr ` ε is linear in
r, as opposed to the exponential length that is required in hyperbolic spaces.

B Further Details on the Gromov-Hausdorff Algorithm for Neural Latent
Geometry Search

As discussed in Section 3, there are limitations to the Hausdorff distance as a metric for comparing
point sets that represent discretized versions of continuous manifolds. The original algorithm by Taha
and Hanbury [2015] for computing the Hausdorff distance assumes that the point sets reside in the
same space with the same dimensionality, which is a limiting requirement. However, the Gromov-
Hausdorff distance proposed in this work allows us to compare metric spaces that are not embedded
in a common ambient space, but it is not exactly computable. We will focus on providing an upper
bound for dGHpEn,Snq and describing an algorithm for obtaining upper bounds for dGHpEn,Hnq

and dGHpSn,Hnq too. As previously mentioned, En and Sn can be isometrically embedded into
E6n´6 in many ways, which provides a common underlying space for computing Hausdorff distances
between En, Sn, and Hn. The embeddings of different spaces require making choices: in particular,
there is no way to exactly compute the infimum in the definition of Gromov-Hausdorff distance given
in Section 2:

17

dGHpA,Bq “ inf
pX,f,gqPESpA,Bq

dX,f,g
H pfpAq, gpBqq. (18)

so we resort to numerical approximations which are later described in this appendix.

To estimate the mutual Gromov-Hausdorff distance between the infinite smooth spaces E2 and H2,
the first step is to approximate them using finite discrete versions. This is done by considering
well-distributed collections of points in E2 and H2, obtained by applying the exponential map to a
collection of points in R2. Multiple isometric embeddings of E2 into R6 are also considered. The
estimation is obtained by computing the minimum of the Hausdorff distance between the point sets
obtained from the collections in R6 and the isometric embedding of H2 into R6. The same applies
for spherical space.

B.1 Generating Points in the Corresponding Balls of Radius One

All our computations will be done in dimension two, so we will simply precise how to generate points
in BE2 , BS2 and BH2 . For BE2 and BS2 , we will use very elementary trigonometry. For BH2 , we will
need an explicit description of the exponential map of H2. Using the descriptions

BE2 “ tpr cosptq, r sinptqq : r P r0, 1s, t P r0, 2πqu, (19)

and

BS2 “ tpsinpβq cospαq, sinpβq sinpαq, cospβqq : α P r0, 2πq, β P r0, 1su, (20)

it will be easy to generate collections of points in BE2 and BS2 . As we anticipated above in the
outline of our strategy to estimate dGHpBE2 , BH2q, in order to give explicit well-distributed collection
of points in BH2 , it is enough to give a well-distributed collection of points in BE2 and consider
its image under the exponential map exp0 : BE2 Ñ BH2 , where we have identified BE2 with
the ball of radius one of R2 – T0H2, i.e. the tangent space of H2 at the point 0. However, we
should remark that our description of Hn will not be any of the three most standard ones: namely
the hyperboloid model, the the Poincaré ball model, or the upper half-plane model. We describe
Hn as the differentiable manifold Rn (of Cartesian coordinates x, y1, . . . , yn´1) equipped with the
Riemannian metric g´1 “ dx2 ` e2xpdy21 ` ¨ ¨ ¨dy2n´1q. This metric is complete and has constant
sectional curvature of -1, which implies that pRn, g´1q is isometric to Hn. In the hyperboloid model
of H2, we view this space as a submanifold of R3 (although with a distorted metric, not the one
induced from the ambient R3). In this model of H2, one can explicitly describe by the following
assignment exp0 : R2 Ñ H2 by

px, yq ÞÑ

˜

x sinhp
a

x2 ` y2q
a

x2 ` y2
,
y sinhp

a

x2 ` y2q
a

x2 ` y2
, coshp

a

x2 ` y2q

¸

. (21)

We use this explicit formula of the exponential map with coordinates in the hyperboloid model of
H2, to give a explicit formula for the exponential map with coordinates in the model of H2 that we
introduced above, denoted by pR2, g´1q. In order to change coordinates from the hyperboloid model
to the Poincaré ball model, we use the following isometry (which is well-known and can be thought
of as a hyperbolic version of the stereographic projection from S2 to R2):

px, y, zq ÞÑ

ˆ

x

1 ` z
,

y

1 ` z

˙

. (22)

To change coordinates from the Poincaré ball model to the upper half-plane model, one can use the
following isometry:

px, yq ÞÑ

ˆ

´2y

px´ 1q2 ` y2
,
1 ´ x2 ´ y2

px´ 1q2 ` y2

˙

. (23)

18

The previous assignment comes from the standard Möbius transformation z ÞÑ z`i
iz`1 that identifies

the Euclidean ball of radius one of C and the upper half plane of C as Riemann surfaces (which we
give explicitly in this case, although it is known to exist and to be unique by the classical Riemann
mapping theorem). Finally, to go from coordinates in the upper half-plane model of H2 to our model
pR2, g´1q, we use the isometry

px, yq Ñ p´ log y, xq. (24)

B.2 Embedding of Hn into E6n´6

We want to define an isometric embedding of B1
Hn into E6n´6 (F from Section 3.2). This higher

dimensional space is our candidate to fit in the three geometries En, Hn and Sn to compute their
Hausdorff dimensions as subspaces of E6n´6 and hence estimate their Gromov-Hausdorff distances.
Before describing such embedding, we introduce several preliminary auxiliary functions.

Let χptq “ sinpπtq ¨ e´ sin´2
pπtq for non-integer values of t. A priori, the inverse of sinp0q “ 0

does not make sense but since limtÑ0` χptq “ limtÑ0´ χptq “ 0, we can set χp0q “ 0 so it is still
continuous. In fact, it is smooth and, in particular, integrable. We can say the same at all points when
t is an integer, so we set χptq “ 0 for all integers t and we obtain an smooth function χ defined on R.

A “

ż 1

0

χptqdt. (25)

We also define

ψ1pxq “

d

1

A
¨

ż 1`x

0

χptqdt, (26)

and

ψ2pxq “

d

1

A
¨

ż x

0

χptqdt. (27)

We set c to be the constant
c “ 2max tG1, G2u , (28)

defined in terms of the following

G1 “

›

›

›

›

d

dx
psinhpxq ¨ ψ1pxqq

›

›

›

›

L8r´2,2s

, (29)

G2 “

›

›

›

›

d

dx
psinhpxq ¨ ψ2pxqq

›

›

›

›

L8r´2,2s

, (30)

hpx, yq “
sinhpxq

c

´

ψ1pxq cospc ¨ yq, ψ1pxq sinpc ¨ yq, ψ2pxq cospc ¨ yq, ψ2pxq sinpc ¨ yq

¯

, (31)

ψpx, yq “

´

sinh´1
pyexq, logp

a

e´2x ` y2q

¯

. (32)

We also define f0px, yq “

´

şsinh´1
pyexq

0

a

1 ´ εptq2dt, logp
a

e´2x ` y2q, hpψpx, yqq

¯

,

with ε being

ε “
G2

1 `G2
2

c2
. (33)

19

This way, we can set

fpx, y1, . . . , yn´1q “
1

?
n´ 1

`

f0px,
?
n´ 1y1q, . . . , f0px,

?
n´ 1yn´1

˘

.

Recall that in our case, we use the function F p¨q “ fpn “ 2, ¨q to map the set of points Q in H2 to
R6, and for computing

dGHpBE2 , BH2q « min
i,j,k

dR
6,fk,F

H pPi, Qjq “ min
i,j,k

dR
6

H pfkpPiq, F pQjqq. (34)

B.3 Estimation of the Gromov-Hausdorff distance between the Euclidean and Spherical
Spaces

In this section we give the analytical derivation of the Gromov-Hausdorff distance between the
Euclidean space En and the Spherical space Sn. We first explain the case n “ 1, where we can
visually understand the situation in a better way because all distances will be measured in E2.
Afterwards, we replicate the same argument for arbitrary n. Recall that the Spherical model Sn can
be described as the metric subspace of En`1 corresponding to the Euclidean sphere of radius one.
Hence, as a subspace of Rn`1, it corresponds to tpx0, . . . , xnq :

řn
i“0 x

2
i “ 1u.

-2 -1 1 20

-1

1

Figure 8: The one-dimensional model of spherical geometry S1 isometrically embedded in R2.

The ball of radius one of S1, denoted by BS1 , is highlighted in red. Our estimation of the Gromov-
Hausdorff distance between E1 and S1 is motivated by the following observation. In the y-axis, the
red arc ranges from 1`cosp1q

2 to 1. If we consider the following blue segment, representing the ball of

-1 -0.5 0.5 1 1.50

0.5

1

Figure 9: Comparison between BE1 (in red) and BS1 (in blue) inside E2.

radius one of E1 (denoted by BE1), we get

sup
xPBS1

dE2px,BE1q “
1 ´ cosp1q

2
« 0.23. (35)

However, it can be seen that supxPBE1
dE2px,BS1q “ 0.279.More generally, if the blue line is chosen

to be at the height 1 ´ x, for some x lying in the closed interval r0, 1 ´ cosp1qs, it is not hard to see
that, for such embedding f : BE1 Ñ E2,

dhE
2

pfpBE1q, BS1q “ max
!

x, 1 ´ x,
a

p1 ´ sinp1qq2 ` p1 ´ cosp1q ´ xq2
)

, (36)

20

whose minimum is attained exactly when x “
a

p1 ´ sinp1qq2 ` p1 ´ x´ cosp1qq2, i.e. when

x “
p1 ´ sinp1qq2 ` p1 ´ cosp1qq2

2 ´ 2 cosp1q
« 0.257. (37)

This can be seen in the following picture. The two pink lines represent the biggest lengths between

-1 -0.5 0.5 1 1.50

0.5

1

Figure 10: Comparison between BE1 (in red) and BS1 (in blue) inside E2 and a schematic of the
biggest lengths (in pink) between the two point sets.

points in BE1 and BS1 , whose length is approximately equal to 0.257. Since we cannot compute
exactly the Gromov-Hausdorff distance dGHpS1,E1q, choices have to be made. We have discussed
why we would expect it to be somewhere in between 0.23 and 0.257. Since we are considering a
very simple embedding for these estimations, it is reasonable to expect dGHpS1,E1q to get closer
to the lowest number when considering embeddings of these spaces in more complicated higher
dimensional spaces, as the definition of the Gromov-Hausdorff distance allows.

For an arbitrary n, we reduce the estimation of dGHpBEn , BSnq to the one-dimensional case as follows.
Analogously as we did for n “ 1, given any value of x, we can consider BEn isometrically embedded
in En`1 by the map fx : BEn Ñ Rn`1 defined by fppx0, x1, . . . , xnqq “ px0, x1, . . . , xn, xq.
We view BSn isometrically embedded into Rn`1 as the ball of radius one of Sn Ă Rn`1 with
centre in the north pole of the sphere, i.e. the point with coordinates p0, 0, . . . , 0, 1q. Given any
unit vector u in Rn`1 orthogonal to n⃗ “ p0, 0, . . . , 0, 1q, we define πu to be the two-dimensional
plane linearly spanned by u and n⃗. It is clear that, as u ranges over the orthogonal space of
p0, 0, . . . , 0, 1q, the intersections BSn X πu cover the whole BSn and the intersections fxpBEnq X πu
cover the whole fxpBEnq. Hence, in order to compute dE

n`1

H pfxpBEnq, BSnq, it suffices to compute
dE

n`1

H pfxpBEnq X πu, BSn X πuq for all unit vectors u orthogonal to n⃗. Moreover, for two such unit
vectors u and v, there is a rigid motion (a rotation) of the whole ambient space Rn`1, that fixes n⃗ and
that maps isometrically fxpBEnq X πu to fxpBEnq X πv and BSn X πu to BSn X πv . In particular,

dE
n`1

H pfxpBEnq X πu, BSn X πuq “ dE
n`1

H pfxpBEnq X πv, BSn X πvq.

So we can do the previous computation for the specific value of u “ p0, 0, . . . , 1, 0q (for clarity,
where we mean the unit vector where the n-th coordinate is equal to 1 and the rest are zero). Crucially,
the projection of Rn`1 unto R2 (by projecting onto the last two coordinates) restrict to isometries
on BSn X πu and BEn X πu, from where it is deduced, analogously as in 36, that, as long as
x P r0, 1 ´ cosp1qs, we have the following:

dE
n`1

H pfxpBEnq X πu, BSn X πuq “ max
!

x, 1 ´ x,
a

p1 ´ sinp1qq2 ` p1 ´ cosp1q ´ xq2
)

.

B.4 Computational Implementation of the Gromov-Hausdorff Distance between the
Remaining Model Spaces of Constant Curvature

In this appendix, we provide further details regarding how the Gromov-Hausdorff distances between
the remaining manifolds (between BE2 and BH2 , and BS2 and BH2) were approximated computa-
tionally. Note that as discussed in Section 3.3, these distances will be leveraged to compare not only
model spaces but product manifolds as well.

B.4.1 Discretizing the Original Continuous Manifolds

This section discuss how the the points in the corresponding balls of radius one described in Ap-
pendix B.1 are generated from a practical perspective. The Euclidean, hyperbolic, and spherical

21

spaces are continuous manifolds. To proximate the Gromov-Hausdorff distance between them we
must discretize the spaces. A more fine-grained discretization results in a better approximation. As
previously mentioned in Section 2, to compare En, Sn, and Hn, we can take closed balls of radius
one in each space. Since these spaces are homogeneous Riemannian manifolds, every ball of radius
one is isometric. We can estimate or provide an upper bound for their Gromov-Hausdorff distance by
using this method.

In the case of the Euclidean plane, we sample points from the ball, BE2 “ tpr cosptq, r sinptqq : r P

r0, 1s, t P r0, 2πqu, with a discretization of 10, 000 points in both r and t. To obtain points in BH2 we
will use the points inBE2 as a reference, and apply the exponential map, and the change of coordinates
described in Appendix B.1 to convert points in BE2 to points in BH2 . However, due to numerical
instabilities instead of sampling from BE2 , we will restrict ourselves to B1

E2 “ tpr cosptq, r sinptqq :
r P r0.00000001, 0.97s, t P r0, 2πqu and use a discretization of 10, 000 as before. Lastly to sample
points for the spherical space, BS2 “ tpsinpβq cospαq, sinpβq sinpαq, cospβqq : α P r0, 2πq, β P

r0, 1su, we use a discretization of 100 for both α and β. The granualirity of the discretization was
chosen as a trade-off between resolution and computational time. We observed that the Gromov-
Hausdorff distance stabilized for our discretization. However, given the nature of the Gromov-
Hausdorff distance, it is difficult to conclude whether some unexpected behaviour could be observed
with greater discretization.

B.4.2 Calculating Constants for the Embedding Function

The next step is to obtain a computational approximation of the mapping function defined in Ap-
pendix B.2. The embedding of Hn into E6n´6 requires computing several constants. Using a
standard integral solvers A « 0.141328, (Equation 25) can be approximated. To calculate the
constant c « 10.255014502464228, we discretize the input x P r´2, 2s using a step size of 10´8 to
compute G1 and G2 and use a for loop to calculate the max in Equation 28. Note that this requires to
constantly reevaluate the integrals for ψ1pxq and ψ2pxq. Likewise, G1 and G2 are also used to obtain
ε in Equation 33, which is in turn used to calculate the mapping function that maps points in H2 to
the higher dimensional embedding Euclidean space E6. We use F to map BH2 to E6, and we keep
those points fixed in space.

B.4.3 Optimizing the Embedding Functions for the Euclidean and Spherical Spaces

Next to approximate the Gromov-Hausdorff distances:

dGHpBE2 , BH2q « min
i,j,k

dR
6,fk,F

H pPH
i , Qjq “ min

i,j,k
dR

6

H pfkpPH
i q, F pQjqq, (38)

and,

dGHpBS2 , BH2q « min
i,j,k

dR
6,gk,F

H pPS
i , Qjq “ min

i,j,k
dR

6

H pgkpPS
i q, F pQjqq, (39)

we must optimize fk and gk. These are the functions used to embed BE2 and BS2 in E6n´6. Note
that in practice, BE2 and BS2 are discretized into PH

i and PS
i , respectively.

To optimize for fk we consider all possible permutations of the basis vectors of E6:
te1, e2, e3, e4, e5, e6u for each fk we consider two elements tei, eju and use those dimensions
to embed E2 in E6. In principle, we should also consider a small offset given by F p0q “ 0, but it is
zero regardless. Additionally, during the optimization we also add a small vector (with all entries but
a single dimension between zero) to the mapping function to translate the plane in different directions
by an offset of between ´0.5 and 0.5, with a total of a 100 steps between these two quantities.

To optimize for gk we follow a similar procedure in which we consider all permutations of the
basis vectors. Note however, that in this case we would have three basis vectors instead of two,
given how BS2 “ tpsinpβq cospαq, sinpβq sinpαq, cospβqq : α P r0, 2πq, β P r0, 1su is sampled.
For each permutation family, PS

i , we also consider its negative counterpart, ´PS
i , to compute the

Gromov-Hausdorff distance as well as experimenting with offsetting the mapping function.

22

B.5 Derivation of Number of Product Manifold Combinations in the Search Space

Here, we derive the exact number of nodes in the graph search space in our setting. In particular, we
consider the case with three model spaces (the Eucledian plane, the hyperboloid and the hypershere).
The growth of the search space can be modelled with growth of a tree, as depicted in Figure 11.

En Hn Sn

En
Ś

En En
Ś

Hn En
Ś

Sn Hn
Ś

Hn Hn
Ś

Sn Sn
Ś

Sn

Figure 11: The growth of the graph search space as a function of the number of model spaces used to
generate product manifolds can be represented as a tree. Note that as discussed in Section 3.3 we
assume commutativity: Mi ˆ Mj “ Mj ˆ Mi.

To calculate the number of elements in the search space, we define the total number of products at
level h of the tree as N . We have that Nphq “ NEphq ` NHphq ` NSphq, where NEphq is the
number of Euclidean spaces added to the product manifolds at depth h of the tree, and NHphq and
NSphq represent the same for the hyperboloid and the hypersphere respectively. By recursion, we
can write

NEphq “ NEph´ 1q “ 1 (40)

NHphq “ NEph´ 1q `NHph´ 1q (41)
“ 1 ` h (42)

NS “ NEph´ 1q `NHph´ 1q `NSph´ 1q (43)

“
hph` 1q

2
NEp1q ` hNHp1q `NSp1q (44)

“
hph` 1q

2
` h` 1 (45)

hence we have that

Nphq “ 1 ` p1 ` hq ` p1 ` h`
hph` 1q

2
q (46)

“ 3 `
5

2
h`

1

2
h2 (47)

To be consistent with the previous notation, we write the above in terms of the number of products np

Npnpq “ 3 `
5

2
np `

1

2
n2p (48)

The total number of nodes in the graph search space for a number of product np is then

NT “

np
ÿ

i“1

Npiq (49)

B.6 Visualizing the Graph Search Space

In this appendix, we give a visual depiction of the graph search space we construct for neural latent
geometry search. Figure 12 and Figure 13 provide plots of the graph search space as the size of the
product manifolds considered increases. For product manifolds composed of a high number of model
spaces, visualizing the search space becomes difficult. We omit the strengths of the connections for
visual clarity in this plots.

23

If we focus on Figure 12, we use e, h, and s to refer to the model spaces of constant curvature E2, H2,
and S2. In this work, we have considered model spaces of dimensionality two, but the graph search
space would be analogous if we were to change the dimensionality of the model spaces. Nodes that
include more than one letter, such as hh, ss, ee, etc, refer to product manifolds. For example, hh
would correspond to the product manifold H2 ˆ H2. As discussed in Section 3.3, we can see that
connections are only allowed between product manifolds that differ by a single model space. To
try to clarify this further, we can see that e, h and s are all interconnected since they only differ by
a single model space (one deletion and one addition). Likewise, e is connected to ee, eh, and ee
since they only differ by a single model space (one addition). However, e is not connected to hs (one
deletion and two additions) nor is ee connected to ss (two deletions and two additions).

h

es

hh

eh

ss ee

es

hs

se

h

es

eh hs

ssee

hh
hhs

ehs

ehh

hsseeh

ees ess

sss

hhh

eee

Figure 12: Graph search spaces for np “ 2 (left) and np “ 3 (right). Strength of connectivity is not
depicted in the graph.

e

h

s

ee

eh

hh

hs

es
ss

ehs

ees ess

hhsehh

eeh

sss

hss

eee

hhh

ehss

ehhs

hhhs

eehs

hhss

hssseeeseeeh
eess

ehhh

esss

eehh

eeee ssss

hhhh

s
h

ehs

es
ee

eh

hh

ss eeh

hhs

ees

ehh

hss

ehs

ess

sss

hhh

eee

eehs

ehhs

eeeh

hhhh

eess

ehss

ssss

eehh

hhhs

hhss

eeesesss

ehhh

hsss

eeee

eehhsehhss

eeess

eehsshhsss

hhhhs

eeees

ehsss

ehhhh

ehhhs

hssss essss

hhhss

hhhhh

eesss

eehhh

eeeeh

eeehs

eeehh

sssss eeeee

Figure 13: Graph search spaces for np “ 4 (left) and np “ 5 (right). Strength of connectivity is not
depicted in the graph.

24

Figure 14: Graph search spaces for np “ 8.

Figure 15: Graph search spaces for np “ 10.

25

Figure 16: Graph search spaces for np “ 12.

Figure 17: Graph search spaces for np “ 14.

26

B.7 Motivating Gromov-Hausdorff Distances for Comparing Latent Geometries

The use of Gromov-Hausdorff distances can be motivated from a theoretical and practical perspective.
From a theoretical perspective, the Gromov-Hausdorff distance offers a way to gauge the similarity
between metric spaces. This is achieved by casting their representation within a shared space, all
the while maintaining the original pairwise distances. In the context of machine learning models,
particularly those involving generative models (such as VAEs or GANs), the latent space assumes a
pivotal role in shaping the characteristics of the generated data. This also holds true in the case of
reconstruction tasks, such as those carried out by autoencoders. Through the application of a metric
that factors in their inherent geometries, the aim is to capture the concept of resemblance in data
generation, reconstruction, and other downstream tasks which will be heavily affected by the choice
of latent geometry.

While traditional metrics like Euclidean or cosine distances might suffice for some cases, they do
not always capture the complex and nonlinear relationships between data points in high-dimensional
spaces. The Gromov-Hausdorff distance considers the overall structure and shape of these spaces,
rather than just individual distances, which can lead to better generalization and robustness. This is
especially relevant when dealing with complex data distributions or high-dimensional latent spaces.
Moreover, another appealing aspect of Gromov-Hausdorff distance is its invariance to isometric
transformations, such as rotations, translations, and reflections. This is a desirable property when
comparing latent spaces, as the metric used should reflect the similarity in shape and structure, rather
than being influenced by trivial transformations.

While the direct relationship between Gromov-Hausdorff distance and model performance might
not be immediately obvious, we argue that if two models have similar latent space geometries, this
suggests that they might capture similar underlying data structures, which could lead to similar
performance on downstream tasks. This is known as an assumption of smoothness in the NAS
literature, see Oh et al. [2019]. However, it is important to note that this relationship is not guaranteed,
and the effectiveness of Gromov-Hausdorff distance as a proxy measure depends on the specific
application and the nature of the models being compared.

B.8 Method Scalability

The proposed approach sidesteps scalability concerns by preventing the need to recalibrate GH
coefficients, as long as one adheres to latent spaces derived from products of model spaces of
dimension two. If a higher-dimensional latent space was needed, this could be solved by adding
additional “graph slices" with augmented dimensions (as depicted in Figure 2). These slices can be
integrated with the lower-dimensional counterpart of the graph search space following the procedure
described in the paper. The number of coefficients remains constant at 3, rendering the Gromov-
Hausdorff distances free from extra computation overhead when increasing the dimension.

Moreover, in alignment with the manifold hypothesis, data is expected to exist within a low-
dimensional manifold. This discourages the exploration of higher dimensions for latent space
modeling. It is important to note, nonetheless, that the paper has already delved into relatively large
search spaces, which include the exploration of high-dimensional latent spaces.

C Background on Bayesian Optimization

Bayesian optimization (BO) is a query-based optimization framework for black-box functions that
are expensive to evaluate. It builds a probabilistic model of the objective function using past queries
to automate the selection of meta-parameters and minimize computational costs. BO seeks to find the
global optimum of a black-box function f : X Ñ R by querying a point xn P X at each iteration n
and obtaining the value yn “ fpxnq ` ε, where ε „ N p0, σ2q is the noise in the observation. To do
so, BO employs a surrogate to model the function fp¨q being minimized given the input and output
pairs Dt “ tpxi, yi “ fpxiquNi“1, and selects the next point to query by maximizing an acquisition
function. In our work, we use the Gaussian Process (GP)[Williams and Rasmussen, 2006] as the
surrogate model and expected improvement (EI)[Mockus et al., 1978] as the acquisition function.

Preliminaries. Bayesian optimization (BO) is particularly beneficial in problems for which evaluation
is costly, behave as a black box, and for which it is impossible to compute gradients with respect to the
loss function. This is the case when tuning the hyperparameters of machine learning models. In our

27

case, we will use it to find the optimal product manifold signature. Effectively, Bayesian optimization
allows us to automate the selection of critical meta-parameters while trying to minimize computational
cost. This is done building a probabilistic proxy model for the objective using outcomes recorded in
past experiments as training data. More formally, BO tries to find the global optimum of a black-box
function f : X Ñ R. To do this, a point xn P X is queried at every iteration n and yields the value
yn “ fpxnq ` ε, where ε „ N p0, σ2q, is a noisy observation of the function evaluation at that point.
BO can be phrased using decision theory

Lpf, txnuNn“1q “ N ˆ c` min
1ďnďN

fpxnq, (50)

where N is the maximum number of evaluations, c is the cost incurred by each evaluation, and the
loss L is minimized by finding a lower fpxq. In general, Equation 50 is intractable and the closed-form
optimum cannot be found, so heuristic approaches must be used. Instead of directly minimizing the
loss function, BO employs a surrogate model to model the function fp¨q being minimized given the
input and output pairs Dt “ tpxi, yi “ fpxiquNi“1. Furthermore, in order to select the next point to
query, an acquisition function is maximized. In this work, the surrogate model is chosen to be a
Gaussian Process (GP) [Williams and Rasmussen, 2006] and expected improvement (EI) [Mockus
et al., 1978] is used as the acquisition function.

Gaussian Processes. A GP is a collection of random variables such that every finite collection of
those random variables has a multivariate normal distribution. A GP is fully specified by a mean
function, µpxq, and covariance function (or kernel), denoted as kpx,x1q. The prior over the mean
function is typically set to zero, and most of the complexity of the model hence stems from the kernel
function. Given t iterations of the optimization algorithm, with an input xt “ rx1, . . . , xts

T and
output yt “ ry1, . . . , yts

T , the posterior mean and variance are given by

µpxt`1|Dtq “ kpxt`1,xtqrK1:t ` σ2
nIts

´1yt, (51)

and
σpxt`1|Dtq “ kpxt`1, xt`1q ´ kpxt`1,xtqrK1:t ` σ2

nIts
´1kpxt, xt`1q, (52)

where we define rK1:tsi,j “ kpxi, xjq is the pi, jq-th element of the Gram matrix.

Expected Improvement. EI is a widely used acquisition function for Bayesian optimization. EI
improves the objective function through a greedy heuristic which chooses the point which provides
the greatest expected improvement over the current best sample point. EI is calculated as

αEIpxq “ σpxqrΓpxqΦpΓpxqq ` N pΓpxq|0, 1qs, (53)
where

Γpxq “
fpxbestq ´ µpxq

σpxq
, (54)

and Φp¨q denotes the CDF of a standard normal distribution.

D Experimental Setup

In this section we provide additional details for the implementation of the experimental setup,
including how the datasets are generated, relevant theoretical background, and the hyperparameters
used for BO over our discrete graph search space.

D.1 Synthetic Experiments

To assess the effectiveness of the proposed graph search space, we conduct a series of tests using
synthetic data. Our objective is to establish a scenario in which we have control over the latent space
and manually construct the optimal latent space product manifold. To achieve this, we initiated the
process by generating a random vector, denoted as x, and mapping it to a predetermined "ground
truth" product manifold PT . This mapping is performed using the exponential map for the product
manifold PT , which can be derived based on the model spaces of constant curvature that constitute
it. Subsequently, the resulting projected vector is decoded via a neural network with fixed weights,
denoted as fθ, to yield a reference signal yPT . The rationale behind employing a frozen network is

28

to introduce a non-linear mapping from the latent space to the signal space. This approach aims to
mimic the behavior of a trained network in a downstream task, while disregarding the specific task or
model weights involved. By utilizing a frozen network, we can capture the essence of a non-linear
mapping without relying on the exact details of the task or specific model weights. The primary
goal is to recover this reference signal using the neural latent geometry search (NLGS) approach. To
generate the remaining dataset, we employ the same random vector and mapped it to several other
product manifolds, denoted as tPiuiPnP , comprising an equivalent number of model spaces as PT

but with distinct signatures. Decoding the projected vector using the same neural network produces
a set of signals, denoted as tyPiuiPnP . To populate the nodes of the graph search space, we assign
the corresponding value of mean squared error (MSE) between yPT and yPi for each pair. In this
manner, our search algorithm aims to identify the node within the graph that minimizes the error,
effectively determining the latent geometry capable of recovering the original reference signal. A
schematic of the proposed method and specifics on the construction of the network used to decode
the signal are shown in Figure 18 and Table 3.

P
expxp

pxq
x

fp¨q
y

Figure 18: Schematic of procedure used to generate synthetic datasets. We model f as an MLP.

Table 3: Summary of network to generate synthetic datasets.

Model
Linear (data dim, 100) - ELU
Linear (100, 100) - ELU
Linear (100, 100) - ELU
Linear (100, 5) - ELU

D.2 Autoencoders

Autoencoders are a type of neural network architecture that can be used for unsupervised learning
tasks. They are composed of two main parts: an encoder and a decoder. The encoder takes an input
and compresses it into a low-dimensional representation, while the decoder takes that representation
and generates an output that tries to match the original input. The goal of an autoencoder is to learn a
compressed representation of the input data that captures the most important features, and can be
used for tasks such as image denoising, dimensionality reduction, and anomaly detection. They have
been used in a wide range of applications, including natural language processing, computer vision,
and audio analysis.

29

Table 4: Autoencoder architecture summary.

Component Layers

Encoder

Conv2d (1, 20, 3) - BatchNorm2d - SiLU
Conv2d (20, 20, 3) - BatchNorm2d - SiLU

...
(9 repetitions)

...
Conv2d (20, 2, 3) - BatchNorm2d - SiLU
Flatten - Linear - SiLU

Decoder

Linear - SiLU - Unflatten
ConvTranspose2d (2, 20, 3) - BatchNorm2d - SiLU
ConvTranspose2d (20, 20, 3) - BatchNorm2d - SiLU

...
(9 repetitions)

...
ConvTranspose2d (20, 1, 3) - BatchNorm2d - Sigmoid

The autoencoder’s objective is to learn a compressed representation (latent space) of the input data
and use it to reconstruct the original input as accurately as possible. In our experiments, the encoder
takes an input image and applies a series of convolutional layers with batch normalization and SiLU
activation functions, reducing the image’s dimensions while increasing the number of filters or
feature maps. The final output of the encoder is a tensor of shape pbatchsize, latentdim, 6, 6q or
pbatchsize, latentdim, 10, 10q, where latentdim is the desired size of the latent space. After
flattening this tensor, a fully connected layer is used to map it to the desired latent space size. The
encoder’s output is a tensor of shape pbatchsize, latentdimq, which represents the compressed
representation of the input image. The decoder takes the latent space representation as input and
applies a series of transpose convolutional layers with batch normalization and SiLU activation
functions, gradually increasing the image’s dimensions while decreasing the number of feature maps.
The final output of the decoder is an image tensor of the same shape as the input image. The loss
functions used for training are the MSELoss (mean squared error) and BCELoss (binary cross-entropy)
from the PyTorch library. A summary of the autoencoder is provided in Table 4.

D.3 Latent Graph Inference

Graph Neural Networks (GNNs) leverage the connectivity structure of graph data to achieve state-of-
the-art performance in various applications. Most current GNN architectures assume a fixed topology
of the input graph during training. Research has focused on improving diffusion using different types
of GNN layers, but discovering an optimal graph topology that can help diffusion has only recently
gained attention. In many real-world applications, data may only be accessible as a point cloud of
data, making it challenging to access the underlying but unknown graph structure. The majority
of Geometric Deep Learning research has relied on human annotators or simplistic pre-processing
algorithms to generate the graph structure, and the correct graph may often be suboptimal for the
task at hand, which may benefit from rewiring. Latent graph inference refers to the process of
inferring the underlying graph structure of data when it is not explicitly available. In many real-world
applications, data may only be represented as a point cloud, without any knowledge of the graph
structure. However, this does not mean that the data is not intrinsically related, and its connectivity
can be utilized to make more accurate predictions.

For these experiments we reproduce the architectures described in Sáez de Ocáriz Borde et al. [2023b],
see Table 5 and Table 6 for the original architectures. In our case, we use the GCN-dDGM model
leveraging the original input graph inductive bias.

30

Table 5: Summary of model architectures for experiments for Cora and CiteSeer.

Model

MLP GCN GCN-dDGM
No. Layer parameters Activation Layer type

N/A N/A dDGM
(No. features, 32) ELU Linear Graph Conv Graph Conv

N/A N/A dDGM
(32, 16) ELU Linear Graph Conv Graph Conv

N/A N/A dDGM
(16, 8) ELU Linear Graph Conv Graph Conv
(8, 8) ELU Linear Linear Linear
(8, 8) ELU Linear Linear Linear
(8, No. classes) - Linear Linear Linear

Table 6: dDGM˚ and dDGM architectures for Cora and CiteSeer.

dDGM˚ dDGM
No. Layer parameters Activation Layer type
(No. features, 32) ELU Linear Linear
(32, 16 per model space) ELU Linear Graph Conv
(16 per model space, 4 per model space) Sigmoid Linear Graph Conv

D.3.1 Differentiable Graph Module

In their work, Kazi et al. [2022] presented a general method for learning the latent graph by leveraging
the output features of each layer. They also introduced a technique to optimize the parameters
responsible for generating the latent graph. The key concept is to use a similarity metric between the
latent node features to generate optimal latent graphs for each layer l. In this context, Xp0q and Ap0q

represent the original input node feature matrix and adjacency matrix, respectively. So that

Xp0q “

»

—

—

—

—

–

´x
p0q

1 ´

´x
p0q

2 ´
...

´x
p0q
n ´

fi

ffi

ffi

ffi

ffi

fl

, (55)

and Ap0q “ A if the adjacency matrix from the dataset, or Ap0q “ I if G “ pV,Hq. The proposed
architecture in Kazi et al. [2022] consists of two primary components: the Differentiable Graph
Module (DGM) and the Diffusion Module. The Diffusion Module, Xpl`1q “ gϕpXplq,Aplqq, may
be one (or multiple) standard GNN layers. The first DGM module takes the original node features
and connectivity information and produces an updated adjacency matrix

X1pl“1q
,Apl“1q “ DGMpXp0q,Ap0qq. (56)

In principle, the DGM module utilizes information from previous layers to generate adjacency
matrices at each layer

X1pl`1q
,Apl`1q “ DGMpconcatpXplq,X1plq

q,Aplqq. (57)

To do so, a measure of similarity is used

φpx1pl`1q

i ,x1pl`1q

j q “ φpf
plq
Θ px

plq
i q, f

plq
Θ px

plq
j qq. (58)

In summary, the proposed approach utilizes a parameterized function fΘplq with learnable parameters
to transform node features and a similarity measure φ to compare them. The function can be
an MLP or composed of GNN layers if connectivity information is available. The output of the
similarity measure is used to create a fully-connected weighted adjacency matrix for the continuous

31

differentiable graph module (cDGM) approach or a sparse and discrete adjacency matrix for the
discrete Differentiable Graph Module (dDGM) approach, with the latter being more computationally
efficient and recommended by the authors of the DGM paper [Kazi et al., 2022]. To improve the
similarity measure φ and construct better latent graphs, the approach employs product spaces and
Riemannian geometry. Additionally, an extra loss term is used to update the learnable parameters of
the dDGM module.

Lastly, we will examine the dDGM module, which utilizes the Gumbel Top-k [Kool et al., 2019]
technique to generate a sparse k-degree graph by stochastically sampling edges from the probability
matrix PplqpXplq;Θplq, T q, which is a stochastic relaxation of the kNN rule, where each entry
corresponds to

p
plq
ij “ expp´φpT qpx1pl`1q

i ,x1pl`1q

j qq. (59)

T being a learnable parameter. The primary similarity measure utilized in Kazi et al. [2022] involved
computing the distance between the features of two nodes in the graph embedding space

p
plq
ij “ expp´T∆px1pl`1q

i ,x1pl`1q

j qq “ expp´T∆pf
plq
Θ px

plq
i q, f

plq
Θ px

plq
j qq, (60)

where ∆p¨, ¨q denotes a generic measure of distance between two points. They assumed that the latent
features laid in an Euclidean plane of constant curvature KE “ 0, so that

p
plq
ij “ expp´TdEpf

plq
Θ px

plq
i q, f

plq
Θ px

plq
j qqq, (61)

where dE is the distance in Euclidean space. Based on

argsortplogpp
plq
i q ´ logp´ logpqqqq (62)

where q P RN is uniform i.i.d in the interval r0, 1s, we can sample the edges

EplqpXplq;Θplq, T, kq “ tpi, ji,1q, pi, ji,2q, ..., pi, ji,kq : i “ 1, ..., Nu, (63)

k being the number of sampled connections using the Gumbel Top-k trick. The Gumbel Top-k

approach utilizes the categorical distribution
p

plq

ij

Σrp
plq

ir

for sampling, and the resulting unweighted

adjacency matrix AplqpXplq;Θplq, T, kq is used to represent EpXplq;Θplq, T, kq. It is worth noting
that including noise in the edge sampling process can generate random edges in the latent graphs,
which can serve as a form of regularization.

Finally, we can summarize a multi-layer GNN using the dDGM module as

X1pl`1q
“ f

plq
Θ pconcatpXplq,X1plq

q,Aplqq, (64)

Apl`1q „ PplqpX1pl`1q
q, (65)

Xpl`1q “ gϕpXplq,Apl`1qq. (66)

Equations 64 and 65 belong to the dDGM module, while Equation 66 is associated with the Diffusion
Module. In our study, we extend Equation 59 to measure distances without relying on the assumption
utilized in Kazi et al. [2022], which restricts the analysis to fixed-curvature spaces, specifically to
Euclidean space where KE “ 0.

D.4 Naive Bayesian Optimization

Naive BO in the main text considers performing BO over a fully-connected unweighted graph. Such
a graph is latent geometry agnostic, that is, it does not include any metric geometry inductive bias to
provide the optimization algorithm with a sense of closeness between the candidate latent geometries.

32

E Ablation of the Gromov-Hausdorff Coefficients

We evaluate the impact of Gromov-Hausdorff coefficients on the graph search space by conducting
an additional set of experiments. We compare the use of an unweighted, pruned graph search space
with the introduction of Gromov-Hausdorff coefficients in the datasets considered in this paper. The
results are show in Figures 19 to 22 below.

0 10 20 30 40 50
Iterations

8

7

6

5

4

3

2

1

M
in

im
u
m

GH BO
Graph BO

0 10 20 30 40 50
Iterations

8

7

6

5

4

3

2

1

0

M
in

im
u
m

0 10 20 30 40 50
Iterations

8

7

6

5

4

3

2

1

M
in

im
u
m

0 10 20 30 40 50
Iterations

8

7

6

5

4

3

2

1

M
in

im
u
m

Figure 19: Results (mean and standard deviation over 10 runs) for candidate latent geometries
involving product manifolds composed of 13 model spaces. For each plot a different ground truth
product manifold PT is used to generate the reference signal.

0 10 20 30 40 50
Iterations

6

5

4

3

2

1

M
in

im
u
m

GH BO
Graph BO

0 10 20 30 40 50
Iterations

7

6

5

4

3

2

1

0

M
in

im
u
m

GH BO
Graph BO

0 10 20 30 40 50
Iterations

7

6

5

4

3

2

1

M
in

im
u
m

GH BO
Graph BO

0 10 20 30 40 50
Iterations

7

6

5

4

3

2

1

M
in

im
u
m

GH BO
Graph BO

Figure 20: Results (mean and standard deviation over 10 runs) for candidate latent geometries
involving product manifolds composed of 15 model spaces. For each plot a different ground truth
product manifold PT is used to generate the reference signal.

0 10 20 30 40 50
Iterations

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

M
in

im
um

MNIST
GH BO
Graph BO

0 10 20 30 40 50
Iterations

6

5

4

3

2

M
in

im
um

CIFAR-10
GH BO
Graph BO

0 10 20 30 40 50
Iterations

6

5

4

3

2

M
in

im
um

fMNIST
GH BO
Graph BO

0 10 20 30 40 50
Iterations

7

6

5

4

3

2

1

M
in

im
um

eMNIST
GH BO
Graph BO

Figure 21: Results (mean and standard deviation over 10 runs) on image reconstruction tasks, for
np “ 7.

0 10 20 30 40 50
Iterations

6

5

4

3

2

1

0

M
in

im
um

Cora
GH BO
Graph BO

0 10 20 30 40 50
Iterations

6

5

4

3

2

1

M
in

im
um

CiteSeer
GH BO
Graph BO

Figure 22: Results (mean and standard deviation over 10 runs) on latent graph inference tasks.

The plots above show that in the majority of cases, the GH weights appear to either match or
enhance the performance of the search algorithm. This observation is particularly pronounced

33

in synthetic tasks, which can be intuitively justified due to the significant impact of changes in
the latent geometry on the network’s output in such a setup. However, we highlight that a large
amount of the performance gains in the algorithm seem to come from the inductive bias endowed to
the search algorithm through the graph search space. This could be due to the fact that in image
reconstruction tasks, searching for the optimal dimension is more important for reconstruction than
finding the optimal latent geometry within a particular dimension. Since the GH coefficients are
unity between dimensions, this makes the performance of the two search spaces similar in this context.

It should be noted that setting the inverse of the Gromov-Hausdorff distance as the edges of a search
graph is only one potential way to add a geometric inductive bias into the search space. Future work
could use similar mechanisms as those developed in this paper but in a different context in order to
improve optimization performance. Finally, we would like to highlight that a more thorough analysis
of the links between the performance of neural networks and the similarity of their latent geometries
is a relevant question that merits further study, which is left for future work.

34

	Introduction
	Background
	Neural Latent Geometry Search: Latent Product Manifold Inference
	Problem Formulation
	Quantifying the Difference Between Product Manifolds
	The Gromov-Hausdorff-Informed Graph Search Space

	Experimental Setup and Results
	Synthetic Experiments on Product Manifold Inference
	Experiments on Real-World Datasets

	Conclusion
	Additional Background
	Differential Geometry, Riemmanian Manifolds, and Product Manifolds
	Constant Curvature Model Spaces
	Constructing Product Manifolds
	The Rationale Behind using Product Manifolds of Model Spaces
	Geometry of Negative Curvature: Further Discussion

	Further Details on the Gromov-Hausdorff Algorithm for Neural Latent Geometry Search
	Generating Points in the Corresponding Balls of Radius One
	Embedding of Hn into E6n-6
	Estimation of the Gromov-Hausdorff distance between the Euclidean and Spherical Spaces
	Computational Implementation of the Gromov-Hausdorff Distance between the Remaining Model Spaces of Constant Curvature
	Discretizing the Original Continuous Manifolds
	Calculating Constants for the Embedding Function
	Optimizing the Embedding Functions for the Euclidean and Spherical Spaces

	Derivation of Number of Product Manifold Combinations in the Search Space
	Visualizing the Graph Search Space
	Motivating Gromov-Hausdorff Distances for Comparing Latent Geometries
	Method Scalability

	Background on Bayesian Optimization
	Experimental Setup
	Synthetic Experiments
	Autoencoders
	Latent Graph Inference
	Differentiable Graph Module

	Naive Bayesian Optimization

	Ablation of the Gromov-Hausdorff Coefficients

