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Abstract

The K-armed dueling bandits problem, where the feedback is in the form of noisy1

pairwise preferences, has been widely studied due its applications in information2

retrieval, recommendation systems, etc. Motivated by concerns that user prefer-3

ences/tastes can evolve over time, we consider the problem of dueling bandits with4

distribution shifts. Specifically, we study the recent notion of significant shifts [30],5

and ask whether one can design an adaptive algorithm for the dueling problem with6

O(
√
KL̃T ) dynamic regret, where L̃ is the (unknown) number of significant shifts7

in preferences. We show that the answer to this question depends on the properties8

of underlying preference distributions. Firstly, we give an impossibility result that9

rules out any algorithm with O(
√

KL̃T ) dynamic regret under the well-studied10

Condorcet and SST classes of preference distributions. Secondly, we show that11

SST∩STI is the largest amongst popular classes of preference distributions where12

it is possible to design such an algorithm. Overall, our results provides an almost13

complete resolution of the above question for the hierarchy of distribution classes.14

1 Introduction15

The K-armed dueling bandits problem has been well-studied in the multi-armed bandits literature16

[34, 36, 31, 3, 37–39, 13, 18, 21, 22, 25, 11, 26, 2]. In this problem, on each trial t ∈ [T ], the learner17

pulls a pair of arms and observes relative feedback between these arms indicating which arm was18

preferred. The feedback is typically stochastic, drawn according to a pairwise preference matrix19

P ∈ [0, 1]K×K , and the regret measures the ‘sub-optimality’ of arms with respect to a ‘best’ arm.20

This problem has many applications, e.g. information retrieval, recommendation systems, etc, where21

relative feedback between arms is easy to elicit, while real-valued feedback is difficult to obtain or22

interpret. For example, a central task for information retrieval algorithms is to output a ranked list23

of documents in response to a query. The framework of online learning has been very useful for24

automatic parameter tuning, i.e. finding the best parameter(s), for such retrieval algorithms based on25

user feedback [23]. However, it is often difficult to get numerical feedback for an individual list of26

documents. Instead, one can (implicitly) compare two lists of documents by interleaving them and27

observing the relative number of clicks [24]. The availability of these pairwise comparisons allows28

one to tune the parameters of retrieval algorithms in real-time using the framework of dueling bandits.29

However, in many such applications that rely on user generated preference feedback, there are30

practical concerns that the tastes/beliefs of users can change over time, resulting in a dynamically31

changing preference distribution. Motivated by these concerns, we consider the problem of switching32

dueling bandits (or non-stationary dueling bandits), where the pairwise preference matrix Pt changes33

an unknown number of times over T rounds. The performance of the learner is evaluated using34

dynamic regret where sub-optimality of arms is calculated with respect to the current ‘best’ arm.35
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Figure 1: The hierarchy of distribution classes. The dark region is where O(
√
KL̃T ) dynamic

regret is not achievable, whereas the light region indicates achievablility (e.g., by our Algorithm 1).

Saha and Gupta [27] first studied this problem and provided an algorithm that achieves a nearly36

optimal (up to log terms) dynamic regret of Õ(
√
KLT ) where L is the total number of shifts in37

the preference matrix, i.e., the number of times Pt differs from Pt+1. However, this result requires38

algorithm knowledge of L. Alternatively, the algorithm of [27] can be tuned to achieve a dynamic39

regret rate (also nearly optimal) Õ(V
1/3
T K1/3T 2/3) in terms of the total-variation of change in40

preferences VT over T total rounds. This is similarly limited by requiring knowledge of VT .41

On the other hand, recent works on the switching MAB problem show it is not only possible to42

design adaptive algorithms with Õ(
√
KLT ) dynamic regret without knowledge of the underlying43

environment [7], but also possible to achieve a much better bound of Õ(
√
KL̃T ) where L̃≪ L is44

the number of significant shifts [30]. Specifically, a shift is significant when there is no ‘safe’ arm45

left to play, i.e., every arm has, on some interval [s1, s2], regret order Ω(
√
s2 − s1). Such a weaker46

measure of non-stationarity is appealing as it captures the changes in best-arm which are most severe,47

and allows for more optimistic regret rates over the previously known
√
KLT ∧ (VTK)1/3T 2/3.48

Very recently, [10] considered an analogous notion of significant shifts for switching dueling ban-49

dits under the SST∩STI1 assumption. They gave an algorithm that achieves a dynamic regret of50

Õ(K
√

L̃T ), where L̃ is the (unknown) number of significant shifts. However, their algorithm51

estimates Ω(K2) pairwise preferences, and hence, suffers from a sub-optimal dependence on K.52

In this paper we consider the goal of designing optimal algorithms for switching dueling bandits53

whose regret depends on the number of significant shifts L̃. We ask the following question:54

Question. Is it possible to achieve a dynamic regret of O(
√
KL̃T ) without knowledge of L̃?55

We show that the answer to this question depends on conditions on the preference matrices. Specifi-56

cally, we consider several well-studied conditions from the dueling bandits literature, and give an57

almost complete resolution of the achievability of O(
√
KL̃T ) dynamic regret under these conditions.58

1.1 Our Contributions59

We first consider the classical Condorcet winner (CW) condition where, at each time t ∈ [T ], there is60

a ‘best’ arm under the preference Pt that stochastically beats every other arm. Such a winner arm is a61

benchmark in defining the aforementioned dueling dynamic regret. Our first result shows that, even62

under the CW condition, it is in general impossible to achieve O(
√
KL̃T ) dynamic regret.63

Theorem 1. (Informal) There is a family of instances F under Condorcet where all shifts are64

non-significant, i.e. L̃ = 0, but no algorithm can achieve o(T ) dynamic regret uniformly over F .65

Note that in the case when L̃ = 0, one would ideally like to achieve a dynamic regret of O(
√
KT ).66

The above theorem shows that, under the Condorcet condition when L̃ = 0, not only is it impossible67

to achieve O(
√
KT ) regret, it is even impossible to achieve O(Tα) regret for any α < 1. Hence, this68

rules out the possibility of an algorithm whose regret under this condition is sublinear in L̃ and T .69

The proof of the above theorem relies on a careful construction where, at each time t, the preference70

Pt is chosen uniformly at random from two different matrices P+ and P−. These matrices have71

different ‘best’ arms but there is a unique safe arm in both. However, it is impossible to identify this72

safe arm as all observed pairwise preferences are Ber( 12 ) over the randomness of the environment.73

Moreover, the theorem gives two different constructions (one ruling out SST and one STI) which74

1SST∩STI imposes a linear ordering over arms and two well-known conditions on the preference matrices:
strong stochastic transitivity (SST) and stochastic triangle inequality (STI).
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together rule out all preference classes outside of SST∩STI. Our second result shows that the desired75

regret
√
KL̃T is in fact achievable (adaptively) under SST∩STI.76

Theorem 2. (Informal) There is an algorithm that achieves a dynamic regret of Õ(
√
KL̃T ) under77

SST∩STI without requiring knowledge of L̃.78

Figure 1 gives a summary of our results. Note that in stationary dueling bandits there is no separation79

in the regret achievable under the CW vs. SST∩STI conditions, i.e. O(
√
KT ) is the minimax optimal80

regret rate under both conditions [26]. However, our results show that in the non-stationary setting81

with regret in terms of significant shifts, there is a separation in adaptively achievable regret.82

Key Challenge and Novelty in Regret Upper Bound: To contrast, the recent work of [10] only83

attains Õ(K
√
L̃T ) dynamic regret under SST∩STI due to inefficient exploration of arm pairs. Our84

more challenging goal of obtaining the optimal dependence on K introduces key difficulties in85

algorithmic design. In fact, even in the classical stochastic dueling bandit problem with SST∩STI,86

most existing results that achieve O(
√
KT ) regret require identifying a coarse ranking over arms to87

avoid suboptimal exploration of low ranked arms [35, 34]. However, in the non-stationary setting,88

ranking the arms meaningfully is difficult as the true ordering of arms may change (insignificantly) at89

all rounds. Our main algorithmic innovation is to bypass the task of ranking arms and instead directly90

focus on minimizing the cumulative regret of played arms. This entails a new rule for selecting91

“candidate” arms based on cumulative regret that may be of independent interest.92

1.2 Related Work93

Dueling bandits. The stochastic dueling bandits problem and its variants have been studied widely94

(see [29] for a comprehensive survey). This problem was first proposed by [36], who provide an95

algorithm achieving instance-dependent O(K log T ) regret under the SST∩STI condition. [34] also96

studied this problem under the SST∩STI condition and gave an algorithm that achieves optimal97

instance-dependent regret. [31] studied this problem under the Condorcet winner condition and98

achieved an instance-dependent O(K2 log T ) regret bound, which was further improved by [37] and99

[21] to O(K2 +K log T ). Finally, [26] showed that it is possible to achieve an optimal instance-100

dependent bound of O(K log T ) and instance-independent bound of O(
√
KT ) under the Condorcet101

condition. More general notions of winners such as Borda winner [18], Copeland winner [38, 22, 33],102

and von Nuemann winner [13] have also been considered. However, these works only consider the103

stationary setting whereas we consider the non-stationary setting.104

There has also been work on adversarial dueling bandits [28, 15], however, these works only consider105

static regret against the ‘best’ arm in hindsight and whereas we consider the harder dynamic regret.106

Other than the two previously mentioned works [17, 10], the only other work on switching dueling107

bandits is Kolpaczki et al. [20], whose procedures require knowledge of non-stationarity and only108

consider the weaker measure of non-stationarity L counting all changes in the preferences.109

Non-stationary multi-armed bandits. Multi-armed bandits with changing rewards was first110

considered in the adversarial setup by Auer et al. [5], where a version of EXP3 was shown to attain111

optimal dynamic regret
√
KLT when properly tuned using the number L of changes in the rewards.112

Later works established similar (non-adaptive) guarantees in this so-called switching bandit problem113

via procedures inspired by stochastic bandit algorithms [16, 19]. More recent works [6, 7, 12]114

established the first adaptive and optimal dynamic regret guarantees, without requiring knowledge115

of the number of changes. An alternative parametrization of switching bandits, via a total-variation116

quantity, was introduced in Besbes et al. [8] with minimax rates quantified therein and adaptive rates117

attained in Chen et al. [12]. Yet another characterization, in terms of the number of best arm switches118

S was studied in Abbasi-Yadkori et al. [1], establishing an adaptive regret rate of
√
SKT . Around119

the same time, Suk and Kpotufe [30] introduced the aforementioned notion of significant shifts and120

adaptively achieved rates of the form
√

KL̃T in terms of L̃ significant shifts in rewards.121

2 Problem Formulation122

We consider non-stationary dueling bandits with K arms and time-horizon T . At round t ∈ [T ], the123

pairwise preference matrix is denoted by Pt ∈ [0, 1]K×K , where the (i, j)-th entry Pt(i, j) encodes124
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the likelihood of observing a preference for arm i in a direct comparison with arm j. The preference125

matrix may change arbitrarily from round to round. At round t, the learner selects a pair of actions126

(it, jt) ∈ [K] × [K] and observes the feedback Ot(it, jt) ∼ Ber(Pt(it, jt)) where Pt(it, jt) is the127

underlying preference of arm it over jt. We define the pairwise gaps δt(i, j) := Pt(i, j)− 1/2.128

Conditions on Preference Matrix. We consider two different conditions on preference matrices: (1)129

the Condorcet winner (CW) condition and (2) the strong stochastic transitivity (SST) and stochastic130

triangle inequality (STI), formalized below.131

Definition 1. (CW condition) At each round t, there is a Condorcet winner arm, denoted by a∗t ,132

such that δt(a∗t , a) ≥ 0 for all a ∈ [K]\{a∗t }. Note that a∗t need not be unique.133

Definition 2. (SST∩STI condition) At each round t, there exists a total ordering on arms, denoted134

by ≻t, and ∀i ⪰t j ⪰t k:135

(a) δt(i, k) ≥ max{δt(i, j), δt(j, k)} (SST).136

(b) δt(i, k) ≤ δt(i, j) + δt(i, k) (STI).137

It’s easy to see that the SST condition implies the CW condition as δt(i, j) ≥ δt(i, i) = 0 for any138

i ≻t j. Hence, the highest ranked item under ≻t in Definition 2 is the CW a∗t . We emphasize here139

that the CW in Definition 1 and the total ordering on arms in Definition 2 can change at each round,140

even while such unknown changes in preference may not be counted as significant (see below).141

Regret Notion. Our benchmark is the dynamic regret to the sequence of Condorcet winner arms:142

DR(T ) :=
T∑

t=1

δt(a
∗
t , it) + δt(a

∗
t , jt)

2
.

Here, the regret of an arm i is defined in terms of the preference gap δt(a
∗
t , i) between the winner143

arm a∗t and i, and the regret of the pair (it, jt) is the average regret of individual arms it and jt. Note144

the this regret is well-defined under both Condorcet and SST∩STI conditions due to the existence of145

a unique ‘best’ arm a∗t , and is non-negative due to the fact that δt(a∗t , i) ≥ 0 for all i ∈ [K].146

Measure of Non-Stationarity. We first recall the notion of Significant Condorcet Winner Switches147

from Buening and Saha [10], which captures only the switches in a∗t which are severe for regret.148

Throughout the paper, we’ll also refer to these as significant shifts for brevity.149

Definition 3 (Significant CW Switches). Define an arm a as having significant regret over [s1, s2] if150

s2∑
s=s1

δs(a
∗
s, a) ≥

√
K · (s2 − s1). (1)

We then define significant CW switches recursively as follows: let τ0 = 1 and define the (i+ 1)-th151

significant CW switch τi+1 as the smallest t > τi such that for each arm a ∈ [K], ∃[s1, s2] ⊆ [τi, t]152

such that arm a has significant regret over [s1, s2]. We refer to the interval of rounds [τi, τi+1) as a153

significant phase. Let L̃ be the number of significant CW switches elapsed in T rounds.154

Notation. To ease notation, we’ll conflate the closed, open, and half-closed intervals of real numbers155

[a, b], (a, b), and [a, b), with the corresponding rounds contained therein, i.e. [a, b] ≡ [a, b] ∩ N.156

3 Hardness of Significant Shifts in the Condorcet Winner Setting157

We first consider regret minimization in an environment with no significant shift in T rounds. Such158

an environment admits a safe arm a♯ which does not incur significant regret throughout play. Our159

first result shows that, under the Condorcet condition, it is not possible to distinguish the identity of160

a♯ from other unsafe arms, which will in turn make sublinear regret impossible.161

Theorem 3. For each horizon T , there exists a finite family F of switching dueling bandit environ-162

ments with K = 3 that satisfies the Condorcet winner condition (Definition 1) with L̃ = 0 significant163

shifts. The worst-case regret of any algorithm on an environment E in this family is lower bounded as164

sup
E∈F

EE [DR(T )] ≥ T/8.
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Proof. (sketch; details found in Appendix A) Letting ϵ≪ 1/
√
T , consider the preference matrices:165

P+ :=

(
1/2 1/2 + ϵ 1

1/2− ϵ 1/2 1/2 + ϵ
0 1/2− ϵ 1/2

)
,P− :=

(
1/2 1/2− ϵ 0

1/2 + ϵ 1/2 1/2− ϵ
1 1/2 + ϵ 1/2

)
.

In P+, arm 1 is the Condorcet winner and 1 ≻ 2 ≻ 3, whereas in P−, 3 is the winner with 3 ≻ 2 ≻ 1.166

Let an oblivious adversary set Pt at round t to one of P+ and P−, uniformly at random, inducing an167

environment where arm 2 remains safe for T rounds. Then, any algorithm will, over the randomness168

of the adversary, observe Ot(it, jt) ∼ Ber(1/2) no matter the choice of arms (it, jt) played, by169

the symmetry of P+,P−. Thus, it is impossible to distinguish arms, which implies linear regret by170

standard Pinsker’s inequality arguments. In particular, even a strategy playing arm 2 every round fails171

as arm 2 is unsafe in another (indistinguishable) setup with arms 1 and 2 switched in P+,P−.172

SST and STI Both Needed To Learn Significant Shifts. The preferences P+,P− in the above173

proof violate STI but satisfy SST, whereas another construction using preferences P+,P− which174

violate SST but satisfy STI also works in the proof (see Remark 2 in Appendix A). This shows that175

sublinear regret is impossible outside of the class SST∩STI (visualized in Figure 1).176

Remark 1. Note the lower bound of Theorem 3 does not violate the established upper bounds
√
LT177

and V
1/3
T T 2/3 scaling with L changes in the preference matrix or total variation VT [17]. Our178

construction in fact uses L = Ω(T ) changes in the preference matrix and VT = Ω(T ) total variation.179

Furthermore, the regret upper bound
√
ST , in terms of S changes in Condorcet winner, of [10] is not180

contradicted either, for S = Ω(T ).181

4 Dynamic Regret Upper Bounds under SST/STI182

Acknowledging that significant shifts are hard outside of the class SST∩STI, we now turn our183

attention to the achievability of
√
KL̃T regret in the SST∩STI setting. Our main result is an optimal184

dynamic regret upper bound attained without knowledge of the significant shift times or the number185

of significant shifts. Up to log terms2, this is the first dynamic regret upper bound with optimal186

dependence on T , L̃, and K.187

Theorem 4. Suppose SST and STI hold (see Definition 2). Let {τi}L̃i=0 denote the unknown significant188

shifts of Definition 3. Then, for some constant C0 > 0, Algorithm 1 has expected dynamic regret189

E[DR(T )] ≤ C0 log
3(T )

L̃∑
i=0

√
K · (τi+1 − τi),

and using Jensen’s inequality, this implies a regret rate of C0 log
3(T )

√
K · (L̃+ 1) · T .190

In fact, this regret rate can be transformed to depend on the Condorcet winner variation introduced191

in Buening and Saha [10] and the total variation quantities introduced in [17] and inspired by the192

total-variation quantity from non-stationary MAB [8]. The following corollary is shown using just193

the definition of the non-stationarity measures.194

Corollary 5 (Regret in terms of CW Variation). Let VT :=
∑T

t=2 maxa∈[K] |Pt(a
∗
t , a)−Pt−1(a

∗
t , a)|195

be the unknown Condorcet winner variation. Using the same notation of Theorem 4: METASWIFT196

has expected dynamic regret197

E[DR(T )] ≤ C0 log
3(T )

(√
KT + (KVT )

1/3T 2/3
)
.

5 Algorithm198

At a high level, the strategy of recent works on non-stationary multi-armed bandits [12, 32, 30] is to199

first design a suitable base algorithm and then use a meta-algorithm to randomly schedule different200

2It is unknown if log terms are avoidable for adaptive procedures, even in non-stationary MAB.
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instances of this base algorithm at variable durations across time. The key idea is that unknown time201

periods of significant regret can be detected fast enough with the right schedule. In order to accurately202

identify significant shifts, the base algorithm in question should be robust to all non-significant shifts.203

In the multi-armed bandit setting, a variant of the classical successive elimination algorithm [14]204

possesses such a guarantee [4], and serves as a base algorithm in [30].205

5.1 Difficulty of Efficient Exploration of Arms.206

In the non-stationary dueling problem, a natural analogue of successive elimination is to uniformly207

explore the arm-pair space [K]× [K] and eliminate arms based on observed comparisons [31]. The208

previous work [Theorem 5.1 of 10] employs such a strategy as a base algorithm. However, such a209

uniform exploration approach incurs a large estimation variance of K2, which enters into the final210

regret bound of K
√
T · L̃. Thus, smarter exploration strategies are needed to obtain

√
K dependence.211

In the stationary dueling bandit problem with SST∩STI, such efficient exploration strategies have212

long been known: namely, the Beat-The-Mean algorithm [34] and the Interleaved Filtering (IF)213

algorithm [35]. We highlight that these existing algorithms aim to learn the ordering of arms, i.e.,214

arms are ruled out roughly in the same order as their true underlying ordering. This fact is crucial to215

attaining the optimal dependence in K in their regret analyses, as the higher ranked arms must be216

played more often against other arms to avoid the K2 cost of exploration.217

However, in our setting, adversarial but non-significant changes in the ordering of arms could force218

perpetual exploration of lowest-ranked arms. This suggests that learning an ordering should not be a219

subtask of our desired dueling base algorithm. Rather, the algorithm should prioritize minimizing its220

own regret over time. Keeping this intuition in mind, we introduce an algorithm called SWitching221

Interleaved FilTering (SWIFT) (see Algorithm 2 in Section 5.2) which directly tracks regret and222

avoids learning a fixed ordering of arms.223

A new idea for switching candidate arms. A natural idea that is common to many dueling bandit224

algorithms (including IF) is to maintain a candidate arm â which is always played at each round, and225

serves as a reference point for partially ordering other arms in contention. If the current candidate226

is beaten by another arm then a new candidate is chosen, and this process quickly converges to the227

best arm. Since the ordering of arms may change at each round, any such rule that relies on a fixed228

ordering is deemed to fail in our setting. Our procedure does not rely on such a fixed ordering over229

arms, but instead tracks the aggregate regret
∑

t δt(a, ât) of the changing sequence of candidate230

arms {ât}t to another fixed arm a. Crucially, the candidate arm âs is always played at round s and231

so the history of candidate arms {âs}s≤t is fixed at a round t. This fact allows us to estimate the232

quantity
∑t

s=1 δs(a, âs) using importance-weighting at
√
K · t rates via martingale concentration.233

An algorithmic switching criterion then switches the candidate arm ât to any arm a dominating234

the sequence {âs}s≤t over time, i.e.,
∑t

s=1 δs(a, âs) ≫
√
K · t. This simple, yet powerful, idea235

immediately gives us control of the regret of the candidate sequence {ât}t which allows us to bypass236

the ranking-based arguments of vanilla IF and Beat-The-Mean. It also allows us to simultaneously237

bound the regret of a sub-optimal arm a against the sequence of candidate arms
∑t

s=1 δs(âs, a).238

5.2 Switching Interleaved Filtering (SWIFT)239

SWIFT at round t compares a candidate arm ât with an arm at (chosen uniformly at random) from240

an active arm set At. Additionally, SWIFT maintains estimates δ̂t(ât, a) of δt(ât, a) which are used241

to (1) evict active arms a ∈ At and (2) switch the candidate arm ât+1 for the next round.242

Estimators and Eviction/Switching Criteria. Let At be the active arm set at round t. Let243

δ̂t(ât, a) := |At| ·Ot(ât, a) · 111{(it, jt) = (ât, a)} − 1/2, (2)
which is an unbiased estimator of the gap δt(ât, a) when a ∈ At. We evict an active arm a from At244

at round t if for some constant C > 03 and rounds s1 < s2 ≤ t:245
s2∑

s=s1

δ̂s(âs, a) ≥ C log(T )
√

K · (s2 − s1) ∨K2, (3)

3The constant C > 0 does not depend on T , K, or L̃, and a suitable value can be derived from the regret
analysis.
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where δ̂s(a, âs) := −δ̂s(âs, a). Next, we switch the next candidate arm ât+1 ← a to another arm246

a ∈ At at round t if for some round s1 < t:247

t∑
s=s1

δ̂s(a, âs) ≥ C log(T )
√

K · (t− s1) ∨K2. (4)

SWIFT is formally shown in Algorithm 2, defined for generic start time tstart and duration m0 so as to248

allow for recursive calls in our meta-algorithm framework.249

5.3 Non-Stationary Algorithm (METASWIFT)250

Algorithm 1: Meta-Elimination while Tracking Arms in SWIFT (METASWIFT)
Input: horizon T .

1 Initialize: round count t← 1.
2 Episode Initialization (setting global variables tℓ,Amaster, Bs,m):
3 tℓ ← t. ; // tℓ indicates start of ℓ-th episode.
4 Amaster ← [K] ; // Master active arm set.
5 For each m = 2, 4, . . . , 2⌈log(T )⌉ and s = tℓ + 1, . . . , T :

6 Sample and store Bs,m ∼ Bernoulli
(

1√
m·(s−tℓ)

)
. ; // Set replay schedule.

7 Run Base-Alg(tℓ, T + 1− tℓ).
8 if t < T then restart from Line 2 (i.e. start a new episode). ;

Algorithm 2: Base-Alg(tstart,m0): SWIFT starting at t0 and running m0 rounds
Input: starting round tstart, scheduled duration m0.

1 Initialize (Global) Variables: t← tstart, At ← [K], ât ← Unif{[K]}.
2 while t ≤ T do
3 Select a random arm at ∈ At with probability 1/|At| and play (ât, at).
4 Let Acurrent ← At. ; // Save current active arm set At (global variable).
5 Increment t← t+ 1.
6 if ∃m such that Bm,t > 0 then
7 Let m := max{m ∈ {2, 4, . . . , 2⌈log(T )⌉} : Bm,t > 0}. ; // Set maximum replay length.
8 Run Base-Alg(t,m). ; // Replay interrupts.
9 if t > tstart +m0 then RETURN. ;

10 Evict bad arms:
11 At ← Acurrent\{a ∈ [K] : ∃ rounds [s1, s2] ⊆ [1, t) s.t. (3) hold}.
12 Amaster ← Amaster \{a ∈ [K] : ∃ rounds [s1, s2] ⊆ [1, t) s.t. (3) hold}.
13 if (4) holds for some arm a ∈ At then
14 Switch candidate arm: ât ← a. ; // Set candidate arm ât (global variable).
15 else
16 ât ← ât−1.
17 Restart criterion: if Amaster = ∅ then RETURN.;

For the non-stationary setting with multiple (unknown) significant shifts, we run SWIFT as a base251

algorithm at randomly scheduled rounds and durations.252

Our algorithm, dubbed METASWIFT and found in Algorithm 1, operates in episodes, starting each253

episode by playing a base algorithm instance of SWIFT. A running base algorithm activates its own254

base algorithms of varying durations (Line 8 of Algorithm 2), called replays according to a random255

schedule decided by the Bernoulli’s Bs,m (see Line 6 of Algorithm 1). We refer to the (unique) base256

algorithm playing at round t as the active base algorithm.257

Global Variables. The active arm set At is pruned by the active base algorithm at round t, and258

globally shared between all running base algorithms. In addition, all other variables, i.e. the ℓ-259

th episode start time tℓ, round count t, schedule {Bs,m}s,m, and candidate arm ât (and thus the260
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quantities δt(ât, a)) are shared between base algorithms. Thus, while active, each Base-Alg can261

switch the candidate arm (4) and evict arms (3) over all intervals [s1, s2] elapsed since it began.262

Note that only one base algorithm (the active one) can editAt and set the candidate arm ât at round t,263

while other base algorithms can access these global variables at later rounds. By sharing these global264

variables, any replay can trigger a new episode: every time an arm is evicted by a replay, it is also265

evicted from the master arm set Amaster, tracking arms’ regret throughout the entire episode. A new266

episode is triggered when Amaster becomes empty, i.e., there is no safe arm left to play.267

6 Regret Analysis268

6.1 Regret of METASWIFT over Significant Phases269

Now, we turn to sketching the proof of Theorem 4. Full details are found in Appendix B.270

Decomposing the Regret. Let a♯t denote the last safe arm at round t, or the last arm to incur271

significant regret in the unique phase [τi, τi+1) containing round t. Then, we can decompose the272

dynamic regret around this safe arm using SST and STI (i.e., using Lemma 8 twice) as:273

T∑
t=1

δt(a
∗
t , ât) + δt(a

∗
t , at) ≤ 6

T∑
t=1

δt(a
∗
t , a

♯
t) + 3

T∑
t=1

δt(a
♯
t, ât) +

T∑
t=1

δt(ât, at),

where we recall that at ∈ At is the other arm played (Line 3 of Algorithm 2). Next, the first sum274

on the above RHS is order
∑L̃

i=1

√
K · (τi − τi−1) as the last safe arm a♯t does not incur significant275

regret on [τi, τi+1). So, it remains to bound the last two sums on the RHS above.276

Episodes Align with Significant Phases. We claim that a new episode is triggered only if there277

a significant shift occurs (Lemma 11). This follows from our eviction criteria (3) with Freedman’s278

inequality for martingale concentration (Lemma 9). Then, acknowledging episodes roughly align279

with significant phases, we turn our attention to bounding the remaining regret in each episode.280

Bounding Regret of an Episode. Let tℓ be the start of the ℓ-th episode of METASWIFT. Then, our281

goal is to show for all ℓ ∈ [L̂] (where L̂ is the random number of episodes used by the algorithm):282

max

{
E

[
tℓ+1−1∑
t=tℓ

δt(a
♯
t, ât)

]
,E

[
tℓ+1−1∑
t=tℓ

δt(ât, at)

]}
≲

∑
i∈[L̃+1]:[τi−1,τi)∩[tℓ,tℓ+1) ̸=∅

√
K · (τi − τi−1),

(5)
where the RHS sum above is over the significant phases [τi−1, τi) overlapping episode [tℓ, tℓ+1).283

Summing over episodes ℓ ∈ [L̂] will then yield the desired total regret bound by our earlier observation284

that the episodes align with significant phases (see Lemma 11).285

Bounding Regret of Active Arms to Candidate Arms. Bounding
∑tℓ+1−1

t=tℓ
δt(ât, at) follows286

in a similar manner as Appendix B.1 of [30]. First, observe by concentration (Lemma 9) the287

eviction criterion (3) bounds the sums
∑s2

t=s1
δt(ât, a) over intervals [s1, s2] where a is active. Then,288

accordingly, we further partition the episode rounds [tℓ, tℓ+1) into different intervals distinguishing289

the unique regret contributions of different active arms from varying base algorithms, on each of290

which we can relate the regret to our eviction criterion. Details can be found in Appendix B.3.291

• Bounding Regret of Candidate Arm to Safe Arm. The first sum on the LHS of (5) will be292

further decomposed using the last master arm aℓ which is the last arm to be evicted from the master293

arm set Amaster in episode [tℓ, tℓ+1). Carefully using SST and STI (see Lemma 13), we further294

decompose δt(a
♯
t, ât) as:295

tℓ+1−1∑
t=tℓ

δt(a
♯
t, ât) ≤ 2

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ)︸ ︷︷ ︸

A

+

tℓ+1−1∑
t=tℓ

δt(aℓ, ât)︸ ︷︷ ︸
B

+3

tℓ+1−1∑
t=tℓ

δt(a
∗
t , a

♯
t)︸ ︷︷ ︸

C

(6)

The sum C above was already bounded earlier. So, we turn our attention to B and A.296
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• Bounding B. Note that the arm aℓ by definition is never evicted by any base algorithm until the297

end of the episode tℓ+1 − 1. This means that at round t ∈ [tℓ, tℓ+1), the quantity
∑t

s=tℓ
δ̂s(aℓ, âs) is298

always kept small by the candidate arm switching criterion (4). So, by concentration (Proposition 10),299

we have
∑tℓ+1−1

s=tℓ
δ̂s(aℓ, âs) ≲

√
K(tℓ+1 − tℓ).300

• Bounding A The main intuition here, similar to Appendix B.2 of Suk and Kpotufe [30], is that301

well-timed replays are scheduled w.h.p. to ensure fast detection of large regret of the last master302

arm aℓ. Key in this is the notion of a bad segment of time: i.e., an interval [s1, s2] ⊆ [τi, τi+1) lying303

inside a significant phase with last safe arm a♯ where:304

s2∑
t=s1

δt(a
♯, aℓ) ≳

√
K · (s2 − s1). (7)

For a fixed bad segment [s1, s2], the idea is that a fortuitously timed replay scheduled at round s1305
and remaining active till round s2 will evict arm aℓ.306

It is not immediately obvious how to carry out this argument in the dueling bandit problem since, to307

detect large
∑

t δt(a
♯, aℓ), the pair of arms a♯, aℓ need to both be played which, as we discussed in308

Section 5.1, may not occur often enough to ensure tight estimation of the gaps.309

Instead, we carefully make use of SST/STI to relate δt(a
♯, aℓ) to δt(ât, aℓ). Note this latter quantity310

controls both the eviction (3) and ât switching (4) criteria. This allows us to convert bad intervals311

with large
∑

t δt(a
♯
t, aℓ) to intervals with large

∑
t δt(ât, aℓ). Specifically, by Lemma 13, we have312

that (7) implies313

2

s2∑
t=s1

δt(a
♯, ât) +

s2∑
t=s1

δt(ât, aℓ) + 3

s2∑
t=s1

δt(a
∗
t , a

♯) ≳
√

K · (s2 − s1). (8)

Then, we claim that, so long as a base algorithm Base-Alg(s1,m) is scheduled from s1 running till s2,314

we will have
∑s2

t=s1
δt(ât, aℓ) ≳

√
K · (s2 − s1) which implies aℓ will be evicted. In other words,315

the second sum dominates the first and third sums in (8). We repeat earlier arguments to show this:316

• By the definition of the last safe arm a♯,
∑s2

t=s1
δt(a

∗
t , a

♯) <
√
K · (s2 − s1).317

• Meanwhile,
∑s2

t=s1
δt(a

♯, ât) ≲
√

K · (s2 − s1) by the candidate switching criterion (4) and318

because a♯ will not be evicted before round s2 lest it incurs significant regret which cannot happen319

by definition of a♯.320

Combining the above two points with (8), we have that
∑s2

t=s1
δt(ât, aℓ) ≳

√
K · (s2 − s1), which321

directly aligns with our criterion (3) for evicting aℓ. To summarize, a bad segment [s1, s2] in the322

sense of (7) is detectable using a well-timed instance of SWIFT, which happens often enough with323

high probability. Concretely, we argue that not too many bad segments elapse before aℓ is evicted by324

a well-timed replay in the above sense and that thus the regret incurred by aℓ is bounded by the RHS325

of (5). The details can be found in Appendix B.5.326

7 Conclusion327

We consider the problem of switching dueling bandits where the distribution over preferences can328

change over time. We study a notion of significant shifts in preferences and ask whether one can329

achieve adaptive dynamic regret of O(
√

KL̃T ) where L̃ is the number of significant shifts. We330

give a negative result showing that one cannot achieve such a result outside of the SST∩STI setting,331

and answer this question in the affirmative under the SST∩STI setting. In the future, it would be332

interesting to consider other notions of shifts which are weaker than the notion of significant shift,333

and ask whether adaptive algorithms for the Condorcet setting can be designed with respect to these334

notions. [10] already give a O(K
√
ST ) bound for the Condorcet setting, where S is the number of335

changes in ‘best’ arm. However, their results have a suboptimal dependence on K due to reduction to336

“all-pairs" exploration.337
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A Proof of Theorem 3441

Consider the following preference matrices for some ϵ > 0 (to be chosen later):442

P+ :=

(
1/2 1/2 + ϵ 1

1/2− ϵ 1/2 1/2 + ϵ
0 1/2− ϵ 1/2

)
,P− :=

(
1/2 1/2− ϵ 0

1/2 + ϵ 1/2 1/2− ϵ
1 1/2 + ϵ 1/2

)
.

In environment P+, arm 1 is the Condorcet winner and we have 1 ≻ 2 ≻ 3. In environment P−, arm443

3 is the winner with 3 ≻ 2 ≻ 1.444

Consider a uniform mixture U of the preference matrices P+ and P−, Let E be a (random) sequence445

of T environments sampled i.i.d. from U , with Pt := (E)t being the sampled environment at round t.446

First, it is straightforward to verify in every such switching dueling bandit E , arm 2 does not incur447

significant regret over any interval of rounds [s1, s2] ⊆ [1, T ], for ϵ < 1/
√
T . Thus, every such E448

exhibits zero significant shifts.449

Next, in what follows, we use EE [·] to denote an expectation over both the randomness of U⊗T and450

the algorithm’s feedback and decisions. If there exists a realization of E such that the algorithm451

gets expected regret at least T/8, then we are already done. Otherwise, we have the expected452

regret over the random environment E is bounded above by T/8. Next, define the arm-pull counts453

N(T, a) :=
∑T

t=1 111{it = a}+111{jt = a} for each arm a. Then, we relate these arm-pull counts to454

the regret:455

T/8 >

T∑
t=1

EE [δt(i
∗, it) + δt(i

∗, jt)]

≥ 1

2

T∑
t=1

EE [(111{it = 3}+111{jt = 3}) · 111{(E)t = P+}+ (111{it = 1}+111{jt = 1}) · 111{(E)t = P−}]

=
1

2

T∑
t=1

EE

[
1

2
· (111{it = 3}+111{jt = 3}+111{it = 1}+111{jt = 1})

]
≥ 1

4
· EE [N(T, 3) +N(T, 1)],

where we use the tower law in the third inequality (note that it, jt are independent of (E)t). Thus, in456

expectation over both the model noise and randomness of E , arms 3 and 1 cannot be played more457

than T/2 times without causing linear regret.458

Since
∑3

a=1 EE [N(T, a)] = 2T , we conclude that EE [N(T, 2)] ≥ 3T/2. We will next show that459

arm 2 is statistically indistinguishable from arm 3. To do so, we consider an analogous environment460

which is identical to E except the identities of arms 2 and 3 are switched. Specifically, let E ′ be a461

random sequence of T environments sampled i.i.d. from a uniform mixture of Q+ and Q−, which462

are respectively P+ and P− with switched entries for arms 2 and 3.463

We next claim EE [N(T, 2)] = EE′ [N(T, 2)]. Admitting this claim, it immediately follows that the464

algorithm has expected regret (over the randomness of E ′) at least (using an analogous chain of465

inequalities as above):466

EE′ [DR(T )] ≥ 1

4
· EE′ [N(T, 2)] ≥ 3T/8.

In particular, there exists a realization of E ′ within the prior on environments on which the regret is at467

least 3T/8.468

It remains to show EE [N(T, 2)] = EE′ [N(T, 2)]. This will follow from Pinsker’s inequality and469

showing that the KL between E and E ′ is zero.470

We first observe that the dueling observations Ot(i, j) at each round t ∈ [T ] are identically a Ber(1/2)471

R.V. for all pairs of arms i, j in both E and E ′, since a uniform mixture of a Ber(1/2 + ϵ) and a472

Ber(1/2− ϵ) is a Ber(1/2), while so is the uniform mixture of a Ber(1) and a Ber(0).473

Then, since N(T, 2) ≤ 2T , by Pinsker’s inequality [see 17, proof of Lemma C.1], we have:474

EE [N(T, 2)]− EE′ [N(T, 2)] ≤ 2T

√
KL(P,P ′)

2
,
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where P and P ′ are the induced distributions over the randomness U⊗T , and the history of obser-475

vations and decisions in T rounds by E and E ′. LetHt be the history of randomness, observations,476

and decisions till round t: Ht = {(us, is, js, Os(is, js)}s≤t where us ∼ Ber(1/2) decides whether477

P+/Q+ or P−/Q− is realized at round t. Let Pt and P ′
t denote the respective marginal distributions478

over the round t data (ut, it, jt, Ot(it, jt)). Then, repeatedly using chain rule for KL and then479

conditioning on the played arms (it, jt) (whose identities are fixed givenHt−1) at round t, we get:480

KL(P,P ′) =

T∑
t=1

KL(Pt|Ht−1,P ′
t|Ht−1) =

T∑
t=1

EHt−1 [Eit,jt [KL(Ber(1/2),Ber(1/2))]] = 0.

■481

Remark 2. The constructed environments P+,P− in the proof of Theorem 3 satisfies SST but violates482

STI. A similar construction which violates SST (but satisfies STI) can also be used in the proof. Let483

P+ :=

(
1/2 1/2− ϵ 1/2− ϵ

1/2 + ϵ 1/2 0
1/2 + ϵ 1 1/2

)
,

and let P− be the same preference matrix with arms 2 and 3 switched. Note that 3 ≻ 2 ≻ 1 in P+
484

and 2 ≻ 3 ≻ 1 in P−. Here, arm 1 is the “safe” arm as it always has a gap of ϵ while arms 2 and 3485

randomly alternate between being the best arm and the worst arm with a gap of 1/2. Thus, both the486

STI and SST assumptions are required to get sublinear regret in mildly adversarial environments.487

Due to these observation we have the following corollaries.488

Corollary 6. For each horizon T , there exists a finite family F of switching dueling bandit environ-489

ments with K = 3 that satisfies the SST condition with L̃ = 0 significant shifts. The worst-case regret490

of any algorithm on an environment E in this family is lower bounded as491

sup
E∈F

EE [DR(T )] ≥ T/8.

Corollary 7. For each horizon T , there exists a finite family F of switching dueling bandit environ-492

ments with K = 3 that satisfies the STI condition with L̃ = 0 significant shifts. The worst-case regret493

of any algorithm on an environment E in this family is lower bounded as494

sup
E∈F

EE [DR(T )] ≥ T/8.

B Full Proof of Theorem 4495

Throughout the proof c1, c2, . . . will denote positive constants not depending on T or any distributional496

parameters. First, we observe the regret bound is vacuous for T < K; so, assume T ≥ K. Recall497

from Line 3 of Algorithm 1 that tℓ is the first round of the ℓ-th episode. WLOG, there are T total498

episodes and, by convention, we let tℓ := T + 1 if only ℓ− 1 episodes occurred by round T .499

Next, we establish an elementary lemma which will help us leverage the STI and SST assumptions.500

B.1 Decomposing the Regret501

Lemma 8. For any three arms b, c, under SST∩STI: δt(a∗t , c) ≤ 2 · δt(a∗t , b) + δt(b, c).502

Proof. If b ⪰t c, this is true by STI. Otherwise, δt(a∗t , c) ≤ δt(a
∗
t , b) ≤ δt(a

∗
t , b)+δt(a

∗
t , b)−δt(c, b)503

by SST.504

Using Lemma 8 twice, we have the regret can be written as505

T∑
t=1

δt(a
∗
t , ât) + δt(a

∗
t , at) ≤

T∑
t=1

6 · δt(a∗t , a
♯
t) + 3 · δt(a♯t, ât) + δt(ât, at).

Following the discussion of Section 4, it remains to bound
∑T

t=1 δt(a
♯
t, ât) and

∑T
t=1 δt(ât, at) in506

expectation. For this, we need to relate our estimators δ̂t(ât, a) to the true gaps δt(ât, a).507
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B.2 Relating Estimated Gaps to Regret508

We first recall a version of Freedman’s martingale concentration inequality, identical to the one used509

in Suk and Kpotufe [30], Buening and Saha [10].510

Lemma 9 (Theorem 1 of Beygelzimer et al. [9]). Let X1, . . . , Xn ∈ R be a martingale difference511

sequence with respect to some filtration {F0,F1, . . .}. Assume for all t that Xt ≤ R a.s. and that512 ∑n
i=1 E[X2

i |Fi−1] ≤ Vn a.s. for some constant Vn only depending on n. Then for any δ ∈ (0, 1),513

with probability at least 1− δ, we have:514

n∑
i=1

Xi ≤ (e− 1)
(√

Vn log(1/δ) +R log(1/δ)
)
.

We next apply Lemma 9 to bound the estimation error of our estimates δ̂t(ât, a), found in (2).515

Proposition 10. Let E1 be the event that for all rounds s1 < s2 and all arms a ∈ [K]:516 ∣∣∣∣∣
s2∑

t=s1

δ̂t(ât, a)−
s2∑

t=s1

E
[
δ̂t(ât, a) | Ft−1

]∣∣∣∣∣ ≤ c1 log(T )
(√

K(s2 − s1) +K
)
, (9)

for an appropriately large constant c1, and where F := {Ft}Tt=1 is the canonical filtration generated517

by observations and randomness of elapsed rounds. Then, E1 occurs with probability at least518

1− 1/T 2.519

Proof. The random variable δ̂t(ât, a)− E[δ̂t(ât, a)|Ft−1] is a martingale difference bounded above520

by K for all rounds t and all arms a, a′. Note here that the identity of the candidate arm ât is fixed521

conditional on the observations of the previous rounds Ft−1. The variance of this difference is:522

s2∑
t=s1

E[δ̂2t (ât, a) | Ft−1] ≤
s2∑

t=s1

2|At|2E[111{jt = a}|Ft−1]

≤
s2∑

t=s1

2|At|2 ·
1

|At|

≤ 2K · (s2 − s1 + 1).

≤ 4K · (s2 − s1)

Then, the result follows from Lemma 9 and taking union bounds over arms a and rounds s1, s2.523

Since the contribution to the expected regret is small outside of the high-probability good event E1,524

going forward we will assume as necessary that (9) holds for all arms a ∈ [K] and rounds s1, s2.525

The next result asserts that episodes roughly correspond to significant shifts in the sense that a restart526

(Line 8 of Algorithm 1) occurs only if a significant shift has been detected.527

Lemma 11. On event E1, for each episode [tℓ, tℓ+1) with tℓ+1 ≤ T (i.e., an episode which concludes528

with a restart), there exists a significant shift τi ∈ [tℓ, tℓ+1).529

Proof. We have that530

E[δ̂t(ât, a)|Ft−1] =

{
δt(ât, a) a ∈ At

−1/2 a ̸∈ At
.

Thus, by concentration (Proposition 10) and the eviction criteria (3) with large enough constant C > 0,531

we have that an arm a being evicted over interval [s1, s2] implies
∑s2

t=s1
δt(ât, a) >

√
K · (s2 − s1).532

By the SST condition, this means that533

s2∑
t=s1

δt(a
∗
t , a) ≥

s2∑
t=s1

δt(ât, a) >
√
K · (s2 − s1).

This means, over the course of episode [tℓ, tℓ+1), every arm a ∈ [K] incurs significant regret meaning534

a significant shift must take place between rounds tℓ and tℓ+1 − 1.535

Following the outline of Section 4, we now turn our attention to bounding the regrets δt(a
♯
t, ât) and536

δt(ât, at) over a single episode [tℓ, tℓ+1).537
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B.3 Bounding E[
∑tℓ+1−1

t=tℓ
δt(ât, at)]: Regret of Active Arms to Candidate Arm538

We first decompose the total sum of regrets E[
∑T

t=1 δt(ât, at)] based on which arm at chooses within539

the active set At. Using tower law, we have540

E

[
T∑

t=1

δt(ât, at)

]
=

T∑
t=1

E[E[δt(ât, at) | Ft−1]] = E

[
T∑

t=1

∑
a∈At

δt(ât, a)

|At|

]
.

Splitting the above RHS back along episodes, we obtain the sum E[
∑tℓ+1−1

t=tℓ

∑
a∈At

δt(ât, a)/|At|].541

Next, we condition on the good event E1 on which the concentration bounds of Proposition 10 hold.542

Additionally, we divide up the rounds t into those before arm a is evicted from Amaster and those after.543

Suppose arm a is evicted from Amaster at round taℓ ∈ [tℓ, tℓ+1). In particular, this means arm a ∈ At544

for all t ∈ [tℓ, t
a
ℓ ). Thus, it suffices to bound:545

E

111{E1} ·
 K∑

a=1

taℓ−1∑
t=tℓ

δt(ât, a)

|At|
+

K∑
a=1

tℓ+1−1∑
t=taℓ

δt(ât, a)

|At|
· 111{a ∈ At}

 . (10)

Suppose WLOG that t1ℓ ≤ t2ℓ ≤ · · · ≤ tKℓ . Then, for each round t < taℓ all arms a′ ≥ a are retained546

in Amaster and thus retained in the candidate arm set At. Thus, |At| ≥ K + 1− a for all t ≤ taℓ .547

Then, the first double sum in (10) can be bounded by combining our eviction criterion (3) with our548

concentration bounds Proposition 10. Since arm a is not evicted from At till round taℓ , on event E1549

we have for some c2 > 0:550

taℓ−1∑
t=tℓ

δt(ât, a) =

taℓ−1∑
t=tℓ

E[δ̂t(ât, a) | Ft−1] ≤ c2 log(T )
√

K(taℓ − tℓ) ∨K2

Then, using the fact that |At| ≥ K + 1− a for all t ∈ [tℓ, t
a
ℓ ), we have:551

taℓ−1∑
t=tℓ

δt(ât, a)

|At|
≤

c2 log(T )
√
K(taℓ − tℓ) ∨K2

K + 1− a
.

Then, summing the above R.H.S. over all arms a, we have on event E1:552

K∑
a=1

taℓ−1∑
t=tℓ

δt(ât, a)

|At|
≤ c2 log(K) log(T )

√
K(tℓ+1 − tℓ) ∨K2.

Next, we handle the second double sum in (10). We first observe that if arm a is played after round553

taℓ , then it must due to a scheduled replay. The difficulty here is that replays may interrupt each other554

and so care must be taken in managing the relative regret contribution
∑

t δt(ât, a) (which may be555

negative if a ≺ ât) of different overlapping replays.556

Fixing an arm a, our strategy is to partition the rounds when a is played by a replay after round taℓ557

according to which replay is active and not accounted for by another replay. This involves carefully558

designating a subclass of replays whose durations while playing a span all the rounds where a is559

played after taℓ . Then, we cover the times when a is played by a collection of intervals corresponding560

to the schedules of this subclass of replays, on each of which we can employ the eviction criterion (3)561

and concentration like before.562

For this purpose, we define the following terminology (which is all w.r.t. a fixed arm a):563

Definition 4.564

(i) For each scheduled and activated Base-Alg(s,m), let the round M(s,m) be the minimum of565

two quantities: (a) the last round in [s, s+m] when arm a is retained by Base-Alg(s,m) and566

all of its children, and (b) the last round that Base-Alg(s,m) is active and not permanently567

interrupted. Call the interval [s,M(s,m)] the active interval of Base-Alg(s,m).568

(ii) Call a replay Base-Alg(s,m) proper if there is no other scheduled replay Base-Alg(s′,m′)569

such that [s, s+m] ⊂ (s′, s′ +m′) where Base-Alg(s′,m′) will become active again after570

round s+m. In other words, a proper replay is not scheduled inside the scheduled range of571

rounds of another replay. Let PROPER(tℓ, tℓ+1) be the set of proper replays scheduled to572

start before round tℓ+1.573

16



Figure 2: Shown are replay scheduled durations (in gray) with dots marking when arm a is reintro-
duced toAt. Black segments indicate the period [s,M(s,m)] for proper and subproper replays. Note
that the rounds where a ∈ At in the left unlabeled replay’s duration are accounted for by the larger
proper replay.

(iii) Call a scheduled replay Base-Alg(s,m) subproper if it is non-proper and if each of its574

ancestor replays (i.e., previously scheduled replays whose durations have not concluded)575

Base-Alg(s′,m′) satisfies M(s′,m′) < s. In other words, a subproper replay either576

permanently interrupts its parent or does not, but is scheduled after its parent (and all577

its ancestors) stops playing arm a. Let SUBPROPER(tℓ, tℓ+1) be the set of all subproper578

replays scheduled before round tℓ+1.579

Equipped with this language, we now show some basic claims which essentially reduce analyzing the580

complicated hierarchy of replays to analyzing the active intervals of replays in PROPER(tℓ, tℓ+1) ∪581

SUBPROPER(tℓ, tℓ+1).582

Proposition 12. The active intervals583

{[s,M(s,m)] : Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(tℓ, tℓ+1)},

are mutually disjoint.584

Proof. Clearly, the classes of replays PROPER(tℓ, tℓ+1) and SUBPROPER(tℓ, tℓ+1) are disjoint. Next,585

we show the respective active intervals [s,M(s,m)] and [s′,M(s′,m′)] of any two Base-Alg(s,m)586

and Base-Alg(s′,m′) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(tℓ, tℓ+1) are disjoint.587

1. Proper replay vs. subproper replay: a subproper replay can only be scheduled after the588

round M(s,m) of the most recent proper replay Base-Alg(s,m) (which is necessarily an589

ancestor). Thus, the active intervals of proper replays and subproper replays.590

2. Two distinct proper replays: two such replays can only permanently interrupt each other,591

and since M(s,m) always occurs before the permanent interruption of Base-Alg(s,m), we592

have the active intervals of two such replays are disjoint.593

3. Two distinct subproper replays: consider two non-proper replays594

Base-Alg(s,m),Base-Alg(s′,m′) ∈ SUBPROPER(tℓ, tℓ+1) with s′ > s. The only595

way their active intervals intersect is if Base-Alg(s,m) is an ancestor of Base-Alg(s′,m′).596

Then, if Base-Alg(s′,m′) is subproper, we must have s′ > M(s,m), which means that597

[s′,M(s′,m′)] and [s,M(s,m)] are disjoint.598

599

Next, we claim that the active intervals [s,M(s,m)] for Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪600

SUBPROPER(tℓ, tℓ+1) contain all the rounds where a is played after being evicted from Amaster. To601

show this, we first observe that for each round t when a replay is active, there is a unique proper602

replay associated to t, namely the proper replay scheduled most recently. Next, note that any round603

t > taℓ where arm a ∈ At must belong to the active interval [s,M(s,m)] of the unique proper replay604

Base-Alg(s,m) associated to round t, or else satisfies t > M(s,m) in which case a unique subproper605

replay Base-Alg(s′,m′) ∈ SUBPROPER(tℓ, tℓ+1) was active and not yet permanently interrupted by606

round t. Thus, it must be the case that t ∈ [s′,M(s′,m′)].607
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At the same time, every round t ∈ [s,M(s,m)] for a proper or subproper Base-Alg(s,m) is clearly a608

round where a ∈ At and no such round is accounted for twice by Proposition 12. Thus,609

{t ∈ (taℓ , tℓ+1) : a ∈ At} =
⊔

Base-Alg(s,m)∈PROPER(tℓ,tℓ+1)∪SUBPROPER(tℓ,tℓ+1)

[s,M(s,m)].

Then, we can rewrite the second double sum in (10) as:610

K∑
a=1

∑
Base-Alg(s,m)∈PROPER(tℓ,tℓ+1)∪SUBPROPER(tℓ,tℓ+1)

111{Bs,m = 1}
M(s,m)∑
t=s∨taℓ

δt(ât, a)

|At|
.

Recall in the above that the Bernoulli Bs,m (see Line 6 of Algorithm 1) decides whether611

Base-Alg(s,m) is scheduled.612

Further bounding the sum over t above by its positive part, we can expand the sum over613

Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(tℓ, tℓ+1) to be over all Base-Alg(s,m), or ob-614

tain:615
K∑

a=1

∑
Base-Alg(s,m)

111{Bs,m = 1}

M(s,m)∑
t=s∨taℓ

δt(ât, a)

|At|
· 111{a ∈ At}


+

, (11)

where the sum is over all replays Base-Alg(s,m), i.e. s ∈ {tℓ + 1, . . . , tℓ+1 − 1} and m ∈616

{2, 4, . . . , 2⌈log(T )⌉}. It then remains to bound the contributed relative regret of each Base-Alg(s,m)617

in the interval [s ∨ taℓ ,M(s,m)], which will follow similarly to the previous steps. Fix s,m and618

suppose taℓ + 1 ≤M(s,m) since otherwise Base-Alg(s,m) contributes no regret in (11).619

Then, following similar reasoning as before, i.e. combining our concentration bound (9) with the620

eviction criterion (3), we have for a fixed arm a:621

M(s,m)∑
t=s∨taℓ

δt(ât, a)

|At|
≤ c2 log(T )

√
Km ∨K2

mint∈[s,M(s,m)] |At|
,

Plugging this into (11) and switching the ordering of the outer double sum, we obtain (now for clarity622

overloading the notation M(s,m, a) to also depend on the reference arm a):623 ∑
Base-Alg(s,m)

111{Bs,m = 1} · c2 log(T )
√
Km ∨K2

K∑
a=1

1

mint∈[s,M(s,m.a)] |At|
.

We claim the above innermost sum over a is at most log(K). For a fixed Base-Alg(s,m), if ak is the624

k-th arm in [K] to be evicted by Base-Alg(s,m) or any of its children, then mint∈[s,M(s,m,ak)] |At| ≥625

K + 1− k. Thus, our claim follows follows from
∑K

k=1
1

K+1−k ≤ log(K).626

Let R(m) := c2 log(K) log(T )
√
Km ∨K2 which is the bound we’ve obtained so far on the relative627

regret for a single Base-Alg(s,m). Then, plugging R(m) into (11) gives:628

E

111{E1} K∑
a=1

tℓ+1−1∑
t=taℓ

δt(ât, a)

|At|
· 111{a ∈ At}

 ≤ Etℓ

E
 ∑

Base-Alg(s,m)

111{Bs,m = 1} ·R(m) | tℓ


= Etℓ

[
T∑

s=tℓ

∑
m

E[111{Bs,m = 1} · 111{s < tℓ+1} | tℓ] ·R(m)

]
.

Next, we observe that Bs,m and 111{s < tℓ+1} are independent conditional on tℓ since 111{s < tℓ+1}629

only depends on the scheduling and observations of base algorithms scheduled before round s. Thus,630

recalling that P(Bs,m = 1) = 1/
√
m · (s− tℓ),631

E[111{Bs,m = 1} · 111{s < tℓ+1} | tℓ] = E[111{Bs,m = 1} | tℓ] · E[111{s < tℓ+1} | tℓ]

=
1√

m · (s− tℓ)
· E[111{s < tℓ+1} | tℓ].

18



Plugging this into our expectation from before and unconditioning, we obtain:632

E

tℓ+1−1∑
s=tℓ+1

⌈log(T )⌉∑
n=1

1√
2n · (s− tℓ)

·R(2n)

 ≤ c3 log
3(T )Etℓ,tℓ+1

[√
K(tℓ+1 − tℓ) ∨K2

]
. (12)

Then, it suffices to bound
√
K(tℓ+1 − tℓ) ∨K2. First, we claim that every phase [τi, τi+1) is length633

at least K/4. Observe by our notion of significant regret, that an arm a incurring significant regret on634

the interval [s1, s2] means635

s2∑
t=s1

δt(a
∗
t , a) ≥

√
K · (s2 − s1) =⇒ 2 · (s2 − s1) ≥

√
K · (s2 − s1) =⇒ s2 − s1 ≥ K/4.

Thus, each significant phase (Definition 3) must be at least K/4 rounds long meaning τi+1 − τi =636

(τi+1 − τi) ∨K/4. This will allow us to remove the “∨K2” in (12). In particular, since the episode637

length tℓ+1 − tℓ in (12) can be upper bounded by the combined length of all significant phases638

[τi, τi+1) interesecting episode [tℓ, tℓ+1), (12) gives us the desired bound.639

640

B.4 Bounding E[
∑tℓ+1−1

t=tℓ
δt(a

♯
t, ât)]: Regret of Candidate Arm to Safe Arm641

We first invoke an elementary lemma based on SST and STI to further help us decompose the regret.642

Lemma 13. For any three arms a, b, c, under SST∩STI:643

δt(a, c) ≤ 2 · δt(a, b) + δt(b, c) + 3 · δt(a∗t , a),
where a∗t is the winner arm.644

Proof. We handle all the different orderings:645

(a) a ≻t b, c: this already follows from Lemma 8 since then δt(a, c) ≤ 2 · δt(a, b) + δt(b, c).646

(b) c ≻t a ≻t b: δt(a, c) ≤ 0 ≤ δt(a, b) and δt(a
∗, b) ≥ δt(c, b) by SST. Summing these647

together gives the result.648

(c) b ≻t a ≻t c: δt(a, c) ≤ δt(b, c) and δt(a
∗
t , a) ≥ δt(b, a) by SST. Summing these together649

gives the result.650

(d) b, c ≻t a: δt(a∗, a) dominates the first two terms on the desired inequality’s RHS.651

652

Then, using Lemma 13, we further decompose the regret about the last master arm aℓ defined in653

Section 4, which is the last arm to be evicted from Amaster in episode [tℓ, tℓ+1). We have654

tℓ+1−1∑
t=tℓ

δt(a
♯
t, ât) ≤ 2

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) +

tℓ+1−1∑
t=tℓ

δt(aℓ, ât) + 3

tℓ+1−1∑
t=tℓ

δt(a
∗
t , a

♯
t). (13)

As said earlier, the sum
∑tℓ+1−1

t=tℓ
δt(a

∗
t , a

♯
t) is of the right order. Meanwhile, the sum655 ∑tℓ+1−1

t=tℓ
δt(aℓ, ât) is bounded using our candidate arm switching criterion (4). If ât = aℓ for656

every round t ∈ [tℓ, tℓ+1) we are already done. Otherwise, let mℓ be the last round that aℓ is not the657

candidate arm ât. Then, we must have that since arm aℓ is not evicted until round tℓ+1 − 1:658

tℓ+1−1∑
t=tℓ

δ̂t(aℓ, ât) =

mℓ−1∑
t=tℓ

δ̂t(aℓ, ât) ≤ C log(T )
√

K · (mℓ − tℓ) ∨K2

Then, by concentration (Proposition 10) and the fact from earlier that each phase [τi, τi+1) is at least659

K/4 rounds (so that “∨K2” can be removed in the above), we have that
∑tℓ+1−1

t=tℓ
δt(aℓ, ât) is of the660

right order.661

Then, turning back to (13), it remains to bound the regret of aℓ to a♯t over the episode [tℓ, tℓ+1).662
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B.5 Bounding E[
∑tℓ+1−1

t=tℓ
δt(a

♯
t, aℓ)]: Regret of Last Master Arm to Safe Arm663

First, following the outline of Section 4, we recall the definition of the last safe arm a♯t at round t664

which is the last arm to incur significant regret in the unique phase [τi, τi+1) containing round t.665

We next formally define a bad segment, alluded to in Section 4. In what follows, bad segments will666

be defined with respect to a fixed arm a and conditional on the episode start time tℓ. We will then667

show that, with respect to any arm a, not too many bad segments will elapse before a is evicted from668

Amaster. In particular, this will hold for a = aℓ which will ultimately be used to bound δt(a
♯
t, aℓ)669

across the episode [tℓ, tℓ+1).670

Definition 5. Fix the episode start time tℓ, and let [τi, τi+1) be any phase intersecting [tℓ, T ). For671

any arm a, define rounds si,0(a), si,1(a), si,2(a) . . . ∈ [tℓ ∨ τi, τi+1) recursively as follows: let672

si,0(a) := tℓ ∨ τi and define si,j(a) as the smallest round in (si,j−1(a), τi+1) such that arm a673

satisfies for some fixed c4 > 0:674

si,j(a)∑
t=si,j−1(a)

δt(a
♯
t, a) ≥ c4 log(T )

√
K · (si,j(a)− si,j−1(a)), (14)

if such a round si,j(a) exists. Otherwise, we let the si,j(a) := τi+1 − 1. We refer to any interval675

[si,j−1(a), si,j(a)) as a critical segment, and as a bad segment (w.r.t. arm a) if (14) above holds.676

Note that the above definition only depends on the arm a and the episode start time tℓ and that,677

conditional on these variables, they are fixed in the environment. Observe also that the arm a♯t is fixed678

within any critical segment [si,j−1(a), si,j(a)) ⊆ [τi, τi+1) since a significant shift does not occur679

inside [τi, τi+1).680

Now relating this notion of a bad segment to our goal of bounding regret, a given bad segment681

[si,j(a), si,j(a)) only contributes order
√
K · (si,j(a)− si,j−1(a)) to the regret of a to a♯t. At the682

same time, we claim that a well-timed replay (see Definition 6 below) running from si,j−1(a) to683

si,j(a) is capable of evicting arm a. This in turn allows us to reduce the regret bounding to studying684

the number and lengths of bad segments which elapse before one is detected by such a replay.685

We first define such a well-timed and perfect replay.686

Definition 6. Let s̃i,j(a) := ⌈ si,j(a)+si,j+1(a)
2 ⌉ denote the approximate midpoint of687

[si,j(a), si,j+1(a)). Given a bad segment [si,j(a), si,j+1(a)), define a perfect replay w.r.t.688

[si,j(a), si,j+1(a)) as a call of Base-Alg(tstart,m) where tstart ∈ [si,j(a), s̃i,j(a)] and m ≥689

si,j+1(a)− si,j(a)690

Next, we analyze the behavior of a perfect replay on the bad segment [si,j(a), si,j+1(a)). Going691

forward, we will use the simpler notation a♯i to denote the last safe arm of a phase [τi, τi+1), known692

in context.693

Proposition 14. Suppose the good event E1 holds (cf. Proposition 10). Let [si,j(a), si,j+1(a)) be694

a bad segment with respect to arm a. Fix an integer m ≥ si,j+1(a) − si,j(a). Then, if a perfect695

replay with respect to [si,j(a), si,j+1(a)) is scheduled, arm a will be evicted from Amaster by round696

si,j+1(a).697

Proof. Suppose event E1 (i.e., our concentration bound (9)) holds. We first observe that by elementary698

calculations and the definition of the rounds si,j(a), we have (in an identical fashion to Lemma 4 of699

Suk and Kpotufe [30]):700

si,j+1(a)∑
t=s̃i,j(a)

δt(a
♯
i , a) ≥

c4
4
log(T )

√
K (si,j+1(a)− s̃i,j(a)), (15)

where s̃i,j(a) is the midpoint of [si,j(a), si,j+1(a)) as defined in Definition 6. The above will come701

in handy in asserting that arm a is in fact evicted over just the second half of the bad segment702

[s̃i,j(a), si,j+1(a)].703

Next, following the intuition given in Section 4, in order to relate δt(a
♯
i , a) to δt(ât, a), we again use704

SST and STI via Lemma 13 on inequality (15):705
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si,j+1(a)∑
t=s̃i,j(a)

2 · δt(a♯i , ât) + δt(ât, a) + 3 · δt(a∗t , a
♯
i) ≥

c4
4
log(T )

√
K (si,j+1(a)− s̃i,j(a)). (16)

We next show that
∑si,j+1(a)

t=s̃i,j(a)
δt(a

♯
i , ât) and

∑si,j+1(a)

t=s̃i,j(a)
δt(a

∗
t , a

♯
i) on the above LHS are small.706

First, it is clear that any perfect replay Base-Alg(tstart,m) will not evict a♯i since otherwise it incurs707

significant regret within phase [τi, τi+1) (see the earlier Lemma 11). At the same time, by the708

candidate arm switching criterion (4) and concentration:709

si,j+1(a)∑
t=s̃i,j(a)

δt(a
♯
i , ât) ≤ c5 log(T )

√
K (si,j+1(a)− s̃i,j(a)).

Meanwhile, by the definition of significant regret (Definition 3),710

si,j+1(a)∑
t=s̃i,j(a)

δt(a
∗
t , a

♯
i) ≥

√
K (si,j+1(a)− s̃i,j(a)).

Thus, for sufficiently large c4 > 0 in the definition of bad segments (Definition 5), we have that the711

above two inequalities can be combined with (16) to yield:712

si,j+1(a)∑
t=s̃i,j(a)

δt(ât, a) ≥
√

K (si,j+1(a)− s̃i,j(a)).

If arm a is evicted from Amaster before round si,j+1(a), then we are already done. Otherwise, using713

the fact that E[δ̂t(ât, a)|Ft−1] = δt(ât, a) for any round t ∈ [s̃i,j(a), si,j+1(a)] with a ∈ At, we714

have that arm a will be evicted at round si,j+1(a) using the above inequality and concentration.715

It remains to show that, for any arm a, a perfect replay is scheduled w.h.p. before too much regret is716

incurred on the elapsed bad segments w.r.t. a. In particular, this will hold for the last master arm aℓ,717

allowing us to bound the remaining term E[
∑tℓ+1−1

t=tℓ
δt(a

♯
t, aℓ)]. The argument will be identical to718

that of Appendix B.2 of Suk and Kpotufe [30].719

First, fix an arm a and an episode start time tℓ. Then, define the bad round s(a) > tℓ as follows:720

Definition 7. (bad round) For a fixed round tℓ and arm a, the bad round s(a) > tℓ is defined as the721

smallest round which satisfies, for some fixed c6 > 0:722 ∑
(i,j)

√
si,j+1(a)− si,j(a) > c6 log(T )

√
s(a)− tℓ, (17)

where the above sum is over all pairs of indices (i, j) ∈ N×N such that [si,j(a), si,j+1(a)) is a bad723

segment with si,j+1(a) < s(a).724

Our goal is then to then to show that arm a is evicted by some perfect replay scheduled within episode725

[tℓ, tℓ+1) with high probability before the bad round s(a) occurs. Going forward, to simplify notation726

we will drop the dependence on the fixed arm a in some variables.727

For each bad segment [si,j(a), si,j+1(a)), recall that s̃i.j(a) is the approximate midpoint between728

si,j(a) and si,j+1(a) (see Definition 6). Next, let mi,j := 2n where n ∈ N satisfies:729

2n ≥ si,j+1(a)− si,j(a) > 2n−1.

Plainly, mi,j is a dyadic approximation of the bad segment length. Next, recall that the Bernoulli730

Bt,m decides whether Base-Alg(t,m) is scheduled at round t (see Line 6 of Algorithm 1). If for731

some t ∈ [si,j(a), s̃i,j(a)], Bt,mi,j
= 1, i.e. a perfect replay is scheduled, then a will be evicted from732

Amaster by round si,j+1(a) (Proposition 14). We will show this happens with high probability via733

concentration on the sum734

S(a, tℓ) :=
∑

(i,j):si,j+1(a)<s(a)

s̃i,j(a)∑
t=si,j(a)

Bt,mi,j ,
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Note that the random variable S(a, tℓ) only depends on the replay scheduling probabilities {Bs,m}s,m735

given a fixed arm a and episode start time tℓ, since the bad round s(a) is also fixed given these736

quantities. This means that S(a, tℓ) is an independent sum of Bernoulli random variables Bt,mi,j ,737

conditional on tℓ. Then, a Chernoff bound over the randomness of S(a, tℓ), conditional on tℓ yields738

P
(
S(a, tℓ) ≤

E[S(a, tℓ) | tℓ]
2

| tℓ
)
≤ exp

(
−E[S(a, tℓ) | tℓ]

8

)
.

The above RHS error probability is bounded above above by 1/T 3 by observing:739

E [S(a, tℓ) | tℓ] ≥
∑
(i,j)

s̃i,j(a)∑
t=si,j(a)

1√
mi,j · (t− tℓ)

≥ 1

4

∑
(i,j)

√
si,j+1(a)− si,j(a)

s(a)− tℓ
≥ c6

4
log(T ),

for c6 > 0 large enough, where the last inequality follows from (17) in the definition of the bad740

round s(a) (Definition 7). Taking a further union bound over the choice of arm a ∈ [K] gives us that741

S(a, tℓ) > 1 for all choices of arm a (define this as the good event E2(tℓ)) with probability at least742

1−K/T 3. This means arm a will be evicted before round s(a) with high probability.743

Recall on the event E1 the concentration bounds of Proposition 10 hold. Then, on E1 ∩ E2(tℓ), letting744

a = aℓ in the preceding arguments we must have tℓ+1 − 1 ≤ s(aℓ) Thus, by the definition of the bad745

round s(aℓ) (Definition 7), we must have:746 ∑
[si,j(aℓ),si,j+1(aℓ)):si,j+1(aℓ)<tℓ+1−1

√
si,j+1(aℓ)− si,j(aℓ) ≤ c6 log(T )

√
tℓ+1 − tℓ. (18)

Thus, by (14) in the definition of bad segments (Definition 5), over the bad segments747

[si,j(aℓ), si,j+1(aℓ)) which elapse before the end of the episode tℓ+1 − 1, the regret of aℓ to a♯t748

is at most order log2(T )
√
K · (tℓ+1 − tℓ).749

Over each non-bad critical segment [si,j(aℓ), si,j+1(aℓ)), the regret of playing arm aℓ to a♯i is at most750

log(T )
√
τi+1 − τi since there is at most one non-bad critical segment per phase [τi, τi+1) (follows751

from Definition 5).752

So, we conclude that on event E1 ∩ E2(tℓ):753

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) ≤ c7 log

2(T )
∑

i∈PHASES(tℓ,tℓ+1)

√
K(τi+1 − τi).

Taking expectation, we have by conditioning first on tℓ and then on event E1 ∩ E2(tℓ):754

E

[
tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ)

]
≤ Etℓ

[
E

[
111{E1 ∩ E2(tℓ)}

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) | tℓ

]]
+ T · Etℓ [E [111{Ec1 ∪ Ec2(tℓ)} | tℓ]]

≤ c7 log
2(T )Etℓ

E
111{E1 ∩ E2(tℓ)} ∑

i∈PHASES(tℓ,tℓ+1)

√
K(τi+1 − τi) | tℓ

+
2K

T 2

≤ c7 log
2(T )E

111{E1} ∑
i∈PHASES(tℓ,tℓ+1)

√
τi+1 − τi

+
2

T
,

where in the last step we bound 111{E1 ∩ E2(tℓ)} ≤ 111{E1} and apply tower law again. This concludes755

the proof. ■756
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