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Abstract

The K-armed dueling bandits problem, where the feedback is in the form of noisy
pairwise preferences, has been widely studied due its applications in information
retrieval, recommendation systems, etc. Motivated by concerns that user prefer-
ences/tastes can evolve over time, we consider the problem of dueling bandits with
distribution shifts. Specifically, we study the recent notion of significant shifts [Suk
and Kpotufe, 2022], and ask whether one can design an adaptive algorithm for
the dueling problem with O(

√
KL̃T ) dynamic regret, where L̃ is the (unknown)

number of significant shifts in preferences. We show that the answer to this ques-
tion depends on the properties of underlying preference distributions. Firstly, we
give an impossibility result that rules out any algorithm with O(

√
KL̃T ) dynamic

regret under the well-studied Condorcet and SST classes of preference distribu-
tions. Secondly, we show that SST∩STI is the largest amongst popular classes of
preference distributions where it is possible to design such an algorithm. Overall,
our results provides an almost complete resolution of the above question for the
hierarchy of distribution classes.

1 Introduction

The K-armed dueling bandits problem has been well-studied in the multi-armed bandits literature
[Yue and Joachims, 2011, Yue et al., 2012b, Urvoy et al., 2013, Ailon et al., 2014, Zoghi et al., 2014,
2015a,b, Dudik et al., 2015, Jamieson et al., 2015, Komiyama et al., 2015, 2016, Ramamohan et al.,
2016, Chen and Frazier, 2017, Saha and Gaillard, 2022, Agarwal et al., 2022]. In this problem, on
each trial t ∈ [T ], the learner pulls a pair of arms and observes relative feedback between these
arms indicating which arm was preferred. The feedback is typically stochastic, drawn according to a
pairwise preference matrix P ∈ [0, 1]K×K , and the regret measures the ‘sub-optimality’ of arms with
respect to a ‘best’ arm.

This problem has many applications, e.g. information retrieval, recommendation systems, etc, where
relative feedback between arms is easy to elicit, while real-valued feedback is difficult to obtain or
interpret. For example, a central task for information retrieval algorithms is to output a ranked list
of documents in response to a query. The framework of online learning has been very useful for
automatic parameter tuning, i.e. finding the best parameter(s), for such retrieval algorithms based on
user feedback [Liu, 2009]. However, it is often difficult to get numerical feedback for an individual
list of documents. Instead, one can (implicitly) compare two lists of documents by interleaving
them and observing the relative number of clicks [Radlinski et al., 2008]. The availability of these
pairwise comparisons allows one to tune the parameters of retrieval algorithms in real-time using the
framework of dueling bandits.

However, in many such applications that rely on user generated preference feedback, there are
practical concerns that the tastes/beliefs of users can change over time, resulting in a dynamically
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Figure 1: The hierarchy of distribution classes. The dark region is where O(
√
KL̃T ) dynamic regret

is not achievable, whereas the light region indicates achievablility (e.g., by our Algorithm 1).

changing preference distribution. Motivated by these concerns, we consider the problem of switching
dueling bandits (or non-stationary dueling bandits), where the pairwise preference matrix Pt changes
an unknown number of times over T rounds. The performance of the learner is evaluated using
dynamic regret where sub-optimality of arms is calculated with respect to the current ‘best’ arm.

Saha and Gupta [2022] first studied this problem and provided an algorithm that achieves a nearly
optimal (up to log terms) dynamic regret of Õ(

√
KLT ) where L is the total number of shifts in

the preference matrix, i.e., the number of times Pt differs from Pt+1. However, this result requires
algorithm knowledge of L. Alternatively, the algorithm of Saha and Gupta [2022] can be tuned to
achieve a dynamic regret rate (also nearly optimal) Õ(V

1/3
T K1/3T 2/3) in terms of the total-variation

of change in preferences VT over T total rounds. This is similarly limited by requiring knowledge of
VT .

On the other hand, recent works on the switching MAB problem show it is not only possible to
design adaptive algorithms with Õ(

√
KLT ) dynamic regret without knowledge of the underlying

environment [Auer et al., 2019], but also possible to achieve a much better bound of Õ(
√
KL̃T )

where L̃ ≪ L is the number of significant shifts [Suk and Kpotufe, 2022]. Specifically, a shift is
significant when there is no ‘safe’ arm left to play, i.e., every arm has, on some interval [s1, s2],
regret order Ω(

√
s2 − s1). Such a weaker measure of non-stationarity is appealing as it captures

the changes in best-arm which are most severe, and allows for more optimistic regret rates over the
previously known

√
KLT ∧ (VTK)1/3T 2/3.

Very recently, Buening and Saha [2022] considered an analogous notion of significant shifts for
switching dueling bandits under the SST∩STI1 assumption. They gave an algorithm that achieves a
dynamic regret of Õ(K

√
L̃T ), where L̃ is the (unknown) number of significant shifts. However, their

algorithm estimates Ω(K2) pairwise preferences, and hence, suffers from a sub-optimal dependence
on K.

In this paper we consider the goal of designing optimal algorithms for switching dueling bandits
whose regret depends on the number of significant shifts L̃. We ask the following question:

Question. Is it possible to achieve a dynamic regret of O(
√
KL̃T ) without knowledge of L̃?

We show that the answer to this question depends on conditions on the preference matrices. Specifi-
cally, we consider several well-studied conditions from the dueling bandits literature, and give an
almost complete resolution of the achievability of O(

√
KL̃T ) dynamic regret under these conditions.

1.1 Our Contributions
We first consider the classical Condorcet winner (CW) condition where, at each time t ∈ [T ], there is
a ‘best’ arm under the preference Pt that stochastically beats every other arm. Such a winner arm is a
benchmark in defining the aforementioned dueling dynamic regret. Our first result shows that, even
under the CW condition, it is in general impossible to achieve O(

√
KL̃T ) dynamic regret.

Theorem 1. (Informal) There is a family of instances F under Condorcet where all shifts are
non-significant, i.e. L̃ = 0, but no algorithm can achieve o(T ) dynamic regret uniformly over F .

Note that in the case when L̃ = 0, one would ideally like to achieve a dynamic regret of O(
√
KT ).

The above theorem shows that, under the Condorcet condition when L̃ = 0, not only is it impossible

1SST∩STI imposes a linear ordering over arms and two well-known conditions on the preference matrices:
strong stochastic transitivity (SST) and stochastic triangle inequality (STI).
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to achieve O(
√
KT ) regret, it is even impossible to achieve O(Tα) regret for any α < 1. Hence, this

rules out the possibility of an algorithm whose regret under this condition is sublinear in L̃ and T .

The proof of the above theorem relies on a careful construction where, at each time t, the preference
Pt is chosen uniformly at random from two different matrices P+ and P−. These matrices have
different ‘best’ arms but there is a unique safe arm in both. However, it is impossible to identify this
safe arm as all observed pairwise preferences are Ber( 12 ) over the randomness of the environment.
Moreover, the theorem gives two different constructions (one ruling out SST and one STI) which
together rule out all preference classes outside of SST∩STI. Our second result shows that the desired
regret

√
KL̃T is in fact achievable (adaptively) under SST∩STI.

Theorem 2. (Informal) There is an algorithm that achieves a dynamic regret of Õ(
√
KL̃T ) under

SST∩STI without requiring knowledge of L̃.

Figure 1 gives a summary of our results. Note that in stationary dueling bandits there is no separation
in the regret achievable under the CW vs. SST∩STI conditions, i.e. O(

√
KT ) is the minimax optimal

regret rate under both conditions [Saha and Gaillard, 2022]. However, our results show that in the
non-stationary setting with regret in terms of significant shifts, there is a separation in adaptively
achievable regret.

Key Challenge and Novelty in Regret Upper Bound: To contrast, the recent work of Buening and
Saha [2022] only attains Õ(K

√
L̃T ) dynamic regret under SST∩STI due to inefficient exploration

of arm pairs. Our more challenging goal of obtaining the optimal dependence on K introduces key
difficulties in algorithmic design. In fact, even in the classical stochastic dueling bandit problem with
SST∩STI, most existing results that achieve O(

√
KT ) regret require identifying a coarse ranking

over arms to avoid suboptimal exploration of low ranked arms [Yue et al., 2012a, Yue and Joachims,
2011]. However, in the non-stationary setting, ranking the arms meaningfully is difficult as the true
ordering of arms may change (insignificantly) at all rounds. Our main algorithmic innovation is to
bypass the task of ranking arms and instead directly focus on minimizing the cumulative regret of
played arms. This entails a new rule for selecting “candidate” arms based on cumulative regret that
may be of independent interest.

1.2 Related Work

Dueling bandits. The stochastic dueling bandits problem and its variants have been studied widely
(see Sui et al. [2018] for a comprehensive survey). This problem was first proposed by Yue et al.
[2012b], who provide an algorithm achieving instance-dependent O(K log T ) regret under the
SST∩STI condition. Yue and Joachims [2011] also studied this problem under the SST∩STI condition
and gave an algorithm that achieves optimal instance-dependent regret. Urvoy et al. [2013] studied
this problem under the Condorcet winner condition and achieved an instance-dependent O(K2 log T )
regret bound, which was further improved by Zoghi et al. [2014] and Komiyama et al. [2015] to
O(K2 +K log T ). Finally, Saha and Gaillard [2022] showed that it is possible to achieve an optimal
instance-dependent bound of O(K log T ) and instance-independent bound of O(

√
KT ) under the

Condorcet condition. More general notions of winners such as Borda winner [Jamieson et al., 2015],
Copeland winner [Zoghi et al., 2015a, Komiyama et al., 2016, Wu and Liu, 2016], and von Nuemann
winner [Dudik et al., 2015] have also been considered. However, these works only consider the
stationary setting whereas we consider the non-stationary setting.

There has also been work on adversarial dueling bandits [Saha et al., 2021, Gajane et al., 2015],
however, these works only consider static regret against the ‘best’ arm in hindsight and whereas we
consider the harder dynamic regret. Other than the two previously mentioned works [Gupta and
Saha, 2022, Buening and Saha, 2022], the only other work on switching dueling bandits is Kolpaczki
et al. [2022], whose procedures require knowledge of non-stationarity and only consider the weaker
measure of non-stationarity L counting all changes in the preferences.

Non-stationary multi-armed bandits. Multi-armed bandits with changing rewards was first
considered in the adversarial setup by Auer et al. [2002], where a version of EXP3 was shown to
attain optimal dynamic regret

√
KLT when properly tuned using the number L of changes in the

rewards. Later works established similar (non-adaptive) guarantees in this so-called switching bandit
problem via procedures inspired by stochastic bandit algorithms [Garivier and Moulines, 2011, Kocsis
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and Szepesvári, 2006]. More recent works [Auer et al., 2018, 2019, Chen et al., 2019] established the
first adaptive and optimal dynamic regret guarantees, without requiring knowledge of the number
of changes. An alternative parametrization of switching bandits, via a total-variation quantity, was
introduced in Besbes et al. [2014] with minimax rates quantified therein and adaptive rates attained in
Chen et al. [2019]. Yet another characterization, in terms of the number of best arm switches S was
studied in Abbasi-Yadkori et al. [2022], establishing an adaptive regret rate of

√
SKT . Around the

same time, Suk and Kpotufe [2022] introduced the aforementioned notion of significant shifts and
adaptively achieved rates of the form

√
KL̃T in terms of L̃ significant shifts in rewards.

2 Problem Formulation

We consider non-stationary dueling bandits with K arms and time-horizon T . At round t ∈ [T ], the
pairwise preference matrix is denoted by Pt ∈ [0, 1]K×K , where the (i, j)-th entry Pt(i, j) encodes
the likelihood of observing a preference for arm i in a direct comparison with arm j. The preference
matrix may change arbitrarily from round to round. At round t, the learner selects a pair of actions
(it, jt) ∈ [K] × [K] and observes the feedback Ot(it, jt) ∼ Ber(Pt(it, jt)) where Pt(it, jt) is the
underlying preference of arm it over jt. We define the pairwise gaps δt(i, j) := Pt(i, j)− 1/2.

Conditions on Preference Matrix. We consider two different conditions on preference matrices: (1)
the Condorcet winner (CW) condition and (2) the strong stochastic transitivity (SST) and stochastic
triangle inequality (STI), formalized below.
Definition 1. (CW condition) At each round t, there is a Condorcet winner arm, denoted by a∗t ,
such that δt(a∗t , a) ≥ 0 for all a ∈ [K]\{a∗t }. Note that a∗t need not be unique.
Definition 2. (SST∩STI condition) At each round t, there exists a total ordering on arms, denoted
by ≻t, and ∀i ⪰t j ⪰t k:

(a) δt(i, k) ≥ max{δt(i, j), δt(j, k)} (SST).

(b) δt(i, k) ≤ δt(i, j) + δt(i, k) (STI).

It’s easy to see that the SST condition implies the CW condition as δt(i, j) ≥ δt(i, i) = 0 for any
i ≻t j. Hence, the highest ranked item under ≻t in Definition 2 is the CW a∗t . We emphasize here
that the CW in Definition 1 and the total ordering on arms in Definition 2 can change at each round,
even while such unknown changes in preference may not be counted as significant (see below).

Regret Notion. Our benchmark is the dynamic regret to the sequence of Condorcet winner arms:

DR(T ) :=
T∑

t=1

δt(a
∗
t , it) + δt(a

∗
t , jt)

2
.

Here, the regret of an arm i is defined in terms of the preference gap δt(a
∗
t , i) between the winner

arm a∗t and i, and the regret of the pair (it, jt) is the average regret of individual arms it and jt. Note
the this regret is well-defined under both Condorcet and SST∩STI conditions due to the existence of
a unique ‘best’ arm a∗t , and is non-negative due to the fact that δt(a∗t , i) ≥ 0 for all i ∈ [K].

Measure of Non-Stationarity. We first recall the notion of Significant Condorcet Winner Switches
from Buening and Saha [2022], which captures only the switches in a∗t which are severe for regret.
Throughout the paper, we’ll also refer to these as significant shifts for brevity.
Definition 3 (Significant CW Switches). Define an arm a as having significant regret over [s1, s2] if

s2∑
s=s1

δs(a
∗
s, a) ≥

√
K · (s2 − s1). (1)

We then define significant CW switches recursively as follows: let τ0 = 1 and define the (i+ 1)-th
significant CW switch τi+1 as the smallest t > τi such that for each arm a ∈ [K], ∃[s1, s2] ⊆ [τi, t]
such that arm a has significant regret over [s1, s2]. We refer to the interval of rounds [τi, τi+1) as a
significant phase. Let L̃ be the number of significant CW switches elapsed in T rounds.
Notation. To ease notation, we’ll conflate the closed, open, and half-closed intervals of real numbers
[a, b], (a, b), and [a, b), with the corresponding rounds contained therein, i.e. [a, b] ≡ [a, b] ∩ N.
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3 Hardness of Significant Shifts in the Condorcet Winner Setting

We first consider regret minimization in an environment with no significant shift in T rounds. Such
an environment admits a safe arm a♯ which does not incur significant regret throughout play. Our
first result shows that, under the Condorcet condition, it is not possible to distinguish the identity of
a♯ from other unsafe arms, which will in turn make sublinear regret impossible.

Theorem 3. For each horizon T , there exists a finite family F of switching dueling bandit environ-
ments with K = 3 that satisfies the Condorcet winner condition (Definition 1) with L̃ = 0 significant
shifts. The worst-case regret of any algorithm on an environment E in this family is lower bounded as

sup
E∈F

EE [DR(T )] ≥ T/8.

Proof. (sketch; details found in Appendix B) Letting ϵ≪ 1/
√
T , consider the preference matrices:

P+ :=

(
1/2 1/2 + ϵ 1

1/2− ϵ 1/2 1/2 + ϵ
0 1/2− ϵ 1/2

)
,P− :=

(
1/2 1/2− ϵ 0

1/2 + ϵ 1/2 1/2− ϵ
1 1/2 + ϵ 1/2

)
.

In P+, arm 1 is the Condorcet winner and 1 ≻ 2 ≻ 3, whereas in P−, 3 is the winner with 3 ≻ 2 ≻ 1.
Let an oblivious adversary set Pt at round t to one of P+ and P−, uniformly at random, inducing an
environment where arm 2 remains safe for T rounds. Then, any algorithm will, over the randomness
of the adversary, observe Ot(it, jt) ∼ Ber(1/2) no matter the choice of arms (it, jt) played, by
the symmetry of P+,P−. Thus, it is impossible to distinguish arms, which implies linear regret by
standard Pinsker’s inequality arguments. In particular, even a strategy playing arm 2 every round fails
as arm 2 is unsafe in another (indistinguishable) setup with arms 1 and 2 switched in P+,P−.

SST and STI Both Needed To Learn Significant Shifts. The preferences P+,P− in the above
proof violate STI but satisfy SST, whereas another construction using preferences P+,P− which
violate SST but satisfy STI also works in the proof (see Remark 2 in Appendix B). This shows that
sublinear regret is impossible outside of the class SST∩STI (visualized in Figure 1).

Remark 1. Note the lower bound of Theorem 3 does not violate the established upper bounds√
LT and V

1/3
T T 2/3 scaling with L changes in the preference matrix or total variation VT [Gupta

and Saha, 2022]. Our construction in fact uses L = Ω(T ) changes in the preference matrix and
VT = Ω(T ) total variation. Furthermore, the regret upper bound

√
ST , in terms of S changes in

Condorcet winner, of Buening and Saha [2022] is not contradicted either, for S = Ω(T ).

4 Dynamic Regret Upper Bounds under SST/STI

Acknowledging that significant shifts are hard outside of the class SST∩STI, we now turn our
attention to the achievability of

√
KL̃T regret2 in the SST∩STI setting. Our main result is an

optimal dynamic regret upper bound attained without knowledge of the significant shift times or the
number of significant shifts. Up to log terms, this is the first dynamic regret upper bound with optimal
dependence on T , L̃, and K.

Theorem 4. Suppose SST and STI hold (see Definition 2). Let {τi}L̃i=0 denote the unknown significant
shifts of Definition 3. Then, for some constant C0 > 0, Algorithm 1 has expected dynamic regret

E[DR(T )] ≤ C0 log
3(T )

L̃∑
i=0

√
K · (τi+1 − τi),

and using Jensen’s inequality, this implies a regret rate of C0 log
3(T )

√
K · (L̃+ 1) · T .

2The lower bound construction of Saha and Gupta [2022] in fact uses Ω(L) significant shifts so that the√
L · L̃ rate is in fact minimax optimal
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In fact, this regret rate can be transformed to depend on the Condorcet winner variation introduced
in Buening and Saha [2022] and the total variation quantities introduced in Gupta and Saha [2022]
and inspired by the total-variation quantity from non-stationary MAB [Besbes et al., 2014]. The
following corollary is shown using just the definition of the non-stationarity measures.

Corollary 5 (Regret in terms of CW Variation). Let VT :=
∑T

t=2 maxa∈[K] |Pt(a
∗
t , a)−Pt−1(a

∗
t , a)|

be the unknown Condorcet winner variation. Using the same notation of Theorem 4: Algorithm 1 has
expected dynamic regret

E[DR(T )] ≤ C0 log
3(T )

(√
KT + (KVT )

1/3T 2/3
)
.

5 Algorithm

At a high level, the strategy of recent works on non-stationary multi-armed bandits [Chen et al., 2019,
Wei and Luo, 2021, Suk and Kpotufe, 2022] is to first design a suitable base algorithm and then use a
meta-algorithm to randomly schedule different instances of this base algorithm at variable durations
across time. The key idea is that unknown time periods of significant regret can be detected fast
enough with the right schedule. In order to accurately identify significant shifts, the base algorithm in
question should be robust to all non-significant shifts. In the multi-armed bandit setting, a variant
of the classical successive elimination algorithm [Even-Dar et al., 2006] possesses such a guarantee
[Allesiardo et al., 2017], and serves as a base algorithm in Suk and Kpotufe [2022].

5.1 Difficulty of Efficient Exploration of Arms.

In the non-stationary dueling problem, a natural analogue of successive elimination is to uniformly
explore the arm-pair space [K] × [K] and eliminate arms based on observed comparisons [Urvoy
et al., 2013]. The previous work [Theorem 5.1 of Buening and Saha, 2022] employs such a strategy
as a base algorithm. However, such a uniform exploration approach incurs a large estimation variance
of K2, which enters into the final regret bound of K

√
T · L̃. Thus, smarter exploration strategies are

needed to obtain
√
K dependence.

In the stationary dueling bandit problem with SST∩STI, such efficient exploration strategies have long
been known: namely, the Beat-The-Mean algorithm [Yue and Joachims, 2011] and the Interleaved
Filtering (IF) algorithm [Yue et al., 2012a]. We highlight that these existing algorithms aim to learn
the ordering of arms, i.e., arms are ruled out roughly in the same order as their true underlying
ordering. This fact is crucial to attaining the optimal dependence in K in their regret analyses, as the
higher ranked arms must be played more often against other arms to avoid the K2 cost of exploration.

However, in our setting, adversarial but non-significant changes in the ordering of arms could force
perpetual exploration of lowest-ranked arms. This suggests that learning an ordering should not be a
subtask of our desired dueling base algorithm. Rather, the algorithm should prioritize minimizing its
own regret over time. Keeping this intuition in mind, we introduce an algorithm called SWitching
Interleaved FilTering (SWIFT) (see Algorithm 2 in Section 5.2) which directly tracks regret and
avoids learning a fixed ordering of arms.

A new idea for switching candidate arms. A natural idea that is common to many dueling bandit
algorithms (including IF) is to maintain a candidate arm â which is always played at each round, and
serves as a reference point for partially ordering other arms in contention. If the current candidate
is beaten by another arm then a new candidate is chosen, and this process quickly converges to the
best arm. Since the ordering of arms may change at each round, any such rule that relies on a fixed
ordering is deemed to fail in our setting. Our procedure does not rely on such a fixed ordering over
arms, but instead tracks the aggregate regret

∑
t δt(a, ât) of the changing sequence of candidate

arms {ât}t to another fixed arm a. Crucially, the candidate arm âs is always played at round s and
so the history of candidate arms {âs}s≤t is fixed at a round t. This fact allows us to estimate the
quantity

∑t
s=1 δs(a, âs) using importance-weighting at

√
K · t rates via martingale concentration.

An algorithmic switching criterion then switches the candidate arm ât to any arm a dominating
the sequence {âs}s≤t over time, i.e.,

∑t
s=1 δs(a, âs) ≫

√
K · t. This simple, yet powerful, idea

immediately gives us control of the regret of the candidate sequence {ât}t which allows us to bypass
the ranking-based arguments of vanilla IF and Beat-The-Mean. It also allows us to simultaneously
bound the regret of a sub-optimal arm a against the sequence of candidate arms

∑t
s=1 δs(âs, a).
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5.2 Switching Interleaved Filtering (SWIFT)

SWIFT at round t compares a candidate arm ât with an arm at (chosen uniformly at random) from
an active arm set At. Additionally, SWIFT maintains estimates δ̂t(ât, a) of δt(ât, a) which are used
to (1) evict active arms a ∈ At and (2) switch the candidate arm ât+1 for the next round.

Estimators and Eviction/Switching Criteria. Let At be the active arm set at round t. Let

δ̂t(ât, a) := |At| ·Ot(ât, a) · 111{(it, jt) = (ât, a)} − 1/2, (2)

which is an unbiased estimator of the gap δt(ât, a) when a ∈ At. We evict an active arm a from At

at round t if for some constant C > 03 and rounds s1 < s2 ≤ t:
s2∑

s=s1

δ̂s(âs, a) ≥ C log(T )
√

K · (s2 − s1) ∨K2, (3)

where δ̂s(a, âs) := −δ̂s(âs, a). Next, we switch the next candidate arm ât+1 ← a to another arm
a ∈ At at round t if for some round s1 < t:

t∑
s=s1

δ̂s(a, âs) ≥ C log(T )
√

K · (t− s1) ∨K2. (4)

SWIFT is formally shown in Algorithm 2, defined for generic start time tstart and duration m0 so as to
allow for recursive calls in our meta-algorithm framework.

5.3 Non-Stationary Algorithm (METASWIFT)

Algorithm 1: Meta-Elimination while Tracking Arms in SWIFT (METASWIFT)
Input: horizon T .

1 Initialize: round count t← 1.
2 Episode Initialization (setting global variables tℓ,Amaster, Bs,m):
3 tℓ ← t. ; // tℓ indicates start of ℓ-th episode.
4 Amaster ← [K] ; // Master active arm set.
5 For each m = 2, 4, . . . , 2⌈log(T )⌉ and s = tℓ + 1, . . . , T :

6 Sample and store Bs,m ∼ Bernoulli
(

1√
m·(s−tℓ)

)
. ; // Set replay schedule.

7 Run Base-Alg(tℓ, T + 1− tℓ).
8 if t < T then restart from Line 2 (i.e. start a new episode). ;

For the non-stationary setting with multiple (unknown) significant shifts, we run SWIFT as a base
algorithm at randomly scheduled rounds and durations.

Our algorithm, dubbed METASWIFT and found in Algorithm 1, operates in episodes, starting each
episode by playing a base algorithm instance of SWIFT. A running base algorithm activates its own
base algorithms of varying durations (Line 8 of Algorithm 2), called replays according to a random
schedule decided by the Bernoulli’s Bs,m (see Line 6 of Algorithm 1). We refer to the (unique) base
algorithm playing at round t as the active base algorithm.

Global Variables. The active arm set At is pruned by the active base algorithm at round t, and
globally shared between all running base algorithms. In addition, all other variables, i.e. the ℓ-
th episode start time tℓ, round count t, schedule {Bs,m}s,m, and candidate arm ât (and thus the
quantities δt(ât, a)) are shared between base algorithms. Thus, while active, each Base-Alg can
switch the candidate arm (4) and evict arms (3) over all intervals [s1, s2] elapsed since it began.

Note that only one base algorithm (the active one) can editAt and set the candidate arm ât at round t,
while other base algorithms can access these global variables at later rounds. By sharing these global

3The constant C > 0 does not depend on T , K, or L̃, and a suitable value can be derived from the regret
analysis.
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Algorithm 2: Base-Alg(tstart,m0): SWIFT starting at t0 and running m0 rounds
Input: starting round tstart, scheduled duration m0.

1 Initialize (Global) Variables: t← tstart, At ← [K], ât ← Unif{[K]}.
2 while t ≤ T do
3 Select a random arm at ∈ At with probability 1/|At| and play (ât, at).
4 Let Acurrent ← At. ; // Save current active arm set At (global variable).
5 Increment t← t+ 1.
6 if ∃m such that Bt,m > 0 then /* See Algorithm 1 for definition of Bs,m */
7 Let m := max{m ∈ {2, 4, . . . , 2⌈log(T )⌉} : Bm,t > 0}. ; // Set replay length.
8 Run Base-Alg(t,m). ; // Replay interrupts.
9 if t > tstart +m0 then RETURN. ;

10 Evict bad arms:
11 At ← Acurrent\{a ∈ [K] : ∃ rounds [s1, s2] ⊆ [tstart, t) s.t. (3) hold}.
12 Amaster ← Amaster \{a ∈ [K] : ∃ rounds [s1, s2] ⊆ [tℓ, t) s.t. (3) hold}.
13 if (4) holds for some arm a ∈ At then
14 Switch candidate arm: ât ← a. ; // Set candidate arm ât (global variable).
15 else
16 ât ← ât−1.
17 Restart criterion: if Amaster = ∅ then RETURN.;
18 RETURN.

variables, any replay can trigger a new episode: every time an arm is evicted by a replay, it is also
evicted from the master arm set Amaster, tracking arms’ regret throughout the entire episode. A new
episode is triggered when Amaster becomes empty, i.e., there is no safe arm left to play.

6 Regret Analysis

6.1 Regret of METASWIFT over Significant Phases

Now, we turn to sketching the proof of Theorem 4. Full details are found in Appendix C.

Decomposing the Regret. Let a♯t denote the last safe arm at round t, or the last arm to incur
significant regret in the unique phase [τi, τi+1) containing round t. Then, we can decompose the
dynamic regret around this safe arm using SST and STI (i.e., using Lemma 8 twice) as:

T∑
t=1

δt(a
∗
t , ât) + δt(a

∗
t , at) ≤ 6

T∑
t=1

δt(a
∗
t , a

♯
t) + 3

T∑
t=1

δt(a
♯
t, ât) +

T∑
t=1

δt(ât, at),

where we recall that at ∈ At is the other arm played (Line 3 of Algorithm 2). Next, the first sum
on the above RHS is order

∑L̃
i=1

√
K · (τi − τi−1) as the last safe arm a♯t does not incur significant

regret on [τi, τi+1). So, it remains to bound the last two sums on the RHS above.

Episodes Align with Significant Phases. We claim that a new episode is triggered only if there
a significant shift occurs (Lemma 11). This follows from our eviction criteria (3) with Freedman’s
inequality for martingale concentration (Lemma 9). Then, acknowledging episodes roughly align
with significant phases, we turn our attention to bounding the remaining regret in each episode.

Bounding Regret of an Episode. Let tℓ be the start of the ℓ-th episode of METASWIFT. Then, our
goal is to show for all ℓ ∈ [L̂] (where L̂ is the random number of episodes used by the algorithm):

max

{
E

[
tℓ+1−1∑
t=tℓ

δt(a
♯
t, ât)

]
,E

[
tℓ+1−1∑
t=tℓ

δt(ât, at)

]}
≲

∑
i∈[L̃+1]:[τi−1,τi)∩[tℓ,tℓ+1) ̸=∅

√
K · (τi − τi−1),

(5)
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where the RHS sum above is over the significant phases [τi−1, τi) overlapping episode [tℓ, tℓ+1).
Summing over episodes ℓ ∈ [L̂] will then yield the desired total regret bound by our earlier observation
that the episodes align with significant phases (see Lemma 11).

Bounding Regret of Active Arms to Candidate Arms. Bounding
∑tℓ+1−1

t=tℓ
δt(ât, at) follows

in a similar manner as Appendix B.1 of Suk and Kpotufe [2022]. First, observe by concentration
(Lemma 9) the eviction criterion (3) bounds the sums

∑s2
t=s1

δt(ât, a) over intervals [s1, s2] where
a is active. Then, accordingly, we further partition the episode rounds [tℓ, tℓ+1) into different
intervals distinguishing the unique regret contributions of different active arms from varying base
algorithms, on each of which we can relate the regret to our eviction criterion. Details can be found
in Appendix C.3.

• Bounding Regret of Candidate Arm to Safe Arm. The first sum on the LHS of (5) will be
further decomposed using the last master arm aℓ which is the last arm to be evicted from the master
arm set Amaster in episode [tℓ, tℓ+1). Carefully using SST and STI (see Lemma 13), we further
decompose δt(a

♯
t, ât) as:

tℓ+1−1∑
t=tℓ

δt(a
♯
t, ât) ≤ 2

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ)︸ ︷︷ ︸

A

+

tℓ+1−1∑
t=tℓ

δt(aℓ, ât)︸ ︷︷ ︸
B

+3

tℓ+1−1∑
t=tℓ

δt(a
∗
t , a

♯
t)︸ ︷︷ ︸

C

(6)

The sum C above was already bounded earlier. So, we turn our attention to B and A.

• Bounding B. Note that the arm aℓ by definition is never evicted by any base algorithm until the
end of the episode tℓ+1 − 1. This means that at round t ∈ [tℓ, tℓ+1), the quantity

∑t
s=tℓ

δ̂s(aℓ, âs) is
always kept small by the candidate arm switching criterion (4). So, by concentration (Proposition 10),
we have

∑tℓ+1−1
s=tℓ

δ̂s(aℓ, âs) ≲
√
K(tℓ+1 − tℓ).

• Bounding A The main intuition here, similar to Appendix B.2 of Suk and Kpotufe [2022], is
that well-timed replays are scheduled w.h.p. to ensure fast detection of large regret of the last master
arm aℓ. Key in this is the notion of a bad segment of time: i.e., an interval [s1, s2] ⊆ [τi, τi+1) lying
inside a significant phase with last safe arm a♯ where:

s2∑
t=s1

δt(a
♯, aℓ) ≳

√
K · (s2 − s1). (7)

For a fixed bad segment [s1, s2], the idea is that a fortuitously timed replay scheduled at round s1
and remaining active till round s2 will evict arm aℓ.

It is not immediately obvious how to carry out this argument in the dueling bandit problem since, to
detect large

∑
t δt(a

♯, aℓ), the pair of arms a♯, aℓ need to both be played which, as we discussed in
Section 5.1, may not occur often enough to ensure tight estimation of the gaps.

Instead, we carefully make use of SST/STI to relate δt(a
♯, aℓ) to δt(ât, aℓ). Note this latter quantity

controls both the eviction (3) and ât switching (4) criteria. This allows us to convert bad intervals
with large

∑
t δt(a

♯
t, aℓ) to intervals with large

∑
t δt(ât, aℓ). Specifically, by Lemma 13, we have

that (7) implies

2

s2∑
t=s1

δt(a
♯, ât) +

s2∑
t=s1

δt(ât, aℓ) + 3

s2∑
t=s1

δt(a
∗
t , a

♯) ≳
√

K · (s2 − s1). (8)

Then, we claim that, so long as a base algorithm Base-Alg(s1,m) is scheduled from s1 running till s2,
we will have

∑s2
t=s1

δt(ât, aℓ) ≳
√

K · (s2 − s1) which implies aℓ will be evicted. In other words,
the second sum dominates the first and third sums in (8). We repeat earlier arguments to show this:

• By the definition of the last safe arm a♯,
∑s2

t=s1
δt(a

∗
t , a

♯) <
√
K · (s2 − s1).

• Meanwhile,
∑s2

t=s1
δt(a

♯, ât) ≲
√

K · (s2 − s1) by the candidate switching criterion (4) and
because a♯ will not be evicted before round s2 lest it incurs significant regret which cannot happen
by definition of a♯.

9



Combining the above two points with (8), we have that
∑s2

t=s1
δt(ât, aℓ) ≳

√
K · (s2 − s1), which

directly aligns with our criterion (3) for evicting aℓ. To summarize, a bad segment [s1, s2] in the
sense of (7) is detectable using a well-timed instance of SWIFT, which happens often enough with
high probability. Concretely, we argue that not too many bad segments elapse before aℓ is evicted by
a well-timed replay in the above sense and that thus the regret incurred by aℓ is bounded by the RHS
of (5). The details can be found in Appendix C.5.

7 Conclusion

We consider the problem of switching dueling bandits where the distribution over preferences can
change over time. We study a notion of significant shifts in preferences and ask whether one can
achieve adaptive dynamic regret of O(

√
KL̃T ) where L̃ is the number of significant shifts. We

give a negative result showing that one cannot achieve such a result outside of the SST∩STI setting,
and answer this question in the affirmative under the SST∩STI setting. In the future, it would be
interesting to consider other notions of shifts which are weaker than the notion of significant shift,
and ask whether adaptive algorithms for the Condorcet setting can be designed with respect to these
notions. Buening and Saha [2022] already give a O(K

√
ST ) bound for the Condorcet setting, where

S is the number of changes in ‘best’ arm. However, their results have a suboptimal dependence on K
due to reduction to “all-pairs" exploration.
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Figure 2: Plots of dynamic regret curves over time.

Algorithm Mean Regret Standard Deviation
S = 0 Changes METASWIFT 3048 600

ANACONDA 4863 707
IF 140 46

RANDDUEL 18688 30
S = 4 Changes METASWIFT 3346 531

ANACONDA 5331 705
IF 14142 3739

RANDDUEL 18684 23

Table 1: Table of total dynamic regrets.

A Experiments

Code can be found at https://github.com/joesuk/nonstationary-duel.

Synthetic Environments. We used a geometric BTL model where the arms are linearly ordered and
the i-th best arm beats the j-th best arm with probability P(i ≻ j) = 2−i

2−j+2−i . At each changepoint,
the ordering of arms was randomly permuted, with a total T = 50, 000 rounds with K = 10 arms.
Regret was computed over N = 50 trials of each environment with standard confidence bands shown.

Algorithms. We considered four algorithms: (1) METASWIFT (Algorithm 1, (2) the ANACONDA
algorithm of Buening and Saha [2022] (3) Interleaved Filtering (which we abbreviate as IF) as
specified by Yue et al. [2012b], and a baseline (3) RANDDUEL which naively plays a pair of arms
selected uniformly at random every round.

Parameters. Parameters associated with each of the algorithms (e.g., the constants in displays (3)
and (4), analogous quantities in ANACONDA, and IF’s eliminination threshold) were tuned using
cross validation on randomly generated geometric BTL environments with number of changepoints
varying from 0 to 1000. For fairness, all algorithms were given the chance to tune parameters on the
same environments before testing.

The first graphic in Figure 2 shows the regret curves in a stationary environment with S = 0
changes. The second graphic shows the regret curves in a non-stationary environment with S = 4
changes. Exact mean and standard deviations on final regret are given in Table 1. These do
support the theoretical message that METASWIFT performs better than the existing ANACONDA
algorithm in non-stationary environments due to more efficient exploration of arms (demonstrated
through

√
K versus K dependence in the theoretical bounds). Moreover, we also observe that

the IF algorithm which is designed for stationary environments can have almost linear regret in
non-stationary environments.

13

https://github.com/joesuk/nonstationary-duel


B Proof of Theorem 3

Consider the following preference matrices for some ϵ > 0 (to be chosen later):

P+ :=

(
1/2 1/2 + ϵ 1

1/2− ϵ 1/2 1/2 + ϵ
0 1/2− ϵ 1/2

)
,P− :=

(
1/2 1/2− ϵ 0

1/2 + ϵ 1/2 1/2− ϵ
1 1/2 + ϵ 1/2

)
.

In environment P+, arm 1 is the Condorcet winner and we have 1 ≻ 2 ≻ 3. In environment P−, arm
3 is the winner with 3 ≻ 2 ≻ 1.

Consider a uniform mixture U of the preference matrices P+ and P−, Let E be a (random) sequence
of T environments sampled i.i.d. from U , with Pt := (E)t being the sampled environment at round t.

First, it is straightforward to verify in every such switching dueling bandit E , arm 2 does not incur
significant regret over any interval of rounds [s1, s2] ⊆ [1, T ], for ϵ < 1/

√
T . Thus, every such E

exhibits zero significant shifts.

Next, in what follows, we use EE [·] to denote an expectation over both the randomness of U⊗T and
the algorithm’s feedback and decisions. If there exists a realization of E such that the algorithm
gets expected regret at least T/8, then we are already done. Otherwise, we have the expected
regret over the random environment E is bounded above by T/8. Next, define the arm-pull counts
N(T, a) :=

∑T
t=1 111{it = a}+111{jt = a} for each arm a. Then, we relate these arm-pull counts to

the regret:

T/8 >

T∑
t=1

EE [δt(i
∗, it) + δt(i

∗, jt)]

≥ 1

2

T∑
t=1

EE [(111{it = 3}+111{jt = 3}) · 111{(E)t = P+}

+ (111{it = 1}+111{jt = 1}) · 111{(E)t = P−}]

=
1

2

T∑
t=1

EE

[
1

2
· (111{it = 3}+111{jt = 3}+111{it = 1}+111{jt = 1})

]
≥ 1

4
· EE [N(T, 3) +N(T, 1)],

where we use the tower law in the third inequality (note that it, jt are independent of (E)t). Thus, in
expectation over both the model noise and randomness of E , arms 3 and 1 cannot be played more
than T/2 times without causing linear regret.

Since
∑3

a=1 EE [N(T, a)] = 2T , we conclude that EE [N(T, 2)] ≥ 3T/2. We will next show that
arm 2 is statistically indistinguishable from arm 3. To do so, we consider an analogous environment
which is identical to E except the identities of arms 2 and 3 are switched. Specifically, let E ′ be a
random sequence of T environments sampled i.i.d. from a uniform mixture of Q+ and Q−, which
are respectively P+ and P− with switched entries for arms 2 and 3.

We next claim EE [N(T, 2)] = EE′ [N(T, 2)]. Admitting this claim, it immediately follows that the
algorithm has expected regret (over the randomness of E ′) at least (using an analogous chain of
inequalities as above):

EE′ [DR(T )] ≥ 1

4
· EE′ [N(T, 2)] ≥ 3T/8.

In particular, there exists a realization of E ′ within the prior on environments on which the regret is at
least 3T/8.

It remains to show EE [N(T, 2)] = EE′ [N(T, 2)]. This will follow from Pinsker’s inequality and
showing that the KL divergence between E and E ′ is zero.

We first observe that the dueling observations Ot(i, j) at each round t ∈ [T ] are identically a Ber(1/2)
R.V. for all pairs of arms i, j in both E and E ′, since a uniform mixture of a Ber(1/2 + ϵ) and a
Ber(1/2− ϵ) is a Ber(1/2), while so is the uniform mixture of a Ber(1) and a Ber(0).
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Then, since N(T, 2) ≤ 2T , by Pinsker’s inequality [see Gupta and Saha, 2022, proof of Lemma C.1],
we have:

EE [N(T, 2)]− EE′ [N(T, 2)] ≤ 2T

√
KL(P,P ′)

2
,

where P and P ′ are the induced distributions over the randomness U⊗T , and the history of obser-
vations and decisions in T rounds by E and E ′. LetHt be the history of randomness, observations,
and decisions till round t: Ht = {(us, is, js, Os(is, js))}s≤t where us ∼ Ber(1/2) decides whether
P+/Q+ or P−/Q− is realized at round t. Let Pt and P ′

t denote the respective marginal distributions
over the round t data (ut, it, jt, Ot(it, jt)). Then, repeatedly using chain rule for KL and then
conditioning on the played arms (it, jt) (whose identities are fixed givenHt−1) at round t, we get:

KL(P,P ′) =

T∑
t=1

KL(Pt|Ht−1,P ′
t|Ht−1) =

T∑
t=1

EHt−1
[Eit,jt [KL(Ber(1/2),Ber(1/2))]] = 0.

■

Remark 2. The constructed environments P+,P− in the proof of Theorem 3 satisfies SST but violates
STI. A similar construction which violates SST (but satisfies STI) can also be used in the proof. Let

P+ :=

(
1/2 1/2− ϵ 1/2− ϵ

1/2 + ϵ 1/2 0
1/2 + ϵ 1 1/2

)
,

and let P− be the same preference matrix with arms 2 and 3 switched. Note that 3 ≻ 2 ≻ 1 in P+

and 2 ≻ 3 ≻ 1 in P−. Here, arm 1 is the “safe” arm as it always has a gap of ϵ while arms 2 and 3
randomly alternate between being the best arm and the worst arm with a gap of 1/2. Thus, both the
STI and SST assumptions are required to get sublinear regret in mildly adversarial environments.

Due to these observations we have the following corollaries.
Corollary 6. For each horizon T , there exists a finite family F of switching dueling bandit environ-
ments with K = 3 that satisfies the SST condition with L̃ = 0 significant shifts. The worst-case regret
of any algorithm on an environment E in this family is lower bounded as

sup
E∈F

EE [DR(T )] ≥ T/8.

Corollary 7. For each horizon T , there exists a finite family F of switching dueling bandit environ-
ments with K = 3 that satisfies the STI condition with L̃ = 0 significant shifts. The worst-case regret
of any algorithm on an environment E in this family is lower bounded as

sup
E∈F

EE [DR(T )] ≥ T/8.

C Full Proof of Theorem 4

Throughout the proof c1, c2, . . . will denote positive constants not depending on T or any distributional
parameters. First, we observe the regret bound is vacuous for T < K; so, assume T ≥ K. Recall
from Line 3 of Algorithm 1 that tℓ is the first round of the ℓ-th episode. WLOG, there are T total
episodes and, by convention, we let tℓ := T + 1 if only ℓ− 1 episodes occurred by round T .

Next, we establish an elementary lemma which will help us leverage the STI and SST assumptions.

C.1 Decomposing the Regret

Lemma 8. For any three arms b, c, under SST∩STI: δt(a∗t , c) ≤ 2 · δt(a∗t , b) + δt(b, c).

Proof. If b ⪰t c, this is true by STI. Otherwise, δt(a∗t , c) ≤ δt(a
∗
t , b) ≤ δt(a

∗
t , b)+δt(a

∗
t , b)−δt(c, b)

by SST.

Using Lemma 8 twice, we have the regret can be written as
T∑

t=1

δt(a
∗
t , ât) + δt(a

∗
t , at) ≤

T∑
t=1

6 · δt(a∗t , a
♯
t) + 3 · δt(a♯t, ât) + δt(ât, at).
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Following the discussion of Section 6, it remains to bound
∑T

t=1 δt(a
♯
t, ât) and

∑T
t=1 δt(ât, at) in

expectation. For this, we need to relate our estimators δ̂t(ât, a) to the true gaps δt(ât, a).

C.2 Relating Estimated Gaps to Regret

We first recall a version of Freedman’s martingale concentration inequality, identical to the one used
in Suk and Kpotufe [2022], Buening and Saha [2022].
Lemma 9 (Theorem 1 of Beygelzimer et al. [2011]). Let X1, . . . , Xn ∈ R be a martingale difference
sequence with respect to some filtration {F0,F1, . . .}. Assume for all t that Xt ≤ R a.s. and that∑n

i=1 E[X2
i |Fi−1] ≤ Vn a.s. for some constant Vn only depending on n. Then for any δ ∈ (0, 1),

with probability at least 1− δ, we have:
n∑

i=1

Xi ≤ (e− 1)
(√

Vn log(1/δ) +R log(1/δ)
)
.

We next apply Lemma 9 to bound the estimation error of our estimates δ̂t(ât, a), found in (2).
Proposition 10. Let E1 be the event that for all rounds s1 < s2 and all arms a ∈ [K]:∣∣∣∣∣

s2∑
t=s1

δ̂t(ât, a)−
s2∑

t=s1

E
[
δ̂t(ât, a) | Ft−1

]∣∣∣∣∣ ≤ c1 log(T )
(√

K(s2 − s1) +K
)
, (9)

for an appropriately large constant c1, and where F := {Ft}Tt=1 is the canonical filtration generated
by observations and randomness of elapsed rounds. Then, E1 occurs with probability at least
1− 1/T 2.

Proof. The random variable δ̂t(ât, a)− E[δ̂t(ât, a)|Ft−1] is a martingale difference bounded above
by K for all rounds t and all arms a, a′. Note here that the identity of the candidate arm ât is fixed
conditional on the observations of the previous rounds Ft−1. The variance of this difference is:

s2∑
t=s1

E[δ̂2t (ât, a) | Ft−1] ≤
s2∑

t=s1

|At|2E[111{jt = a}|Ft−1]

≤
s2∑

t=s1

|At|2 ·
1

|At|

≤ K · (s2 − s1 + 1).

≤ 2K · (s2 − s1)

Then, the result follows from Lemma 9 and taking union bounds over arms a and rounds s1, s2.

Since the contribution to the expected regret is small outside of the high-probability good event E1,
going forward we will assume as necessary that (9) holds for all arms a ∈ [K] and rounds s1, s2.
The next result asserts that episodes roughly correspond to significant shifts in the sense that a restart
(Line 8 of Algorithm 1) occurs only if a significant shift has been detected.
Lemma 11. On event E1, for each episode [tℓ, tℓ+1) with tℓ+1 ≤ T (i.e., an episode which concludes
with a restart), there exists a significant shift τi ∈ [tℓ, tℓ+1).

Proof. We have that

E[δ̂t(ât, a)|Ft−1] =

{
δt(ât, a) a ∈ At

−1/2 a ̸∈ At
.

Thus, by concentration (Proposition 10) and the eviction criteria (3) with large enough constant C > 0,
we have that an arm a being evicted over interval [s1, s2] implies

∑s2
t=s1

δt(ât, a) >
√

K · (s2 − s1).
By the SST condition, this means that

s2∑
t=s1

δt(a
∗
t , a) ≥

s2∑
t=s1

δt(ât, a) >
√
K · (s2 − s1).

This means, over the course of episode [tℓ, tℓ+1), every arm a ∈ [K] incurs significant regret meaning
a significant shift must take place between rounds tℓ and tℓ+1 − 1.
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Following the outline of Section 6, we now turn our attention to bounding the regrets δt(a
♯
t, ât) and

δt(ât, at) over a single episode [tℓ, tℓ+1).

C.3 Bounding E[
∑tℓ+1−1

t=tℓ
δt(ât, at)]: Regret of Active Arms to Candidate Arm

We first decompose the total sum of regrets E[
∑T

t=1 δt(ât, at)] based on which arm at chooses within
the active set At. Using tower law, we have

E

[
T∑

t=1

δt(ât, at)

]
=

T∑
t=1

E[E[δt(ât, at) | Ft−1]] = E

[
T∑

t=1

∑
a∈At

δt(ât, a)

|At|

]
.

Splitting the above RHS back along episodes, we obtain the sum E[
∑tℓ+1−1

t=tℓ

∑
a∈At

δt(ât, a)/|At|].
Next, we condition on the good event E1 on which the concentration bounds of Proposition 10 hold.
Additionally, we divide up the rounds t into those before arm a is evicted from Amaster and those after.
Suppose arm a is evicted from Amaster at round taℓ ∈ [tℓ, tℓ+1). In particular, this means arm a ∈ At

for all t ∈ [tℓ, t
a
ℓ ). Thus, it suffices to bound:

E

111{E1} ·
 K∑

a=1

taℓ−1∑
t=tℓ

δt(ât, a)

|At|
+

K∑
a=1

tℓ+1−1∑
t=taℓ

δt(ât, a)

|At|
· 111{a ∈ At}

 . (10)

Suppose WLOG that t1ℓ ≤ t2ℓ ≤ · · · ≤ tKℓ . Then, for each round t < taℓ all arms a′ ≥ a are retained
in Amaster and thus retained in the candidate arm set At. Thus, |At| ≥ K + 1− a for all t ≤ taℓ .

Then, the first double sum in (10) can be bounded by combining our eviction criterion (3) with our
concentration bounds Proposition 10. Since arm a is not evicted from At till round taℓ , on event E1
we have for some c2 > 0:

taℓ−1∑
t=tℓ

δt(ât, a) =

taℓ−1∑
t=tℓ

E[δ̂t(ât, a) | Ft−1] ≤ c2 log(T )
√

K(taℓ − tℓ) ∨K2

Then, using the fact that |At| ≥ K + 1− a for all t ∈ [tℓ, t
a
ℓ ), we have:

taℓ−1∑
t=tℓ

δt(ât, a)

|At|
≤

c2 log(T )
√
K(taℓ − tℓ) ∨K2

K + 1− a
.

Then, summing the above R.H.S. over all arms a, we have on event E1:

K∑
a=1

taℓ−1∑
t=tℓ

δt(ât, a)

|At|
≤ c2 log(K) log(T )

√
K(tℓ+1 − tℓ) ∨K2.

Next, we handle the second double sum in (10). We first observe that if arm a is played after round
taℓ , then it must due to a scheduled replay. The difficulty here is that replays may interrupt each other
and so care must be taken in managing the relative regret contribution

∑
t δt(ât, a) (which may be

negative if a ≺ ât) of different overlapping replays.

Fixing an arm a, our strategy is to partition the rounds when a is played by a replay after round taℓ
according to which replay is active and not accounted for by another replay. This involves carefully
designating a subclass of replays whose durations while playing a span all the rounds where a is
played after taℓ . Then, we cover the times when a is played by a collection of intervals corresponding
to the schedules of this subclass of replays, on each of which we can employ the eviction criterion (3)
and concentration like before.

For this purpose, we define the following terminology (which is all w.r.t. a fixed arm a):
Definition 4.

(i) For each scheduled and activated Base-Alg(s,m), let the round M(s,m) be the minimum of
two quantities: (a) the last round in [s, s+m] when arm a is retained by Base-Alg(s,m) and
all of its children, and (b) the last round that Base-Alg(s,m) is active and not permanently
interrupted. Call the interval [s,M(s,m)] the active interval of Base-Alg(s,m).
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Figure 3: Shown are replay scheduled durations (in gray) with dots marking when arm a is reintro-
duced toAt. Black segments indicate the period [s,M(s,m)] for proper and subproper replays. Note
that the rounds where a ∈ At in the left unlabeled replay’s duration are accounted for by the larger
proper replay.

(ii) Call a replay Base-Alg(s,m) proper if there is no other scheduled replay Base-Alg(s′,m′)
such that [s, s+m] ⊂ (s′, s′ +m′) where Base-Alg(s′,m′) will become active again after
round s+m. In other words, a proper replay is not scheduled inside the scheduled range of
rounds of another replay. Let PROPER(tℓ, tℓ+1) be the set of proper replays scheduled to
start before round tℓ+1.

(iii) Call a scheduled replay Base-Alg(s,m) subproper if it is non-proper and if each of its
ancestor replays (i.e., previously scheduled replays whose durations have not concluded)
Base-Alg(s′,m′) satisfies M(s′,m′) < s. In other words, a subproper replay either
permanently interrupts its parent or does not, but is scheduled after its parent (and all
its ancestors) stops playing arm a. Let SUBPROPER(tℓ, tℓ+1) be the set of all subproper
replays scheduled before round tℓ+1.

Equipped with this language, we now show some basic claims which essentially reduce analyzing the
complicated hierarchy of replays to analyzing the active intervals of replays in PROPER(tℓ, tℓ+1) ∪
SUBPROPER(tℓ, tℓ+1).
Proposition 12. The active intervals

{[s,M(s,m)] : Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(tℓ, tℓ+1)},

are mutually disjoint.

Proof. Clearly, the classes of replays PROPER(tℓ, tℓ+1) and SUBPROPER(tℓ, tℓ+1) are disjoint. Next,
we show the respective active intervals [s,M(s,m)] and [s′,M(s′,m′)] of any two Base-Alg(s,m)
and Base-Alg(s′,m′) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(tℓ, tℓ+1) are disjoint.

1. Proper replay vs. subproper replay: a subproper replay can only be scheduled after the
round M(s,m) of the most recent proper replay Base-Alg(s,m) (which is necessarily an
ancestor). Thus, the active intervals of proper replays and subproper replays are disjoint.

2. Two distinct proper replays: two such replays can only permanently interrupt each other,
and since M(s,m) always occurs before the permanent interruption of Base-Alg(s,m), we
have the active intervals of two such replays are disjoint.

3. Two distinct subproper replays: consider two non-proper replays
Base-Alg(s,m),Base-Alg(s′,m′) ∈ SUBPROPER(tℓ, tℓ+1) with s′ > s. The only
way their active intervals intersect is if Base-Alg(s,m) is an ancestor of Base-Alg(s′,m′).
Then, if Base-Alg(s′,m′) is subproper, we must have s′ > M(s,m), which means that
[s′,M(s′,m′)] and [s,M(s,m)] are disjoint.

Next, we claim that the active intervals [s,M(s,m)] for Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪
SUBPROPER(tℓ, tℓ+1) contain all the rounds where a is played after being evicted from Amaster. To
show this, we first observe that for each round t when a replay is active, there is a unique proper
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replay associated to t, namely the proper replay scheduled most recently. Next, note that any round
t > taℓ where arm a ∈ At must belong to the active interval [s,M(s,m)] of the unique proper replay
Base-Alg(s,m) associated to round t, or else satisfies t > M(s,m) in which case a unique subproper
replay Base-Alg(s′,m′) ∈ SUBPROPER(tℓ, tℓ+1) was active and not yet permanently interrupted by
round t. Thus, it must be the case that t ∈ [s′,M(s′,m′)].

At the same time, every round t ∈ [s,M(s,m)] for a proper or subproper Base-Alg(s,m) is clearly a
round where a ∈ At and no such round is accounted for twice by Proposition 12. Thus,

{t ∈ (taℓ , tℓ+1) : a ∈ At} =
⊔

Base-Alg(s,m)∈PROPER(tℓ,tℓ+1)∪SUBPROPER(tℓ,tℓ+1)

[s,M(s,m)].

Then, we can rewrite the second double sum in (10) as:

K∑
a=1

∑
Base-Alg(s,m)∈PROPER(tℓ,tℓ+1)∪SUBPROPER(tℓ,tℓ+1)

111{Bs,m = 1}
M(s,m)∑
t=s∨taℓ

δt(ât, a)

|At|
.

Recall in the above that the Bernoulli Bs,m (see Line 6 of Algorithm 1) decides whether
Base-Alg(s,m) is scheduled.

Further bounding the sum over t above by its positive part, we can expand the sum over
Base-Alg(s,m) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(tℓ, tℓ+1) to be over all Base-Alg(s,m), or ob-
tain:

K∑
a=1

∑
Base-Alg(s,m)

111{Bs,m = 1}

M(s,m)∑
t=s∨taℓ

δt(ât, a)

|At|
· 111{a ∈ At}


+

, (11)

where the sum is over all replays Base-Alg(s,m), i.e. s ∈ {tℓ + 1, . . . , tℓ+1 − 1} and m ∈
{2, 4, . . . , 2⌈log(T )⌉}. It then remains to bound the contributed relative regret of each Base-Alg(s,m)
in the interval [s ∨ taℓ ,M(s,m)], which will follow similarly to the previous steps. Fix s,m and
suppose taℓ + 1 ≤M(s,m) since otherwise Base-Alg(s,m) contributes no regret in (11).

Then, following similar reasoning as before, i.e. combining our concentration bound (9) with the
eviction criterion (3), we have for a fixed arm a:

M(s,m)∑
t=s∨taℓ

δt(ât, a)

|At|
≤ c2 log(T )

√
Km ∨K2

mint∈[s,M(s,m)] |At|
,

Plugging this into (11) and switching the ordering of the outer double sum, we obtain (now for clarity
overloading the notation M(s,m, a) to also depend on the reference arm a):

∑
Base-Alg(s,m)

111{Bs,m = 1} · c2 log(T )
√
Km ∨K2

K∑
a=1

1

mint∈[s,M(s,m.a)] |At|
.

We claim the above innermost sum over a is at most log(K). For a fixed Base-Alg(s,m), if ak is the
k-th arm in [K] to be evicted by Base-Alg(s,m) or any of its children, then mint∈[s,M(s,m,ak)] |At| ≥
K + 1− k. Thus, our claim follows follows from

∑K
k=1

1
K+1−k ≤ log(K).

Let R(m) := c2 log(K) log(T )
√
Km ∨K2 which is the bound we’ve obtained so far on the relative

regret for a single Base-Alg(s,m). Then, plugging R(m) into (11) gives:

E

111{E1} K∑
a=1

tℓ+1−1∑
t=taℓ

δt(ât, a)

|At|
· 111{a ∈ At}

 ≤ Etℓ

E
 ∑

Base-Alg(s,m)

111{Bs,m = 1} ·R(m) | tℓ


= Etℓ

[
T∑

s=tℓ

∑
m

E[111{Bs,m = 1} · 111{s < tℓ+1} | tℓ] ·R(m)

]
.

Next, we observe that Bs,m and 111{s < tℓ+1} are independent conditional on tℓ since 111{s < tℓ+1}
only depends on the scheduling and observations of base algorithms scheduled before round s. Thus,
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recalling that P(Bs,m = 1) = 1/
√
m · (s− tℓ),

E[111{Bs,m = 1} · 111{s < tℓ+1} | tℓ] = E[111{Bs,m = 1} | tℓ] · E[111{s < tℓ+1} | tℓ]

=
1√

m · (s− tℓ)
· E[111{s < tℓ+1} | tℓ].

Plugging this into our expectation from before and unconditioning, we obtain:

E

tℓ+1−1∑
s=tℓ+1

⌈log(T )⌉∑
n=1

1√
2n · (s− tℓ)

·R(2n)

 ≤ c3 log
3(T )Etℓ,tℓ+1

[√
K(tℓ+1 − tℓ) ∨K2

]
. (12)

Then, it suffices to bound
√
K(tℓ+1 − tℓ) ∨K2. First, we claim that every phase [τi, τi+1) is length

at least K/4. Observe by our notion of significant regret, that an arm a incurring significant regret on
the interval [s1, s2] means

s2∑
t=s1

δt(a
∗
t , a) ≥

√
K · (s2 − s1) =⇒ 2 · (s2 − s1) ≥

√
K · (s2 − s1) =⇒ s2 − s1 ≥ K/4.

Thus, each significant phase (Definition 3) must be at least K/4 rounds long meaning τi+1 − τi =
(τi+1 − τi) ∨K/4. This will allow us to remove the “∨K2” in (12). In particular, since the episode
length tℓ+1 − tℓ in (12) can be upper bounded by the combined length of all significant phases
[τi, τi+1) interesecting episode [tℓ, tℓ+1), (12) gives us the desired bound.

C.4 Bounding E[
∑tℓ+1−1

t=tℓ
δt(a

♯
t, ât)]: Regret of Candidate Arm to Safe Arm

We first invoke an elementary lemma based on SST and STI to further help us decompose the regret.
Lemma 13. For any three arms a, b, c, under SST∩STI:

δt(a, c) ≤ 2 · δt(a, b) + δt(b, c) + 3 · δt(a∗t , a),
where a∗t is the winner arm.

Proof. We handle all the different orderings:

(a) a ≻t b, c: this already follows from Lemma 8 since then δt(a, c) ≤ 2 · δt(a, b) + δt(b, c).

(b) c ≻t a ≻t b: δt(a, c) ≤ 0 ≤ δt(a, b) and δt(a
∗, b) ≥ δt(c, b) by SST. Summing these

together gives the result.

(c) b ≻t a ≻t c: δt(a, c) ≤ δt(b, c) and δt(a
∗
t , a) ≥ δt(b, a) by SST. Summing these together

gives the result.

(d) b, c ≻t a: δt(a∗, a) dominates the first two terms on the desired inequality’s RHS.

Then, using Lemma 13, we further decompose the regret about the last master arm aℓ defined in
Section 4, which is the last arm to be evicted from Amaster in episode [tℓ, tℓ+1). We have

tℓ+1−1∑
t=tℓ

δt(a
♯
t, ât) ≤ 2

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) +

tℓ+1−1∑
t=tℓ

δt(aℓ, ât) + 3

tℓ+1−1∑
t=tℓ

δt(a
∗
t , a

♯
t). (13)

As said earlier, the sum
∑tℓ+1−1

t=tℓ
δt(a

∗
t , a

♯
t) is of the right order. Meanwhile, the sum∑tℓ+1−1

t=tℓ
δt(aℓ, ât) is bounded using our candidate arm switching criterion (4). If ât = aℓ for

every round t ∈ [tℓ, tℓ+1) we are already done. Otherwise, let mℓ be the last round that aℓ is not the
candidate arm ât. Then, we must have that since arm aℓ is not evicted until round tℓ+1 − 1:

tℓ+1−1∑
t=tℓ

δ̂t(aℓ, ât) =

mℓ−1∑
t=tℓ

δ̂t(aℓ, ât) ≤ C log(T )
√

K · (mℓ − tℓ) ∨K2
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Then, by concentration (Proposition 10) and the fact from earlier that each phase [τi, τi+1) is at least
K/4 rounds (so that “∨K2” can be removed in the above), we have that

∑tℓ+1−1
t=tℓ

δt(aℓ, ât) is of the
right order.

Then, turning back to (13), it remains to bound the regret of aℓ to a♯t over the episode [tℓ, tℓ+1).

C.5 Bounding E[
∑tℓ+1−1

t=tℓ
δt(a

♯
t, aℓ)]: Regret of Last Master Arm to Safe Arm

First, following the outline of Section 4, we recall the definition of the last safe arm a♯t at round t
which is the last arm to incur significant regret in the unique phase [τi, τi+1) containing round t.

We next formally define a bad segment, alluded to in Section 4. In what follows, bad segments will
be defined with respect to a fixed arm a and conditional on the episode start time tℓ. We will then
show that, with respect to any arm a, not too many bad segments will elapse before a is evicted from
Amaster. In particular, this will hold for a = aℓ which will ultimately be used to bound δt(a

♯
t, aℓ)

across the episode [tℓ, tℓ+1).
Definition 5. Fix the episode start time tℓ, and let [τi, τi+1) be any phase intersecting [tℓ, T ). For
any arm a, define rounds si,0(a), si,1(a), si,2(a) . . . ∈ [tℓ ∨ τi, τi+1) recursively as follows: let
si,0(a) := tℓ ∨ τi and define si,j(a) as the smallest round in (si,j−1(a), τi+1) such that arm a
satisfies for some fixed c4 > 0:

si,j(a)∑
t=si,j−1(a)

δt(a
♯
t, a) ≥ c4 log(T )

√
K · (si,j(a)− si,j−1(a)), (14)

if such a round si,j(a) exists. Otherwise, we let the si,j(a) := τi+1 − 1. We refer to any interval
[si,j−1(a), si,j(a)) as a critical segment, and as a bad segment (w.r.t. arm a) if (14) above holds.

Note that the above definition only depends on the arm a and the episode start time tℓ and that,
conditional on these variables, they are fixed in the environment. Observe also that the arm a♯t is fixed
within any critical segment [si,j−1(a), si,j(a)) ⊆ [τi, τi+1) since a significant shift does not occur
inside [τi, τi+1).

Now relating this notion of a bad segment to our goal of bounding regret, a given bad segment
[si,j(a), si,j(a)) only contributes order

√
K · (si,j(a)− si,j−1(a)) to the regret of a to a♯t. At the

same time, we claim that a well-timed replay (see Definition 6 below) running from si,j−1(a) to
si,j(a) is capable of evicting arm a. This in turn allows us to reduce the regret bounding to studying
the number and lengths of bad segments which elapse before one is detected by such a replay.

We first define such a well-timed and perfect replay.

Definition 6. Let s̃i,j(a) := ⌈ si,j(a)+si,j+1(a)
2 ⌉ denote the approximate midpoint of

[si,j(a), si,j+1(a)). Given a bad segment [si,j(a), si,j+1(a)), define a perfect replay w.r.t.
[si,j(a), si,j+1(a)) as a call of Base-Alg(tstart,m) where tstart ∈ [si,j(a), s̃i,j(a)] and m ≥
si,j+1(a)− si,j(a)

Next, we analyze the behavior of a perfect replay on the bad segment [si,j(a), si,j+1(a)). Going
forward, we will use the simpler notation a♯i to denote the last safe arm of a phase [τi, τi+1), known
in context.
Proposition 14. Suppose the good event E1 holds (cf. Proposition 10). Let [si,j(a), si,j+1(a)) be
a bad segment with respect to arm a. Fix an integer m ≥ si,j+1(a) − si,j(a). Then, if a perfect
replay with respect to [si,j(a), si,j+1(a)) is scheduled, arm a will be evicted from Amaster by round
si,j+1(a).

Proof. Suppose event E1 (i.e., our concentration bound (9)) holds. We first observe that by elementary
calculations and the definition of the rounds si,j(a), we have (in an identical fashion to Lemma 4 of
Suk and Kpotufe [2022]):

si,j+1(a)∑
t=s̃i,j(a)

δt(a
♯
i , a) ≥

c4
4
log(T )

√
K (si,j+1(a)− s̃i,j(a)), (15)
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where s̃i,j(a) is the midpoint of [si,j(a), si,j+1(a)) as defined in Definition 6. The above will come
in handy in showing arm a is evicted over the second half of the bad segment [s̃i,j(a), si,j+1(a)].

Next, following the intuition given in Section 4, in order to relate δt(a
♯
i , a) to δt(ât, a), we again use

SST and STI via Lemma 13 on inequality (15):

si,j+1(a)∑
t=s̃i,j(a)

2 · δt(a♯i , ât) + δt(ât, a) + 3 · δt(a∗t , a
♯
i) ≥

c4
4
log(T )

√
K (si,j+1(a)− s̃i,j(a)). (16)

We next show that
∑si,j+1(a)

t=s̃i,j(a)
δt(a

♯
i , ât) and

∑si,j+1(a)

t=s̃i,j(a)
δt(a

∗
t , a

♯
i) on the above LHS are small.

First, it is clear that any perfect replay Base-Alg(tstart,m) will not evict a♯i since otherwise it incurs
significant regret within phase [τi, τi+1) (see the earlier Lemma 11). At the same time, by the
candidate arm switching criterion (4) and concentration:

si,j+1(a)∑
t=s̃i,j(a)

δt(a
♯
i , ât) ≤ c5 log(T )

√
K (si,j+1(a)− s̃i,j(a)).

Meanwhile, by the definition of significant regret (Definition 3),
si,j+1(a)∑
t=s̃i,j(a)

δt(a
∗
t , a

♯
i) ≥

√
K (si,j+1(a)− s̃i,j(a)).

Thus, for sufficiently large c4 > 0 in the definition of bad segments (Definition 5), we have that the
above two inequalities can be combined with (16) to yield:

si,j+1(a)∑
t=s̃i,j(a)

δt(ât, a) ≥
√

K (si,j+1(a)− s̃i,j(a)).

If arm a is evicted from Amaster before round si,j+1(a), then we are already done. Otherwise, using
the fact that E[δ̂t(ât, a)|Ft−1] = δt(ât, a) for any round t ∈ [s̃i,j(a), si,j+1(a)] with a ∈ At, we
have that arm a will be evicted at round si,j+1(a) using the above inequality and concentration.

It remains to show that, for any arm a, a perfect replay is scheduled w.h.p. before too much regret is
incurred on the elapsed bad segments w.r.t. a. In particular, this will hold for the last master arm aℓ,
allowing us to bound the remaining term E[

∑tℓ+1−1
t=tℓ

δt(a
♯
t, aℓ)]. The argument will be identical to

that of Appendix B.2 of Suk and Kpotufe [2022].

First, fix an arm a and an episode start time tℓ. Then, define the bad round s(a) > tℓ as follows:
Definition 7. (bad round) For a fixed round tℓ and arm a, the bad round s(a) > tℓ is defined as the
smallest round which satisfies, for some fixed c6 > 0:∑

(i,j)

√
si,j+1(a)− si,j(a) > c6 log(T )

√
s(a)− tℓ, (17)

where the above sum is over all pairs of indices (i, j) ∈ N×N such that [si,j(a), si,j+1(a)) is a bad
segment with si,j+1(a) < s(a).

Our goal is then to then to show that arm a is evicted by some perfect replay scheduled within episode
[tℓ, tℓ+1) with high probability before the bad round s(a) occurs. Going forward, to simplify notation
we will drop the dependence on the fixed arm a in some variables.

For each bad segment [si,j(a), si,j+1(a)), recall that s̃i.j(a) is the approximate midpoint between
si,j(a) and si,j+1(a) (see Definition 6). Next, let mi,j := 2n where n ∈ N satisfies:

2n ≥ si,j+1(a)− si,j(a) > 2n−1.

Plainly, mi,j is a dyadic approximation of the bad segment length. Next, recall that the Bernoulli
Bt,m decides whether Base-Alg(t,m) is scheduled at round t (see Line 6 of Algorithm 1). If for
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some t ∈ [si,j(a), s̃i,j(a)], Bt,mi,j = 1, i.e. a perfect replay is scheduled, then a will be evicted from
Amaster by round si,j+1(a) (Proposition 14). We will show this happens with high probability via
concentration on the sum

S(a, tℓ) :=
∑

(i,j):si,j+1(a)<s(a)

s̃i,j(a)∑
t=si,j(a)

Bt,mi,j
,

Note that the random variable S(a, tℓ) only depends on the replay scheduling probabilities {Bs,m}s,m
given a fixed arm a and episode start time tℓ, since the bad round s(a) is also fixed given these
quantities. This means that S(a, tℓ) is an independent sum of Bernoulli random variables Bt,mi,j

,
conditional on tℓ. Then, a Chernoff bound over the randomness of S(a, tℓ), conditional on tℓ yields

P
(
S(a, tℓ) ≤

E[S(a, tℓ) | tℓ]
2

| tℓ
)
≤ exp

(
−E[S(a, tℓ) | tℓ]

8

)
.

The above RHS error probability is bounded above above by 1/T 3 by observing:

E [S(a, tℓ) | tℓ] ≥
∑
(i,j)

s̃i,j(a)∑
t=si,j(a)

1√
mi,j · (t− tℓ)

≥ 1

4

∑
(i,j)

√
si,j+1(a)− si,j(a)

s(a)− tℓ
≥ c6

4
log(T ),

for c6 > 0 large enough, where the last inequality follows from (17) in the definition of the bad
round s(a) (Definition 7). Taking a further union bound over the choice of arm a ∈ [K] gives us that
S(a, tℓ) > 1 for all choices of arm a (define this as the good event E2(tℓ)) with probability at least
1−K/T 3. This means arm a will be evicted before round s(a) with high probability.

Recall on the event E1 the concentration bounds of Proposition 10 hold. Then, on E1 ∩ E2(tℓ), letting
a = aℓ in the preceding arguments we must have tℓ+1 − 1 ≤ s(aℓ) Thus, by the definition of the bad
round s(aℓ) (Definition 7), we must have:∑

[si,j(aℓ),si,j+1(aℓ)):si,j+1(aℓ)<tℓ+1−1

√
si,j+1(aℓ)− si,j(aℓ) ≤ c6 log(T )

√
tℓ+1 − tℓ. (18)

Thus, by (14) in the definition of bad segments (Definition 5), over the bad segments
[si,j(aℓ), si,j+1(aℓ)) which elapse before the end of the episode tℓ+1 − 1, the regret of aℓ to a♯t
is at most order log2(T )

√
K · (tℓ+1 − tℓ).

Over each non-bad critical segment [si,j(aℓ), si,j+1(aℓ)), the regret of playing arm aℓ to a♯i is at most
log(T )

√
τi+1 − τi since there is at most one non-bad critical segment per phase [τi, τi+1) (follows

from Definition 5).

So, we conclude that on event E1 ∩ E2(tℓ):
tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) ≤ c7 log

2(T )
∑

i∈PHASES(tℓ,tℓ+1)

√
K(τi+1 − τi).

Taking expectation, we have by conditioning first on tℓ and then on event E1 ∩ E2(tℓ):

E

[
tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ)

]
≤ Etℓ

[
E

[
111{E1 ∩ E2(tℓ)}

tℓ+1−1∑
t=tℓ

δt(a
♯
t, aℓ) | tℓ

]]
+ T · Etℓ [E [111{Ec1 ∪ Ec2(tℓ)} | tℓ]]

≤ c7 log
2(T )Etℓ

E
111{E1 ∩ E2(tℓ)} ∑

i∈PHASES(tℓ,tℓ+1)

√
K(τi+1 − τi) | tℓ


+

2K

T 2

≤ c7 log
2(T )E

111{E1} ∑
i∈PHASES(tℓ,tℓ+1)

√
τi+1 − τi

+
2

T
,

where in the last step we bound 111{E1 ∩ E2(tℓ)} ≤ 111{E1} and apply tower law again. This concludes
the proof. ■
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