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Abstract

The structure of protein-protein complexes is critical for understanding binding dy-
namics, biological mechanisms, and intervention strategies. Rigid protein docking,
a fundamental problem in this field, aims to predict the 3D structure of complexes
from their unbound states without conformational changes. In this scenario, we
have access to two types of valuable information: sequence-modal information,
such as coevolutionary data obtained from multiple sequence alignments, and
structure-modal information, including the 3D conformations of rigid structures.
However, existing docking methods typically utilize single-modal information,
resulting in suboptimal predictions. In this paper, we propose xTrimoBiDockα (or
BiDock for short)4, a novel rigid docking model that effectively integrates sequence-
and structure-modal information through bi-level optimization. Specifically, a cross-
modal transformer combines multimodal information to predict an inter-protein
distance map. To achieve rigid docking, the roto-translation transformation is
optimized to align the docked pose with the predicted distance map. In order to
tackle this bi-level optimization problem, we unroll the gradient descent of the inner
loop and further derive a better initialization for roto-translation transformation
based on spectral estimation. Compared to baselines, BiDock achieves a promising
result of a maximum 234% relative improvement in challenging antibody-antigen
docking problem.

1 Introduction

Protein-protein interactions (PPIs) are essential to the basic functioning of cells and larger biological
systems. Due to their importance, elucidating such interactions up to atomic detail is necessary for
understanding multicomponent complexes like ribosomes and discovering protein-based drugs, e.g.,
antibodies and peptides. However, the experimental golden standard for determining the structure of
protein complexes, such as X-ray crystallography and cryo-EM, is extremely time-consuming.

Computational protein docking [49, 7, 57, 45] provides an alternative route to predict the 3D struc-
tures of complexes from unbound states. Here, we focus on the fundamental problem of rigid
protein docking [25] where no deformations occur within any protein during the docking process.
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†Contributed equally to this research. Each author’s contribution is provided in Section 5.
‡Corresponding authors
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Figure 1: Surface views of rigid protein docking.
Keep receptor protein at a fixed location, and a roto-
translation transformation T = (R, t) is predicted to
place ligand protein at the correct docked pose.

This assumption is reasonable in many bio-
logical environments and stabilizes the pre-
diction of natural structures. Therefore, all
we need is an appropriate SE(3) transforma-
tion shown in Figure 1, i.e., roto-translation
transformation, that places the ligand pro-
tein at the correct orientation and location
concerning the receptor protein. In this
context, two types of information are avail-
able. The first is sequence-modal infor-
mation, such as the coevolutionary signals
captured in multiple sequence alignments
(MSAs). The second is structure-modal
information, like 3D coordinates of rigid
bodies and bond angles. Both types of in-
formation are indispensable for performing
rigid protein docking.

Classical docking software [13, 19, 46, 29, 58] generally follow a three-step framework for predicting
complex structures. Firstly, a large number of candidate structures are randomly sampled to explore
the conformational space of the complex. Secondly, a scoring function is employed to evaluate and
rank the sampled structures based on their compatibility with the binding interface. Finally, the
top-ranked structures are refined using an energy model to improve their accuracy and eliminate
steric clashes. Due to the evaluation of lots of candidates, these methods tend to be computationally
expensive, particularly for high-throughput workflows.

Recently, deep learning has shown significant computational speed-up in this field. EquiDock [25]
has emerged as a pioneering method for applying deep learning to rigid protein docking. However, it
solely relies on structure-modal information, neglecting the valuable sequence-modal information
in databases. This drawback hampers its ability to capture evolutionary constraints and exploit the
intricate sequence-structure relationships. Building upon the success of AlphaFold2 [28], AlphaFold-
Multimer [23] has been hailed as a breakthrough in directly folding complex structures from amino
acid sequences, which considers the sequence-modal information but fails to effectively utilize the
given rigid structures, leading to unnatural complexes in some cases.

To overcome the aforementioned limitations, we propose xTrimoBiDock (or BiDock for short), a
novel rigid docking model that seamlessly integrates sequence- and structure-modal information
through bi-level optimization. (i) To effectively utilize multimodal information, we introduce a
cross-modal transformer that injects multimodal information into an inter-protein distance map. (ii)
To satisfy rigid docking, we optimize a roto-translation transformation to minimize the difference
between the docked pose of unbound proteins and the predicted inter-protein distance map. This
framework naturally lends itself to a nested bi-level optimization paradigm, where the outer loop is the
learning of the cross-modal transformer and the inner loop is dedicated to solving the roto-translation
transformation. Inspired by gradient-based bi-level optimization [24, 32, 11], we unroll the gradient
descent of the inner loop for approximation. Due to the ruggedness of the optimization landscape,
a substantial number of iterations are required for convergence. Thus, we further derive a better
initialization for the roto-translation transformation using spectral estimation. Extensive experiments
conducted on diverse datasets and evaluation protocols validate the effectiveness of BiDock.

In summary, our contributions are three-fold:

• We effectively leverage sequence- and structure-modal information for rigid protein docking. By
naturally integrating the fusion of multimodalities and the docking of rigid bodies through bi-level
optimization, we set up a new avenue for solving rigid protein docking.

• We solve the above bi-level optimization with unrolled gradient and spectral initialization. By
unrolling the gradient descent of the inner loop and deriving a spectral estimation for initialization,
BiDock enhances the convergence and controls the computational cost.

• Comprehensive experiments on three representative datasets demonstrate the effectiveness of the
proposed model. Compared to state-of-the-art baselines, BiDock achieves the maximum 234%
relative improvement in challenging but practical antibody-antigen docking.
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2 Related Work

Molecular Docking Molecular docking aims to characterize the binding poses between small
molecule compounds and protein targets [42, 43, 63], playing an essential role in the discovery of
effective and safe treatments for various diseases [48]. Traditional computational methods have
been greatly enhanced by deep learning techniques [53], which offer increased expressive power in
identifying, processing, and extrapolating complex patterns in molecular data [39, 31, 21, 35, 4, 38,
16]. It is important to note that these methods have primarily focused on molecular ligands and often
assume the availability of known binding pockets, limiting their direct applicability to protein-protein
docking. Protein-protein docking is more challenging due to larger, flexible proteins and the need to
predict unknown binding interfaces.

Protein Docking Computational docking software [46, 47, 44, 57, 58, 45, 15] predict complex
structures based on a framework of candidate sampling, ranking [37, 6, 22], and refinement [50].
These methods can be financially restrictive and time-consuming, as they often involve scoring and
ranking thousands of candidate structures. Recently, deep learning has made significant contributions
to structural biology [30, 17, 18, 36]. Notably, AlphaFold2 [28] and RoseTTAFold [2] have been
employed to improve protein structure prediction from various angles [26, 40], such as integrating
physics-based docking methods [29] or extending multiple sequence alignments [10]. Additionally,
methods like AlphaFold-Multimer [23] and HSRN [27] have been developed to simultaneously fold
and dock two proteins. Despite their remarkable achievements, these methods violate the rigidity
of rigid docking and do not consider unbounded structures. EquiDock [25] is tailored for effective
rigid docking but does not fully leverage the evolutionary information encoded in protein sequences,
resulting in limited performance improvement compared to traditional docking software.

Bi-level Optimization Bi-level optimization has gained attention in the deep learning community
for its ability to handle nested problem structures. It finds applications in various domains, including
hyperparameter optimization [14] and metaknowledge extraction [24]. Traditional bi-level optimiza-
tion methods rely on game theory [51] or mathematical programming [9], which may not scale well
to large datasets or have strict mathematical requirements. Alternatively, gradient descent methods
offer a promising solution, and they can be divided into explicit gradient update [60], explicit proxy
update [1, 8], implicit function [41], and closed-form methods [59]. The first three are approxima-
tion methods suitable for general functions, while the last one is an accurate method specifically
designed for certain functions. Recent surveys [33, 11] provide a more comprehensive review of
these methods. In addition, the merging AI4Science directions, such as topology design [61] and
protein representation learning [12], also present nested problem structures that can be compatible
with bi-level optimization. By incorporating bi-level optimization into rigid protein docking, we
anticipate that our work will have a significant impact at the intersection of these research areas.

3 BiDock Methodology

Multimodal Input The available information on the sequence modality mainly includes information
inside the primary sequence itself and co-evolutionary information from MSAs. Following the
existing work [28, 23], we extract type features F typ ∈ RNres×21 and primary pair features F pp ∈
RNres×Nres×73 from the primary sequence, where Nres is the number of residues. In terms of MSAs,
we leverage cluster MSA features Fmsa ∈ RNcls×Nres×49 , where Ncls is the number of cluster
centers. For the structure modality, we extract angle features F ang ∈ RNres×57 and pair features
F p ∈ RNres×Nres×88 from the rigid protein structures. The angle features provide the orientation
and position of each amino acid, while the pair features contain the distance information between
amino acids. We present a brief introduction for features and give further details in Appendix B.

Architecture The illustration of the framework is presented in Figure 2. Given sequence-modal
features {F typ, Fmsa, F pp} and structure-modal features {F ang, F p}, the cross-modal transformer
with parameters ϕ transforms available features and integrates them to predict an inter-protein distance
map D̂. To maintain the rigid-body assumption, we define the objective function of learning roto-
translation transformation (R, t) based on the distance map D̂ and coordinates of rigid proteins
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Figure 2: The overall framework of BiDock. Taking the information from sequence and structure
modality as input, the cross-modal transformer fuses them and predicts an inter-protein distance map.
To achieve rigid docking, the roto-translation transformation is learned by minimizing the difference
between the docked pose of rigid structures and the predicted distance map. We unroll the gradient
descent and further derive a spectral initialization to address the formed bi-level optimization.

{X ∈ R3×m, Y ∈ R3×n} as follows

L(R, t, ϕ) = min
R,t

1

mn

m∑
i=1

n∑
j=1

(
∥Xi −RYj − t∥ − D̂ij(ϕ)

)2

, (1)

where Xi is the i-th column of X and Yj is the j-th column of Y . Considering that optimizing
roto-translation transformation (R, t) and parameters of cross-modal transformer ϕ constitutes a
nested structure, we reformulate the rigid protein docking as a bi-level optimization problem

ϕ∗ = argmin
ϕ

Lout (R∗(ϕ), t∗(ϕ), ϕ) s.t. R∗(ϕ), t∗(ϕ) = argmin
R,t

L(R, t, ϕ), (2)

where Lout refers to the outer loss for the cross-modal transformer and its specific details will be
introduced in the following subsections. To solve this bi-level optimization, we unroll the gradient
descent of the inner loop to approximate (R∗(ϕ), t∗(ϕ)) by

Rt+1 = OPT(Rt,∇RLt (Rt, tt, ϕ)),

tt+1 = OPT(tt,∇tLt (Rt, tt, ϕ)),
(3)

where OPT represents the optimization algorithm, such as the stochastic gradient descent (SGD).
However, due to the complexity of the problem and the rugged optimization landscape, the gradient
descent in the inner loop often requires a large number of iterations to converge and faces challenges
in finding the global minima. Therefore, we further derive spectral initialization to provide a more
favorable starting point for better convergence.

3.1 Cross-modal Transformer

Based on the multimodal features, the cross-modal transformer predicts an inter-protein distance
map, as depicted in Figure 3. We first use multilayer perceptrons (MLPs) to capture the nonlinear
relationship inside features and project them into the same space

P pp = MLP(F pp) P p = MLP(F p)

M typ = MLP(F typ) Mmsa = MLP(Fmsa) Mang = MLP(F ang),
(4)

where {P pp, P p ∈ RNres×Nres×cz} are transformed pair features, {M typ,Mang ∈ RNres×cm} and
Mmsa ∈ RNcls×Nres×cm are transformed intra-sequence features. Then we add pair features as the
input pair feature P of Evoformer [28]

P = P pp + P p. (5)

Similarly, we integrate intra-sequence features as another input

M =
[
(M typ +Mmsa)∥Mang

]
, (6)
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Figure 3: Details on the architecture of cross-modal transformer that enables the interaction of
different modalities and outputs updated representations. In particular, the pair representation is used
to predict the inter-protein distance map.

where ∥ is the concatenation. Please note that the broadcast operation is used to make the dimensions
consistent. Specifically, M typ is broadcasted along the newly added first dimension during addition.
Similarly, broadcasting is applied to the newly added first dimension of Mang for concatenation.
Through Evoformer, pair representation P̂ and evolution representation M̂ are obtained

P̂ , M̂ = EVOFORMER(P,M). (7)

Finally, we utilize pair representation P̂ to predict the inter-protein distance map. Here we define two
loss functions to supervise the learning of distance map and evolution representation. Concerning the
distance map, we can directly calculate the ground truth from rigid proteins. However, this ground
truth is naturally noisy because of the experimental resolution. In light of successful practice in protein
structure prediction [28, 23], we use a discretized distance map to replace the exact one. Specifically,
distances are discretized into 64 bins ranging from 2 to 22 Å. The prediction of discretized distances
is converted into a classification problem by

D̄ij = σ(W (P̂ij + P̂ji)), (8)

where W is the learnable parameter and σ is the activation function. Then the cross-entropy loss
averaged over all residue pairs is

Ldist = − 1

mn

∑
i,j

64∑
k=1

Ḡk
ij log D̄

k
ij , (9)

where Ḡk
ij represents the kth-element of one-hot encoding of discretized actual distance. It is worth

noting that the predicted distance map D̂ can be obtained by using the mean of each bin.

Inspired by the masked language model [20], we leverage the evolution representation to reconstruct
masked MSA values. We consider 23 classes, including 20 common amino acid types, an unknown
type, a gap token, and a mask token, and introduce the mask policy in Appendix B. Thus, a masked
MSA loss can be defined as follows

M̄ = Softmax(WM̂), (10)

Lmsa = − 1

Nmask

Ncls∑
i=1

∑
j∈Nmask

23∑
k=1

Ak
ij log(M̄

k
ij), (11)

where Nmask denotes the number of masked tokens and A is the ground truth.

Similar to Equation (1), the SE(3) transformation optimized in the inner loop will exhibit differences
from the ground truth complex, generating hypergradients through the cross-modal transformer

Lin(R∗(ϕ), t∗(ϕ)) =
1

mn

m∑
i=1

n∑
j=1

(∥Xi −R∗(ϕ)Yj − t∗(ϕ)∥ −Dij)
2
, (12)
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where D is the ground truth distance between amino acids. Overall, the outer loss for the cross-model
transformer is

Lout = λ1Ldist + λ2Lmsa + λ3Lin, (13)
where hyperparameters λ1, λ2 and λ3 balance the importance of different loss terms.

3.2 Unrolled Algorithm for Hypergradient

To solve the bi-level optimization formulated as Equation (2), hyper gradient dϕLout is required in
the outer level and can be unrolled via the chain rule

dϕLout =
∂Lout

∂(R∗, t∗)

∂(R∗(ϕ), t∗(ϕ))

∂ϕ
+

∂Lout

∂ϕ
. (14)

One method to calculate it is approximating (R∗(ϕ), t∗(ϕ)) via optimizer

(Rt, tt) = OPT (Rt−1, tt−1, ϕ) , t = 1, · · · , T, (15)

where T denotes the number of iterations. We explicitly calculate the gradients

D̃ij = Xi −RtYj − tt,

∇qLt (Rt, tt, ϕ) =
∑
i,j

2

mn

D̂ij − ∥D̃ij∥
∥D̃ij∥

D̃ij ⊙ Yj ·
∂Rt

∂qt
,

∇tLt (Rt, tt, ϕ) =
∑
i,j

2

mn

D̂ij − ∥D̃ij∥
∥D̃ij∥

D̃ij ,

(16)

where rotation matrix R and quaternion q are converted to each other through the Bar-Itzhack
algorithm [5], and ⊙ means Hadamard product. After T rounds of iterations, (R∗(ϕ), t∗(ϕ)) can be
approximated as (RT , tT ). We can compute the hypergradient by substituting

∂(R∗(ϕ), t∗(ϕ))

∂ϕ
≈ −γ

∂2L(RT , tT , ϕ)

∂(RT , tT )⊤∂ϕ
. (17)

Due to the vast search space and the rugged landscape of the loss, the gradient descent algorithm with
random initialization often requires a large number of iterations to converge and struggles to find the
global minima. In the next subsection, we will derive a spectral initialization to enhance convergence.

3.3 Spectral Initialization

Recall that we intend to derive a good initialization (R0, t0) for the gradient descent of Equation (1).
To simplify it, we denote Ŷ = RY − t1⊤

n , where 1n is the all-ones vector. Then substitute Ŷ into(
∥Xi −RYj − t∥ − D̂ij

)2

= X⊤
i Xi − 2X⊤

i Ŷj + Ŷ ⊤
j Ŷj + D̂2

ij − 2D̂ij∥Xi − Ŷj∥. (18)

According to these variable combinations, we define four variables and two centering matrices

B =

X⊤
1 X1 ... X⊤

1 X1

X⊤
2 X2 ... X⊤

2 X2

... ... ...
X⊤

mXm ... X⊤
mXm


m×n

C =


Ŷ ⊤
1 Ŷ1 ... Ŷ ⊤

n Ŷn

Ŷ ⊤
1 Ŷ1 ... Ŷ ⊤

n Ŷn

... ... ...

Ŷ ⊤
1 Ŷ1 ... Ŷ ⊤

n Ŷn


m×n

E = X⊤Ŷ =


X⊤

1 Ŷ1 ... X⊤
1 Ŷn

X⊤
2 Ŷ1 ... X⊤

2 Ŷn

... ... ...

X⊤
mŶ1 ... X⊤

mŶn


m×n

F =


D̂2

11 ... D̂2
1n

D̂2
21 ... D̂2

2n
... ... ...

D̂2
m1 ... D̂2

mn


m×n

Hm = Im − 1

m
Jm Hn = In − 1

n
Jn,

(19)

where I represents the identity matrix and J refers to the all-ones matrix. If the condition ∀i, j, ∥Xi−
Ŷj∥ = D̂ij holds, the following equation exists

HmFHn = Hm(B − 2E + C)Hn = −2HmEHn = −2HmX⊤RYHn. (20)

6



Table 1: Statistics of datasets.

Datasets # Pairs of Proteins # Residues per Protein # Atoms per Protein

Training Set 4890 565.9 (±264.9) 4334.4 (±2028.3)
DB5.5 (Test) 24 428.4 (±132.0) 3308.0 (±1000.5)
VH-VL (Test) 68 230.1 (±5.4) 1749.9 (±53.7)
AB-AG (Test) 68 433.0 (±72.0) 3346.7 (±568.8)

By performing singular value decomposition (SVD) for HmX⊤ and Y Hn respectively

HmX⊤ = UXΣXV ⊤
X , Y Hn = UY ΣY V

⊤
Y , (21)

the rotation matrix can be solved as

R = −1

2
VXΣ−1

X U⊤
XHmFHnVY Σ

−1
Y U⊤

Y . (22)

Given the rotation matrix R, the translation vector t can be gotten using

HmF = Hm(B − 2E + C) = HmB − 2HmX⊤RY − 2HmX⊤t1⊤
n , (23)

t = −1

2
VXΣ−1

X U⊤
XHm(F −B + 2X⊤R̂Y )1n. (24)

By replacing random initialization with the above spectral initialization, the gradient descent will
approach the global minima faster and better. We will empirically verify this conclusion through
subsequent experiments.

4 Experiments

Datasets We leverage Docking Benchmark 5.5 (DB5.5) [52], a gold standard dataset tailored
for rigid docking. Following the experimental setting of EquiDock [25], the dataset is randomly
partitioned into a test split of size 24. For a comprehensive comparison, we curate two datasets of
antibodies (VH-VL) and antibody-antigen complexes (AB-AG) from Protein Data Bank (PDB) [3]
and expect them to become new benchmarks. Specifically, the training set consists of 4,890 complexes
containing at least one antibody chain, while the test set comprises 68 antibody-antigen complexes
released after October 2022. The docking results of variable heavy-light chains and antigen-antibody
can be separately evaluated. We direct the readers of interest to Appendix A for extraction criteria
and detailed identifier lists. The statistics of the dataset are summarized in Table 1.

Evaluation Protocol We compare BiDock with two categories of representative methods, including
three docking software ZDOCK [13], ClusPro [29], and HDOCK [58], and two deep learning models
EquiDock [25], and AlphaFold-Multimer (Multimer for short [23]). To measure the quality of

Table 2: Quantitative results on protein docking. (bold: best; underline: runner-up)

Datasets Metrics ZDOCK ClusPro HDOCK EquiDock Multimer BiDock

DB5.5
RMSD ↓ 12.491±6.294 14.135±8.153 11.328±8.073 14.982±5.304 7.797±7.428 7.280±8.117

TM-score ↑ 0.689±0.114 0.702±0.118 0.742±0.167 0.714±0.114 0.821±0.162 0.847±0.158

DockQ ↑ 0.084±0.113 0.118±0.192 0.314±0.390 0.030±0.029 0.469±0.396 0.564±0.369

VH-VL
RMSD ↓ 10.982±3.864 5.899±5.688 2.032±2.388 18.293±2.871 1.325±0.530 1.242±0.602

TM-score ↑ 0.596±0.075 0.792±0.156 0.926±0.100 0.559±0.017 0.962±0.020 0.966±0.021

DockQ ↑ 0.108±0.134 0.404±0.277 0.705±0.201 0.032±0.016 0.765±0.094 0.773±0.187

AB-AG
RMSD ↓ 18.892±3.757 15.670±6.896 15.779±6.364 18.468±2.706 13.650±5.886 9.707±8.759

TM-score ↑ 0.504±0.059 0.596±0.143 0.612±0.137 0.502±0.096 0.640±0.124 0.773±0.187

DockQ ↑ 0.035±0.031 0.108±0.181 0.090±0.187 0.043±0.017 0.108±0.172 0.342±0.351

maxDockQ ↑ 0.042±0.043 0.136±0.220 0.111±0.237 0.043±0.018 0.125±0.214 0.414±0.386

7



(a) (b)

Figure 4: An intuitive comparison of DockQ metric on
antibody-antigen docking. The box inside (a) violin plot
represents 25-75 percentiles, and the median is shown by
a white dot. Scatters in (b) scatter plot appear under the
dashed diagonal line, indicating that BiDock outperforms
Multimer on these complexes.

Table 3: Total inference time of differ-
ent methods on antibody-antigen dock-
ing. (unit: hour)

Methods Inference time

ZDOCK 72.61
ClusPro 87.27
HDOCK 20.40
EquiDock 0.60
Multimer 1.07
BiDock 1.47

predictions, we report universally accepted metrics Root Mean Square Deviation (RMSD), TM-score
(Template Modeling score), and DockQ [6]. Please note that in the context of antibody-antigen
docking, the original DockQ metric evaluates the docking performance by treating the entire antibody
as a single entity to the antigen. Furthermore, we can assess the docking results separately for variable
heavy/light chain (VH/VL) to the antigen and denote the maximum value as maxDockQ. Refer to
Appendix B for details of experiments, including implementation and hyperparameters.

4.1 Main Results and Analysis

Docking Results Table 2 demonstrates that BiDock generally produces acceptable predictions
on all datasets. Notably, BiDock achieves a significant improvement in performance on the more
challenging antibody-antigen docking, with a 234% relative gain over the runner-up on the DockQ
metric. These results highlight the effectiveness of our bi-level optimization, which effectively
leverages multimodal information. We also observe that some established docking software, such
as HDOCK, still provides reliable predictions. In contrast, deep learning methods may have some
leeway in performance. For instance, the mean and deviation of RMSD evaluated from EquiDock are
relatively large, indicating that some inappropriate SE(3) transformations are learned.

To be more intuitive, we select representative baselines, HDOCK and Multimer, along with BiDock
to analyze their performance differences on antibody-antigen docking. The distribution of DockQ for
each method is displayed using a violin plot, and a direct comparison between Multimer and BiDock
is also drawn in Figure 4. It reveals that the distribution of DockQ for BiDock is more concentrated
around high values, indicating a higher percentage of successful docking predictions. Overall, these
results suggest that our proposed BiDock is a promising approach for rigid protein docking.

Visualization To visually demonstrate the superiority of our proposed BiDock, we chose the
spike glycoprotein 7F6Z as an example antigen. The spike glycoprotein is crucial for the entry of
coronaviruses into host cells, making it a target of great interest for therapeutic intervention and
vaccine development. In Figure 5, we align the ground truth structure of this protein with predictions
from competitive baselines. Upon inspection, it is evident that predictions from baselines exhibit
noticeable deviations from the ground truth structures. Such inaccuracies can significantly impact our
understanding of the binding mechanisms and hinder the design of effective interventions. In contrast,

Figure 5: Structure comparison between predictions and the ground truth of protein complex 7F6Z.
The ground truth structures are represented in light gray, while predictions are colored cyan.
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Table 4: Ablation studies on spectral initialization, bi-
level optimization, and masked MSA loss. (number
in parentheses: gradient descent steps; unit: thou-
sand; bold: best)

RMSD DockQ

w/o SI(1) 14.140±8.032 0.187±0.256

w/o SI(2) 11.191±8.754 0.290±0.328

w/o SI(4) 9.806±8.646 0.335±0.347

w/o Bi(2) 10.090±7.817 0.220±0.232

w/o MM(2) 9.821±8.688 0.330±0.350

BiDock(2) 9.707±8.759 0.342±0.351

Table 5: Impacts of different optimizers
on antibody-antigen docking. (number in
parentheses: gradient descent steps; unit:
thousand; bold: best)

RMSD DockQ

SGD(1) 9.939±8.525 0.333±0.341

SGD(2) 9.940±8.557 0.335±0.344

SGD(5) 9.914±8.556 0.337±0.345

SGD(10) 9.861±8.548 0.337±0.344

Adam(1) 9.780±8.773 0.341±0.350

Adam(2) 9.707±8.759 0.342±0.351

BiDock successfully captures the correct docking interface and accurately predicts the binding pose,
highlighting its potential for providing biological insights and aiding drug design.

Computational Efficiency Table 3 shows the total inference time for antibody-antigen complexes.
Traditional docking software, involving candidate sampling, ranking, and refinement steps, incurs
substantial computational costs. Fortunately, deep learning methods provide a significant speed-
up, which is particularly important in efficient screening. Although EquiDock is the fastest, its
performance falls short of traditional software due to limitations in leveraging coevolution information
and simple networks. On the other hand, Multimer and BiDock exhibit comparable inference times.
Considering the performance improvement of our model, this trade-off is acceptable.

4.2 Ablation Studies

Effects of Spectral Initialization Recalling our utilization of spectral estimation to derive a
numerical solution for initializing the gradient descent in the inner loop, we conduct ablation
experiments to demonstrate the effectiveness of this spectral initialization. Table 4 presents the results
on antibody-antigen docking, where the variant without spectral initialization is denoted as "w/o SI"
and the number of gradient descent steps is listed in parentheses. It is seen that the "w/o SI" variants
exhibit slower convergence and lower accuracy, even when we further increase the number of gradient
descent steps. These findings further support the benefits of our proposed spectral initialization in
accelerating the optimization process and achieving superior results.

Effects of Bi-level Optimization To justify the effectiveness of bi-level optimization, we use a
two-stage strategy: training outer and inner loops separately. Specifically, we use cross-entropy
and masked MSA losses to train cross-modal transformer. Based on the resulting distance map, we
compute roto-translation transformation with spectral initialization. The results on antibody-antigen
docking are presented in Table 4, where "w/o Bi" denotes the variant without bi-level optimization
(results reported from the original paper [34]). Results support our contributions of employing
bi-level optimization for end-to-end optimization, which customizes the parameter learning of the
cross-modal transformer for rigid docking.

Effects of Masked MSA Loss In addition to the essential loss for the distance map, we introduce a
masked MSA loss in the outer loop to supervise the learning of evolution representations. We also
conduct an ablation study to investigate its significance, as shown in Table 4. The "w/o MM" refers
to models without masked MSA loss. According to the results, it can be concluded that the masked
MSA loss enables the cross-modal transformer to more effectively leverage the rich evolutionary
information and seamlessly integrate it with the structure-modal information.

Effects of Optimizer As shown in Equation (15), we have the flexibility to choose different
optimizers for the inner loop. To explore the impact of different optimizers on convergence speed
and performance, we compare the effects of SGD and Adam optimizers. We vary the number of
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gradient descent steps and evaluate the final performance, as displayed in Table 5. With Adam,
BiDock achieves faster convergence and attains higher accuracy, indicating that a better optimizer
can navigate the landscape and find better minima during the optimization of the inner loop.

5 Conclusion

In this study, we introduce BiDock, a novel model for rigid protein docking that tackles the challenge
of accurately predicting the 3D structure of protein complexes from unbound states. By formulating
this problem as a bi-level optimization, BiDock combines the advantages of integrating multimodal
information by a cross-modal transformer in the outer loop and maintaining the rigidity of learning
roto-translation transformation in the inner loop. Additionally, we derive a spectral initialization
to expedite convergence. The maximum 234% relative performance improvement validates the
effectiveness of BiDock in rigid protein docking.

Limitations and Broader Impact Despite the encouraging results, BiDock does not explicitly
incorporate geometric constraints between residues when learning the distance map and does not
account for potential atom clashes. Our future work will address these limitations and extend our
framework to general proteins. Protein docking deepens our understanding of biological mechanisms
and aids in the design of targeted interventions. This research may inspire the AI4Science community
to pay more attention to the practical challenges in docking and promote further advancements in this
field with significant real-world implications.
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A Details of Dataset

Figure 6: Structure of an IgG antibody. The heavy
chain is colored orange, while the light chain is blue.

Background of Antibodies Antibodies are
vital components of the immune system and
are classified into various classes, including
IgG, IgM, IgA, IgD, and IgE. Among them,
IgG antibodies are the most abundant in the
bloodstream and play a primary role in im-
mune responses against pathogens.

As depicted in Figure 6, IgG antibodies ex-
hibit a Y-shaped structure composed of two
identical light chains and two identical heavy
chains, where heavy chains provide struc-
tural stability. Each antibody chain is further
divided into distinct regions. (1) The vari-
able regions, referred to as the variable heavy
(VH) and variable light (VL) regions, are lo-
cated at the tips of the Y arms. These regions contribute to the specificity of antibodies in recognizing
and binding to antigens. The VH and VL regions collaborate to form the fragment antigen-binding
(Fab) region. (2) At the base of the Y structure, the constant regions, also known as the fragment
crystallizable (Fc) region, are important in the effector functions of antibodies. The Fc region interacts
with immune cells and triggers immune responses, such as the activation of complement proteins for
pathogen destruction and the promotion of phagocytosis.

Given this background knowledge of antibodies, it becomes clear that antibody-antigen docking is
fundamental in immune responses, therapeutic applications, vaccine development, and drug discovery.
Therefore, our study places a particular emphasis on antibody-antigen docking, contributing to
this field by curating a high-quality benchmark. This dataset will serve as a valuable resource for
evaluating computational models in predicting antibody-antigen interactions, ultimately facilitating
the development of novel therapeutics and immunological interventions.

Antibody-antigen Benchmark The training set comprises 4,890 complexes of antibody-antigen
pairs, each consisting of proteins with a minimum of 30 residues. These complexes encompass
three chains, including the light and heavy chains of the antibody, along with one antigen chain. All
complexes were released before January 2022. Similarly, the test set consists of 68 antibody-antigen
complexes with three chains, released after October 2022. Thus, we ensure that neither baselines nor
our proposed model was trained using the test set and avoid data leakage.

In practical applications, obtaining the ground truth structures of antibody-antigen complexes poses
significant challenges. Researchers often turn to existing folding models to predict them. To simulate
real-world scenarios, we employ a specialized antibody model called xTrimoABFold [55, 56, 54]
to predict the conformations of antibodies and AlphaFold2 [28] for antigens. Given these predicted
structures as rigid structures, we construct training and test datasets essential for further analysis and
investigation. Here are the PDB identifiers and their corresponding chain identifiers for the test set.

8dls:A,H,L; 8dlr:A,H,L; 8dfi:A,H,L; 8dfh:A,H,L; 8dcc:E,L,H; 8dad:H,L,B; 7zr8:A,H,L; 7zf8:H,L,E;

7xxl:C,A,B; 7xh8:A,B,C; 7x26:H,I,K; 7wsl:L,D,H; 7wsi:A,H,L; 7ws6:C,H,I; 7ws2:D,A,E;

7wrz:H,L,R; 7wrv:C,U,V; 7wro:H,L,R; 7wrl:A,B,R; 7wrj:R,A,B; 7wog:C,A,B; 7wlc:E,H,L;

7wef:C,E,L; 7wee:E,H,L; 7wed:E,H,L; 7wcr:A,a,b; 7wbz:A,H,L; 7urq:A,H,L; 7uaq:A,H,L;

7tty:A,H,L; 7ttx:A,H,L; 7ttm:A,H,L; 7tpj:B,H,L; 7tp4:Z,H,L; 7tp3:Z,H,L; 7tlz:A,B,J;

7the:A,B,C; 7tc9:B,H,L; 7t8w:L,H,D; 7t7b:A,H,L; 7t01:A,H,L; 7swp:A,H,L; 7su1:H,L,C;

7str:L,H,C; 7sem:B,F,C; 7sd5:A,H,L; 7sbu:A,H,L; 7sbg:H,L,C; 7sbd:H,L,C; 7sa6:A,H,L;

7s5p:A,H,L; 7rxp:L,H,A; 7rxi:L,H,A; 7rbu:B,H,L; 7qtk:D,B,C; 7n0a:C,A,B; 7lo8:Z,H,L;

7lo7:Z,H,L; 7kql:H,L,T; 7fjc:H,L,E; 7f7e:C,L,E; 7f6z:R,H,L; 7f6y:R,H,L; 7eng:L,H,B;

7ek0:R,H,L; 7ejz:R,H,L; 7ejy:R,H,L; 7e9p:B,L,H
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B Details of Implementation

Baselines ZDOCK5, ClusPro6, and HDOCK7 are user-friendly local packages suitable for auto-
mated experiments or web servers for manual submissions. We select the top-1 predicted structure
from each of these methods for subsequent evaluation. For EquiDock8 and Multimer9, we utilize their
pretrained models available on GitHub for the inference. It is worth emphasizing that all methods
except Multimer are designed for docking two chains. Therefore, during the evaluation, we employ a
sequential docking strategy. This entails initially docking the light chain and heavy chain together,
followed by treating them as a unified entity for docking with the antigen. And we calculate evaluation
metrics using the tools USalign10 and DockQ11.

MSA Extraction We utilize the heuristic approach described in [23] to pair sequences from per-
chain multiple sequence alignments (MSAs). Initially, the per-chain MSA sequences are grouped
based on species, with the species labels obtained from UniProt’s idmapping 12. Within each specific
species group, the sequences are paired together. We match the chain MSAs by minimizing the
base-pair distance between the chains for prokaryotic species. While in terms of eukaryotic species,
we order them based on sequence identity to the target sequence [62]. To reduce computational and
memory costs, we employ the MSA clustering approach from AlphaFold2 [28]. We randomly select
Ncls = 252 sequences as the MSA cluster centers, with the primary protein sequence always set as
the first cluster center. The remaining sequences are assigned to their closest cluster based on the
Hamming distance.

Sequence-modal Input The sequence modality incorporates information derived from the primary
sequence itself and co-evolutionary information obtained from MSAs. Following prior research [28,
23], we extract two types of features: type features F typ ∈ RNres×21 and primary pair features
F pp ∈ RNres×Nres×73 from the primary sequence, where Nres represents the number of residues.
Regarding MSAs, we utilize cluster MSA features Fmsa ∈ RNcls×Nres×49, where Ncls denotes the
number of cluster centers. Specifically,

• The type feature F typ ∈ RNres×21 comprises one-hot representations of the amino acid types,
encompassing the 20 known amino acids and one additional category for unknown types.

• The primary pair feature F pp ∈ RNres×Nres×73 contains positional information within or across
chains, including three components. (1) The relative positional feature of size [Nres, Nres, 66]
represents the relative residue indices, which are clipped between [−32, 32]. The 66-th index is
used to indicate cross-chain pairs. (2) The entity indicator of size [Nres, Nres, 1] identifies whether
residues i and j originate from the same chain. (3) The relative index feature of size [Nres, Nres, 6]
introduces the relative sym_id13 indices clipped between [−2, 2]. The 6-th index is assigned to
pairs where the two residues have different sym_ids.

• The cluster MSA feature Fmsa ∈ RNcls×Nres×49 consists of five components. (1) The one-hot
representation of the amino acid types with size [Ncls, Nres, 23], including 20 amino acids, one
unknown type, one gap or missing residue, and one mask token as introduced in Section 3.1. (2)
The amino acid distribution of size [Ncls, Nres, 23] represents the distribution of amino acid types
within each MSA cluster. (3) The deletion indicator of size [Ncls, Nres, 1] indicates whether there
is a deletion to the left of each residue. (4) The deletion value of size [Ncls, Nres, 1] is calculated
using the formula 2

π arctan c
3 , where c refers to the number of deletions to the left of each position.

5https://zdock.umassmed.edu
6https://cluspro.org
7http://hdock.phys.hust.edu.cn
8(MIT license) https://github.com/octavian-ganea/equidock_public
9(Apache-2.0 license) https://github.com/aqlaboratory/openfold

10(MIT license) https://github.com/pylelab/USalign
11(GPL-3.0 license) https://github.com/bjornwallner/DockQ
12https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/

idmapping
13The sym_id is used to distinguish chains with the same sequence. For example, we consider a complex

comprising five chains {A,B,B,C,C}, where A, B, and C represent three unique chains. The corresponding
sym_ids for each chain would be {1, 1, 2, 1, 2}, respectively.
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(5) The mean deletion value of size [Ncls, Nres, 1] is computed as 2
π arctan c̄

3 , where c̄ represents
the average number of deletions to all residues on the left of each position.

Structure-modal Input For the structure modality, we extract angle features F ang ∈ RNres×57

and pair features F p ∈ RNres×Nres×88 from the rigid protein structures. These features capture
important structure-modal information and are used as input for our docking model. Specifically,

• The angle feature F ang ∈ RNres×57 comprises three components. (1) The one-hot representation
of the amino acid types with a size of [Nres, 22], including 20 amino acids, one unknown type, and
one gap or missing residue. (2) The angle representations of size [Nres, 28] use sine and cosine to
encode three backbone torsion angles, four side-chain torsion angles, and alternative torsion angles
with 180◦ rotation symmetry for each local frame of residue. (3) The angle indicator with size
[Nres, 7] indicates the presence or absence of torsion angles.

• The pair feature F p ∈ RNres×Nres×88 comprises five components. (1) The distogram feature of
size [Nres, Nres, 39] represents the discretized distances between Cβ atoms. In the case of glycine,
which lacks Cβ atoms, Cα is used instead. The distances are discretized into 38 bins of equal
width ranging from 3.25 to 50.75Å, with an additional bin accounting for larger distances. (2) The
residue type feature of size [Nres, Nres, 44] is derived from expanding one-hot representations
of residue types with dimensions of [Nres, 1, 22] and [Nres, 22, 1]. (3) The backbone feature of
size [Nres, Nres, 3] is obtained by constructing the unit vector of the local frame through the
Gram-Schmidt process based on the original N-Cα-C coordinates. (4) The residue indicator with
size [Nres, Nres, 1] is expanded from the indicator of residue existence. (5) The pair indicator of
size [Nres, Nres, 1] indicates whether the pair is masked.

MSA Mask Policy Reflecting on Section 3.1, we design a masked MSA loss to supervise the
learning of evolution representations and the integration of cross-modal information. Specifically, we
randomly mask each position in an MSA cluster center with a 15% probability. Each masked token is
replaced according to the following policies:

• 70% probability of substitution with a special token ⋆

• 10% probability of substitution with a randomly selected amino acid from a uniform distribution
• 10% probability of substitution with an amino acid sampled from the MSA profile that corresponds

to the position
• 10% probability of no substitution

Hyperparameter Settings We initialize specific parameters of the cross-modal transformer with
the checkpoint of Multimer and implement bi-level optimization using TorchOpt14 library. The crop
size is set to 412, and the batch size is set to 1. The coefficients in Equation (13) are λ1 = 0.2,
λ2 = 2.0, and λ3 = 10.0. For optimization, we employ the Adam optimizer with a learning rate
of 10−4 and integrate learning rate warmup, gradually increasing the learning rate from 0 to 10−4

within the first 100 steps. The exponential moving average (EMA) strategy applies a decay rate of
β = 0.999 and undergoes updates every 200 steps. The environment where we run all experiments is:

• Operating system: Linux version 5.13.0-30-generic
• CPU information: AMD EPYC 7742 64-Core Processor
• GPU information: NVIDIA A100-SXM4-80GB

C Additional Results

Effects of Noisy Structures Classical software rely on score functions derived from statistics in
the protein data bank. This dependency renders them susceptible to noise. When using folding
algorithms to predict unbounded proteins, the performance of these software can degrade significantly.
To validate this intuition, we conduct a docking performance analysis on the DB5.5 dataset using
ground truth and predicted structures from folding models as unbounded structures, respectively. As
shown in Table 6, these results illustrate that although HDOCK performs exceptionally well with

14(Apache-2.0 license) https://github.com/metaopt/torchopt
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Table 6: Impacts of noisy structures on the docking performance of classical software and BiDock.
(bold: best; underline: runner-up)

Ground Truth Predicted Structure

RMSD ↓ TM-score ↑ DockQ ↑ RMSD ↓ TM-score ↑ DockQ ↑

ZDOCK 11.830±5.227 0.738±0.120 0.095±0.130 12.491±6.294 0.689±0.114 0.084±0.113

ClusPro 11.486±7.993 0.780±0.133 0.204±0.256 14.135±8.153 0.702±0.118 0.118±0.192

HDOCK 3.464±7.394 0.935±0.144 0.815±0.364 11.328±8.073 0.742±0.167 0.314±0.390

BiDock 6.173±8.825 0.892±0.156 0.648±0.432 7.280±8.117 0.847±0.158 0.564±0.369

ground truth, minor noise in predicted structures leads to a substantial decline in its performance.
On the contrary, BiDock consistently generates acceptable predictions regardless of the input type,
showcasing its robustness to noise. In real-world applications, reliance on the availability of ground
truth structures is impractical. The ability of BiDock to maintain high prediction quality when
confronted with noisy structures makes it an invaluable tool.
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