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Abstract

Detecting out-of-distribution (OOD) data is crucial for ensuring the safe deploy-
ment of machine learning models in real-world applications. However, existing
OOD detection approaches primarily rely on the feature maps or the full gradient
space information to derive OOD scores neglecting the role of most important
parameters of the pre-trained network over in-distribution (ID) data. In this study,
we propose a novel approach called GradOrth to facilitate OOD detection based
on one intriguing observation that the important features to identify OOD data lie
in the lower-rank subspace of ID data. In particular, we identify OOD data by
computing the norm of gradient projection on the subspaces considered important
for the in-distribution data. A large orthogonal projection value (i.e., a small
projection value) indicates the sample as OOD as it captures a weak correlation of
the ID data. This simple yet effective method exhibits outstanding performance,
showcasing a notable reduction in the average false positive rate at a 95% true
positive rate (FPR95) of up to 8% when compared to the current state-of-the-art
methods.

1 Introduction
The issue of identifying out-of-distribution (OOD) data, which falls outside training data distributions,
has become a significant focus in deep learning. OOD data challenges real-world model deployment,
as it can lead to unreliable or incorrect predictions, particularly in safety-critical applications such
as healthcare, autonomous vehicles, and physical sciences [14, 55, 64, 1, 4, 2]. This problem arises
because modern Deep Neural Networks (DNNs) produce overconfident predictions on OOD inputs,
complicating the separation of in-distribution (ID) and OOD data [63, 41]. The main goal of OOD
detection is to develop methods that can accurately detect when a model encounters OOD data,
allowing the model to either reject these inputs or provide more informative responses, such as
uncertainty indication or confidence measures.

Many studies have investigated approaches to detecting OOD in deep learning [5, 18, 22, 27, 29,
32–34, 38, 39]. The majority of prior work focused on calculating OOD uncertainty from the
activation space of a neural network, for example, by using model output [18, 27, 32, 34] or feature
representations [29]. Another line of studies like ODIN [32], GradNorm [23], and ExGrad [24]
leverage the gradient information of deep neural network models to compute OOD uncertainty score
and achieve performant results. GradNorm [23] investigates the richness of the gradient space and
presents that gradients provide valuable information for OOD detection. In particular, GradNorm
utilizes the vector norm of gradients explicitly as an OOD scoring function. GradNorm, however,
considers the full gradient space information, which might be noisy and lead to sub-optimal solutions.

A recent direction of research employs network parameter sparsification to improve OOD detection
performance like DICE [47] and ASH [12]. ASH removes a majority of the activation by obtaining
the pth-percentile of the entire representation. However, the potential consequence may result in
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diminished performance due to the partial removal of critical parameters within the pre-trained
network. Also, this is an empirical approach without a principled way to sparsify models.

Based on key observations presented in gradient-based and sparcification-based OOD detection
methods, an intriguing insight emerges: the crucial discriminative features for OOD data identification
reside within the gradient subspace of the ID data. This suggests that by focusing on the gradient
information in the subspace of the ID data, which captures the most salient information, we can
enhance the accuracy and reliability of OOD data detection algorithms. However, it takes non-trivial
work to identify such an efficient gradient subspace.

Inspired by recent low-rank factorization research for DNNs [59, 52, 20, 51], indicating the intrinsic
model information resides in a few low-rank dimensions, we introduce a novel approach named
GradOrth. More specifically, the proposed method, GradOrth, distinguishes OOD samples by
employing orthogonal gradient projection in the low-rank subspaces of ID data (figure 1). These ID
subspaces (SL in figure 1) are derived through singular value decomposition (SVD) of pre-trained
network activations, specifically on a small subset of randomly selected ID data. By leveraging SVD,
GradOrth effectively computes and identifies the relevant subspaces associated with the ID data,
enabling accurate discrimination of OOD samples through orthogonal gradient projection. A large
magnitude (figure 1-a) of orthogonal projection (i.e., small projection) serves as a significant criterion
for classifying a sample as OOD since it captures a weak correlation with the ID data.

Figure 1: The main idea of GradOrth: Measuring the orthogonal pro-
jection of the gradient of a testing sample onto a k-dimension (e.g k=2
here) subspace of pre-trained network on ID data, by the angle α be-
tween

−−−→
g(xi) = ∇θLL(θL) and

−−−→
O(xi) = PL

S (∇θLL(θL)). If
α is large (i.e., small projection on subspace SL), shown in (a), the
sample xi is weakly correlated to ID data, and therefore it is recognized
as OOD. Otherwise, it is ID data, shown in (b).

Our key results and contributions are:

- We present GradOrth, a novel and efficient
method for out-of-distribution (OOD) detection.
Our approach leverages the most important pa-
rameter space of a pre-trained network and its
gradients to accomplish this task. To the best of
our knowledge, GradOrth is the pioneering en-
deavor to investigate and showcase the efficacy
of the subspace of a DNN’s gradients in OOD
detection.

- We evaluate the performance of GradOrth
on widely-used benchmarks, and it demonstrates
competitive results compared to other post-hoc
OOD detection baselines. Notably, GradOrth
outperforms the strong baseline methods by con-
sistently reducing the false positive rate at the
95th percentile (FPR95) by a margin ranging
from 2.71% to 8.05%. Moreover, our experi-
ments highlight that GradOrth effectively enhances OOD detection capabilities while maintaining
high accuracy in classifying in-distribution (ID) data.

- We present a comprehensive analysis, including ablation experiments and theoretical investigation,
aimed at enhancing the understanding of our proposed method for OOD detection. Through these
rigorous analyses, we aim to provide valuable insights and improve the overall comprehension of the
intricacies and effectiveness of our OOD detection approach.

2 Background and Our Notations
We consider a neural network with L layers and a set of learning parameters θ = {θl}Ll=1 where θl

present the learning parameters of layer l. xli denotes the representation of input xi at layer l in the
successive layers given the data input xi. The network performs the following computation at each
layer:

xl+1
i = σ(f(θl, xli)), l = 1, ...L, (1)

where, σ(.) is a non-linear function and f(., .) is a linear function. We leverage matrix notation for
input (Xi) in convolutional layers and vector notation for input (xi) in fully connected layers. In
the first layer, x1i = xi refers to the raw input data. It is noteworthy to mention that our approach
holds applicability across all layers of the network. However, our experimental investigations reveal
that the last layer yields the most optimal performance, please refer to appendix, section B for our
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empirical studies report. This preference is advantageous as it alleviates significant time complexity
arising from gradient computations across multiple network layers.

2.1 Input and Gradient Space
Our algorithm capitalizes on the intrinsic property of stochastic gradient descent (SGD) updates lying
within the span of input data points, as validated by [62, 20, 60]. The subsequent subsections present
this relationship, specifically in fully connected layers. We present the details regarding convolutional
layers in the appendix, section A.

Fully Connected Layer Consider a single-layer linear neural network in a supervised learning setup
where each (input, label) training data pair is driven from a training dataset, D. We use x ∈ Rn to
present the input vector, y ∈ Rm to present the label vector in the dataset, and θ ∈ Rm×n to express
the learning parameters (weights) of the network. In general, the network is trained by minimizing a
loss function (e.g. mean-squared error) as follows:

L =
1

2
||θx− y||22. (2)

Following stochastic gradient optimization, we can present the gradient of this loss with respect to
weights as:

∇θL = (θx− y)xT = ΩxT , (3)
Here, Ω ∈ Rm denotes the error vector. Consequently, the gradient update will reside within the
input span (x), wherein the elements in Ω exhibit varying magnitudes, thus influencing the scaling of
x accordingly, please refer to section E for the proof. For simplicity, we have considered per-example
loss (batch size of 1) and mean-squared loss function here. Furthermore, it is important to mention
that the aforementioned relationship remains applicable even in the context of the mini-batch setting
or when utilizing alternative loss functions such as cross-entropy loss, where the calculation of Ω may
differ. For more comprehensive information on this subject, please consult the appendix, specifically
section D. The input-gradient relationship in equation 3 can be applied to any fully connected layer
of a neural network where x is the input to that layer and Ω is the error coming from the next layer.
In addition, this equation also applies to the networks with non-linear units (such as ReLU) and
cross-entropy losses, though Ω will be calculated differently.

2.2 Matrix Approximation with SVD:
In our algorithm, we utilize singular value decomposition (SVD) for matrix factorization. Specifically,
a rectangular matrix R = UΣV T ∈ Rm×n can be factorized using SVD into the product of three
matrices. Here, Σ represents a matrix containing the singular values sorted along its main diagonal,
while U ∈ Rm×m and V ∈ Rn×n denote orthogonal matrices [10]. In the case where the rank of
the matrix R is r (r ≤ min(m,n)), the matrix R can be represented as R =

∑r
i=1 σiuiv

T
i , where

σi ∈ diag(Σ) denotes the singular values and ui ∈ U as well as vi ∈ V represent the left and right
singular vectors, respectively. Furthermore, we can formulate the k-rank approximation to the matrix
as Rk =

∑k
i=1 σiuiv

T
i , where k ≤ r. The specific value of k can be determined as the smallest value

that satisfies the condition ||Rk||2F ≥ ϵth||R||2F . In this equation, ||.||F represents the Frobenius
norm of the matrix, and ϵth (0 < ϵth ≤ 1) serves as the threshold [10]. For a comprehensive
explanation of the SVD method, more explanation regarding k-rank matrix approximation, and the
impact of ϵth in method performance please refer to the appendix sections F, H, I, respectively.

2.3 Problem Statement: Out-of-distribution Detection
OOD is typically characterized by a distribution that represents unknown scenarios encountered
during deployment. These scenarios involve data samples originating from an irrelevant distribution,
whose label set has no intersection with the predefined set. Consider the supervised setting where a
neural network is given access to a set of training data D = {(xi, yi)}Ni=1 drawn from an unknown
joint data distribution P defined on X × Y in the training phase. We denote the input space and
output space by X = Rn and Y = {1, 2, ...,m}, respectively.

z(x) =

{
ID, if O(x) ≥ γ

OOD, if O(x) < γ.
(4)

The parameter γ is typically selected to ensure a high percentage of correct classification for in-
distribution (ID) data, such as 95%. A major hurdle is to establish a scoring function O(x) that
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effectively captures the uncertainty associated with OOD samples. Prior approaches have predomi-
nantly relied on various factors, including the model’s output, gradients, or features, to estimate OOD
uncertainty [23, 12]. In our proposed approach, we aim to compute the scoring function O(x) by
leveraging orthogonal gradient projection on parameter subspace of a pre-trained network over ID
data. The details of our methodology are described in the subsequent section.

2.4 Orthogonal Projection
In this section, we discuss the concept of orthogonal projection and our notation, which holds
significant importance in our methodology. To simplify the explanation, we will present it in a 2D
space, but it can be extended to higher dimensions. Orthogonal projection serves as a metric that we
utilize to calculate the distance between a vector

−→
V and a space W (represented as a matrix in this case).

Figure 2: Orthogonal Projection

The result of the orthogonal projection of vector
−→
V onto

space W consists of three essential components: (1) The
orthogonal projection vector

−→
b , (2) the projection vector−→c , and (3) the angle α. These three components’ values

can be utilized to determine the correlation between the
vector

−→
V and the space W. As depicted in the figure 2, a

larger value of
−→
b indicates a weaker correlation. On the

other hand, −→c exhibits the opposite pattern, where a larger
value of −→c indicates a stronger correlation. Depending on the specific application requirements, any
of these values can be chosen to compute the correlation. In order to align with the OOD score, where
a smaller value indicates a higher degree of OODness as presented in equation 4, we incorporate the
projection vector (−→c ) into our computations.

3 Our Method: GradOrth
In this section, we describe our method GradOrth where we recognize ID Vs. OOD data from a
different view of previous studies, computing the norm of gradient projection on the subspaces
considered important for the in-distribution data.

We define a sample as OOD data if its orthogonal projection value is large (i.e., small projection
value), indicating a weak correlation with the ID data.

GradOrth OOD detection is developed following these steps:

1. Pre-trained Network subspace Computation: Our L-layer neural network with learning
parameter θ is trained using ID data. Upon completion of the training process, the model
parameters θ are frozen, resulting in a pre-trained network specialized in ID data. It is worth
mentioning that we can also leverage the existing pre-trained network over our interest
ID data. To retain the most significant parameters of the pre-trained network with respect
to the ID data, we compute the network’s last layer (L) subspace. For this purpose, we
construct a representation matrix denoted as RL

ID = [xL
1 ,x

L
2 , ...,x

L
n ], which concatenates

n representations obtained from the network’s last layer (L) through the forward pass of n
randomly selected samples (a small subset, n ≪ N ) of the ID data.
Next, we perform SVD on RL

ID, resulting in RL
ID = UL

IDΣL
ID(V L

ID)T . We then proceed
to approximate its rank k by obtaining (RL

ID)k, guided by the given criteria that rely on a
specified threshold, denoted as ϵth:

||(RL
ID)k||2F ≥ ϵth||RL

ID||2F . (5)

The pre-trained network subspace, denoted as SL = span{uL
1 ,u

L
2 , ...,u

L
k }, is defined

as the space of significant representation for the pre-trained network at the last layer
L. This subspace is spanned by the first k vectors in UL

ID and encompasses all directions
associated with the highest singular values in the representation. We store this subspace,
SL, and leverage it in the next step. We present the algorithm to compute the ID subspace in
Algorithm 1.

2. Inference with OOD Data: During the inference phase, the pre-trained model is exposed
to an OOD sample xi. The OOD sample is propagated through the pre-trained network, and
subsequently, its gradient at layer L is computed which is presented as g(xi) = ∇θLL(θL).
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In accordance with the GradNorm approach, we calculate the cross-entropy loss by com-
paring the model’s predicted softmax probability to a uniform vector used as the target.
Consequently, during testing, we employ an all-one vector as the ground truth, assuming a
uniform distribution for the target data.

3. Detector Construction: The model is transformed into a detector by generating a score
based on its output, enabling the differentiation between ID and OOD inputs. To this end,
we compute the norm of sample gradient projection onto the subspace of the pre-trained
network (S). We compute projection of the gradients ∇θLL(θL) onto the subspace SL as
follows:

PSL(∇θLL(θL)) = (∇θLL(θL))SL(SL)′. (6)

Here, (.)′ presents the matrix transpose. Next, we define the OOD score for the sample as
follows by computing the projection norm:

O(xi) = ∥PSL(∇θLL(θL))∥ (7)

This score serves as a surrogate to characterize the correlation between the sample and ID
data that the pre-trained network trained on it. As presented in figure 1, it implies a weak
correlation between the new sample xi and ID when the gradient g(xi) = ∇θLL(θL) has a
small projection (large orthogonal projection) onto the subspace of the pre-trained network
(large angle α) due to the fact that stochastic gradient descent (SGD) updates lie in the span
of input data points [65], please refer to the appendix, section E for the proof. Algorithm 2
presents OOD score computation.

4 Experiments
In this section, we evaluate the performance of our method GradOrth running extensive experiments
considering different ID/OOD datasets and network architectures. We follow the experiment setting
in general OOD baselines and explain the experimental setup in section 4.1. These empirical studies
demonstrate the superior performance of GradOrth over existing state-of-the-art baselines that are
reported in section 4.1. We report extensive ablations and analyses that provide a deeper understanding
of our methodology, please refer to the appendix, section G.

4.1 Experimental Setup
Dataset We leverage 2 benchmarks proposed by [22] and [12] for detecting OOD images that are
based on the large-scale ImageNet dataset and CIFAR dataset. To provide a fair comparison, we
adopt an average results-over-5-run approach. In each run, distinct random seeds are employed to
select random samples from each class, generating small subsets of in-distribution data. Subsequently,
we compute the subspace of the pre-trained network based on these subsets. The OOD scores of the
test data are then calculated, and FPR95 and AUROC scores are derived. This process is repeated
five times, and the average of these five runs is reported as the final score.

ImageNet Benchmark: This benchmark is more challenging than others because it has higher-
resolution images and a larger label space of 1,000 categories. To test our approach, we evaluate
four OOD test datasets, including subsets of iNaturalist [53], SUN [56], Places [63], and Textures
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[8]. These datasets have non-overlapping categories compared to the ImageNet-1k dataset and
cover a diverse range of domains including fine-grained, scene, and textural images. We follow the
experimental setting reported in [12] and use the Resnet-50 model [16] pre-trained on ImageNet-1k.
For a fair comparison, all the methods use the same pre-trained backbone, without regularizing with
auxiliary outlier data. Details and hyperparameters of baseline methods can be found in appendix
J.1. The outcomes of this study present results obtained by applying GradOrth after the last fully
connected layer in all the experiments. In this configuration, the feature size is 2048 for ResNet-50
and 1280 for MobileNetV2. For subspace computation, we choose 10 random samples per class and
set the SVD threshold to 0.97.

CIFAR Benchmark: We evaluate our approach on the commonly used CIFAR-10 [26], and CIFAR-
100 [26] benchmarks as in-distribution data following the experimental setting in [12, 50]. We employ
the standard split with 50,000 training images and 10,000 test images. For subspace computation, we
choose 5 random samples per class and set the SVD threshold to 0.97. We assess the model on six
widely used OOD benchmark datasets: Textures [8], SVHN [40], Places365 [63], LSUN-Crop [61],
LSUN-Resize [61], and iSUN [58]. Regarding pre-trained network architecture, we use DenseNet-
101 architecture [21]. We leverage pre-trained networks over ID datasets. Please refer to section
J.1 in the appendix for more details regarding the experiment setting. It is important to note that no
modifications were made to the network parameters during the OOD detection phase.

Evaluation Metrics We assess the effectiveness of our proposed method by utilizing threshold-free
metrics that are commonly used for evaluating OOD detection, as standardized in [18]. These metrics
include (i) AUROC, which stands for the Area Under the Receiver Operating Characteristic curve;
and (ii) FPR95, which is the false positive rate. FPR95 represents the probability that a negative (i.e.,
OOD) example is misclassified as positive (i.e., ID) when the true positive rate is as high as 95 [31].

4.2 Results and Discussion
Our experimental studies present the promising performance of OrthoGrad in OOD detection on two
benchmarks, ImageNet and CIFAR benchmarks.

4.2.1 Experimental Results on Out-of-Distribution Detection

ImageNet Benchmark: Our method demonstrates competitive performance, reaching the state-of-
the-art level, as indicated in table 1. On the Resnet pre-trained network, GradOrth surpasses ASH-S,
ASH-B, and ASH-S by 0.45%, 2.47%, and 0.93% in terms of FPR95 on the iNaturalist, SUN,
and Textures OOD datasets, respectively. When evaluated on the Places OOD dataset, our method
achieves an FPR95 of 33.67% and secures the second rank after ASH-B. Furthermore, GradNorm
demonstrates an average FPR95 performance of 18.57%, outperforming ASH-B by 3.98%.

It is important to acknowledge the fact that GradOrth boasts a low computational complexity. It
only requires computing the subspace of the pre-trained network once and can be conveniently
utilized through a simple gradient calculation, without the need for hyper-parameter tuning or
additional training during OOD detection. In contrast, certain methods like Mahalanobis [29] require
collecting feature representations from intermediate layers for the entire training set, which can be
computationally expensive for large-scale datasets like ImageNet. Additionally, GradOrth presents a
stable performance across most datasets whereas the performance of ASH versions varies across the
four OOD datasets. ASH-B outperforms other baselines on the Places dataset but ranks third, second,
and third on the other three datasets. A similar pattern is observed for ASH-S in terms of FPR95,
where it ranks second, sixth, sixth, and second across the iNaturalist, SUN, Places, and Textures
datasets, respectively.

GradOrth also exhibits superior performance in terms of AUROC, outperforming ASH-S by an
average of 2.80% across the four datasets. Particularly, GradOrth surpasses ASH-S, ASH-B, and ASH-
S by 0.13%, 0.66%, and 0.46% on the iNaturalist, SUN, and Textures OOD datasets, respectively.

For the pre-trained MobileNet model, our GradOrth approach also demonstrates outstanding perfor-
mance. We present experimental results on leveraging MobileNet as the pre-trained ID network and
evaluate the OOD detection performance on the iNaturalist, SUN, Places, and Textures datasets (the
bottom section of table 1). In these experiments, GradOrth demonstrates outstanding performance. In
terms of FPR95, GradOrth outperforms ASH-B, DICE+ReAct, DICE+ReAct, and ASH-S by 4.65%,
0.40%, 6.50%, and 0.43%, respectively, across the four datasets. Regarding AUROC, GradOrth
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outperforms other baselines on average by at least 4.01% and 0.57% in terms of FPR95 and AUROC,
respectively.

OOD Datasets
Model Methods iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

ResNet

Softmax score 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Mahalanobis 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
Energy score 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
GradNorm 42.46 90.33 40.73 89.96 43.48 80.64 34.48 88.43 40.29 87.34
ExGrad 54.11 76.91 46.73 69.74 50.62 74.27 38.12 79.37 47.40 75.07
ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95
DICE 25.63 94.49 35.15 90.83 46.49 87.48 31.72 90.30 34.75 90.77
DICE + ReAct 18.64 96.24 25.45 93.94 36.86 90.67 28.07 92.74 27.25 93.40
VRA-DN 16.82 96.92 30.65 93.65 39.94 90.75 26.72 95.04 28.53 94.09
VRA-P 15.70 97.12 26.94 94.25 37.85 91.27 21.47 95.62 25.49 94.57
ASH-P 44.57 92.51 52.88 88.35 61.79 85.58 42.06 89.70 50.32 89.04
ASH-B 14.21 97.32 22.08 95.10 33.45 92.31 21.17 95.50 22.73 95.06
ASH-S 11.49 97.87 27.98 94.02 39.78 90.98 11.93 97.60 22.80 95.12
GradOrth (Ours) 11.04±0.23 98.00±0.09 19.61±1.26 95.76±0.49 33.67±0.18 91.78 ±0.22 11.19±0.20 98.06±0.28 18.57±0.47 96.31±0.27

MobileNet

Softmax score 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Mahalanobis 62.11 81.00 47.82 86.33 52.09 83.63 92.38 33.06 63.60 71.01
Energy score 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
ReAct 42.40 91.53 47.69 88.16 51.56 86.64 38.42 91.53 45.02 89.47
DICE 43.09 90.83 38.69 90.46 53.11 85.81 32.80 91.30 41.92 89.60
DICE + ReAct 32.30 93.57 31.22 92.86 46.78 88.02 16.28 96.25 31.64 92.68
ASH-P 54.92 90.46 58.61 86.72 66.59 83.47 48.48 88.72 57.15 87.34
ASH-B 31.46 94.28 38.45 91.61 51.80 87.56 20.92 95.07 35.66 92.13
ASH-S 39.10 91.94 43.62 90.02 58.84 84.73 13.12 97.10 38.67 90.95
GradOrth (Ours) 26.81±1.19 93.17 ±0.21 30.82±0.94 93.18 ±0.46 40.27±1.33 89.12±0.84 12.69±0.21 97.52±0.12 27.65±0.92 93.25±0.41

Table 1: OOD detection results with ImageNet-1k as ID. GradOrth present outstanding performance on average and across most datasets. We
adopted the identical table format and evaluation metrics as introduced in [48, 12]. The ResNet and MobileNet models are pre-trained solely with
ID data from the ImageNet-1k dataset. We use ↑ to denote that larger values are preferable, and ↓ to denote that smaller values are preferable.
All values are presented as percentages. All values in the table are directly taken from table 1 of [12] except for the gradient-based methods
(GradNorm, ExGrad, GradOrth (ours)). For GradNorm and ExGrad, we run this experiment leveraging the code provided by the authors.

CIFAR Benchmark: In this research study, we further investigate the performance of GradOrth
by conducting additional experimental studies on the CIFAR10 and CIFAR100 datasets. The key
observation is that no single method consistently outperforms all other methods across diverse
datasets. However, it is noticeable that GradOrth rank is always among the top three across six OOD
datasets. This feature presents its promising performance for OOD detection. On the CIFAR10
dataset, GradOrth demonstrates superior performance compared to other baseline methods across
six OOD datasets, namely SVHN, LSUN-c, LSUN-r, iSUN, Textures, and Places365. On aver-
age, GradOrth outperforms these baselines by 2.71% and 0.32% in terms of FPR95 and AUROC,
respectively. Detailed experimental results can be found in table 2. In the LSUN-c OOD dataset,
DICE demonstrates superior performance with an impressive 0.26% FPR95, placing it at the top.
Our method, on the other hand, ranks second with a respectable 0.81% FPR95. However, the rank-
ing differs when examining the Textures and Places365 datasets. Notably, Gradorth outperforms
other baseline methods in both cases, achieving noteworthy FPR95 values of 20.63% and 38.22%,
respectively. In contrast, DICE attains the sixth and ninth positions in these datasets, displaying
comparatively higher FPR95 rates of 41.90% and 48.59%.

On the CIFAR100 dataset, GradOrth surpasses its competitors in both FPR95 and AUROC by an
average margin of 8.0% and 2.80%, respectively, across six well-known OOD datasets. Detailed
experimental results are provided in table 3. For a comprehensive discussion and analysis of the
CIFAR benchmark, please refer to the appendix, specifically section C.

OOD Datasets
Method SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Softmax score 47.24 93.48 33.57 95.54 42.10 94.51 42.31 94.52 64.15 88.15 63.02 88.57 48.73 92.46
ODIN 25.29 94.57 4.70 98.86 3.09 99.02 3.98 98.90 57.50 82.38 52.85 88.55 24.57 93.71
Mahalanobis 6.42 98.31 56.55 86.96 9.14 97.09 9.78 97.25 21.51 92.15 85.14 63.15 31.42 89.15
Energy score 40.61 93.99 3.81 99.15 9.28 98.12 10.07 98.07 56.12 86.43 39.40 91.64 26.55 94.57
GradNorm 18.63 94.11 1.03 99.61 3.38 98.87 36.89 91.67 50.26 89.72 50.43 84.29 26.77 93.04
ReAct 41.64 93.87 5.96 98.84 11.46 97.87 12.72 97.72 43.58 92.47 43.31 91.03 26.45 94.67
VRA-P 18.75 96.68 1.32 99.63 5.80 98.69 5.70 98.69 34.89 93.42 39.98 91.69 17.74 96.47
DICE 25.99 95.90 0.26 99.92 3.91 98.30 4.36 97.55 41.90 93.36 48.59 89.13 20.83 95.24
ASH-P 30.14 95.29 2.82 99.34 7.97 98.33 8.46 98.29 50.85 88.29 40.46 91.76 23.45 95.22
ASH-B 17.92 96.86 2.52 99.48 8.13 98.54 8.59 98.45 35.73 92.88 48.47 89.93 20.23 96.02
ASH-S 6.51 98.65 0.90 99.73 4.96 98.92 5.17 98.90 24.34 95.09 48.45 88.34 15.05 96.61
GradOrth 5.84±0.29 98.72±0.08 0.81±0.04 99.78±0.05 2.33±0.07 98.71±0.11 4.25±0.09 98.32±0.57 20.63±1.14 94.77±0.19 38.22±0.38 91.64 ±0.12 12.34±0.34 96.99±0.19

Table 2: Detailed results on six common OOD benchmark datasets with CIFAR-10 as ID: Textures [8], SVHN [40], Places365 [63], LSUN-
Crop [61], LSUN-Resize [61], and iSUN [58]. GradOrth outperforms other baselines on FPR95 and AUROC on average. For each ID dataset,
we use the same DenseNet pre-trained on CIFAR-10. We present the first, second, and third ranks in blue, green, and orange colors, respectively.
↑ indicates larger values are better and ↓ indicates smaller values are better.
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OOD Datasets
Method SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Softmax score 81.70 75.40 60.49 85.60 85.24 69.18 85.99 70.17 84.79 71.48 82.55 74.31 80.13 74.36
ODIN 41.35 92.65 10.54 97.93 65.22 84.22 67.05 83.84 82.34 71.48 82.32 76.84 58.14 84.49
Mahalanobis 22.44 95.67 68.90 86.30 23.07 94.20 31.38 93.21 62.39 79.39 92.66 61.39 55.37 82.73
Energy score 87.46 81.85 14.72 97.43 70.65 80.14 74.54 78.95 84.15 71.03 79.20 77.72 68.45 81.19
GradNorm 31.57 93.66 9.89 96.75 58.22 87.76 59.60 84.21 59.42 88.09 57.14 82.10 45.98 88.76
ExGrad 29.17 92.47 8.91 96.80 60.12 88.21 56.43 84.73 57.29 88.79 53.47 84.38 44.23 89.23
ReAct 83.81 81.41 25.55 94.92 60.08 87.88 65.27 86.55 77.78 78.95 82.65 74.04 62.27 84.47
VRA-P 66.38 89.02 10.34 98.12 54.39 89.49 55.16 89.48 48.12 88.48 78.31 77.84 53.24 88.74
DICE 54.65 88.84 0.93 99.74 49.40 91.04 48.72 90.08 65.04 76.42 79.58 77.26 49.72 87.23
ASH-P 81.86 83.86 11.60 97.89 67.56 81.67 70.90 80.81 78.24 74.09 77.03 77.94 64.53 82.71
ASH-B 53.52 90.27 4.46 99.17 48.38 91.03 47.82 91.09 53.71 84.25 84.52 72.46 48.73 88.04
ASH-S 25.02 95.76 5.52 98.94 51.33 90.12 46.67 91.30 34.02 92.35 85.86 71.62 41.40 90.02
GradOrth 24.27±0.33 93.47±1.02 3.71±0.14 99.07±1.04 48.09±0.12 91.26±0.13 42.73±0.59 91.48±0.26 32.71±0.41 92.62±0.11 48.61±0.35 89.03±0.43 33.35±0.32 92.82±0.50

Table 3: Detailed results on six common OOD benchmark datasets with CIFAR-100 as ID: Textures [8], SVHN [40], Places365 [63],
LSUN-Crop [61], LSUN-Resize [61], and iSUN [58]. GradOrth outperforms other baselines on FPR95 and AUROC on average. For each ID
dataset, we use the same DenseNet pre-trained on CIFAR-100. We present the first, second, and third ranks in blue, green, and orange colors,
respectively. ↑ indicates larger values are better and ↓ indicates smaller values are better.

4.2.2 Experimental Results on Near-OOD Detection

In this section, we demonstrate the effectiveness of our proposed method on near-OOD detection
using competitive deep convolutional neural network architectures such as DenseNet and ResNet on
computer vision benchmark datasets: CIFAR-10, CIFAR-100. We follow the experimental setting
presented in [29, 46].

In-dist
(model) OOD TNR at TPR 95% AUROC Detection Acc.

Baseline [18] / ODIN / Mahalanobis / Gram [45] / GradOrth (Ours)
CIFAR-10 (ResNet) CIFAR-100 33.3 / 42.0 / 41.6 / 32.9/ 45.3±1.32 86.4 / 85.8 / 88.2/ 79.0/ 90.3±0.81 80.4 / 78.6 / 81.2 / 71.7/ 84.6±1.09

CIFAR-100 (ResNet) CIFAR-10 19.1 / 18.7 / 20.2 / 12.2 /19.6±0.31 77.1 / 77.2 / 77.5 / 67.9/ 76.9±0.93 71.0 / 71.2 / 72.1/ 63.4/ 75.4±0.53

CIFAR-10 (DenseNet) CIFAR-100 40.3 / 53.1 / 14.5 / 26.7 / 58.3±0.26 89.3 / 90.2 / 58.5 / 72.0 / 94.1±0.31 82.9 / 82.7 / 57.2 / 67.3 / 84.7±0.62

CIFAR-100 (DenseNet) CIFAR-10 18.9 / 16.8 / 7.7 / 10.6 / 21.42±0.52 75.9 / 74.2 / 60.1 / 64.2 / 77.5±0.37 69.7 / 68.6 / 57.8 / 60.4 / 72.9±0.68

Table 4: GradOrth presents stable and reliable performance on Near-OOD data setting (CIFAR datasets). This table presents comparison of
OOD detection performance for all combinations of model architecture and training datasets following [45].

4.2.3 Experimental Results on Semantic Shift versus Non-Semantic Shift

Exploring out-of-distribution data uncovers a compelling challenge: the differentiation between
semantic and non-semantic shifts. In pursuit of this investigation, we adopt the experimental method-
ology outlined in [19] to evaluate the efficacy of the GradOrth approach in this context.

DomainNet [43] presents a collection of high-resolution images, spanning dimensions from 180x180
to 640x880 pixels, distributed across 345 classes within six distinct domains. Notably, four of these
domains—real, sketch, infograph, and quickdraw—incorporate class labels, thus facilitating the
exploration of various distribution shift scenarios.

Our analysis focused on discerning semantic shifts by segregating classes into two subsets: Split A
(comprising classes 0 to 172) and Split B (with classes 173 to 344). In our experiment, real-A served
as the in-distribution dataset, while the remaining subsets assumed roles as OOD datasets. Real-B
represented a notable example of a semantic shift from real-A, whereas sketch-A exemplified a
non-semantic shift. Sketch-B exhibited a convergence of both shift types. The classifier, implemented
with a Resnet-34 architecture, underwent a 100-epoch training regimen initiated with a learning rate
of 0.01. Images were uniformly center-cropped and resized to dimensions of 224x224 pixels for this
experiment.

The results, as depicted in table 5, highlight two prominent trends. Firstly, datasets characterized by
both distribution shift types are notably more discernible, with non-semantic shifts following as the
next most distinguishable category. Detecting semantic shifts presents the most formidable challenge.
Importantly, GradOrth exhibits promising performance, as evidenced by favorable AUROC and
TNR@TPR95 metrics, underscoring its robustness and scalability in addressing practical problems.
Nevertheless, there remains ample potential for further refinement and enhancement.

Choice of Lp-norm in GradOrth: In order to investigate the impact of the choice of Lp-norm in
Equation 7 on OOD detection performance, we conducted an ablation study. Figure 3 illustrates the
comparison using L1∼4-norm, L∞-norm, and the fraction norm (with p = 0.3).

Among the different norms considered, we observed that the L2-norm consistently achieved the best
OOD detection performance across all four datasets. This finding suggests that the L2-norm, which
equally captures information from all dimensions in the gradient space, is better suited for this task.
In contrast, higher-order norms tend to unfairly emphasize larger elements over smaller ones due
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OOD Shift AUROC TNR@TPR95

S NS Baseline [18] / ODIN* / Maha* / DeConf-C [19]*/ GradOrth (ours)

real-B ✓ 75.1 / 69.9 / 53.6 / 69.8 / 79.3 15.3 / 15.4 / 5.09 / 14.0/ 17.8
sketch-A ✓ 75.5 / 80.7 / 59.5 / 84.5 / 86.2 20.1 / 31.2 / 7.30 / 37.5 / 40.3
sketch-B ✓ ✓ 81.8 / 85.7 / 60.4 / 89.1 / 88.4 25.2 / 36.8 / 7.55 / 44.1 / 42.2

infograph-A ✓ 79.6 / 82.7 / 81.5 / 89.0 / 92.1 23.5 / 27.8 / 21.6 / 45.4/ 46.8
infograph-B ✓ ✓ 82.1 / 85.3 / 80.9 / 90.9 / 92.6 24.8 / 31.7 / 21.9 / / 49.6 / 51.4
quickdraw-A ✓ 78.8 / 96.4 / 67.4 / 96.9 / 96.5 21.1 / 79.9 / 3.38 / 83.1 / 80.6
quickdraw-B ✓ ✓ 80.5 / 96.9 / 66.1 / 97.4 / 97.0 22.1 / 83.6 / 2.38 / 86.6 / 85.7

Table 5: GradOrth reliable and stable performance on semantic shift (S) and non-semantic shift settings (NS). Performance of five OOD
detection methods using DomainNet. The in-distribution is the real-A subset. Each value is averaged over three runs. All values in the table are
directly taken from table 4 of [19] except for GradOrth. The type of distribution shift presents a trend of difficulty to the OOD detection problem:
Semantic shift (S) > Non-semantic shift (NS) > Semantic + Non-semantic shift.

to the effect of the exponent p. Notably, the L∞-norm, which only considers the largest element
(in absolute value), resulted in the worst OOD detection performance among all the norms tested.
Additionally, we evaluated the fraction norm but found that it did not outperform the L2-norm in
terms of overall OOD detection performance.

It is worth to mention that while both GradNorm and GradOrth leverage gradients for OOD detection,
they adopt differing methodologies. GradNorm places a strong emphasis on the L1 norm, utilizing
it to assess gradient magnitudes and discern disparities between ID and OOD data. This focus
on gradient magnitude forms the crux of GradNorm’s approach. In contrast, GradOrth takes a
unique path by employing orthogonal gradient projection within a pre-trained network subspace. In
this context, the L2 norm is more suitable for approximating projection length, offering a distinct
perspective from the L1 norm employed by GradNorm.

Figure 3: Comparison of OOD detection performance using various Lp-norms. L2-norm is the best L-norm for GradOrth as it provides the
lowest FPR95 and largest AUROC for GradOrth. Results are presented for False Positive Rate at 95% True Positive Rate (FPR95) on the left,
and Area Under the Receiver Operating Characteristic curve (AUROC) on the right. ↑ indicates larger values are better and ↓ indicates smaller
values are better.

5 Related Works

To the best of our knowledge, there exists only limited prior research on the use of gradients
for detecting OOD inputs. This section aims to explore the connections and differences between
our proposed GradOrth method and prior OOD detection approaches that also utilize gradient
information. In particular, we will discuss the connection between our approach and the ODIN
method, the approach proposed by [28], GradNorm method [23], and ExGrad method [24]. Moreover,
[28] utilized gradients from all layers to train a distinct binary classifier, which can lead to a
computationally burdensome process for deeper and larger models. Nevertheless, our findings
with GradOrth demonstrate that the gradient from the last layer consistently achieves the highest
performance compared to other gradient selections. Hence, the computational cost incurred by
GradOrth is negligible.

OOD Gradient-Based Methods ODIN [32] introduced the concept of utilizing gradient infor-
mation for OOD detection. Their approach involved a pre-processing technique that added small
perturbations obtained from the input gradients. The objective was to enhance the model’s confidence
in its predictions by increasing the softmax score for each input. This resulted in a larger gap between
the softmax scores of ID and OOD inputs, making them more distinguishable and improving OOD
detection performance. It is important to note that ODIN indirectly employed gradients through
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input perturbation, and the OOD scores were still calculated based on the output space of the per-
turbed inputs. GradNorm [23] also utilizes gradient information from a neural network to detect
distributional shifts between ID and OOD samples. By measuring the norm of gradients with respect
to the network’s input, it quantifies uncertainty and identifies OOD samples causing significant
output changes. ExGrad, proposed by [24], introduces a method akin to GradNorm with two notable
distinctions. Firstly, the label distribution of y is derived from the model’s predicted distribution
(P ) as opposed to the uniform distribution. Secondly, ExGrad computes the expected norm of the
gradient, in contrast to GradNorm which calculates the norm of the expected gradient.

Discriminative Models for OOD Uncertainty Estimation The problem of classification with
rejection has a long history, dating back to early works on abstention such as [6] and [15], which
considered simple model families like SVMs [9]. However, the phenomenon of neural networks’
overconfidence in OOD data was not revealed until the work of [41].

Early efforts aimed to improve OOD uncertainty estimation by proposing the ODIN score [32]
and Mahalanobis distance-based confidence score [29]. More recently, [34] proposed using an
energy score derived from a discriminative classifier for OOD uncertainty estimation, showing
advantages over the softmax confidence score both empirically and theoretically. [54] demonstrated
that an energy-based approach can improve OOD uncertainty estimation for multi-label classification
networks. Additionally, [22] revealed that approaches developed for common CIFAR benchmarks
might not effectively translate into a large-scale ImageNet benchmark, highlighting the need to
evaluate OOD uncertainty estimation in a large-scale real-world setting. These developments have
brought renewed attention to the problem of classification with rejection and the need for effective
OOD uncertainty estimation.

Generative Models for OOD Uncertainty Estimation Detection of OOD inputs is a crucial
problem in machine learning. One popular approach is to use generative models that estimate the
density directly. Such models can identify OOD inputs as those lying in low-likelihood regions.
To this end, a plethora of literature has emerged to leverage generative models for OOD detection.
However, recent studies have shown that deep generative models can assign high likelihoods to
OOD data, rendering such models less effective in OOD detection. Additionally, these models can
be challenging to train and optimize, and their performance may lag behind their discriminative
counterparts. In contrast, our approach relies on a discriminative classifier, which is easier to optimize
and achieves stronger performance. While some recent works have attempted to improve OOD
detection with generative models using improved metrics, likelihood ratios, and likelihood regret, our
approach leverages the energy score from a discriminative classifier and has demonstrated significant
advantages over generative models in OOD detection.

Distributional Shifts The problem of distributional shift has garnered significant attention in
the research community. It is essential to recognize and distinguish between different types of
distributional shift problems. In the literature on OOD detection, the focus is typically on ensuring
model reliability and detecting label-space shifts [18, 32, 34], where OOD inputs have labels that are
disjoint from the ID data, and as such, should not be predicted by the model. On the other hand, some
studies have examined covariate shifts in the input space [17, 37, 42], where inputs may be subject
to corruption or domain shifts. However, covariate shifts are commonly used to evaluate model
robustness and domain generalization performance, where the label space Y remains the same during
test time. It is worth noting that our work focuses on the detection of shifts where the model should
not make any predictions, as opposed to covariate shifts where the model is expected to generalize.

6 Conclusion
In this paper, we propose GradOrth, a novel OOD uncertainty estimation approach utilizing infor-
mation extracted from the important parameter space for ID data and gradient space. Extensive
experimental results show that our gradient-based method can improve the performance of OOD
detection by up to 8.05% in FPR95 on average, establishing superior performance. We hope that our
research brings to light the informativeness of gradient subspace, and inspires future work to utilize it
for OOD uncertainty estimation. In our future research, our objective is to investigate GradOrth’s capa-
bilities considering different directions like influence functions [25], novelty detection in open-world
context [13], data pre-selection [30], and underspecification [36].
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Broader Impact

The objective of this research project is to enhance the dependability and safety of contemporary
machine learning models. The outcomes of our investigation possess the potential for significant
advantages and societal effects, particularly in the realm of safety-critical domains like autonomous
driving. It is important to note that our research does not involve any human subjects or breach
legal compliance. We do not foresee any possible adverse ramifications resulting from our work. By
conducting this study, our intention is to foster increased research efforts and raise awareness within
both the research community and society at large regarding the issue of out-of-distribution detection
in practical, real-world scenarios.

Limitation

OOD detection methods may not always detect out-of-distribution samples accurately. As it is
presented in our experiments, most OOD detection methods are not able to recognize OOD data
across different OOD datasets. They may provide superior performance on some OOD data while
catastrophic performance on some other variations of OOD data. Though our method, Gradorth,
presents comparable performance to state-of-the-art methods, it still requires more investigation to
achieve full stable performance across all OOD datasets.
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Appendix

The Appendix section is organized as follows:

• Section A presents the relationship between stochastic gradient descent (SGD) updates and
the span of input data points in convolutional layers.

• Section B presents an experimental study that evaluates the role of leveraging the last-layer
gradient of the network in our method (GradOrth).

• Section C discusses the results of the experimental analysis on the computation of the ID
subspace leveraging different numbers of ID samples per class.

• Section D includes an explanation of the cross-entropy loss and its derivative.

• Section E presents proof showing that stochastic gradient descent (SGD) updates lie in the
span of input data points in a mini-batch setting.

• Section F offers a brief explanation of singular value decomposition (SVD).

• Section G presents an ablation study that evaluates the impact of SVD on the GradOrth
out-of-distribution (OOD) detection performance.

• Section H offers more explanation regarding k-rank matrix approximation.

• Section I examines the impact of threshold ϵth on GradOrth performance.

• Section J provides further information about our experiments, including networks, datasets,
and the scoring functions of the baselines.

A Input and Gradient Spaces in Convolutional Layers

Our algorithm exploits the observation that updates in stochastic gradient descent (SGD) reside within
the subspace spanned by the input data points [62], as discussed in section 2.1 and this appendix,
section D. In this section, we aim to establish this relationship specifically for convolutional layers.
The analysis presented herein possesses general applicability to any layer within a network, regardless
of the task.

In contrast to the weights in a fully connected (FC) layer, filters within a convolutional (Conv) layer
operate differently on the input. Let us consider a convolutional layer comprising the input tensor
X ∈ RCi×hi×wi and filters θ ∈ RCo×Ci×k×k. Their convolution, denoted as ⟨X ,θ, ∗⟩, yields the
output feature map O ∈ RCo×ho×wo [35]. Here, Ci (Co) represents the number of input (output)
channels in the Conv layer, while hi, wi (ho, wo) correspond to the height and width of the input
(output) feature maps, and k denotes the kernel size of the filters. Figure 4(a) provides a visual
representation of this process.

If we reshape X into a (ho × wo) × (Ci × k × k) matrix denoted as x, and reshape θ into a
(Ci × k × k)× Co matrix denoted as θ, the convolution can be expressed as a matrix multiplication
between x and θ, yielding O = xθ, where O ∈ R(h0×w0)×Co .

Formulating the convolution in terms of matrix multiplication provides an intuitive depiction of
gradient computation during the back-propagation process. Similar to the fully connected layer
scenario, in the convolutional layer, during the backward pass, an error matrix Ω of size (h0×w0)×Co

(equivalent to the size of O) is obtained from the subsequent layer. As illustrated in figure 4(b), the
gradient of the loss with respect to the filter weights is computed as follows:

∇θL = xTΩ, (8)

where ∇θL possesses a shape of (Ci × k × k)× Co (matching the size of θ). Considering that the
columns of xT correspond to the input.
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(a) Forward pass (b) Backward pass

Figure 4: The convolution operation in matrix multiplication format during the forward Pass (a) and backward pass (b).

B GradOrth Considering All The Network Layers

This experimental study presents that the gradients obtained from the final layer contain
substantial and informative content. In this experimental study, we aim to investigate the content
and significance of gradients obtained from the final layer in a neural network. We explore an
alternative variation of the GradOrth method, focusing on the extraction of gradients from all layers
of the network. The objective is to analyze the gradients of all trainable parameters across the layers
and assess their informativeness. In this paper, we present this version of GradOrth as "GradOrth-All
layers" and compare it with the original GradOrth, which utilizes the gradient space from the last
layer. To assess the performance of the various gradient spaces, we perform a gradient projection for
each layer of the neural network. Subsequently, we calculate the average of these gradient projections
across all layers. This procedure allows us to derive an OOD detection score, which we refer to as the
OODness score. The experiment is conducted over five random subsets of the ID subspaces. Each
subspace is computed by utilizing ten random samples per class in the ImageNet benchmark and
five random samples per class in CIFAR benchmarks. We report the average results obtained from
these five runs. The outcomes of both GradOrth-All layers and GradOrth-Last layer are presented in
tables 6, 7, and 8.

table 6 provides a comparison of the OOD detection performance using the gradient spaces from
different layers (all network layers and the last network layer) on two pre-trained network architectures,
ResNet and MobileNet, on the ImageNet dataset as ID data. The evaluation metrics used are the
False Positive Rate at 95% True Positive Rate (FPR95) and the Area Under the Receiver Operating
Characteristic curve (AUROC). These metrics are averaged across four OOD datasets.

Our findings demonstrate that gradients from the last layer consistently outperform gradients from all
layers. On ResNet and MobileNet, leveraging the last-layer gradient space results in a 1.57% and
1.52% improvement in FPR95 (on average), respectively, compared to GradOrth utilizing gradients
from all network layers.

OOD Datasets
Model Methods iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

ResNet GradOrth-All layers 13.23 96.52 21.05 95.21 35.58 92.49 11.56 96.72 20.35 95.23
GradOrth-Last layer 11.04 98.00 19.61 95.76 33.67 91.78 11.19 98.06 18.57 96.31

MobileNet GradOrth-All layers 26.14 93.83 33.28 91.38 43.71 85.37 13.61 96.87 29.17 91.86
GradOrth-Last layer 26.81 93.17 30.82 93.18 40.27 89.12 12.69 97.52 27.65 93.25

Table 6: OOD detection results with ImageNet-1k as ID. Effect of leveraging all-layers and last-layer gradients space in GradOrth. The
OODness score derived from the last layer yields better OOD detection performance mostly. The ResNet and MobileNet models are pre-trained
solely with ID data from the ImageNet-1k dataset. We use ↑ to denote that larger values are preferable, and ↓ to denote that smaller values are
preferable. All values are presented as percentages.

In the pursuit of an extensive investigation, the CIFAR benchmark is taken into account to examine
the impact of various network gradient spaces, namely the last network layer and all network layers,
on the performance of GradOrth. The findings, depicted in tables 7 and 8, reveal that utilizing last
layer gradients in GradOrth yields superior results compared to employing gradients from all network
layers, with improvements of 0.82% and 1.49% in FPR95 on average, respectively.

This observed outcome is highly advantageous, as gradients calculated with respect to deeper
layers demonstrate computational efficiency when compared to utilizing gradients from all layers.
Remarkably, the GradOrth variant derived from the final linear layer exhibits the most favorable
outcomes. From a practical perspective, it is only necessary to perform back-propagation with respect
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to the last linear layer, resulting in minimal computational overhead. Therefore, our primary findings
are predicated on the utilization of the last fully connected (FC) layer within the neural network.

OOD Datasets
Method SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth-All layers 7.32 98.24 1.04 99.68 4.11 98.47 4.10 98.36 24.52 93.06 37.91 92.11 13.16 96.65
GradOrth-Last layer 5.84 98.72 0.81 99.78 2.33 98.71 4.25 98.32 20.63 94.77 38.22 91.64 12.34 96.99

Table 7: GradOrth leveraging last-layer network’s gradient space outperforms Gradorth leveraging all network layers gradient space on
CIFAR10 dataset. Detailed results on six common OOD benchmark datasets with CIFAR-10 as ID: Textures [8], SVHN [40], Places365 [63],
LSUN-Crop [61], LSUN-Resize [61], and iSUN [58]. . For each ID dataset, we use the same DenseNet pre-trained on CIFAR-10. ↑ indicates
larger values are better and ↓ indicates smaller values are better.

OOD Datasets
Method SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth-All layers 27.61 92.84 4.32 97.63 49.27 89.48 44.07 90.17 34.86 91.25 48.92 88.83 34.84 91.70
GradOrth-Last layer 24.27 93.37 3.71 99.07 48.09 91.26 42.73 91.48 32.71 92.62 48.61 89.03 33.35 92.82

Table 8: GradOrth leveraging the last-layer network’s gradient space outperforms Gradorth leveraging all network layers’ gradient space on the
CIFAR100 dataset. Detailed results on six common OOD benchmark datasets with CIFAR-100 as ID: Textures [8], SVHN [40], Places365 [63],
LSUN-Crop [61], LSUN-Resize [61], and iSUN [58]. For each ID dataset, we use the same DenseNet pre-trained on CIFAR-100. ↑ indicates
larger values are better and ↓ indicates smaller values are better.

C Analysis of the Number of ID Samples

The initial step in our proposed method involves computing the subspace of the pre-trained neural
network using the ID data. To accomplish this, we utilize a small number of data samples and pass
them through the forward pass of the pre-trained network, without altering the learned parameters.
Subsequently, we compute the subspace based on the last layer of the network.

To ensure a comprehensive study, we conduct an empirical investigation and compute variations of
subspaces by considering different numbers of samples per class. Specifically, we vary the number of
samples from 5 to 40 and 10 to 30 in the CIFAR and ImageNet1K benchmarks, respectively. For
each variation, we compute five random subspaces and report the average results obtained from these
five subspaces. The experimental results obtained from our study are presented in tables 9 and 10.
Specifically, we introduce a notation to describe the experiments using GradOrth on the pre-trained
network subspace computed based on a specific number of samples per class. We denote this notation
as GradOrth-Sn, where n represents the number of samples per class used to compute the subspace.

OOD Datasets
Model SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth-S5 5.84 98.72 0.81 99.78 2.33 98.71 4.25 98.32 20.63 94.77 38.22 91.64 12.34 96.99
GradOrth-S10 5.80 98.74 0.75 99.79 2.34 98.69 4.11 98.41 20.37 94.82 38.13 92.01 11.86 97.07
GradOrth-S20 5.61 98.80 0.69 99.81 2.27 98.74 4.17 98.35 20.59 94.79 38.09 91.71 11.90 97.03
GradOrth-S40 5.62 98.79 0.69 99.83 2.24 98.75 4.16 98.38 20.55 94.84 38.11 91.74 11.90 97.05

Table 9: Detailed results on six common OOD benchmark datasets considering different numbers of ID samples (per class) in subspace
computation. For each ID dataset, we use the same DenseNet pre-trained on CIFAR-10. ↑ indicates larger values are better and ↓ indicates
smaller values are better.

OOD Datasets
Model SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth-S5 24.27 93.37 3.71 99.07 48.09 91.26 42.73 91.48 32.71 92.62 48.61 89.03 33.35 92.82
GradOrth-S10 24.25 93.38 3.73 99.09 48.08 91.29 42.70 91.52 32.65 92.66 48.63 89.04 33.34 92.83
GradOrth-S20 24.21 93.40 3.70 99.10 48.04 91.33 42.69 91.50 32.64 92.65 48.54 89.05 33.30 92.83
GradOrth-S40 24.09 93.46 3.67 99.11 47.86 91.38 42.53 91.73 32.49 92.72 46.91 90.12 32.92 93.09

Table 10: Detailed results on six common OOD benchmark datasets considering different numbers of ID samples (per class) in subspace
computation. For each ID dataset, we use the same DenseNet pre-trained on CIFAR-100. ↑ indicates larger values are better and ↓ indicates
smaller values are better.

The experimental results displayed in tables 9 and 10 indicate that increasing the number of samples
per class during the computation of the subspace for the pre-trained network does not have a significant
impact on the overall performance of OOD detection. This observation suggests that leveraging a
pre-trained network, which has already learned the data well, diminishes the influence of the number
of samples per class in the subspace computation.
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OOD Datasets
Model Methods iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

ResNet GradOrth-S10 11.04±0.23 98.00±0.09 19.61±1.26 95.76±0.49 33.67±0.18 91.78±0.22 11.19±0.20 98.06±0.28 18.88±0.47 95.90±0.27

GradOrth-S20 10.98 ±0.21 98.08±0.14 19.63±1.11 95.78±0.32 33.63±0.26 91.80±0.18 11.20±0.22 98.05±0.25 18.86±0.45 95.92±0.22

GradOrth-S30 11.00±0.27 98.04±0.12 19.66±0.51 95.78±0.27 33.68±0.19 91.83±0.23 11.17±0.25 98.08±0.19 18.88±0.31 95.93±0.26

MobileNet GradOrth-s10 26.81±1.19 93.17±0.21 30.82±0.94 93.18±0.46 40.27±1.33 89.12±0.84 12.69 ±0.21 97.52 ±0.12 27.65±0.92 93.25±0.41

GradOrth-s20 26.78±0.83 93.20±0.24 30.76±0.70 93.20±0.39 40.22±1.16 89.13±0.69 12.65±0.24 97.55±0.17 27.60±0.73 93.27 ±0.37

GradOrth-s30 26.75±0.91 93.23±0.20 30.75±0.82 93.22±0.45 40.28±1.21 89.10±0.72 12.66±0.19 97.54±0.20 27.61±0.78 93.27±0.39

Table 11: GradOrth performance is not impacted by the number of ID samples significantly. Detailed results on four common OOD benchmark
datasets considering different numbers of ID samples (per class) in subspace computation. We use ResNet and MobileNet pre-trained on
ImageNet-1k. In our sn notation, n represents the number of ID samples per class.

D Cross-Entropy Loss and its Derivative

In this section, we provide a detailed explanation of the cross-entropy loss and its derivative.

Consider a single-layer linear neural network in a supervised learning setting, where each training
data pair (x,y) is drawn from a training dataset D. Here, x ∈ Rn represents the input vector,
y ∈ Rm represents the label vector in the dataset, and θ ∈ Rm×n represents the learning parameters
(weights) of the network. The model’s prediction on input x is denoted by f(x;θ). For classification
problems, f(x;θ) = θx, where fk(x;θ) represents the k-th logit associated with the k-th class.

The total loss on the training set (empirical risk) is denoted by:

LD(θ) =
∑

(x,y)∈D

L(x,y)(θ), (9)

where the per-example loss is defined as:

L(x,y)(θ) = ℓ(y, f(x;θ)), (10)

and ℓ(·, ·) represents a differentiable non-negative loss function.

For classification problems, the softmax cross-entropy loss is commonly used, given by:

ℓ(y, f(x;θ)) = −
m∑

k=1

yk log ak, (11)

where ak = exp(fk(x;θ))/
∑

k exp(fk(x;θ)) represents the softmax output for the k-th class.

Using the chain rule, the gradient of the loss can be expressed as:

∇L(x,y)(θ) = ∇f(x;θ)ℓ′(y, f(x;θ)), (12)

where ℓ′(·, ·) ∈ Rm denotes the derivative of ℓ(·, ·) with respect to its second argument, and ∇f(x;θ)
represents the gradient of the model f with respect to its second argument (i.e., the parameters). For
the classification problem with cross-entropy softmax loss, we have:

∇f(x;θ) = [∇f1(x;θ); . . . ;∇fm(x;θ)], (13)

where ∇fk(x;θ) ∈ Rm represents the gradient of the k-th logit with respect to the parameters. For
simplicity, let’s write equation 13 as:

∇f(x;θ) = xT . (14)

Considering that the derivative of the loss is given by:

ℓ′(y, f(x;θ)) = [a1 − y1, . . . , am − ym]⊤ = ρ, (15)

Here, ρ denotes the error vector. Considering equations 12, 14, and 15, we can write equation 12 as:
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∇L(x,y)(θ) = ρxT , (16)

As a result, the gradient update will be confined within the input span (x), where the elements in ρ
display heterogeneous magnitudes, thereby impacting the scaling of x correspondingly.

E Gradient Span Proof

Considering that the batch loss is the summation of losses incurred by individual examples, the
overall batch loss for n samples can be represented as:

Lbatch =

n∑
i=1

Li, (17)

where Li represents the loss of sample (xi, yi).

When employing the mean-squared error loss function, the loss of a batch is calculated as the sum of
the losses of individual samples, which can be expressed as:

Lbatch =

n∑
i=1

Li =

n∑
i=1

1

2
||θxi − yi||22. (18)

Following stochastic gradient optimization, we can present the gradient of this loss (per sample) with
respect to weights as:

∇θL = (θx− y)xT = ΩxT , (19)

Here, Ω ∈ Rm denotes the error vector. Therefore, the gradient of the batch loss with respect to the
weights can be expressed as:

∇θLbatch = Ω1x
T
1 +Ω2x

T
2 + . . .+Ωnx

T
n . (20)

It is noteworthy that the gradient update remains confined within the subspace spanned by the n input
examples.

Considering cross-entropy (CE) loss as the desired loss, the batch loss would be the sum of the losses
of individual samples as follows:

Lbatch =

n∑
i=1

Li =

n∑
i=1

m∑
k=1

−yk log ak, (21)

Considering equation 16, the gradient of this loss with respect to the weights can be presented as:

∇θLbatch = ρ1x
T
1 + ρ2x

T
2 + . . .+ ρnx

T
n . (22)

It is important to note that the gradient update is constrained within the subspace spanned by the n
input examples.

F Singular Value Decomposition (SVD) Explanation

Consider an m× n matrix R, where m is the number of rows and n is the number of columns. The
goal of SVD is to factorize matrix R into three separate matrices: U ,Σ, and V T (transpose of matrix
V ), such that R = UΣV T ∈ Rm×n, as presented in figure 5.

U : An m×m orthogonal matrix, where the columns represent the left singular vectors of R. Σ: An
m× n diagonal matrix, where the diagonal entries are the singular values of R (non-negative and
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sorted in descending order). V T : An n× n orthogonal matrix, where the columns represent the right
singular vectors of R.

Along with singular values and singular vectors, eigen-values and eigen-vectors are also defined. An
eigenvalue λ and its corresponding eigenvector v of a square matrix R satisfy the equation R = λV .
Eigen-vectors represent directions in the vector space that are only scaled by the matrix R, while
eigenvalues represent the scaling factors for those eigen-vectors.

SVD and Relationship to Eigen-values and Eigen-vectors: SVD connects eigen-values and eigen-
vectors with the singular values and singular vectors of a matrix. The singular values of R are the
square roots of the eigen-values of RRT or RTR, and the left and right singular vectors are the
eigen-vectors of RRT and RTR, respectively.

Rank and Matrix Approximation: The rank of a matrix R is determined by the number of non-zero
singular values in Σ. By keeping only the largest singular values and their corresponding singular
vectors, it is possible to approximate the original matrix R with a lower-rank approximation, which
can be useful for dimensionality reduction and noise reduction. We leverage this feature in our
approach.

Figure 5: Singular Value Decomposition

Properties of SVD:

The singular values in Σ are non-negative and arranged in descending order. The columns of U
and V are orthonormal, meaning they form an orthogonal basis for their respective vector spaces.
The SVD decomposition is unique up to the sign of the singular values and the order of the singular
vectors. SVD is a powerful matrix factorization technique that provides a compact representation of a
matrix while preserving important structural properties. It finds widespread applications in various
fields, such as data analysis, image processing, recommendation systems, and more [10].

G Ablation study on the Impact of SVD

In this experiment, our focus is to examine the impact of utilizing singular value decomposition (SVD)
in the GradOrth method as an ablation study. To achieve this, we compute the space (as opposed to
the subspace) of the pre-trained network using the ID data, without employing SVD. Consequently,
the OODness score in GradOrth-NoSVD solely incorporates the orthogonal projection of the new
sample onto the space of the ID pre-trained network. The experimental results obtained from both
the ImageNet and CIFAR benchmarks are presented in tables 12, 13, and 14. The outcomes reported
in tables 12, 13, and 14 demonstrate the significant and robust performance of GradOrth compared
to the GradOrth variant without SVD (GradOrth-NoSVD). On the ImageNet benchmark, GradOrth
surpasses GradOrth-NoSVD by an average of 14.12% and 10.93% in terms of FPR95 for the ResNet
and MobileNet pre-trained networks, respectively. Furthermore, GradOrth exhibits exceptional
performance on the CIFAR benchmark, outperforming GradOrth-NoSVD by 6.44% and 8.06% on
CIFAR10 and CIFAR100, respectively. The results obtained from this ablation study emphasize the
significance of employing SVD in the GradOrth method’s OODness score. It underscores the core
principle of our approach, which suggests that the essential discriminative features for identifying
OOD data reside within the subspace of the ID data.
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OOD Datasets
Model Methods iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

ResNet GradOrth-NoSVD 28.31 94.30 30.09 93.73 44.18 81.43 28.17 93.21 32.69 90.67
GradOrth 11.04 98.00 19.61 95.76 33.67 91.78 11.19 98.06 18.57 96.31

MobileNet GradOrth-NoSVD 38.45 90.21 38.02 89.26 49.31 90.18 28.52 89.68 38.58 89.83
GradOrth 26.81 93.17 30.82 93.18 40.27 89.12 12.69 97.52 27.65 93.25

Table 12: Ablation study to present the importance of SVD in GradOrth. GradOrth presents outstanding performance on average and across all
datasets. OOD detection results with ImageNet-1k as ID. GradOrth presents outstanding performance on average and across all datasets. The
ResNet and MobileNet models are pre-trained solely with ID data from the ImageNet-1k dataset. We use ↑ to denote that larger values are
preferable, and ↓ to denote that smaller values are preferable.

OOD Datasets
Method SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth-NoSVD 18.32 94.03 1.12 99.57 3.56 98.74 10.29 98.04 33.17 93.10 46.22 85.62 18.78 94.85
GradOrth 5.84 98.72 0.81 99.78 2.33 98.71 4.25 98.32 20.63 94.77 38.22 91.64 12.34 96.99

Table 13: Ablation study to recognize the importance of SVD in GradOrth. Detailed results on six common OOD benchmark datasets with
CIFAR-10 as ID: Textures [8], SVHN [40], Places365 [63], LSUN-Crop [61], LSUN-Resize [61], and iSUN [58]. For each ID dataset, we use
the same DenseNet pre-trained on CIFAR-10. ↑ indicates larger values are better and ↓ indicates smaller values are better.

OOD Datasets
Method SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth- NoSVD 31.43 93.70 9.53 96.82 57.69 87.54 51.93 92.11 42.09 90.16 55.76 82.97 41.41 90.55
GradOrth 24.27 93.47 3.71 99.07 48.09 91.26 42.73 91.48 32.71 92.62 48.61 89.03 33.35 92.82

Table 14: Ablation study to recognize the importance of SVD in GradOrth. GradOrth presents outstanding performance on average and across
all datasets. Detailed results on six common OOD benchmark datasets with CIFAR-100 as ID: Textures [8], SVHN [40], Places365 [63],
LSUN-Crop [61], LSUN-Resize [61], and iSUN [58]. For each ID dataset, we use the same DenseNet pre-trained on CIFAR-100. ↑ indicates
larger values are better and ↓ indicates smaller values are better.

H K-Rank Matrix Approximation

Singular Value Decomposition (SVD) can be used to factorize a rectangular matrix, R = UΣV T ∈
Rm×n into the product of three matrices, where U ∈ Rm×m and V ∈ Rn×n are orthonomal matrices,
and Σ is a diagonal matrix that contains the sorted singular values along its main diagonal (Deisenroth
et al. [10]). If the rank of the matrix is r (r ≤ min(m,n)), R can be expressed as R =

∑r
i=1 σiuiv

T
i ,

where ui ∈ U and vi ∈ V are left and right singular vectors and σi ∈ diag(Σ) are singular values.
k-rank approximation of R can be written as, Rk =

∑k
i=1 σiuiv

T
i , where k ≤ r and its value can

be chosen by the smallest k that satisfies the norm-based criteria : ||Rk||2F ≥ ϵth||R||2F . Here, ||.||F
denotes the Frobenius norm of the matrix and ϵth ∈ (0, 1) is the threshold hyperparameter.

Rk =

k∑
i=1

σiuiv
T
i (23)

||R−Rk||2 =

m∑
i=1

n∑
j=1

|aij − âij |2
r∑

j=k+1

σ2
j 0 ≤ k ≤ n where Rk = âij . (24)

The degree to which Rk approximates R depends on the sum of the r-k smallest singular values
squared. As k approaches r, this sum becomes progressively smaller and eventually goes to zero
at k = r. To provide a convenient measure for this behavior independent of the size of R, let us
consider the normalized matrix approximation ratio

ϵth(k) =
||Rk||
||R||

= [
σ2
1 + σ2

2 + ...+ σ2
k

σ2
1 + σ2

2 + ...+ σ2
r

]
1
2 , 1 ≤ k ≤ r. (25)

Clearly, this normalized ratio approaches its maximum value of 1 as k approaches r. For matrices of
low effective rank, ϵth(k) is close to 1 for values of k significantly smaller than r. On the other hand,
matrices for which m must take on high values (i.e., k ≈ r) to achieve a ϵth(k) near 1 are said to be
of high effective rank [3].

I Impact of the Threshold Parameter (ϵth) on GradOrth Performance

The hyperparameter ϵth, confined to the range (0, 1), serves as a threshold that influences the selection
of the value of k in the matrix k-rank approximation. The initial k column vectors within matrix U
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encompass the most pivotal input (representation) space for the pre-trained network. We conducted an
experiment to assess the impact of ϵth on GradOrth’s performance, with results outlined in table 15.
Notably, values of ϵth near 1 exhibit substantial effectiveness, and we empirically set it to 0.97.

OOD Datasets
Model SVHN LSUN-c LSUN-r iSUN Textures Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GradOrth-ϵth = 0.80 24.57 93.39 3.82 98.87 48.19 91.15 42.80 91.34 32.83 92.51 48.70 88.93 33.49 92.70
GradOrth-ϵth = 0.90 24.36 93.42 3.75 99.00 48.12 91.24 42.74 91.46 32.76 92.58 48.64 89.01 33.39 92.78
GradOrth-ϵth = 0.97 24.27 93.47 3.71 99.07 48.09 91.26 42.73 91.48 32.71 92.62 48.61 89.03 33.35 92.82

Table 15: Detailed results on six common OOD benchmark datasets considering different values for ϵth used in k-rank matrix approximation.
For the pre-trained network and ID dataset, we use DenseNet pre-trained on CIFAR-100.

J Details of Experiments

J.1 Model and Hyper Parameter

In our empirical studies and experiments, we adopt an experimental setting that aligns with the
state-of-the-art (SOTA) approaches, specifically ASH [12] and DICE [47] on the CIFAR dataset, as
well as ReAct [48] on the ImageNet dataset. The datasets and model architectures utilized in our
experiments are summarized in table 16.

For the CIFAR-10 and CIFAR-100 experiments, we employ the six OOD datasets employed in the
DICE study [47]: SVHN [40], LSUN-Crop [61], LSUN-Resize [61], iSUN [58], Places365 [63], and
Textures [8]. The ID dataset used in these experiments corresponds to the respective CIFAR dataset.
The model architecture employed is a pre-trained DenseNet-101 [21].

For our ImageNet experiments, we adhere to the precise setup as outlined in the ReAct study [48]
and [12]. The ID dataset employed in this context is ImageNet-1k, while the OOD datasets consist
of iNaturalist [53], SUN [56], Places365 [63], and Textures [8]. The network architectures utilized
in these experiments are ResNet50 [16] and MobileNetV2 [44]. All networks undergo pre-training
using the ID data and remain unaltered post-training, with their parameters remaining unchanged
during the OOD detection phase. The performance of the baselines primarily relies on ASH and
VRA. When conducting experiments involving gradient-based methods such as GradNorm [23] and
ExGrad [24], we re-run the experiments using the code provided by the respective authors, as there
may be variations between our pre-trained network over ID data and the models employed by the
authors themselves.

ID Dataset OOD Datasets Model architectures
CIFAR-10 SVHN, LSUN C, LSUN R, iSUN, Places365, Textures DenseNet-101

CIFAR-100 SVHN, LSUN C, LSUN R, iSUN, Places365, Textures DenseNet-101

ImageNet iNaturalist, SUN, Places365, Textures ResNet50, MobileNetV2

Table 16: The datasets and models we used in our OOD experiments range from moderate to large scale, including evaluations of up to 10 OOD
datasets and three architectures.

J.2 Datasets

ImageNet Benchmark, Large-scale evaluation In this study, the ImageNet-1k dataset [11] is
employed as the ID dataset. The evaluation of the proposed approach is conducted on four OOD test
datasets, following the experimental setup outlined in [23]:

• iNaturalist The dataset introduced by [53], referred to as "iNaturalist", comprises a
substantial collection of 859,000 images featuring various plant and animal species. These
images span more than 5,000 distinct species. To facilitate efficient processing, each image
within the dataset is resized to ensure that the maximum dimension does not exceed 800
pixels. For the evaluation phase, a subset of 10,000 images is randomly sampled from a set
of 110 classes. Importantly, these selected classes are disjoint from the ImageNet-1k dataset,
thereby ensuring the validity and independence of the evaluation process.

• SUN that is introduced by Xiao et al., encompasses a vast collection of over 130,000 images
representing various scenes. These scenes are categorized into 397 distinct categories.
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Notably, it is important to acknowledge that there are overlapping categories between the
SUN dataset and the ImageNet-1k dataset. For the evaluation process, a subset of 10,000
images is randomly sampled from a set of 50 classes. Importantly, these selected classes
are disjoint from the labels present in the ImageNet dataset. This ensures the integrity and
independence of the evaluation conducted in the study.

• Places The dataset introduced by [63], commonly referred to as "Places" in the research
literature, is another notable scene dataset that exhibits similar concept coverage as the
SUN dataset. In this study, a carefully selected subset of 10,000 images is utilized from a
total of 50 classes. Importantly, these selected classes are intentionally excluded from the
ImageNet-1k dataset, ensuring that the evaluation process remains independent and free
from any potential overlap with the aforementioned dataset.

• Textures [7] consisting of 5,640 real-world texture images categorized into 47 distinct
categories, is utilized in this research study. For the purpose of evaluation, the entire dataset
is utilized, ensuring comprehensive coverage across all available categories.

CIFAR Benchmark The CIFAR-10 and CIFAR-100 datasets, introduced by [26], are extensively
employed as ID datasets in the existing literature. CIFAR-10 comprises 10 classes, while CIFAR-100
consists of 100 classes. In line with standard practices, the dataset split utilized in this study consists
of 50,000 training images and 10,000 test images. To evaluate the proposed approach, four commonly
employed OOD datasets are utilized. The specific OOD datasets used in this evaluation are listed
below:

• SVHN [40] The Street View House Numbers (SVHN) dataset consists of color images
depicting house numbers. The dataset encompasses ten distinct classes corresponding to the
digits 0-9. In this research study, the entire test set comprising 26,032 images is employed
for evaluation purposes.

• LSUN [61] includes a collection of 10,000 testing images featuring 10 different scenes.
In this research study, image patches of size 32x32 are randomly cropped from the LSUN
dataset to facilitate analysis and experimentation.

• Places365 [63] comprises a vast collection of large-scale photographs depicting scenes
across 365 distinct scene categories. Notably, the test set of this dataset consists of 900
images per category. For the evaluation phase, a random sample of 10,000 images is
drawn from the test set, thereby ensuring a representative subset for rigorous analysis and
assessment.

• Textures [7] includes a comprehensive collection of 5,640 real-world texture images,
classified into 47 distinct categories. In this research study, the entire dataset is utilized
for evaluation, enabling a thorough examination of the performance and capabilities of the
proposed approach across all available texture categories.

J.3 Baselines

For the reader’s convenience, we summarize in detail a few common techniques for defining OOD
scores that measure the degree of ID-ness on the given sample. By convention, a higher (lower) score
is indicative of being in-distribution (out-of-distribution).

MSP [18] utilizes probabilities obtained from softmax distributions to distinguish between cor-
rectly classified and erroneous or out-of-distribution examples. The baseline method relies on the
observation that correctly classified examples tend to have higher maximum softmax probabilities
than misclassified and out-of-distribution examples.

ODIN [32] is based on the observation that using temperature scaling and adding small perturbations
to the input can separate the softmax score distributions between in- and out-of-distribution images,
allowing for more effective detection.

Mahalanobis [29] utilizes multivariate Gaussian distributions to effectively model the class-
conditional distributions of softmax neural classifiers. Additionally, they employed Mahalanobis
distance-based scores as a means of detecting out-of-distribution samples.
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Energy Score [34] The concept of utilizing energy scores for estimating out-of-distribution uncer-
tainty was initially introduced by Liu et al.. The energy function employed in their approach maps
the logit outputs to a scalar value denoted as SEnergy(x; f) ∈ R. Notably, this scalar value tends
to be relatively lower for in-distribution data. It is important to mention that the authors adopted
the convention of using the negative energy score for OOD detection, ensuring that S(x; f) exhibits
higher values for ID data and lower values for OOD data.

GradNorm [23] computes the norm of the gradients of a neural network with respect to an input.
The norm of the gradients is a measure of how sensitive the network is to the input. Inputs with
high norms are more likely to be OOD because they are more likely to cause the network to make a
mistake.

Exgrad[24] calculates the expected norm of the gradients of a neural network with respect to an
input. The expected norm of the gradients is a measure of how sensitive the network is to the input.

DICE [47] aims at selectively utilizing a subset of significant weights to compute the output
for OOD detection. By employing the technique of sparsification, the network effectively avoids
incorporating irrelevant information into the output, thereby enhancing its OOD detection capabilities.

ReAct [49] This approach is based on the observation that OOD data trigger distinctive activation
patterns in neural networks. ReAct selectively rectifies and truncates the activations of specific hidden
units, reducing overconfident predictions on OOD data.

Variational Rectified Activation (VRA) [57] VRA leverages the variational method to find the
optimal operation for maximizing the gap between ID and OOD data. It introduces suppression and
amplification operations for abnormally low, high, and intermediate activations, unlike ReAct which
only focuses on high activations. VRA uses piecewise functions to simulate these operations.

ASH [12] This method removes a large portion of activations and adjusts the remaining ones.
The remaining activations (e.g., 10%) are either simplified or lightly adjusted. The simplified
activation representation is then propagated through the rest of the network to generate scores for
both classification and OOD detection. The energy score, calculated from the logits, is commonly
used for OOD detection, although the softmax score can also be used.

J.4 Software and Hardware

Software We run all experiments with Python 3.8.0 and PyTorch 1.12.1.

Hardware All experiments are run on NVIDIA RTX 3090.

25


	Introduction
	Background and Our Notations
	Input and Gradient Space
	Matrix Approximation with SVD:
	Problem Statement: Out-of-distribution Detection
	Orthogonal Projection

	Our Method: GradOrth
	Experiments
	Experimental Setup
	Results and Discussion
	Experimental Results on Out-of-Distribution Detection
	Experimental Results on Near-OOD Detection
	Experimental Results on Semantic Shift versus Non-Semantic Shift 


	Related Works
	Conclusion
	Input and Gradient Spaces in Convolutional Layers
	GradOrth Considering All The Network Layers
	Analysis of the Number of ID Samples
	Cross-Entropy Loss and its Derivative
	Gradient Span Proof
	Singular Value Decomposition (SVD) Explanation
	Ablation study on the Impact of SVD
	K-Rank Matrix Approximation
	Impact of the Threshold Parameter (th) on GradOrth Performance
	Details of Experiments
	Model and Hyper Parameter
	Datasets
	Baselines
	Software and Hardware


