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Abstract
Reinforcement learning algorithms commonly seek to optimize policies for solving
one particular task. How should we explore an unknown dynamical system such
that the estimated model globally approximates the dynamics and allows us to solve
multiple downstream tasks in a zero-shot manner? In this paper, we address this
challenge, by developing an algorithm – OPAX– for active exploration. OPAX uses
well-calibrated probabilistic models to quantify the epistemic uncertainty about the
unknown dynamics. It optimistically—w.r.t. to plausible dynamics—maximizes
the information gain between the unknown dynamics and state observations.
We show how the resulting optimization problem can be reduced to an optimal
control problem that can be solved at each episode using standard approaches. We
analyze our algorithm for general models, and, in the case of Gaussian process
dynamics, we give a first-of-its-kind sample complexity bound and show that the
epistemic uncertainty converges to zero. In our experiments, we compare OPAX
with other heuristic active exploration approaches on several environments. Our
experiments show that OPAX is not only theoretically sound but also performs
well for zero-shot planning on novel downstream tasks.

1 Introduction
Most reinforcement learning (RL) algorithms are designed to maximize cumulative rewards for a
single task at hand. Particularly, model-based RL algorithms, such as (Chua et al., 2018; Kakade
et al., 2020; Curi et al., 2020), excel in efficiently exploring the dynamical system as they direct
the exploration in regions with high rewards. However, due to the directional bias, their underlying
learned dynamics model fails to generalize in other areas of the state-action space. While this is
sufficient if only one control task is considered, it does not scale to the setting where the system is
used to perform several tasks, i.e., under the same dynamics optimized for different reward functions.
As a result, when presented with a new reward function, they often need to relearn a policy from
scratch, requiring many interactions with the system, or employ multi-task (Zhang and Yang, 2021)
or transfer learning (Weiss et al., 2016) methods. Traditional control approaches such as trajectory
optimization (Biagiotti and Melchiorri, 2008) and model-predictive control (García et al., 1989)
assume knowledge of the system’s dynamics. They leverage the dynamics model to solve an optimal
control problem for each task. Moreover, in the presence of an accurate model, important system
properties such as stability and sensitivity can also be studied. Hence, knowing an accurate dynamics
model bears many practical benefits. However, in many real-world settings, obtaining a model
using just physics’ first principles is very challenging. A promising approach is to leverage data for
learning the dynamics, i.e., system identification or active learning. To this end, the key question we
investigate in this work is: how should we interact with the system to learn its dynamics efficiently?

While active learning for regression and classification tasks is well-studied, active learning in RL
is much less understood. In particular, active learning methods that yield strong theoretical and
practical results, generally query data points based on information-theoretic criteria (Krause et al.,
2008; Settles, 2009; Balcan et al., 2010; Hanneke et al., 2014; Chen et al., 2015). In the context of
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dynamical systems, this requires querying arbitrary transitions (Berkenkamp et al., 2017; Mehta et al.,
2021). However, in most cases, querying a dynamical system at any state-action pair is unrealistic.
Rather, we can only execute policies on the real system and observe the resulting trajectories.
Accordingly, an active learning algorithm for RL needs to suggest policies that are “informative”
for learning the dynamics. This is challenging since it requires planning with unknown dynamics.

Contributions In this paper, we introduce a new algorithm, Optimistic Active eXploration (OPAX),
designed to actively learn nonlinear dynamics within continuous state-action spaces. During each
episode, OPAX plans an exploration policy to gather the most information possible about the system.
It learns a statistical dynamics model that can quantify its epistemic uncertainty and utilizes this
uncertainty for planning. The planned trajectory targets state-action pairs where the model’s epistemic
uncertainty is high, which naturally encourages exploration. In light of unknown dynamics, OPAX
uses an optimistic planner that picks policies that optimistically yield maximal information. We
show that this optimism paradigm plays a crucial role in studying the theoretical properties of OPAX.
Moreover, we provide a general convergence analysis for OPAX and prove convergence to the true
dynamics for Gaussian process (GP) dynamics models. Theoretical guarantees for active learning in
RL exist for a limited class of systems (Simchowitz et al., 2018; Wagenmaker and Jamieson, 2020;
Mania et al., 2020), but lack for a more general and practical class of dynamics (Chakraborty et al.,
2023; Wagenmaker et al., 2023). We are, to the best of our knowledge, the first to give convergence
guarantees for a rich class of nonlinear dynamical systems.

We evaluate OPAX on several simulated robotic tasks with state dimensions ranging from two to
58. The empirical results provide validation for our theoretical conclusions, showing that OPAX
consistently delivers strong performance across all tested environments. Finally, we provide an
efficient implementation1 of OPAX in JAX (Bradbury et al., 2018).

2 Problem Setting
We study an unknown discrete-time dynamical system f∗, with state x ∈ X ⊂ Rdx and control
inputs u ∈ U ⊂ Rdu .

xk+1 = f∗(xk,uk) +wk. (1)

Here, wk represents the stochasticity of the system for which we assume wk
i.i.d.∼ N

(
0, σ2I

)
(Assump-

tion 3). Most common approaches in control, such as trajectory optimization and model-predictive
control (MPC), assume that the dynamics model f∗ is known and leverages the model to control the
system state. Given a cost function c : X × U → R, such approaches formulate and solve an optimal
control problem to obtain a sequence of control inputs that drive the system’s state

argmin
u0:T−1

Ew0:T−1

[
T−1∑

t=0

c(xt,ut)

]
, (2)

xt+1 = f∗(xt,ut) +wt ∀0 ≤ t ≤ T.

Moreover, if the dynamics are known, many important characteristics of the system such as stability,
and robustness (Khalil, 2015) can be studied. However, in many real-world scenarios, an accurate
dynamics model f∗ is not available. Accordingly, in this work, we consider the problem of actively
learning the dynamics model from data a.k.a. system identification (Åström and Eykhoff, 1971).
Specifically, we are interested in devising a cost-agnostic algorithm that focuses solely on learning
the dynamics model. Once a good model is learned, it can be used for solving different downstream
tasks by varying the cost function in Equation (2).

We study an episodic setting, with episodes n = 1, . . . , N . At the beginning of the episode n,
we deploy an exploratory policy πn, chosen from a policy space Π for a horizon of T on the
system. Next, we obtain trajectory τn = (xn,0, . . . ,xn,T ), which we save to a dataset of transitions
Dn = {(zn,i = (xn,i,πn(xn,i)),yn,i = xn,i+1)0≤i<T }. We use the collected data to learn an
estimate µn of f∗. To this end, the goal of this work is to propose an algorithm Alg, that at each
episode n leverages the data acquired thus far, i.e., D1:n−1 to determine a policy πn ∈ Π for the next
step of data collection, that is, Alg(D1:n−1, n)→ πn. The proposed algorithm should be consistent,
i.e., µn(z)→ f∗(z) for n→∞ for all z ∈ R, whereR is the reachability set defined as

R = {z ∈ Z | ∃(π ∈ Π, t ≤ T ), s.t., p(zt = z|π,f∗) > 0},
1https://github.com/lasgroup/opax

2

https://github.com/lasgroup/opax


and efficient w.r.t. rate of convergence of µn to f∗.

To devise such an algorithm, we take inspiration from Bayesian experiment design (Chaloner and
Verdinelli, 1995). In the Bayesian setting, given a prior over f∗, a natural objective for active
exploration is the mutual information (Lindley, 1956) between f∗ and observations yDn

.

Definition 1 (Mutual Information, Cover and Thomas (2006)). The mutual information between f∗

and its noisy measurements yDn
for points in Dn, where yDn

is the concatenation of (yDn,i)i<T is
defined as,

F (Dn) := I (f∗;yDn
) = H (yDn

)−H (yDn
| f∗) , (3)

where H is the Shannon differential entropy.

The mutual information quantifies the reduction in entropy of f∗ conditioned on the observations.
Hence, maximizing the mutual information w.r.t. the dataset Dn leads to the maximal entropy
reduction of our prior. Accordingly, a natural objective for active exploration in RL can be the mutual
information between f∗ and the collected transitions over a budget of N episodes, i.e., I (f∗;yD1:N

).
This requires maximizing the mutual information over a sequence of policies, which is a challenging
planning problem even in settings where the dynamics are known (Mutny et al., 2023). A common
approach is to greedily pick a policy that maximizes the information gain conditioned on the previous
observations at each episode:

max
π∈Π

Eτπ [I (f∗
τπ ;yτπ | D1:n−1)] . (4)

Here f∗
τπ = (f∗(zn,0), . . . ,f

∗(zn,T−1)), yτπ = (yn,0, . . . ,yn,T−1), τπ is the trajectory under the
policy π, and the expectation is taken w.r.t. the process noise w.

Interpretation in frequentist setting While information gain is Bayesian in nature (requires a prior
over f∗), it also has a frequentist interpretation. In particular, later in Section 3 we relate it to the epis-
temic uncertainty of the learned model. Accordingly, while this notion of information gain stems from
Bayesian literature, we can use it to motivate our objective in both Bayesian and frequentist settings.

2.1 Assumptions
In this work, we learn a probabilistic model of the function f∗ from data. Moreover, at each episode
n, we learn the mean estimator µn(x,u) and the epistemic uncertainty σn(x,u), which quantifies
our uncertainty on the mean prediction. To this end, we use Bayesian models such as Gaussian
processes (GPs, Rasmussen and Williams, 2005) or Bayesian neural networks (BNNs, Wang and
Yeung, 2020). More generally, we assume our model is well-calibrated:

Definition 2 (All-time calibrated statistical model of f∗, Rothfuss et al. (2023)). Let, z = (x,u)
and Z := X × U . An all-time calibrated statistical model of the function f∗ is a sequence
(µn,σn, βn(δ))n≥0, such that

Pr (∀z ∈ Z,∀l ∈ {1, . . . , dx} ,∀n ∈ N : |µn,l(z)− fl(z)| ≤ βn(δ)σn,l(z)) ≥ 1− δ

Here µn,l and σn,l are the l-th element in the vector valued functions µn and σn respectively. The
scalar function, βn(δ) ∈ R≥0 quantifies the width of the 1 − δ confidence intervals. We assume
w.l.o.g. that βn monotonically increases with n, and that σn,l(z) ≤ σmax for all z ∈ Z , n ≥ 0, and
l ∈ {1, . . . , dx}.
Assumption 1 (Well calibration assumption). Our learned model is an all-time-calibrated statistical
model of f∗, i.e., there exists a sequence of (βn(δ))n≥0 such that our model satisfies the well-
calibration condition, c.f., Definition 2.

This is a natural assumption on our modeling. It states that we can make a mean prediction and
also quantify how far it is off from the true one with high probability. A GP model satisfies this
requirement for a very rich class of functions, c.f., Lemma 3. For BNNs, calibration methods
(Kuleshov et al., 2018) are often used and perform very well in practice. Next, we make a simple
continuity assumption on our function f∗.

Assumption 2 (Lipschitz Continuity). The dynamics model f∗ and our epistemic uncertainty
prediction σn are Lf and Lσ Lipschitz continuous, respectively. Moreover, we define Π to be the
policy class of Lπ Lipschitz continuous functions.
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The Lipschitz continuity assumption on f∗ is quite common in control theory (Khalil, 2015) and
learning literature (Curi et al., 2020; Pasztor et al., 2021; Sussex et al., 2023). Furthermore, the
Lipschitz continuity of σn also holds for GPs with common kernels such as the linear or radial basis
function (RBF) kernel (Rothfuss et al., 2023).

Finally, we reiterate the assumption of the system’s stochasticity.

Assumption 3 (Process noise distribution). The process noise is i.i.d. Gaussian with variance σ2,
i.e., wk

i.i.d∼ N (0, σ2I).

We focus on the setting where w is homoscedastic for simplicity. However, our framework can also
be applied to the more general heteroscedastic and sub-Gaussian case (c.f., Theorem 2).

3 Optimistic Active Exploration
In this section, we propose our optimistic active exploration (OPAX) algorithm. The algorithm
consists of two main contributions: (i) First we reformulate the objective in Equation (4) to a simple
optimal control problem, which suggests policies that visit states with high epistemic uncertainty. (ii)
We leverage the optimistic planner introduced by Curi et al. (2020) to efficiently plan a policy under
unknown dynamics. Moreover, we show that the optimistic planner is crucial in giving theoretical
guarantees for the algorithm.

3.1 Optimal Exploration Objective
The objective in Equation (4) is still difficult and expensive to solve in general. However, since in
this work, we consider Gaussian noise, c.f., Assumption 3, we can simplify this further.

Lemma 1 (Information gain is upper bounded by sum of epistemic uncertainties). Let y = f∗(z)+w,
with w ∼ N (0, σ2I) and let σn−1 be the epistemic uncertainty after episode n − 1. Then the
following holds for all n ≥ 1 and dataset D1:n−1,

I (f∗
τπ ;yτπ | D1:n−1) ≤

1

2

T−1∑

t=0

dx∑

j=1

log

(
1 +

σ2
n−1,j(zt)

σ2

)
. (5)

We prove Lemma 1 in Appendix A. The information gain is non-negative (Cover and Thomas, 2006).
Therefore, if the right-hand side of Equation (5) goes to zero, the left-hand side goes to zero as
well. Lemma 1 relates the information gain to the model epistemic uncertainty. Therefore, it gives a
tractable objective that also has a frequentist interpretation - collect points with the highest epistemic
uncertainty. We can use it to plan a trajectory at each episode n, by solving the following optimal
control problem:

π∗
n = argmax

π∈Π
Jn(π) = argmax

π∈Π
Eτπ



T−1∑

t=0

dx∑

j=1

log

(
1 +

σ2
n−1,j(xt,π(xt))

σ2

)
 , (6)

xt+1 = f∗(xt,π(xt)) +wt.

The problem in Equation (6) is closely related to previous literature in active exploration for RL.
For instance, some works consider different geometries such as the sum of epistemic uncertainties
(Pathak et al. (2019); Sekar et al. (2020), c.f., appendix C for more detail).

3.2 Optimistic Planner
The optimal control problem in Equation (6) requires knowledge of the dynamics f∗ for planning,
however, f∗ is unknown. A common choice is to use the mean estimator µn−1 in Equation (6)
instead of f∗ for planning (Buisson-Fenet et al., 2020). However, in general, using the mean estimator
is susceptible to model biases (Chua et al., 2018) and is provably optimal only in the case of linear
systems (Simchowitz and Foster, 2020). To this end, we propose using an optimistic planner, as
suggested in Curi et al. (2020), instead. Accordingly, given the mean estimator µn−1 and the
epistemic uncertainty σn−1, we solve the following optimal control problem

πn,ηn = argmax
π∈Π,η∈Ξ

Jn(π,η) = argmax
π∈Π,η∈Ξ

Eτπ,η



T−1∑

t=0

dx∑

j=1

log

(
1 +

σ2
n−1,j(x̂t,π(x̂t))

σ2

)
 , (7)

x̂t+1 = µn−1(x̂t,π(x̂t)) + βn−1(δ)σn−1(x̂t,π(x̂t))η(x̂t) +wt,
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OPAX: OPTIMISTIC ACTIVE EXPLORATION

Init: Aleatoric uncertainty σ, Probability δ, Statistical model (µ0,σ0, β0(δ))
for episode n = 1, . . . , N do

πn = argmax
π∈Π

max
η∈Ξ

E



T−1∑

t=0

dx∑

j=1

log

(
1 +

σ2
n−1,j(xt,π(xt))

σ2

)
 ➤ Prepare policy

Dn ← ROLLOUT(πn) ➤ Collect measurements
Update (µn,σn, βn(δ))← D1:n ➤ Update model

where Ξ is the space of policies η : X → [−1, 1]dx . Therefore, we use the policy η to “hallucinate”
(pick) transitions that give us the most information. Overall, the resulting formulation corresponds
to a simple optimal control problem with a larger action space, i.e., we increase the action space
by another dx dimension. A natural consequence of Assumption 1 is that Jn(π∗

n) ≤ Jn(πn,ηn)
with high probability (c.f., Corollary 1 in Appendix A). That is by solving Equation (7), we get
an optimistic estimate on Equation (6). Intuitively, the policy πn that OPAX suggests, behaves
optimistically with respect to the information gain at each episode.

4 Theoretical Results
We theoretically analyze the convergence properties of OPAX. We first study the regret of planning
under unknown dynamics. Specifically, since we cannot evaluate the optimal exploration policy
from eq. (6) and use the optimistic one, i.e., eq. (7) instead, we incur a regret. We show that due to
the optimism in the face of uncertainty paradigm, we can give sample complexity bounds for the
Bayesian and frequentist settings. All the proofs are presented in Appendix A.

Lemma 2 (Regret of optimistic planning under unknown dynamics). Let Assumption 1 hold. Fur-
thermore, define Jn,k(πn,ηn,x) as

Jn,k(πn,ηn,x) = Eτπn,ηn



T−1∑

t=k

dx∑

j=1

log

(
1 +

σ2
n−1,j(x̂t,πn(x̂t))

σ2

)
 ,

s.t. x̂t+1 = µn−1(x̂t,πn(x̂t)) + βn−1(δ)σn−1(x̂t,πn(x̂t))ηn(x̂t) +wt

and x̂0 = x.

Then, for all n ≥ 1, with probability at least 1− δ,

Jn(π
∗
n)− Jn(πn) ≤

T−1∑

t=0

Eτπn

[
Jn,t+1(πn,ηn,x

′
t+1)− Jn,t+1(πn,ηn,xt+1)

]
,

with xt+1 = f∗(xt,πn(xt)) +wt,

and x′
t+1 = µn−1(xt,πn(xt)) + βn−1(δ)σn−1(xt,πn(xt))ηn(xt) +wt.

Lemma 2 gives a bound on the regret of planning optimistically under unknown dynamics. The
regret is proportional to the difference in the expected returns for xt and x′

t. Note, ∥xt − x′
t∥ ∝

βn(δ)σn−1(xt−1,πn(xt−1)). Hence, when we have low uncertainty in our predictions, planning
optimistically suffers smaller regret. Next, we leverage Lemma 2 to give a sample complexity bound
for the Bayesian and frequentist setting.

Bayesian Setting We start by introducing a measure of model complexity as defined by Curi et al.
(2020).

MCN (f∗) := max
D1,...,DN⊂Z×X

N∑

n=1

∑

z∈Dn

∥σn−1(z)∥22 . (8)

This complexity measure captures the difficulty of learning f∗ given N trajectories. Mainly, the
more complicated f∗, the larger the epistemic uncertainties σn, and in turn, the larger corresponding
MCN (f∗). Moreover, if the model complexity measure is sublinear in N , i.e.MCN (f∗)/N → 0
for N → ∞, then the epistemic uncertainties also converge to zero in the limit, which implies
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convergence to the true function f∗. We present our main theoretical result, in terms of the model
complexity measure.

Theorem 1. Let Assumption 1 and 3 hold. Then, for all N ≥ 1, with probability at least 1− δ,

ED1:N−1

[
max
π∈Π

Eτπ [I (f∗
τπ ;yτπ | D1:N−1)]

]
≤ O

(
βNT

3/2

√
MCN (f∗)

N

)
(9)

Theorem 1 relates the maximum expected information gain at iteration N to the model complexity
of our problem. For deterministic systems, the expectation w.r.t. τπ is redundant. The bound in
Equation (9) depends on the Lipschitz constants, planning horizon, and dimensionality of the state
space (captured in βN and MCN (f∗)). If the right-hand side is monotonically decreasing with
N , Theorem 1 guarantees that the information gain at episode N is also shrinking with N , and the
algorithm is converging. Empirically, Pathak et al. (2019) show that the epistemic uncertainties go to
zero as more data is acquired. In general, deriving a worst-case bound on the model complexity is a
challenging and active open research problem. However, in the case of GPs, convergence results can
be shown for a very rich class of functions. We show this in the following for the frequentist setting.

Frequentist Setting with Gaussian Process Models We extend our analysis to the frequentist
kernelized setting, where f∗ resides in a Reproducing Kernel Hilbert Space (RKHS) of vector-valued
functions.

Assumption 4. We assume that the functions f∗
j , j ∈ {1, . . . , dx} lie in a RKHS with kernel k and

have a bounded norm B, that is f∗ ∈ Hdx

k,B , withHdx

k,B = {f | ∥fj∥k ≤ B, j = 1, . . . , dx}.
In this setting, we model the posterior mean and epistemic uncertainty of the vector-valued function
f∗ with µn(z) = [µn,j(z)]j≤dx

, and σn(z) = [σn,j(z)]j≤dx
, where,

µn,j(z) = k⊤
n (z)(Kn + σ2I)−1yj

1:n,

σ2
n,j(z) = k(x,x)− k⊤

n (z)(Kn + σ2I)−1kn(x),
(10)

Here, yj
1:n corresponds to the noisy measurements of f∗

j , i.e., the observed next state from the
transitions datasetD1:n, kn = [k(z, zi)]i≤nT , zi ∈ D1:n, and Kn = [k(zi, zl)]i,l≤nT , zi, zl ∈ D1:n

is the data kernel matrix. It is known that if f∗ satisfies Assumption 4, then Equation (10) yields
well-calibrated confidence intervals, i.e., that Assumption 1 is satisfied.

Lemma 3 (Well calibrated confidence intervals for RKHS, Rothfuss et al. (2023)). Let f∗ ∈ Hdx

k,B .
Suppose µn and σn are the posterior mean and variance of a GP with kernel k, c.f., Equation (10).
There exists βn(δ), for which the tuple (µn,σn, βn(δ)) satisfies Assumption 1 w.r.t. function f∗.

Theorem 2 presents our convergence guarantee for the kernelized case to the T -step reachability set
R for the policy class π ∈ Π. In particular,R is defined as

R = {z ∈ Z | ∃(π ∈ Π, t ≤ T ), s.t., p(zt = z|π,f∗) > 0}
There are two key differences from Theorem 1; (i) we can derive an upper bound on the epistemic
uncertainties σn, and (ii) we can bound the model complexity MCN (f∗), with the maximum
information gain of kernel k introduced by Srinivas et al. (2012), defined as

γN (k) = max
D1,...,DN ;|Dn|≤T

1

2
log det(I + σ−2KN ).

Theorem 2. Let Assumption 3 and 4 hold, Then, for all N ≥ 1, with probability at least 1− δ,

max
π∈Π

Eτπ


max
z∈τπ

dx∑

j=1

1

2
σ2
N,j(z)


 ≤ O

(
βNT

3/2

√
γN (k)

N

)
. (11)

If we relax noise Assumption 3 to σ-sub Gaussian. Then, if Assumption 2 holds, we have for all
N ≥ 1, with probability at least 1− δ,

max
π∈Π

Eτπ


max
z∈τπ

dx∑

j=1

1

2
σ2
N,j(z)


 ≤ O

(
βT
NT

3/2

√
γN (k)

N

)
. (12)
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Moreover, if γN (k) = O (polylog(N)), then for all z ∈ R, and 1 ≤ j ≤ dx,

σN,j(z)
a.s.−−→ 0 for N →∞. (13)

We only state Theorem 2 for the expected epistemic uncertainty along the trajectory at iteration N .
For deterministic systems, the expectation is redundant and for stochastic systems, we can leverage
concentration inequalities to give a bound without the expectation (see Appendix A for more detail).

For the Gaussian noise case, we obtain a tighter bound by leveraging the change of measure inequality
from Kakade et al. (2020, Lemma C.2.) (c.f., Lemma 6 in Appendix A for more detail). In the
more general case of sub-Gaussian noise, we cannot use the same analysis. To this end, we use
the Lipschitz continuity assumptions (Assumption 2) similar to Curi et al. (2020). This results in
comparing the deviation between two trajectories under the same policy and dynamics but different
initial states (see Lemma 2). For many systems (even linear) this can grow exponentially in the
horizon T . Accordingly, we obtain a βT

N term in our bound (Equation (12)). Nonetheless, for cases
where the RKHS is of a kernel with maximum information gain γN (k) = O (polylog(N)), we
can give sample complexity bounds and an almost sure convergence result in the reachable set R
(Equation (13)). Kernels such as the RBF kernel or the linear kernel (kernel with a finite-dimensional
feature map ϕ(x)) have maximum information gain which grows polylogarithmically with n (Vakili
et al. (2021)). Therefore, our convergence guarantees hold for a very rich class of functions. The
exponential dependence of our bound on T imposes the restriction on the kernel class. For the case
of Gaussian noise, we can include a richer class of kernels, such as Matèrn.

In addition to the convergence results above, we also give guarantees on the zero-shot performance of
OPAX in Appendix A.5.

5 Experiments
We evaluate OPAX on the Pendulum-v1 and MountainCar environment from the OpenAI gym
benchmark suite (Brockman et al., 2016), on the Reacher, Swimmer, and Cheetah from the deep
mind control suite (Tassa et al., 2018), and a high-dimensional simulated robotic manipulation task
introduced by Li et al. (2020). See Appendix B for more details on the experimental setup.

Baselines We implement four baselines for comparisons. To show the benefit of our intrinsic
reward, we compare OPAX to (1) a random exploration policy (RANDOM) which randomly samples
actions from the action space. As we discuss in Section 3 our choice of objective in Equation (6)
is in essence similar to the one proposed by Pathak et al. (2019) and Sekar et al. (2020). Therefore,
in our experiments, we compare the optimistic planner with other planning approaches. Moreover,
most work on active exploration either uses the mean planner or does not specify the planner (c.f.,
Section 6). We use the most common planners: (2) mean (MEAN-AE), and (3) trajectory sampling
(TS-1) scheme proposed in Chua et al. (2018) (PETS-AE) as our baselines. The mean planner simply
uses the mean estimate µn of the well-calibrated model. This is also used in Buisson-Fenet et al.
(2020). Finally, we compare OPAX to (4) H-UCRL (Curi et al., 2020), a single-task model-based
RL algorithm. We investigate the following three aspects: (i) how fast does active exploration reduce
model’s epistemic uncertainty σn with increasing n, (ii) can we solve downstream tasks with OPAX,
and (iii) does OPAX scale to high-dimensional and challenging object manipulation tasks? For
our experiments, we use GPs and probabilistic ensembles (PE, Lakshminarayanan et al. (2017))
for modeling the dynamics. For the planning, we either the soft actor-critic (SAC, Haarnoja et al.
(2018)) policy optimizer, which takes simulated trajectories from our learned model to train a policy,
or MPC with the iCEM optimizer (Pinneri et al., 2021).

How fast does active exploration reduce the epistemic uncertainty? For this experiment, we
consider the Pendulum-v1 environment. We sample transitions at random from the pendulum’s
reachable state-action space and evaluate our model’s epistemic uncertainty for varying episodes
and baselines. We model the dynamics with both GPs and PE. We depict the result in Figure 1. We
conclude that the RANDOM agent is slower in reducing the uncertainty compared to other active
exploration methods for both GP and PE models. In particular, from the experiment, we empirically
validate Theorem 2 for the GP case and also conclude that empirically even when using PE models,
we find convergence of epistemic uncertainty. Moreover, we notice for the PE case that OPAX reaches
smaller uncertainties slightly faster than MEAN-AE and PETS-AE. We believe this is due to the
additional exploration induced by the optimistic planner.
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Figure 1: Reduction in maximum epistemic uncertainty in reachable state-action space for the
Pendulum-v1 environment over 10 different random seeds. We evaluate OPAX with both GPs
and PE and plot the mean performance with two standard error confidence intervals. For both,
active exploration reduces epistemic uncertainty faster compared to random exploration. All active
exploration baselines perform well for the GP case, whereas for the PE case OPAX gives slightly
lower uncertainties.

Can the model learnt through OPAX solve downstream tasks? We use OPAX and other active
exploration baselines to actively learn a dynamics model and then evaluate the learned model on
downstream tasks. We consider several tasks, (i) Pendulum-v1 swing up, (ii) Pendulum-v1 keep
down (keep the pendulum at the stable equilibria), (iii) MountainCar, (iv) Reacher - go to target,
(v) Swimmer - go to target, (vi) Swimmer - go away from target (quickly go away from the target
position), (vii) Cheetah - run forward, (viii) Cheetah - run backward. For all tasks, we consider PEs,
except for (i) where we also use GPs. Furthermore, for the MountainCar and Reacher, we give a
reward once the goal is reached. Since this requires long-term planning, we use a SAC policy for
these tasks. We use MPC with iCEM for the remaining tasks. We also train H-UCRL on tasks (i)
with GPs, and (ii), (iii), (iv), (v), (vii) with PEs. We report the best performance across all episodes.

To make a fair comparison, we use the following evaluation procedure; first, we perform active
exploration for each episode on the environment, and then after every few episodes we use the mean
estimate µn to evaluate our learned model on the downstream tasks.

Figure 2 shows that all active exploration variants perform considerably better than the RANDOM
agent. In particular, for the MountainCar, the RANDOM agent is not able to solve the task. Moreover,
PETS-AE performs slightly worse than the other exploration baselines in this environment. In
general, we notice that OPAX always performs well and is able to achieve H-UCRL’s performance
on all the tasks for which H-UCRL is trained. However, on tasks that are new/unseen for H-UCRL,
active exploration algorithms outperform H-UCRL. From this experiment, we conclude two things
(1) apart from providing theoretical guarantees, the model learned through OPAX also performs
well in downstream tasks, and (2) active exploration agents generalize well to downstream tasks,
whereas H-UCRL performs considerably worse on new/unseen tasks. We believe this is because,
unlike active exploration agents, task-specific model-based RL agents only explore the regions of
the state-action space that are relevant to the task at hand.

Figure 3: Fetch Pick
& Place Construc-
tion environment.

Does OPAX scale to high-dimensional and challenging object manip-
ulation tasks? To answer this question, we consider the Fetch Pick &
Place Construction environment (Li et al., 2020). We again use the active
exploration agents to learn a model and then evaluate the success rate of
the learned model in three challenging downstream tasks: (i) Pick & Place,
(ii) Throw, and (iii) Flip (see Figure 4). The environment contains a 7-DoF
robot arm and four 6-DoF blocks that can be manipulated. In total, the state
space is 58-dimensional. The 4-dimensional actions control the end-effector
of the robot in Cartesian space as well as the opening/closing of the gripper.
We compare OPAX to PETS-AE, MEAN-AE, a random policy as well as
CEE-US (Sancaktar et al., 2022). CEE-US is a model-based active exploration
algorithm, for which Sancaktar et al. (2022) reports state-of-the-art perfor-
mance compared to several other active exploration methods. In all three tasks,
OPAX is at least on par with the best-performing baselines, including CEE-US. We run OPAX and all
baselines with the same architecture and hyperparameter settings. See Appendix B for more details.
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Figure 2: We evaluate the downstream performance of our agents over 10 different random seeds and
plot the mean performance with two standard error confidence intervals. For all the environments we
use PE as models, except plot (1), for which we use a GP model (see plot (2) in the figure above). For
tasks (1)-(6), we also train H-UCRL, a model-based RL algorithm. Tasks (7)-(9) are new/unseen
for H-UCRL. From the Figure, we conclude that (i) compared to other active exploration baselines,
OPAX constantly performs well and is on par with H-UCRL, and (ii) on the new/unseen tasks the
active exploration baselines and OPAX outperform H-UCRL by a large margin.

6 Related Work
System identification is a broadly studied topic (Åström and Eykhoff, 1971; Schoukens and Ljung,
2019; Schön et al., 2011; Ziemann et al., 2022; Ziemann and Tu, 2022). However, system identifica-
tion from the perspective of experiment design for nonlinear systems is much less understood (Chiuso
and Pillonetto, 2019). Most methods formulate the identification task through the maximization of
intrinsic rewards. Common choices of intrinsic rewards are (i) model prediction error or “Curios-
ity” (Schmidhuber, 1991; Pathak et al., 2017), (ii) novelty of transitions (Stadie et al., 2015), and (iii)
diversity of skills (Eysenbach et al., 2018).

A popular choice for intrinsic rewards is mutual information or entropy (Jain et al., 2018; Buisson-
Fenet et al., 2020; Shyam et al., 2019; Pathak et al., 2019; Sekar et al., 2020). Jain et al. (2018)
propose an approach to maximize the information gain greedily wrt the immediate next transition,
i.e., one-step greedy, whereas Buisson-Fenet et al. (2020) consider planning full trajectories. Shyam
et al. (2019); Pathak et al. (2019); Sekar et al. (2020) and Sancaktar et al. (2022) consider general
Bayesian models, such as BNNs, to represent a probabilistic distribution for the learned model.
Shyam et al. (2019) propose using the information gain of the model with respect to observed
transition as the intrinsic reward. To this end, they learn an ensemble of Gaussian neural networks and
represent the distribution over models with a Gaussian mixture model (GMM). A similar approach
is also proposed in Pathak et al. (2019); Sekar et al. (2020); Sancaktar et al. (2022). The main
difference between Shyam et al. (2019) and Pathak et al. (2019) lies in how they represent mutual
information. Moreover, Pathak et al. (2019) use the model’s epistemic uncertainty, that is the
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Figure 4: Success rates for pick & place, throwing and flipping tasks with four objects in the Fetch
Pick & Place Construction environment for OPAX and baselines. We evaluate task performance via
planning zero-shot with models learned using different exploration strategies. We report performance
on three independent seeds. OPAX is on par with the best-performing baselines in all tasks.

disagreement between the ensemble models as an intrinsic reward. Sekar et al. (2020) link the model
disagreement (epistemic uncertainty) reward to maximizing mutual information and demonstrate
state-of-the-art performance on several high-dimensional tasks. Similarly, Sancaktar et al. (2022),
use the disagreement in predicted trajectories of an ensemble of neural networks to direct exploration.
Since trajectories can diverge due to many factors beyond just the model epistemic uncertainty, e.g.,
aleatoric noise, this approach is restricted to deterministic systems and susceptible to systems with
unstable equilibria. Our approach is the most similar to Pathak et al. (2019); Sekar et al. (2020)
since we also propose the model epistemic uncertainty as the intrinsic reward for planning. However,
we thoroughly and theoretically motivate this choice of reward from a Bayesian experiment design
perspective. Furthermore, we induce additional exploration in OPAX through our optimistic planner
and rigorously study the theoretical properties of the proposed methods. On the contrary, most of
the prior work discussed above either uses the mean planner (MEAN-AE) or does not discuss the
planner thoroughly or provide any theoretical results. In general, theoretical guarantees for active
exploration algorithms are rather immature (Chakraborty et al., 2023; Wagenmaker et al., 2023) and
mostly restrictive to a small class of systems (Simchowitz et al., 2018; Tarbouriech et al., 2020;
Wagenmaker and Jamieson, 2020; Mania et al., 2020). To the best of our knowledge, we are the first
to give convergence guarantees for a rich class of nonlinear systems.

While our work focuses on the active learning of dynamics, there are numerous works that study
exploration in the context of reward-free RL (Jin et al., 2020; Kaufmann et al., 2021; Wagenmaker
et al., 2022; Chen et al., 2022). However, most methods in this setting give guarantees for special
classes of MDPs (Jin et al., 2020; Kaufmann et al., 2021; Wagenmaker et al., 2022; Qiu et al., 2021;
Chen et al., 2022) and result in practical algorithms. On the contrary, we focus on solely learning
the dynamics. While a good dynamics model may be used for zero-shot planning, it also exhibits
more relevant knowledge about the system such as its stability or sensitivity to external effects.
Furthermore, our proposed method is not only theoretically sound but also practical.

7 Conclusion
We present OPAX, a novel model-based RL algorithm for the active exploration of unknown
dynamical systems. Taking inspiration from Bayesian experiment design, we provide a compre-
hensive explanation for using model epistemic uncertainty as an intrinsic reward for exploration.
By leveraging the optimistic in the face of uncertainty paradigm, we put forth first-of-their-kind
theoretical results on the convergence of active exploration agents in reinforcement learning.
Specifically, we study convergence properties of general Bayesian models, such as BNNs. For the
frequentist case of RKHS dynamics, we established sample complexity bounds and convergence
guarantees for OPAX for a rich class of functions. We evaluate the efficacy of OPAX across various
RL environments with state space dimensions from two to 58. The empirical results corroborate
our theoretical findings, as OPAX displays systematic and effective exploration across all tested
environments and exhibits strong performance in zero-shot planning for new downstream tasks.
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A Proofs for section 4
We first prove some key properties of our active exploration objective in Equation (6). Then, we
prove Theorem 1 which holds for general Bayesian models, and finally we prove Theorem 2, which
guarantees convergence for the frequentist setting where the dynamics are modeled using a GP.

Lemma 4 (Properties of OPAX’s objective). Let Assumption 1 and 2 hold, then the following is true
for all n ≥ 0,
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Proof. The positivity of the reward follows from the positive definiteness of the epistemic uncertainty
σn−1,j . For (2), the following holds
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Finally, we show that this reward is Lipschitz continuous.
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Where (*) is true because for all x ≥ 0, log(1 + x) ≤ x.
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Corollary 1 (OPAX gives an optimistic estimate on Equation (6)). Let Assumption 1 hold and π∗
n

denote the solution to Equation (6) and Jn(π
∗
n) the resulting objective. Similarly, let πn and ηn be

the solution to Equation (7) and Jn(πn,ηn) the corresponding value of the objective. Then with
probability at least 1− δ we have for every episode n ∈ {1, . . . , N}:

Jn(π
∗
n) ≤ Jn(πn,ηn).

Proof. Follows directly from Assumption 1.

A.1 Proof of Lemma 2

Lemma 5 (Difference in Policy performance). Let Jr,k(π,xk) = Eτπ

[∑T−1
t=k r(xt,π(xt))

]
and

Ar,k(π,x,a) = Eτπ [r(x,a) + Jr,k+1(π,x
′)− Jr,k(π,x)] with x′ = f∗(x,a)+w. For simplic-

ity we refer to Jr,0(π,x0) = Jr(π,x0). The following holds for all x0 ∈ X :

Jr(π
′,x0)− Jr(π,x0) = Eτπ′

[
T−1∑

t=0

Ar,t(π,x
′
t,π

′(x′
t))

]

Proof.

Jr(π
′,x0) = Eτπ′

[
T−1∑

t=0

r(x′
t,π

′(x′
t))

]
= Eτπ′ [r(x0,π

′(x0)) + Jr,1(π
′,x′

1)]

= Eτπ′ [r(x0,π
′(x0)) + Jr,1(π,x

′
1) + Jr,1(π

′,x′
1)− Jr,1(π,x

′
1)]

= Eτπ′ [r(x0,π
′(x0)) + Jr,1(π,x

′
1)− Jr(π,x0)]

+ Jr(π,x0) + Eτπ′ [Jr,1(π
′,x′

1)− Jr,1(π,x
′
1)]

= Eτπ′ [Ar,0(π,x0,π
′(x0))] + Jr(π,x0) + Eτπ′ [Jr,1(π

′,x1)− Jr,1(π,x1)]

Therefore we obtain
Jr(π

′,x0)− Jr(π,x0) = Eτπ′ [A0(π,x0,π
′(x0))] + Eτπ′ [Jr,1(π

′,x′
1)− Jr,1(π,x

′
1)] .

Using the same argument for Jr,1, Jr,2, . . . , Jr,T−1 and that Jr,T (π,x) = 0 for all π ∈ Π and
x ∈ X completes the proof.

Assume a policy π is fixed and dynamics are of the form:
x′ = µn(x,π(x)) + βn(δ)σ(x,π(x))u+w. (14)

Here u ∈ [−1, 1]dx . Furthermore, assume that the associated running rewards do not depend on u,
that is, r(xt), and let η ∈ Ξ denote the policy, i.e., η : X → [−1, 1]dx .

Corollary 2. The following holds for all x0 ∈ X and policy π:

Jr(π,η
′,x0)− Jr(π,η,x0) = Eτη′

[
T−1∑

t=0

Jr,t+1(π,η,x
′
t+1)− Jr,t+1(π,η,xt+1)

]
,

with xt+1 = µn(x
′
t,π(x

′
t)) + βn(δ)σ(x

′
t,π(x

′
t))η(x

′
t) + wt, and x′

t+1 = µn(x
′
t,π(x

′
t)) +

βn(δ)σ(x
′
t,π(x

′
t))η

′(x′
t) +wt.

Proof. From Lemma 5 we have

Jr(π,η
′,x0)− Jr(π,η,x0) = Eτη′

[
T−1∑

t=0

Ar,t(η,x
′
t,η

′(x′
t))

]
.

Furthermore,
Eτη′ [Ar,t(η,x

′
t,η

′(x′
t))] = Eτη′

[
r(x′

t) + Jr,t+1(π,η,x
′
t+1)− Jr,t(π,η,x

′
t)
]

= Eτη′
[
r(x′

t) + Jr,t+1(π,η,x
′
t+1)− r(x′

t)− Jr,t+1(π,η,xt+1)
]

= Eτη′
[
Jr,t+1(π,η,x

′
t+1)− Jr,t+1(π,η,xt+1)

]
.
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Proof of Lemma 2. From Assumption 1 we know that with probability at least 1− δ there exists a η̄
such that f∗(z) = µn(z) + βn(δ)σ(z)η̄(x) for all z ∈ Z .

Jn(π
∗
n)− Jn(πn) ≤ Jn(πn,ηn)− Jn(πn) (Corollary 1)

= Jn(πn,ηn)− Jn(πn, η̄)

= Eτ η̄

[
T−1∑

t=0

Jn,t+1(πn,ηn,x
′
t+1)− Jn,t+1(πn,ηn,xt+1)

]
(Corollary 2)

= Eτπn

[
T−1∑

t=0

Jn,t+1(πn,ηn,x
′
t+1)− Jn,t+1(πn,ηn,xt+1)

]
,

(Expectation wrt πn under true dynamics f∗)
with xt+1 = f∗(xt,πn(xt)) +wt,

and x′
t+1 = µn−1(xt,πn(xt)) + βn−1(δ)σn−1(xt,πn(xt))ηn(xt) +wt.

A.2 Analyzing regret of optimistic planning
In the following, we analyze the regret of optimistic planning for both σ-Gaussian noise and σ-sub
Gaussian noise case. We start with the Gaussian case.

Lemma 6 (Absolute expectation Difference Under Two Gaussians (Lemma C.2. Kakade et al.
(2020))). For Gaussian distribution N (µ1, σ

2I) and N (µ2, σ
2I), and for any (appropriately mea-

surable) positive function g, it holds that:

|Ez∼N1
[g(z)]− Ez∼N2

[g(z)]| ≤ min

{∥µ1 − µ2∥
σ2

, 1

}√
Ez∼N1

[g2(z)]

Proof.

|Ez∼N1
[g(z)]− Ez∼N2

[g(z)]| =
∣∣∣∣Ez∼N1

[
g(z)

(
1− N2

N1

)]∣∣∣∣

≤

∣∣∣∣∣∣
√
Ez∼N1 [g

2(z)]

√√√√Ez∼N1

[(
1− N2

N1

)2
]∣∣∣∣∣∣

=
√
Ez∼N1 [g

2(z)]

√√√√Ez∼N1

[(
1− N2

N1

)2
]

≤
√
Ez∼N1

[g2(z)]min

{∥µ1 − µ2∥
σ2

, 1

}

(Lemma C.2. Kakade et al. (2020))

Corollary 3 (Regret of optimistic planning for Gaussian noise). Let π∗
n, πn denote the solution to

Equation (6) and Equation (7) respectively, and z∗
n,t, zn,t the corresponding state-action pairs visited

during their respective trajectories. Furthermore, let Assumption 1 - 3 hold. Then, the following is
true for all n ≥ 0, t ∈ [0, T − 1], with probability at least 1− δ

Jn(π
∗
n)− Jn(πn) ≤ O

(
TEτπn

[
T−1∑

t=0

(1 +
√
dx)βn−1(δ) ∥σn−1(zn,t)∥

σ2

])

18



Proof. For simplicity, define gn(x) = Jn,t+1(πn,ηn,x). Note since wt ∼ N (0, σ2I) (Assump-
tion 3), we have that x′

t+1 and xt+1 are also Gaussians. Therefore, we can leverage Lemma 6.

Eτπn

[
Jn,t+1(πn,ηn,x

′
t+1)− Jn,t+1(πn,ηn,xt+1)

]
= E

[
gn(x

′
t+1)− gn(xt+1)

]

≤
√
E[g2n(xt+1)]min

{∥∥x′
t+1 − xt+1

∥∥
σ2

, 1

}
(Lemma 6)

≤
√

Jmax min

{∥∥x′
t+1 − xt+1

∥∥
σ2

, 1

}
. (Lemma 4)

Furthermore,∥∥x′
t+1 − xt+1

∥∥ = ∥µn−1(xt,πn(xt)) + βn−1(δ)σn−1(xt,πn(xt))ηn(xt)− f∗(xt,πn(xt))∥
≤ ∥µn−1(xt,πn(xt))− f∗(xt,πn(xt))∥
+ βn−1(δ) ∥σn−1(xt,πn(xt))∥ ∥ηn(xt)∥
≤ (1 +

√
dx)βn−1(δ) ∥σn−1(xt,πn(xt))∥ . (Assumption 1)

Next, we use Lemma 2

Jn(π
∗
n)− Jn(πn) ≤ Eτπn

[
T−1∑

t=0

Jn,t+1(πn,ηn,x
′
t+1)− Jn,t+1(πn,ηn,xt+1)

]
,

≤ Eτπn

[
T−1∑

t=0

√
Jmax min

{
(1 +

√
dx)βn−1(δ) ∥σn−1(xt,πn(xt))∥

σ2
, 1

}]
,

≤
√

JmaxEτπn

[
T−1∑

t=0

(1 +
√
dx)βn−1(δ) ∥σn−1(xt,πn(xt))∥

σ2

]
,

= O
(
TEτπn

[
T−1∑

t=0

(1 +
√
dx)βn−1(δ) ∥σn−1(xt,πn(xt))∥

σ2

])
.

Lemma 7 (Regret of planning optimistically for sub-Gaussian noise). Let π∗
n, πn denote the solution

to Equation (6) and Equation (7) respectively, and z∗
n,t, zn,t the corresponding state-action pairs

visited during their respective trajectories. Furthermore, let Assumption 1 and 2 hold, and relax
Assumption 3 to σ-sub Gaussian noise. Then, the following is true for all n ≥ 0 with probability at
least 1− δ

Jn(π
∗
n)− Jn(πn) ≤ O

(
LT−1
σ βT

n−1(δ)TEτπn

[
T−1∑

t=0

∥σn−1,j(zn,t)∥
])

Proof. Curi et al. (2020, Lemma 5) bound the regret with the sum of epistemic uncertainties for
Lipschitz continuous reward functions, under Assumption 1 and 2 for sub-Gaussian noise (c.f.,
Rothfuss et al. (2023, Theorem 3.5) for a more rigorous derivation). For the active exploration setting,
the reward in episode n+ 1 is

r(z) =
1

2

dx∑

j=1

log

(
1 +

σ2
n−1,j(z)

σ2

)
.

We show in Lemma 4 that our choice of exploration reward is Lipschitz continuous. Thus, can use
the regret bound from Curi et al. (2020).

Compared to the Gaussian case, σ-sub Gaussian noise has the additional exponential dependence
on the horizon T , i.e., the βT

n term. This follows from the analysis through Lipschitz continuity.
Moreover, as we show in Lemma 2, the regret of planning optimistically is proportional to the change
in value under the same optimistic dynamics and policy, but different initial states. The Lipschitz
continuity property of our objective allows us to relate the difference in values to the discrepancy
in the trajectories. Even for linear systems, trajectories under the same dynamics and policy but
different initial states can deviate exponentially in the horizon.
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A.3 Proof for general Bayesian models
In this section, we analyze the information gain for general Bayesian models and prove Theorem 1.

Theorem 3 (Entropy of a RV with finite second moment is upper bounded by Gaussian entropy
(Theorem 8.6.5 Cover and Thomas (2006))). Let the random vector x ∈ Rn have covariance
K = E

[
xx⊤] (i.e., Kij = E [xixj ] , 1 ≤ i, j ≤ n). Then

H(X) ≤ 1

2
log((2πe)n|K|)

with equality if and only if x ∼ N (µ,K) for µ = E [x].

Lemma 8 (Monotonocity of information gain). Let τπ denote the trajectory induced by the policy π.
Then, the following is true for all n ≥ 0, policies π

ED1:n [I (f∗
τπ ;yτπ | D1:n)] ≤ ED1:n−1 [I (f

∗
τπ ;yτπ | D1:n−1)] .

Proof.

ED1:n
[I (f∗

τπ ;yτπ | D1:n−1)− I (f∗
τπ ;yτπ | D1:n)]

= ED1:n
[H (yτπ | D1:n−1)−H (yτπ | f∗

τπ ,D1:n−1)

− (H (yτπ | D1:n)−H (yτπ | f∗
τπ ,D1:n))]

= ED1:n
[H (yτπ | D1:n−1)−H (yτπ | D1:n)]

+ ED1:n [H (yτπ | f∗
τπ )−H (yτπ | f∗

τπ )]

≥ 0 (information never hurts)

A direct consequence of Lemma 8 is the following corollary.

Corollary 4 (Information gain at N is less than the average gain till N ). Let τπ denote the trajectory
induced by the policy π. Then, the following is true for all N ≥ 1, policies π,

ED1:N−1
[I (f∗

τπ ;yτπ | D1:N−1)] ≤
1

N

N∑

n=1

ED1:n−1
[I (f∗

τπ ;yτπ | D1:n−1)] .

Next, we prove Lemma 1, which is central to our proposed active exploration objective in Equation (6).

Proof of Lemma 1. Let yτπ = {yt}T−1
t=0 = {f∗

t + wt}T−1
t=0 , where f∗

t = f∗(zt). Furthermore,
denote with Σn(f

∗
0:T−1) the covariance of f∗

0:T−1.

I (f∗
τπ ;yτπ | D1:n) = I

(
f∗
0:T−1;y0:T−1 | D1:n

)

= H (y0:T−1 | D1:n)−H
(
y0:T−1 | f∗

0:T−1,D1:n

)

≤ 1

2
log
(∣∣σ2I+Σn(f

∗
0:T−1)

∣∣)− 1

2
log
(∣∣σ2I

∣∣) (Theorem 3)

≤ 1

2
log
(∣∣diag

(
I+ σ−2Σn(f

∗
0:T−1)

)∣∣) (Hadamard’s inequality)

=
1

2

T−1∑

t=0

dx∑

j=1

log

(
1 +

σ2
n,j(zt)

σ2

)
.

We can leverage the result from Lemma 1 to bound the average mutual information with the sum of
epistemic uncertainties.
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Lemma 9 (Average information gain is less than sum of average epistemic uncertainties). Let
Assumption 3 hold and denote with π̄N be the solution of Equation (4). Then, for all N ≥ 1 and
dataset D1:N the following is true

1

N

N∑

n=1

ED1:n−1,τ π̄n [I (f∗
τ π̄N ;yτ π̄N | D1:n−1)]

≤ 1

N

N∑

n=1

ED1:n−1,τ
π∗
n



T−1∑

t=0

dx∑

j=1

(
1

2
log

(
1 +

σ2
n,j(z

∗
n,t)

σ2

))
 ,

where z∗n,t are the state-action tuples visited by the solution of Equation (6), i.e., π∗
n.

Proof.

1

N

N∑

n=1

ED1:n−1,τ π̄N [I (f∗
τ π̄N ;yτ π̄N | D1:n−1)]

≤ 1

N

N∑

n=1

ED1:n−1,τ π̄N




 ∑

zt∈τ π̄N

1

2

dx∑

j=1

log

(
1 +

σ2
n,j(zt)

σ2

)


 (Lemma 1)

≤ 1

N

N∑

n=1

ED1:n−1


max

π∈Π
Eτπ


 ∑

zt∈τπ

dx∑

j=1

(
1

2
log

(
1 +

σ2
n,j(zt)

σ2

))


 (1)

=
1

N

N∑

n=1

ED1:n−1,τπn



T−1∑

t=0

dx∑

j=1

(
1

2
log

(
1 +

σ2
n,j(z

∗
n,t)

σ2

))
 .

Here (1) follows from the tower property. Note that the second expectation in (1) is wrt τπ conditioned
on a realization ofD1:n−1, where the conditioning is captured in the epistemic uncertainty σn(·).

We use the results from above, to prove Theorem 1.

Proof of theorem 1. Let π̄n denote the solution to Equation (4) at iteration n ≥ 1. We first relate the
information gain from OPAX to the information gain of π̄n.

ED1:N−1,τ π̄N [I (f∗
τ π̄N ;yτ π̄N | D1:N−1)]

≤ 1

N

N∑

n=1

ED1:n−1,τ π̄n [I (f∗
τ π̄n ;yτ π̄n | D1:n−1)] (Corollary 4)

≤ 1

N

N∑

n=1

ED1:n−1,τπn






T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
n−1,j(z

∗
n,t)

σ2

)


 (Lemma 9)

=
1

N

N∑

n=1


ED1:n−1,πn



T−1∑

t=0

1

2

dx∑

j=1

log

(
1 +

σ2
n−1,j(zn,t)

σ2

)
+ Jn(π

∗
n)− Jn(πn)




≤ 1

N

N∑

n=1

ED1:n−1


Eτπn



T−1∑

t=0

1

2

dx∑

j=1

log

(
1 +

σ2
n−1,j(zn,t)

σ2

)


+O
(
βn−1(δ)TEτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

])]
(Corollary 3)

In summary, the maximum expected mutual information at episode N is less than the mutual
information of OPAX and the sum of model epistemic uncertainties. Crucial to the proof is the regret
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bound for optimistic planning from Corollary 3.

1

N

N∑

n=1

ED1:n−1


Eτπn



T−1∑

t=0

1

2

dx∑

j=1

log

(
1 +

σ2
n−1,j(zn,t)

σ2

)


+O
(
Tβn−1(δ)Eτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

])]

=
1

N

N∑

n=1

ED1:n−1


Eτπn



T−1∑

t=0

dx∑

j=1

log



√

1 +
σ2
n−1,j(zn,t)

σ2






+O
(
Tβn−1(δ)Eτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

])]

≤ 1

N

N∑

n=1

ED1:n−1


Eτπn



T−1∑

t=0

dx∑

j=1

log

(
1 +

σn−1,j(zn,t)

σ

)


+O
(
Tβn−1(δ)Eτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

])]

≤ 1

N

N∑

n=1

ED1:n−1


Eτπn



T−1∑

t=0

dx∑

j=1

σn−1,j(zn,t)

σ




+O
(
Tβn−1(δ)Eτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

])]
(log(1 + x) ≤ x for x ≥ 0.)

≤ O
(

1

N

N∑

n=1

ED1:n−1

[
Tβn−1(δ)Eτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

]])

Above, we show that the maximum expected mutual information can be upper bounded with the sum
of epistemic uncertainties for the states OPAX visits during learning. Finally, we further upper bound
this with the model complexity measure.

O
(

1

N

N∑

n=1

ED1:n−1

[
βn−1(δ)TEτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

]])

= O


 1

N

√√√√
(
ED1:N

[
N∑

n=1

(Tβn−1(δ))Eτπn

[
T−1∑

t=0

∥σn−1(zn,t)∥2

]])2



≤ O


 1

N
TβN (δ))

√√√√TNED1:N

[
N∑

n=1

Eτπn

[
T−1∑

t=0

||σn(zn,t)||22

]]


≤ O
(
βN (δ)T

3/2

√
MCN (f∗)

N

)

Theorem 1 gives a bound on the maximum expected mutual information w.r.t. the model complexity.
We can use concentration inequalities such as Markov, to give a high probability bound on the
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information gain. In particular, we have for all ϵ > 0

Pr (I (f∗
τ π̄N ;yτ π̄N | D1:N−1) ≥ ϵ) ≤ ED1:N−1,τ π̄N

[
I
(
f∗
τ π̄N

;yτ π̄N | D1:N−1

)]

ϵ

≤ O
(
T

3/2βN (δ)

√
MCN (f∗)

Nϵ2

)
.

A.4 Proof of GP results
This section presents our results for the frequentist setting where the dynamics are modeled using
GPs. Since the information gain has no meaning in the frequentist setting, we study the epistemic
uncertainty of the GP models.

Corollary 5 (Monotonicity of the variance). For all n ≥ 0, and policies π the following is true.
T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
N−1,j(zt)

σ2

)
≤ 1

N

N∑

n=1

T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
n−1,j(zt)

σ2

)

Proof. Follows directly due to the monotonicity of GP posterior variance.

Next, we prove that the trajectory of Equation (6) at iteration n is upper-bounded with the maximum
information gain.

Lemma 10. Let Assumption 2 - 4 hold Then, for all N ≥ 1, with probability at least 1− δ, we have

max
π∈Π

Eτπ






T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
N,j(zt)

σ2

)


 ≤ O

(
βN (δ)T

3/2

√
γN
N

)
.

Moreover, relax noise Assumption 3 to σ-sub Gaussian. Then, for all N ≥ 1, with probability at least
1− δ, we have

max
π∈Π

Eτπ






T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
N,j(zt)

σ2

)


 ≤ O

(
LT
σβ

T
N (δ)T

3/2

√
γN
N

)

Proof. Gaussian noise case: Let z∗
n,t denote the state-action pair at time t for the trajectory of

Equation (6) at iteration n ≥ 1 and π∗
n the corresponding policy.

Eτπ∗
n






T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
N,j(z

∗
N,t)

σ2

)




≤ 1

N

N∑

n=1

Eτπ∗
n



T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
n,j(z

∗
N,t)

σ2

)
 (Corollary 5)

≤ 1

N

N∑

n=1

Eτπ∗
n



T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
n,j(z

∗
n,t)

σ2

)
 (By definition of π∗

n)

≤ O
(
βN (δ)T

3/2

√
MCN (f∗)

N

)
(See proof of Theorem 1)

≤ O
(
βN (δ)T

3/2

√
γN
N

)
(Curi et al., 2020, Lemma 17)

Sub-Gaussian noise case: The only difference between the Gaussian and sub-Gaussian case is
the regret term (c.f., Corollary 3 and Lemma 7). In particular, the regret for the sub-Gaussian
case leverages the Lipschitz continuity properties of the system (Assumption 2). This results in an
exponential dependence on the horizon for our bound. We refer the reader to Curi et al. (2020);
Rothfuss et al. (2023) for a more detailed derivation.
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Lemma 10 gives a sample complexity bound that holds for a richer class of kernels. Moreover,
for GP models, βN ∝ √γN (Chowdhury and Gopalan, 2017). Therefore, for kernels, where
limN→∞ γ2

N/N → 0, we can show convergence (for the Gaussian case). We summarize bounds on
γN from Vakili et al. (2021) in Table 1.

Table 1: Maximum information gain bounds for common choice of kernels.
Kernel k(x,x′) γn

Linear x⊤x′ O (d log(n))

RBF e−
∥x−x′∥2

2l2 O
(
logd+1(n)

)

Matèrn 1
Γ(ν)2ν−1

(√
2ν∥x−x′∥

l

)ν

Bν

(√
2ν∥x−x′∥

l

)
O
(
n

d
2ν+d log

2ν
2ν+d (n)

)

From hereon, we focus on deriving the results for the case of Gaussian noise case. All our results can
be easily extended for the sub-Gaussian setting by considering its corresponding bound.

Lemma 11. The following is true for all N ≥ 0 and policies π ∈ Π,

Eτπ


max
z∈τπ

dx∑

j=1

1

2
σ2
N,j(z)


 ≤ CσEτπ



T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
N,j(zt)

σ2

)
 ,

with Cσ = σmax

log(1+σ−2σmax)
.

Proof.

CσEτπ



T−1∑

t=0

dx∑

j=1

1

2
log

(
1 +

σ2
N,j(zt)

σ2

)


≥ Eτπ



T−1∑

t=0

dx∑

j=1

1

2
σ2
N,j(zt)


 , (Curi et al., 2020, Lemma. 15)

≥ Eτπ


max
z∈τπ

dx∑

j=1

1

2
σ2
N,j(z)


 .

Corollary 6. Let Assumption 2 and 4 hold, and relax noise Assumption 3 to σ-sub Gaussian. Then,
for all N ≥ 1, with probability at least 1− δ, we have

max
π∈Π

Eτπ


max
z∈τπ

dx∑

j=1

1

2
σ2
N,j(z)


 ≤ O

(
βN (δ)T

3/2

√
γN
N

)
.

Lemma 12. Let Assumption 2 and 4 hold, and relax noise Assumption 3 to σ-sub Gaussian. Fur-
thermore, assume limN→∞ β2

N (δ)γN (k)/N → 0. Then for all N ≥ 1, z ∈ R, and 1 ≤ j ≤ dx, with
probability at least 1− δ, we have

σn,j(z)
a.s.−−→ 0 for n→∞.

Proof. We first show that the expected epistemic uncertainty along a trajectory converges to zero
almost surely. Then we leverage this result to show almost sure convergence of all trajectories induced
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by π ∈ Π. To this end, let Sn = Eτπ∗
n

[(∑T−1
t=0

∑dx

j=1
1
2 log

(
1 +

σ2
n,j(z

∗
n,t)

σ2

))]
for all n ≥ 0. So

far we have,

Pr

(
Sn ≤ O

(
βN (δ)T

3/2

√
γn
n

))
≥ 1− δ

Consider a sequence {δn}n≥0 such that limn→∞ δn = 0, and limn→∞ βn(δn)T
3/2
√

γn

n → 0. Note,
for GP models with limN→∞ β2

N (δ)γN (k)/N → 0, such a sequence of δn exists (Chowdhury and
Gopalan, 2017). Consider any ϵ > 0 and let N∗(ϵ) be the smallest integer such that

O
(
βN∗(ϵ)(δ)T

3/2

√
γN∗(ϵ)

N∗(ϵ)

)
< ϵ.

Then, we have

∞∑

n=0

Pr(Sn > ϵ) =

N∗(ϵ)−1∑

n=0

Pr(Sn > ϵ) +

∞∑

n=N∗(ϵ)

Pr(Sn > ϵ)

=

N∗(ϵ)−1∑

n=0

Pr(Sn > ϵ) +

∞∑

n=N∗(ϵ)

δn

≤ N∗(ϵ) +

∞∑

n=N∗(ϵ)

δn.

Note, since limn→∞ δn = 0, we have

∞∑

n=N∗(ϵ)

δn <∞.

In particular,
∑∞

n=0 Pr(Sn > ϵ) <∞ for all ϵ > 0. Therefore, we obtain

Sn
a.s.−−→ 0 for n→∞.

Define the random variable V = limn→∞

(∑T−1
t=0

∑dx

j=1
1
2 log

(
1 +

σ2
n,j(z

∗
n,t)

σ2

))
, with z∗

n,t ∈ τ

and τ ∼ τπ∗
n . V represents the sum of epistemic uncertainties of a random trajectory induced by the

sequence of policies {πn}n≥0. Note V ≥ 0, therefore we apply Markov’s inequality. Moreover, for
all ϵ > 0, we have

Pr (V > ϵ) ≤ E[V ]

ϵ
= 0.

Hence, we have
Pr (V = 0) = 1 =⇒ V

a.s.−−→ 0 for n→∞
Accordingly, we get for all π ∈ Π.

Pr


 lim

n→∞

∑

zt∈τπ

dx∑

j=1

1

2
log

(
1 +

σ2
n,j(zt)

σ2

)
→ 0


 = 1. (15)

Assume there exists a z ∈ R, such that for some ϵ, σ2
n,j(z) > ϵ for all n ≥ 0. Since, z ∈ R, there ex-

ists a t and π ∈ Π such that p(zt = z|π,f∗) > 0. This implies that Pr(z ∈ τπ) > 0. However, from
Equation (15), we have that σ2

n,j(z)→ 0 for N →∞ almost surely, which is a contradiction.

Finally, we leverage the results from above to prove Theorem 2.

Proof of Theorem 2. The proof follows directly from Corollary 6 and Lemma 12.
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A.5 Zero-shot guarantees
In this section, we give guarantees on the zero-shot performance of OPAX for a bounded cost function.
We focus this section on the case of Gaussian noise. However, a similar analysis can be performed
for the sub-Gaussian case and Lipschitz continuous costs. Since the analysis for both cases is similar,
we only present the Gaussian case with bounded costs here.

Corollary 7. Consider the following optimal control problem

argmin
π∈Π

Jc(π,f
∗) = argmin

π∈Π
Eτπ

[
T−1∑

t=0

c(xt,π(xt))

]
, (16)

xt+1 = f∗(xt,π(xt)) +wt ∀0 ≤ t ≤ T,

with bounded and positive costs. Then we have for all policies π with probability at least 1− δ

Jc(π,η
P )− Jc(π) ≤ O

(
TEτπn

[
T−1∑

t=0

(1 +
√
dx)βn−1(δ) ∥σn−1(zt)∥

σ2

])
,

where Jc(π,η
P ) = maxη∈Ξ Jc(π,η).

Proof. From Corollary 2 we get

Jc(π,η
P )− Jc(π) = Eτπ

[
T−1∑

t=0

Jr,t+1(π,η
P ,xP

t+1)− Jr,t+1(π,η
P ,xt+1)

]
,

with xt+1 = f∗(xt,π(xt)) +wt, and xP
t+1 = µn(xt,π(xt)) + βn(δ)σ(xt,π(xt))η

P (xt) +wt.
Furthermore, the cost is positive and bounded. Therefore,

J2
c (π,η,x) ≤ T 2c2max,

for all x,η,π. Accordingly, we can now use the same analysis as in Lemma 2 and get

Jc(π,η
P )− Jc(π) ≤ O

(
TEτπn

[
T−1∑

t=0

(1 +
√
dx)βn−1(δ) ∥σn−1(zt)∥

σ2

])
,

Lemma 13. Consider the control problem in Equation (16) and let Assumption 3 and 4 hold.
Furthermore, assume for every ϵ > 0, there exists a finite integer n∗ such that

∀n ≥ n∗;β
3/2
n (δ)T

11/4

(
γn(k)

n

) 1
4

≤ ϵ, (17)

and denote with π̂n the minimax optimal policy, i.e., the solution to minπ∈Π maxη∈Ξ Jc(π,η). Then
for all n ≥ n∗, we have probability at least 1− δ, Jc(π̂N )− Jc(π

∗) ≤ O(ϵ).

Proof of Zero-shot performance. In Theorem 2 we give a rate at which the maximum uncertainty
along a trajectory decreases:

max
π∈Π

Eτπ

[
max
z∈τπ

1

2
∥σN,j(z)∥2

]
≤ O

(
βNT

3/2

√
γN (k)

N

)
.
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Combining this with Corollary 7 we get

Jc(π,η
P )− Jc(π) ≤ O

(
TEτπn

[
T−1∑

t=0

(1 +
√
dx)βn−1(δ) ∥σn−1(zt)∥

σ2

])

≤ O
(
T 2βn−1(δ)Eτπn

[
max
z∈τπn

∥σn−1(z)∥
])

≤ O
(√

Eτπn

[
max
z∈τπn

T 4β2
n−1(δ) ∥σn−1(z)∥2

])

≤ O



√

β3
nT

11/2

√
γn(k)

n




= O
(
β

3/2
n (δ)T

11/4

(
γn(k)

n

) 1
4

)

= O(ϵ). (∀n ≥ n∗)

Hence, we have that for each policy π, our upper bound maxη Jc(π,η
P ) is ϵ precise, i.e.,

max
η∈Ξ

Jc(π,η)− Jc(π) ≤ O(ϵ),∀π ∈ Π. (18)

We leverage this to prove optimality for the minimax solution. For the sake of contradiction, assume
that

Jc(π̂n) > Jc(π
∗) +O(ϵ). (19)

Then we have,

max
η∈Ξ

Jc(π
∗,η) ≥ min

π∈Π
max
η∈Ξ

Jc(π,η)

= Jc(π̂n, η̂
P )

= max
η∈Ξ

Jc(π̂n,η)

≥ Jc(π̂n)

> Jc(π
∗) +O(ϵ) (Equation (19))

≥ Jc(π
∗,η∗,P ) (Equation (18))

= max
η∈Ξ

Jc(π
∗,η).

This is a contradiction, which completes the proof.

Lemma 13 shows that OPAX also results in nearly-optimal zero-shot performance. The convergence
criteria in Equation (17) is satisfied for kernels k that induce a very rich class of RKHS (c.f., Table 1).

B Experiment Details
The environment details and hyperparameters used for our experiments are presented in this section.
In Appendix B.2 we discuss the experimental setup of the Fetch Pick & Construction environment (Li
et al., 2020) in more detail.

B.1 Environment Details
Table 2 lists the rewards used for the different environments. We train the dynamics model after
each episode of data collection. For training, we fix the number of epochs to determine the number
of gradient steps. Furthermore, for computational reasons, we upper bound the number of gradient
steps by “maximum number of gradient steps”. The hyperparameters for the model-based agent are
presented in Table 3. Furthermore, we present the iCEM hyperparameters in Table 4. For more detail
on the iCEM hyperparameters see Pinneri et al. (2021).
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Table 2: Downstream task rewards for the environments presented in Section 5.

Environment Reward rt

Pendulum-v1 - swing up θ2t + 0.1θ̇t + 0.001u2
t

Pendulum-v1 - keep down (θt − π)2 + 0.1θ̇t + 0.001u2
t

MountainCar −0.1u2
t + 100(1{xt ∈ xgoal})

Reacher - go to target 100(1{||xt − xtarget||2 ≤ 0.05}
Swimmer - go to target −||xt − xtarget||2

Swimmer - go away from target ||xt − xtarget||2
Cheetah - run forward vforward,t

Cheetah - run backward −vforward,t

Table 3: Hyperparameters for results in Section 5.
Hyperparameters Pendulum-v1 - GP Pendulum-v1 MountainCar Reacher Swimmer Cheetah

Action repeat N/A N/A N/A N/A 4 4
Exploration horizon 100 200 200 50 1000 1000

Downstream task horizon 200 200 200 50 1000 1000
Hidden layers N/A 2 2 2 4 4

Neurons per layers N/A 256 128 256 256 256
Number of ensembles N/A 7 5 5 5 5

Batch size N/A 64 64 64 64 64
Learning rate 0.1 5× 10−4 5× 10−4 10−3 5× 10−4 5× 10−5

Number of epochs 50 50 50 50 50 50
Maximum number of gradient steps N/A 5000 5000 6000 7500 7500

βn 2.0 2.0 1.0 1.0 2.0 2.0

Model-based SAC optimizer For the reacher and MountainCar environment we use scarce rewards
(c.f., Table 2), which require long-term planning. Therefore, a receding horizon MPC approach is less
suitable for these tasks. Accordingly, we use a policy network which we train using SAC (Haarnoja
et al., 2018). Moreover, our model-based SAC uses transitions simulated through the learned model
to train a policy. Accordingly, given a dataset of transitions from the true environment, we sample P
initial states from the dataset. For each of the states, we simulate a trajectory of H steps using our
learned model and the SAC policy. We collect the simulated transitions into a simulation data buffer
DSIM, which we then use to perform G gradient steps as suggested by Haarnoja et al. (2018) to train
the policy. The algorithm is summarized below, and we provide the SAC hyperparameters in Table 5.

Table 4: Parameters of iCEM optimizer for experiments in Section 5.

Hyperparameters Pendulum-v1 - GP Pendulum-v1 Swimmer Cheetah
Number of samples P 500 500 250 200
Horizon H 20 20 15 10
Size of elite-set K 50 50 25 20
Colored-noise exponent β 0.25 0.25 0.25 0.25
Number of particles 10 10 10 10
CEM-iterations 10 10 5 5
Fraction of elites reused ξ 0.3 0.3 0.3 0.3
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Model-based SAC
Init: Stastistical Model M = (µn,σn, βn(δ)), Dataset of transitions Dn, initial policy π0,
Model Rollout steps H
DSIM ← ∅ ➤ Initialize simulated transitions buffer
for Training steps k = 1, . . . ,K do

x0,1:P ∼ Dn ➤ Sample P initial states from buffer

for Initial state x0 ∈ x0,1:P do

DSIM ← DSIM ∪MODELROLLOUT(πk,x0, H,M) ➤ Collect simulated transitions

Perform G gradient updates on πk as proposed in Haarnoja et al. (2018) using DSIM.

Table 5: Parameters of model-based SAC optimizer for experiments in Section 5.

Parameters MountainCar Reacher
Discount factor 0.99 0.99
Learning rate actor 5× 10−4 5× 10−4

Learning rate critic 5× 10−4 5× 10−4

Learning rate entropy coefficient 5× 10−4 5× 10−4

Actor architecture [64, 64] [250, 250]
Critic architecture [256, 256] [250, 250]
Batch size 32 64
Gradient steps G 350 500
Simulation horizon H 4 10
Initial state sample size P 500 2000
Total SAC training steps K 35 350

B.2 OPAX in the High-dimensional Fetch Pick & Place Environment
B.2.1 Environment and Model Details
In our experiments, we use an extension of the Fetch Pick & Place environment to multiple objects
as proposed in Li et al. (2020) and further modified in Sancaktar et al. (2022) with the addition of a
large table. This is a compositional object manipulation environment with an end-effector-controlled
robot arm. The robot actions u ∈ R4 correspond to the gripper movement in Cartesian coordinates
and the gripper opening/closing. The robot state xrobot ∈ R10 contains positions and velocities of
the end-effector as well as the gripper-state (open/close) and gripper-velocity. Each object’s state
xobj ∈ R12 is given by its position, orientation (in Euler angles), and linear and angular velocities.

We follow the free-play paradigm as used in CEE-US (Sancaktar et al., 2022). At the beginning
of free play, an ensemble of world models is randomly initialized with an empty replay buffer.
At each iteration of free play, a certain number of rollouts (here: 20 rollouts with 100 timesteps
each) are collected and then added to the replay buffer. Afterwards, the models in the ensemble are
trained for a certain number of epochs on the collected data so far. Note that unlike in the original
proposal by Sancaktar et al. (2022), we use Multilayer Perceptrons (MLP) as world models instead of
Graph Neural Networks (GNN), for the sake of reducing run-time. This corresponds to the ablation
MLP + iCEM presented in Sancaktar et al. (2022), which was shown to outperform all the baselines
other than CEE-US with GNNs. As we are interested in exploring the difference in performance
via injection of optimism into active exploration, we use the computationally less heavy MLPs in
our work. This is reflected in the downstream task performance we report compared to the original
CEE-US with GNNs. Details for the environment and models are summarized in Table 6.

After the free-play phase, we use the trained models to solve downstream tasks zero-shot via model-
based planning with iCEM. We test for the tasks pick & place, throwing and flipping with 4 objects.
The rewards used for these tasks are the same as presented in Sancaktar et al. (2022).
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Table 6: Environment and model settings used for the experiment results shown in Figure 4.

(a) Fetch Pick & Place settings.

Parameter Value
Episode Length 100
Train Model Every 20 Ep.
Action Dim. 4
Robot/Agent State Dim. 10
Object Dynamic State Dim. 12
Number of Objects 4

(b) MLP model settings.

Parameter Value
Network Size 3× 256
Activation function SiLU
Ensemble Size 5
Optimizer ADAM
Batch Size 256
Epochs 50
Learning Rate 0.0001
Weight decay 5 · 10−5

Weight Initialization Truncated Normal
Normalize Input Yes
Normalize Output Yes
Predict Delta Yes

B.2.2 OPAX Heuristic Variant
In the case of Fetch Pick & Place with an high-dimensional observation space, we implement a
heuristic of OPAX. Note that as Fetch Pick & Place is a deterministic environment without noise, we
only model epistemic uncertainty.

OPAX (Heuristic Variant)

Input: Ensemble {fi}Kk=1, ϵ≪ 1
for n ∈ 1, . . . , Nmax do

Solve optimal control problem till convergence for the system: xt+1 = fjt(xt,ut).

u⋆
0:T−1, j

⋆
0:T−1 = argmax

u0:T−1,j0:T−1

T−1∑

t=0

dx∑

i=1

log
(
ϵ2 + σ2

n,i(xt,ut)
)

➤ Estimate

σn,i(xt,ut) with ensemble disagreement.

Rollout u⋆
0:T1

on the system and collect data Dn.

Update models {fi}Kk=1.

B.2.3 Controller Parameters
The set of default hyperparameters used for the iCEM controller are presented in Table 7, as they are
used during the intrinsic phase for OPAX, CEE-US, and other baselines. The controller settings used
for the extrinsic phase are given in Table 8. For more information on the hyperparameters and the
iCEM algorithm, we refer the reader to Pinneri et al. (2021).
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Table 7: Base settings for iCEM as they are used in the intrinsic phase. Same settings are used for all
methods.

Parameter Value
Number of samples P 128
Horizon H 30
Size of elite-set K 10
Colored-noise exponent β 3.5
CEM-iterations 3
Noise strength σinit 0.5
Momentum α 0.1
use_mean_actions Yes
shift_elites Yes
keep_elites Yes
Fraction of elites reused ξ 0.3
Cost along trajectory sum

Table 8: iCEM hyperparameters used for zero-shot generalization in the extrinsic phase. Any settings
not specified here are the same as the general settings given in Table 7.
Task Controller Parameters

Horizon Colored-noise exponent use_mean_actions Noise strength Cost Along
h β σinit Trajectory

Pick & Place 30 3.5 Yes 0.5 best
Throwing 35 2.0 Yes 0.5 sum
Flipping 30 3.5 No 0.5 sum
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C Study of exploration intrinsic rewards
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Figure 5: Comparison of OPAX between intrinsic reward proposed in Equation (6) and the sum
of epistemic uncertainties proposed by (Pathak et al., 2019), i.e., OPAX-SUM. For both choices of
intrinsic rewards, OPAX reduces the epistemic uncertainty and performs well on downstream tasks.

The intrinsic reward suggested in Equation (6) takes the log of the model epistemic uncertainty.
Another common choice for the intrinsic reward is the epistemic uncertainty or model disagreement
without the log (Pathak et al., 2019; Sekar et al., 2020). In the following Lemma, we show that these
rewards are closely related.

Lemma 14. Let σmax = supz∈Z;i≥0;1≤j≤dx
σi,j(z) and σ > 0. Then for all i ≥ 0 and j ∈

{1, . . . , dx}

σ2
i,j(z) ≤

σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

i,j(z)) ≤
σ−2σmax

log(1 + σ−2σmax)
σ2
i,j(z).

Proof. Curi et al. (2020) derive the first inequality on the left. The second inequality follows since
log(1 + x) ≤ x for all x ≥ 0.

Due to this close relation between the two objectives, our theoretical findings also apply to the
intrinsic reward proposed by (Pathak et al., 2019). Moreover, empirically we notice in Figure 5 that
OPAX performs similarly when the sum of epistemic uncertainties is used instead of the objective
in Equation (6). However, our objective can naturally be extended to the case of heteroscedastic
aleatoric noise, since it trades off the ratio of epistemic and aleatoric uncertainty.
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