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Supplementary material

We present the following items in the supplementary material section:

1. Data curation models, algorithms and parsing pipelines (Section A)
2. Exploratory analysis of the collected data (Section B)
3. Pretraining and downstream evaluation details (Section C)
4. Exploration of trained model representations (Section D)
5. A Datasheet [13] for our QUILT dataset (Section E)

A Data curation models, algorithms and parsing pipelines

A.1 Curating QUILT: an Overview

Creating a densely annotated vision-language dataset from videos is a significant undertaking, as it
involves various handcrafted algorithms and machine learning models. In the following sections, we
present more detailed information about the challenges of the data curation pipeline and algorithms
used to address these challenges. To download QUILT-1M and its metadata and access the code to
recreate the dataset and trained models, refer to our website.

Collecting representative channels and videos. The first challenge lies in obtaining relevant
histopathology videos. We used a set of keywords (obtained from online histopathology glossaries
2) to search for videos, resulting in ≈ 65K potential matches. Figure 1 shows the word cloud of all
keywords used for searching YouTube. However, filtering histopathology content based on thumbnail
and title yields many false positives, often including general pathology videos. To address this, we
process the frames of lower-resolution versions of each video to differentiate between histopathology
and pathology content, narrowing the selection to ≈ 9K videos.

Filtering for narrative-style medical videos. Among the ≈ 9K videos, we sought videos with a
"narrative style" where narrators freely explain whole slide images and streaks of similar frames
occur, indicating an educational performance. To identify such content, we used a model that
analyzed randomly sampled frames to determine if they maintained a consistent style over time.
This process resulted in the selection of ≈ 4K videos. Non-voiced videos are also filtered by using
inaSpeechSegmenter [10] where the video endpoint does not provide the video language or transcript.
To identify the audio language of a video, we first check YouTube’s API. If the information is

∗Reach corresponding author at wisdomik@cs.washington.edu; : Equal contribution.
2https://lab-ally.com/histopathology-resources/histopathology-glossary
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Figure 1: Word cloud of all keywords used for searching YouTube

unavailable through the API, we use OpenAI’s Whisper model [31] on the first minute of audio from
the video.

To identify videos containing medical content, we employ a keyframe extraction process with a
specific threshold to determine the minimum visual change required to trigger keyframes. For a new
video, the thresholds for keyframe extraction are determined by linearly interpolating between the
lowest threshold, 0.008 (5-minute video) and the highest 0.25 (200-minute video). Following the
keyframe extraction process, we utilize a histopathology image classifier to identify histopathology
content within the extracted keyframes. See A.3 for more details. To identify narrative-style videos,
we randomly select a min(num_of_histo_scene_frames, 20) keyframes from a video and utilize a
pre-trained CLIP 3 (ViT-B-32) model to embed and compute a cosine similarity on the next three
keyframes. If all three have similarity scores ≥ a threshold of 0.9, we count the video as a narrative
streak.

Table 1: Salvagable and Non-salvagable cases for ASR correction using an LLM.

Error due to Raw output Salvagable Non-salvagable
(beacause LLM
can rephrase and/or
extract contextually
similar correction)

(because the error losses all
possible medical context and
can lead to wrong entries)

Unfinetuned ASR ...look like the cranialomas I would expect in HP. They
actually look more sarcoidal to me. The reason I say
that is they, there’s a kind of positive of inflammatory
cells associated with them. They’re really tight and
well-formed. They’re very easy to see a low power.
And so HP is in the differential hypersensium nitose,
but I would be more worried about sarcoidosis.

differential hypersen-
sium nitose: hyper-
sensitivity pneumoni-
tis,
cranialomas: granu-
lomas

positive: paucity

LLM high-larbidia-stinal lymphadenocathy
——————
lymphin-giatic pattern distribution

returns hilar lym-
phadenopathy
instead of a more
appropriate hilar
mediastinal lym-
phadenopathy

returns lymphatic pattern dis-
tribution instead of a more
appropriate lymphangitic pat-
tern distribution

Incomplete UMLS
checker

...picnotic - LLM correctly returns py-
knotic however, UMLS(2020)
does not have the word py-
knotic if fails to pass the
UMLS check.

Text extraction using ASR and text denoising. Another challenge involves automatic speech
recognition (ASR), as YouTube captions are often inadequate for medical vocabulary. To address this
issue, we employed the Large-V2 open-source Whisper model [31] for speech-to-text conversion.
However, general-purpose ASR models like Whisper can misinterpret medical terms, particularly
when the speaker’s voice is choppy or accented. There are no straightforward trivial solutions due
to: 1) the absence of openly available medical ASR models or data for fine-tuning in the medical

3https://huggingface.co/sentence-transformers/clip-ViT-B-32
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domain; 2) the inadequacy of medical named entity recognition models in detecting transcription
errors, because these models are typically trained on correctly spelled words; 3) the ineffectiveness
of methods like semantically searching over a medical glossary, such as UMLS, which only prove
effective when the erroneous text has significant similarity to the correct terms; and 4) the inability of
simpler methods like finding the longest common substring, which might work in finding a match in
the glossary/ontology for replacement, but cannot identify the wrong words/phrases in the first place.
To rectify ASR errors, we employed UMLS (a knowledge database) and a LLM (GPT-3.5). This,
however, introduces a new challenge of identifying incorrectly transcribed words and determining
which words were mistakenly "corrected" and correctly formatted by the LLM after error correction
and resolving unintended parsing errors [1]. See Figure 3 in the main paper for LLM prompt examples
of ASR correction and medical and ROI text extraction from the corrected ASR text. Refer to Table 1
for error examples of ASR correction using the LLM.

Stable frames Unstable frames

Stable frames Stable frames

Unstable frames

Figure 2: Representative Frame Identification. If a Stable frame is found by Algorithm 1 within the
candidate regions, we use it as the representative frame. If not, we use the most dissimilar frames
among unstable frames.

Image frame extraction and denoising. The image processing aspect of this task adds to its com-
plexity, as it requires static frame detection, quality control for frames, and histology magnification
classification. Each model utilized it these steps introduces its own biases and errors. We extract
time-intervals (chunks) from each video from which we extract representative image(s). For each
of the extracted chunks (tn, tn+1), the static chunk detection algorithm 1 is used to extract sub-
time-intervals with static frames within the chunk. If found, we save the median (in pixel space to
prevent blurry outputs) of the stable frames, else (i.e no stable duration of frames) we leverage the
structural similarity index (SSIM) method on histopathology key-frames to find the most dissimilar
histopathology image to make up the representative images for the chunk, essentially de-duplicating
the frames. Figure 2 demonstrates this process.
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Algorithm 1 Static Video Chunk Detection Algorithm

1: procedure DETECTSTATICFRAMES(video, starttime, endtime)
2: video = video[starttime:endtime]
3: fixedFrames← ∅
4: SSIMV alidatedFrames← ∅
5: prevFrame← first frame in video
6: for frame ∈ rest of frames in video do
7: absDiff ← absolute difference between frame and prevFrame
8: absDiffThresh← apply adaptive thresholding using a Gaussian filter to absDiff
9: meanV al← mean value of absDiffThresh

10: if meanV al < 10 then
11: fixedFrames← fixedFrames ∪ frame
12: else
13: if length of fixedFrames ≥ minimum duration then
14: subclip← extract sub-clip of frames with constant background from fixedFrames
15: for patch ∈ randomly selected patches in each frame of subclip do
16: SSIMV al← calculate SSIM of patch
17: if SSIMV al > threshold then
18: SSIMV alidatedFrames← SSIMV alidatedFrames ∪ frame
19: end if
20: end for
21: end if
22: fixedFrames← ∅
23: end if
24: prevFrame← frame
25: end for
26: staticT imestamps← extract start and end times from SSIMValidatedFrames
27: return staticT imestamps
28: end procedure

Aligning both modalities. The alignment of the images with their corresponding text requires the
implementation of unique algorithms. These algorithms are designed to reduce duplicate content
and ensure accurate mappings between image and text. See Figures 3 and 4 and Table 2 for
a a demonstration of image-text alignment process. See Figure 5 for sample images and their
corresponding medical and ROI texts and the sub-pathology classification provided by the LLM.

Medical Texts:
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Figure 3: Overview of use of timing and keywords for Alignment Images within a video chunk, i.e
{A, B, C}, In at tn are aligned with medical texts extracted within the same chunk. The raw_keywords
within each example chunk is colour coded to illustrate matches with keywords extracted from the
medical texts and only matching keywords allow for the pairing of texts containing said keywords to
image frames with frame-times around raw_keywords times.
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Figure 4: Video Chunking algorithm illustrate. With each transition tag explained in Table 2, we
leverage predicted histopathology frames at times / t1, · · · tn/ to segment videos into chunks. Chunks
at are minimum are TP in duration, this value is estimated based on the word-per-second of the video
with a minimum of 20 words being captured per chunk. Images within a chunk , unlike texts, are
not overlapping with other chunks . Text overlap is done to provide needed context for LLM text
correction and extraction.

Table 2: All 6 (six) transition states for chunking narrative style videos. p(H)tn is the binary
histo image classifier prediction at the current frame’s time tn and p(H)tn−1

is the prediction at next
frame’s time tn−1, where TR is the cumulative running time and TP is the estimated minimum chunk
time for the video, determined by the words per second of the video. Text and image chunks are
implemented as an ordered list of time intervals and image indexes.
P (H)@tn P (H)@tn−1 tn − tn−1 > Tp Tr > Tp Text chunk Image chunk Tag

0 0 – – – – A

0 1 – – end = tn; append(s, e); reset append index to chunk state, if
state is empty append prior in-
dex; reset state

B

1 0 – – start = max(tn−1, tn − Tp) append index to chunk state C

1 1

1 –
end = tn; append(s, e); reset state;
start = tn − Tp

append index to chunk state; re-
set state

D

0

1 end = tn; append(s, e); reset state;
start = tn − Tp

append index to chunk state; re-
set state

E

0 – append index to chunk state F

A.2 Other data sources

A.2.1 PubMed Open Access Articles

We searched the PubMed open-access from 2010− 2022 with keywords (pathology, histopathology,
whole-slide image, H&E, and 148 keywords from a histopathology glossary4). We utilized Entrez 5 to
retrieved the top 10,000 most relevant articles for each keyword. This query yielded 109,518 unique
articles with PMCIDs. We extracted 162, 307 images and their corresponding captions. Using our
histopathology classifier and cropping multi-plane figures as described in A.4, we extracted 59, 371
histopathology image and caption pairs with an average caption length of 54.02 tokens. Figure 6
demonstrates the pipeline of collecting data from PubMed.

A.2.2 Histopathology Image Retrieval from LAION

The Large-scale Artificial Intelligence Open Network (LAION-5B) [33] curated over 5 billion pairs
of images and text from across the Internet, including a substantial volume of histopathology-related

4https://lab-ally.com/histopathology-resources/histopathology-glossary
5http://www.ncbi.nlm.nih.gov/Entrez
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Sub-pathology 
Classification

ROI TextMedical TEXTImage

['Endocrine', 
'Cytopathology', 
'Head and Neck']

['clusters of cells', 'micro-follicular 
formations', 'nuclear pseudo-
inclusions', 'oval nuclei', 'nuclear 
grooves', 'small nucleoli’]

['There are clusters of cells with micro-follicular 
formations.','Nuclear pseudo-inclusions, oval 
nuclei, nuclear grooves, and small nucleoli are 
present in some cells.’]

['Cardiac', 
'Hematopathology', 
'Endocrine']

['Cluster of macrophages and T cells', 
'Aschoff body', 'Macrophages with 
elongated chromatin', 'Anitchkow
cells', 'Pancarditis']

['Cluster of macrophages and T cells is 
characteristic of acute rheumatic fever.', 
'Aschoff body is a characteristic feature of acute 
rheumatic fever.’, 'Macrophages with elongated 
chromatin are called Anitchkow cells and are 
commonly seen in Aschoff bodies.', 'Pancarditis
with Aschoff bodies is present.']

['Dermatopathology
', 'Soft tissue', 
'Hematopathology']

['scar-like plaque on the scalp', 
'malignant on a biopsy', 'skin, dermis, 
and subcutis affected by the process']

['An 80-year-old man has a scar-like plaque on 
the scalp that has been called malignant on a 
biopsy.', 'The tissue affected by the plaque 
extends from the epidermis to the galea 
aponeurotica, near the periosteum of the 
skull.', 'The skin, dermis, and subcutis are all 
affected by the process.']

['Hematopathology'
, 'Bone', 
'Dermatopathology'
]

['cartilage', 'inflammatory cells']['Inflammatory cells surrounding cartilage can 
indicate acute chondritis, with neutrophils being 
the principal cell type.', 'Chronic chondritis may 
be diagnosed if lymphocytes are the 
predominant inflammatory cell type.']

['Dermatopathology
', 'Soft tissue', 
'Hematopathology']

['Large histiocytes', 'perivascular 
cuffing', 'fibrotic pockets'

['Large histiocytes with abundant cytoplasm 
identified as Rosai-Dorfman histiocytes.', 'S100 
stain showed perivascular cuffing.', 'Initial 
diagnosis of inflammatory pseudotumor of the 
orbit.', 'Rosai-Dorfman disease may burn out 
and leave behind fibrotic pockets.']

['Dermatopathology
', 'Soft tissue', 
'Hematopathology']

['Epidermal acanthosis and 
papillomatosis', 'large sebaceous 
glands', 'demodex mite']

['Epidermal acanthosis and papillomatosis 
resembling a wart or seborrheic keratosis.’, 
'Presence of large sebaceous glands that drain 
directly through their duct out to the skin 
surface, which is abnormal.', 'Presence of a 
demodex mite.']

['Gastrointestinal', 
'Pancreatic', 
'Hematopathology']

['glandular tissue', 'pancreas',]['Histological description of glandular tissue 
with little atypia but located in a place where it 
does not belong can be a helpful criteria to 
discern the presence of malignancy.’, 'Glands 
located on the periphery and infiltrating into 
adventitia and peripancreatic tissue may be 
malignant.']

Figure 5: A collection of sample images from our dataset, accompanied by corresponding medical
text, ROI text, and the top three sub-pathology classifications derived from the ASR text using the
LLM.

data. We tapped into this resource by retrieving the 3000 most similar LAION samples for each of the
1, 000 pairs of images and text sampled from PubMed and QUILT, using a CLIP model pre-trained on
the LAION data. The retrieval process utilized both image and text embeddings, with cosine similarity
serving as the distance metric. Subsequently, we eliminated the duplicate images and removed all
non-English pairs from the remaining pairs using LangDetect6. Consequently, the process yielded
22, 682 image and text pairs.

A.2.3 Twitter Data from OpenPath

We utilized a list of tweets curated by Huang et al. [14] which totaled up to 55, 000 unique tweets
and 133, 511 unique image-text pairs. This exhibits a one-to-many relationship that leans towards the
image side, differentiating our work from the OpenPath approach, where we had one image matching
with multiple captions (as in the case of MS-COCO captions). In order to maintain comparability
with OpenPath, we followed their text pre-processing pipeline given in [14].

6https://github.com/fedelopez77/langdetect
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153 
Keywords

2010 -2022

English

Relevance

Histopathology 
classifier

Magnification
Classifier

Separate 
sub-figures

Magnification: <= 10x

uuid: 2bd41290-8673-4132

Caption: Embryonal cell 
carcinoma, H&E stain 10x.

PMCID: PMC7243893

(a) (b) (c) (d) (e)

Figure 6: (a) Search PubMed open access database, filter based on keywords, date, language and sort
by relevance. (b) Download paper and media for each search result. (c) Extract and pair figures and
captions. (d) Separate multi-plane figures, find histopathology images and their magnification. (e)
Final result.

A.3 Histopathology and Magnification classifier

We use an ensemble of three histopathology image classifiers. To ensure robustness, our ensemble
approach consists of two small Conv-NeXt models [26] and one linear classifier fine-tuned with DINO
features [9]. This combination is necessary due to the homogenous appearance of histopathology
images and the risk of false positives from similar pinkish-purple images. One Conv-NeXt model is
trained in detecting non-H&E Immunohistochemistry (IHC) stained tissue images, while the other
models are trained to handle all IHC stains and tissue types. The training data includes eight sub-
groups of the TCGA WSI dataset and a mix of general-domain images, PowerPoint (slide) images,
and scientific figure datasets. See Table 3 for details of these datasets.

For the magnification classifier, we finetune a pretrained ConvNeXt-Tiny model [26], with standard
preset hyperparameters for a few epochs and select the best performing model on the validation set.
To generate a training set for the magnification model, TCGA subsets were segmented into patches
using a method similar to [41]. These patches were generated at various magnifications, which were
then categorized into three labels: 0:{1.25x, 2.5x, 5x, 10x}, 1:{20x}, 2:{40x}. The TCGA subsets
were chosen to ensure a diverse representation of tissue morphologies and cancer types, thereby
ensuring robust and comprehensive model training. The model was also trained on cytopathology
microscopy images and various IHC stains beyond H&E to enhance the model’s generalizability
across different conditions. Only the ACROBAT and TCGA datasubsets are preprocessed to divide
the WSIs into patches at various scales.

A.4 Support Models, Ontology Databases and Algorithms

This section describes the support models, ontology databases and handcrafted algorithms utilized
within our pipeline for both searching and parsing our data.

Ontology databases. We employ various ontologies, both specific to histopathology and general
ones. Among them are OCHV [2], FMA [29], BCGO 7, NCIT [11], MPATH [32], HPATH [40], and
CMPO [18]. These ontologies serve a dual purpose. First, we used histopathology-specific ontologies
(HPATH, MPATH, BCGO, and CMPO) to provide words/phrases to condition the LLM, enabling it
to identify incorrect words. Second, all ontologies, in conjunction with UMLS, are used to obtain
terms or phrases for validating the output of the LLM.

Sub-pathology types. The list of all 18 sub-pathology types used to prompt LLM on the text
classification task are: Bone, Cardiac, Cyto, Dermato, Endocrine, Gastrointestinal, Genitourinary,
Gynecologic, Head and Neck, Hemato, Neuro, Ophthalmic, Pediatric, Pulmonary, Renal, Soft

7https://bioportal.bioontology.org/ontologies/BCGO
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Table 3: Datasets used to train the histopathology image classifier. [µm per pixel - MPP]
Data Source Subset #WSI #pathces Train-Test Magnification Image-size

TCGA (H&E Stain)

GBM 19

169,431 84715-16943

89,022 - 40x

384 x 384

LUSC 20

LIHC 20 57,671 - 20xSARC 23

KIRC 16 16,660 - 10x
KICH 4 4,748 - 5x
BRCA 17 1,465 - 2.5x
SKCM 19 466 - 1.25x

ACROBAT Weitz et al. [39] H&E KI67 99 50589 28105-22484 (10x, 5x, 2.5x) 384 × 384
ER , PGR, HER2

BCI Liu et al. [24] - - 4,870 20x (0.46 MPP) 1024 × 1024
CCESD Liu et al. [23] - - 686 100x/400x 2048 × 1536
Smear Hussain et al. [15] - - 963 400x 2048 × 1536

Celeb Liu et al. [25] - - 202,599 8,103-1,944 - -
Places Zhou et al. [42] - - 36,550 2,109-1,372 - -
AI2D Kembhavi et al. [21] - - 4,903 0.7-0.3% - -
DocFig Jobin et al. [17] - - 33,004 0.8-0.2% - -
SciFig-pilot Karishma [19] - - 1,671 0.8-0.2% - -
SlideImages Morris et al. [28] - - 8,217 0.8-0.2% - -
TextVQA Singh et al. [36] - - 28,472 0.8-0.2% - -
SlideShare-1M Araujo et al. [3] - - 49,801 0.8-0.2% - -

tissue, and Breast Histopathology. Figure 7 provides the LLM prompt to retrieve the top three
sub-pathology classification based on a given text.

Imagine you are a text classifier. Classify the given text into one of the following 
surgical pathology types namely: Bone, Cardiac, Cytopathology, Dermatopathology, 
Endocrine, Gastrointestinal, Genitourinary, Gynecologic, Head and Neck, 
Hematopathology, Neuropathology, Ophthalmic, Pediatric, Pulmonary, Renal, Soft 
tissue, Breast pathology. Output only the top 3 pathology types in an ordered python 
list

User Prompt:

You are a histopathology text classifierSystem Prompt:

”Radicular cyst arises within the periodontal ligament space, 
particularly the periapex from the epithelial cell of malassez. These 
radicular cysts are caused by inflammation following the death of the 
pulp extending into the periapical radix. Radicular cysts caused by 
inflammation are always associated with a non vital tooth.”

"['Soft tissue’, 'Dermatopathology’, 'Hematopathology']"

Few-shot 
examples:

INPUT: 
"There is a lesion with slight thickening of the muscularis mucosa and 
submucosa. There is a subtle change in the lamina propria that doesn't 
look quite like normal stromal cells. Description of slight thickening of 
the muscularis mucosa and submucosa with subtle changes in the lamina 
propria. Highlighted field shows the changes more dramatically. Abnormal 
cells in the lamina propria that appear pink and spindly."

OUTPUT: "['Gastrointestinal', 'Soft tissue', 'Hematopathology']"

Figure 7: Prompting LLM with few-shot examples to extract the top three sub-pathology classification
of a given text.

Pre-processing multi-plane figures. Many figures in academic papers are multi-plane, which means
a number of sub-figures (Charts, graphs, histopathology and non-histopathology sub-figures) are
placed next to each other to make a larger figure. We extracted individual images from multi-plane
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figures to create multiple instance bags. To locate boundaries and white gaps between sub-figures,
we utilized Sobel filters. Binary thresholding was then used to find the contours surrounding the
sub-figures. We employ image size and image ratio thresholds to remove undesirable sub-figures and
our histopathology classifier to maintain just histopathology sub-figures. We supply the histological
sub-figures individually for this type of figure by appending "_[0-9]+" to the end of the multi-plane
figure id. If a figure is divided into more than 5 sub-figures, we preserve the original image to ensure
that the resolution of these sub-figures remains reasonable. Figure 8 shows an overview of this
pre-processing step in different scenarios of successful and unsuccessful crops.

(b)(a)

(c) (d)

Figure 8: (a), (b), and (c) successfully cropped sub-figures where histopathology images (green box)
are kept and non-histopathology (red box) images are removed. (b) histopathology crops are kept as
not separated because the individual crops don’t meet the size threshold so the original figure is kept.
(d) Unsuccessful crop due to minimal gap between sub-figures. Original image is stored.

A.5 Privacy preserving steps

In order to ensure privacy while handling the dataset, several steps were taken to protect sensitive
information. These steps include:

• Reduction of Signal to Noise using a LLM: To protect the privacy of the dataset, a LLM
was utilized to reduce the signal-to-noise ratio. By applying the LLM, irrelevant or sensitive
information was masked or removed.

• Exclusion of Videos Not Fully in Narrative Style: Videos that did not adhere to a fully
narrative style were intentionally left out of the dataset. This step was taken to minimize
the risk of including any potentially private or sensitive content that could compromise
individuals’ privacy.

• Release of Video IDs and Reconstruction Code: Instead of directly releasing the complete
dataset, only video IDs from YouTube were made public. Additionally, the code is provided
to enable researchers to recreate the dataset.

• Collection from Diverse Channels: Data collection was performed from a wide range of
sources, including both large and small channels. This approach aimed to decrease the risk
of overfitting to specific channel types, thereby mitigating privacy concerns associated with
potential biases linked to particular channels.
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B Exploratory analysis of the collected data

In this section, we provide the statistics of the QUILT dataset. Figure 4 illustrates the distribution of
data across 18 sub-pathology types, offering a comprehensive analysis of the dataset’s text distribution.
Moreover, for additional statistical details regarding QUILT, please refer to Table 4, which presents
supplementary information on various aspects of the dataset.

Table 4: Additional QUILT statistics
Property Average value

Medical text per image 1.74
ROI text per chunk 2.30
Medical text per chunk 1.93
Words per medical text 22.92
Words per ROI text 8.75
Images per chunk 2.49
Image-text pair per chunk 2.36
UMLS entity per medical text 4.36
UMLS entity per ROI text 1.61

C Pretraining and downstream evaluation details

C.1 External Evaluation Datasets

PatchCamelyon Veeling et al. [37] contains 327,680 color images (96×96px) from histophathology
scans of lymph node sections. The images are assigned a binary label indicating whether they contain
metastatic tissue or not. NCT-CRC-HE-100K Kather et al. [20] consists of 100,000 non-overlapping
image patches from hematoxylin and eosin (H&E) stained histological images (224x224px) of human
colorectal cancer and is categorized into cancer and normal tissue. SICAPv2 Silva-Rodríguez et al.
[35] contains 182 prostate histology WSIs with 10,340 patches (512 x 512px) and both annotations of
global Gleason scores and patch-level Gleason grades. Images are labeled as Non cancerous, Grade
3, Grade 4, and Grade 5. Databiox [6] consists of 922 Invasive Ductal Carcinoma cases of breast
cancer. This data set has been collected from pathological biopsy samples of 150 patients which are
labeled as Grade I, II and III. Each pathological sample in has four levels of magnification: 4x, 10x,
20x and 40x. BACH [4] consists of 400 WSIs of breast tissue which are labeled as normal, benign,
in-situ and invasive carcinoma. Osteo [5] is a set of 1,144 patches (1024 x 1024px) taken from 40
WSIs representing the heterogeneity of osteosarcoma. Images are labeled as Viable tumor (VT),
Non-tumor (NT) and Necrotic tumor (NEC). RenalCell [8] contains 27,849 images of clear-cell renal
cell carcinoma H&E-stained (300 x 300px) annotated into five tissue texture types. SkinCancer
[22] consists of 36,890 patches (395 x 395px) from WSIs skin biopsies from patients with Basal cell
carcinoma (BCC), squamous cell carcinoma (SqCC), naevi and melanoma. Images were annotated
for 16 categories: chondral tissue, dermis, elastosis, epidermis, hair follicle, skeletal muscle, necrosis,
nerves, sebaceous glands, subcutis, eccrine glands, vessels, BCC, SqCC, naevi and melanoma.
MHIST [38] contains 3,152 patches (224 x 224px) from 328 Formalin Fixed Paraffin-Embedded
WSIs of colorectal polyps. These images are labeled as hyperplastic polyps (HPs) or sessile serrated
adenomas (SSAs). LC25000 [7] which we divide into LC25000 (Lung) with 15,000 and LC25000
(Colon) with 10,000 color images (768×768px). The lung subset is labeled as lung adenocarcinomas,
lung squamous cell carcinomas, and benign lung tissues and the colon sebset is labeled as colon
adenocarcinomas and benign colonic tissues. Table 5 summerizes these datasets.
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Table 5: Downstream tasks and datasets. Note that SkinTumor dataset is a subset of SkinCancer. [µm
per pixel - MPP]

Task Sub-
Pathology

Dataset Classes Magnification Size (Train/-
Val/Test)

Image-size

Classification

Lymph-node metas-
tasis detection

Breast PatchCamelyon [37] 2 1 MPP (0.75/0.125/0.125)
* 327,680

96 x 96

Tissue Phenotyping Colorectal NCT-CRC-HE-
100K [20]

8 0.5 MPP 89,434/ - /6333 224 x 224

Gleason scoring Prostate SICAPv2 [35] 4 1 MPP - / - /10,340 512 x 512

Bloom Richardson
grading

Breast Databiox [6] 3 [2,1,0.5,0.25]
MPP

- / - /922 (2100 ×
1574), (1276
× 956)

Tissue classification
(normal, benign, in-
situ and invasive car-
cinoma)

Breast BACH [4] 4 0.5 MPP - / - / 400 2048 x 1536

Osteosarcoma classi-
fication (non-tumor,
necrotic tumor, and
viable tumor)

Bone Osteo [5] 3 1 MPP - / - / 1,144 1024 x 1024

clear-cell renal cell
carcinoma tissue
phenotyping (renal
cancer, normal, stro-
mal, other textures)

Renal RenalCell [8] 5 [0.5, 0.25]
MPP

- / -/ 27,849 300 x 300

Classification of skin
neoplasms and vari-
ous anatomical com-
partments

Skin SkinCancer [22] 16 .5 MPP 28039/-/8851 imb 395 x 395

Colorectal Polyp
Classification

Colorectal MHIST [38] 2 1 MPP - / -/ 3,152 224 x 224

Lung adenocarci-
noma classification
(normal, adenocarci-
noma and SCC)

Lung LC25000 (LUNG)
[7]

3 - MPP - / - / 15,000 768 x 768

Colon adenocarci-
noma classification
(normal and colon
adenocarcinoma)

Colon LC25000 (Colon)
[7]

2 - MPP - / - / 10,000 768 x 768

Retrieval histopathology
image-text retrieval

- Quilt-1M 1.02M - 13,559 -

histopathology
image-text retrieval

- ARCH [12] - - 7500 -

C.2 QUILTNET Implementation

All model implementations in this study are built upon the open source repository OpenCLIP
[16], which enables large-scale training with contrastive image-text supervision.The experiments
were conducted using PyTorch and utilized up to 4 NVIDIA A40 GPUs. The hyperparameters for
finetuning and training from scratch are provided in Table 6. During the training process, gradient
checkpointing and automatic mixed precision (AMP) techniques were employed, with a datatype of
bfloat16.

All models were trained with image size of 224, except for the finetuned ViT-B-32 models, where
the images were first resized to 512 before randomly cropping them to the desired size of 224. In
the case of ViT-B-32 finetuning, the data was kept stretched, meaning it maintained a one-to-one
mapping between the image and text. However, for all other models, the data was unstretched. This
means that for those models, sampling from medical texts occurred with a probability of p = sample
prob, or sampling from ROI texts. Within the medical or ROI texts, sampling was done uniformly.
For all finetuned GPT/77 models we use the OpenAI CLIP [30] pretrained network as initialization
and for ViT-32 maintain the use of QuickGeLU8. We perform hyperparameter tuning for all linear

8https://github.com/openai/CLIP/blob/main/clip/model.py
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probing results, exploring different values for learning rate, epochs, and weight decay. This process
helped optimize the performance of the models during the linear probing stage.

Table 6: Training hyperparameters for QUILTNET

Hyperparameter Finetuning Training

batch size (per gpu) 256/1024 1024
peak learning rate 1e-5 5.0e-4
learning rate schedule constant cosine decay
epochs 15 40
warmup (in steps) 200 2000
random seed 0 0
image mean (0.48145466, 0.4578275, 0.40821073) same
image std (0.26862954, 0.26130258, 0.27577711) same
augmentation Resize; RandomCrop (0.8, 1.0) RandomResizedCrop (0.8, 1.0)
optimizer momentum β1, β2 = 0.9, 0.98 same
weight decay 0.1 0.2
eps 1.0e-6 same
optimizer AdamW [27] same
sample prob 0.85 same

Table 7: Zero-shot image classification. accuracy (%). * denotes models trained from scratch.
SkinTumor is the Neoplastic Subset of SkinCancer. Also note that PMB refers to PubmedBert, a
BERT model of 256 context length pre-trained on PMC-15M. We swapped our model’s text encoder
from GPT2 to PubmedBert to assess performance differences

ViT-B/32 ViT-B/16

CLIP PLIP QUILTNET CLIP BiomedCLIP QUILTNET

Dataset GPT/77 GPT/77 GPT/77 (GPT/77)* GPT/77 PMB/256 GPT/77 PMB/256
SkinCancer 5.40 36.65 45.38 8.93 5.40 24.75 23.41 28.93
SkinTumor 10.35 56.36 58.29 36.26 13.85 37.0 51.47 51.20
NCT-CRC 26.4 54.02 59.56 17.35 20.09 51.71 28.68 59.20
PatchCamelyon 61.88 58.61 64.6 49.92 50.45 53.25 67.91 53.52
MHIST 52.92 57.52 62.54 44.52 52.3 40.23 44.32 52.71
LC25000(LUNG) 61.36 78.77 80.16 67.71 50.29 72.44 50.71 81.87
LC25000(COLON) 62.5 77.79 93.28 72.08 78.56 90.57 62.26 87.1
SICAPv2 39.40 44.53 39.49 25.07 27.38 45.81 25.54 45.1
BACH 26.0 43.0 41.25 33.75 27.25 54.75 40.75 62.0
Databiox 37.53 39.48 42.52 32.32 33.51 31.24 33.19 29.93
Osteo 19.49 54.02 64.16 27.88 16.08 50.79 38.37 59.79
RenalCell 20.3 50.7 52.57 16.35 28.80 47.08 28.32 50.72
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Table 8: Classes for each dataset on zero-shot image classification. Note that we used the same
prompt templates for each dataset. The templates used are: ["a histopathology slide showing {c}",
"histopathology image of {c}", "pathology tissue showing {c}", "presence of {c} tissue on image"]

Dataset Classes

SkinCancer ’Necrosis’, ’Skeletal muscle’, ’Eccrine sweat glands’,
’Vessels’, ’Elastosis’, ’Chondral tissue’, ’Hair follicle’,
’Epidermis’, ’Nerves’, ’Subcutis’, ’Dermis’, ’Sebaceous
glands’, ’Squamous-cell carcinoma’, ’Melanoma in-situ’,
’Basal-cell carcinoma’, ’Naevus’

PatchCamelyon ’Lymph node’, ’Lymph node containing metastatic tumor
tissue’

NCK-CRC ’Adipose’, ’Debris’, ’Lymphocytes’, ’Mucus’, ’Smooth
muscle’, ’Normal colon mucosa’, ’Cancer-associated
stroma’, ’Colorectal adenocarcinoma epithelium’

MHIST ’Hyperplastic polyp’, ’Sessile serrated adenoma’

LC25000Lung ’Lung adenocarcinoma’, ’Benign lung’, ’Lung squamous
cell carcinoma’

LC25000Colon ’Colon adenocarcinoma’, ’Benign colonic tissue’

BACH ’Breast non-malignant benign tissue’, ’Breast malignant
in-situ carcinoma’, ’Breast malignant invasive
carcinoma’, ’Breast normal breast tissue’

SICAPv2 ’Benign glands’, ’Atrophic dense glands’, ’Cribriform
ill-formed fused papillary patterns’, ’Isolated nest cells
without lumen rosetting patterns’

Databiox ’Well differentiated bloom richardson grade one’,
’Moderately differentiated bloom richardson grade two’,
’Poorly differentiated grade three’

RenalCell ’Red blood cells’, ’Renal cancer’, ’Normal tissue’, ’Torn
adipose necrotic tissue’, ’Muscle fibrous stroma blood
vessels’

Osteo ’Normal non-tumor’, ’Necrotic’, ’Tumor’

SkinTumor ’Squamous-cell carcinoma’, ’Melanoma in-situ’,
’Basal-cell carcinoma’, ’Naevus’
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D Exploration of trained model representations

CLIP OURS

Figure 9: Comparison of the attention maps generated by QUILTNET and CLIP. The corresponding
words are highlighted based on their importance. Attention masks were generated using GradCAM
[34].
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Table 9: UMAP visualization of image embeddings generated by QUILTNET from the different
datasets listed in Table 5.

E Datasheet for QUILT

In this section, we present a DataSheet [13] for QUILT, synthesizing many of the other analyses we
performed in this paper.

1. Motivation For Datasheet Creation
• Why was the dataset created? To train histopathology multi-modal models, on

in-domain data, useful for diagnostically relevant downstream tasks.
• Has the dataset been used already? Yes.
• What (other) tasks could the dataset be used for? Could be used as training data for

representation learning, and also for supervised learning on metadata
• Who funded dataset creation? This work was funded by the Office of the Assistant

Secretary of Defense328 for Health Affairs through the Melanoma Research Program
under Awards No. W81XWH-20-1-0797329 and W81XWH-20-1-0798.

2. Data composition
• What are the instances? The instances that we consider in this work are histopathology

images derived from educational videos, paired with aligned text, derived from ASR
and denoise using an LLM.

• How many instances are there? We include greater than 1 million image-text pairs,
from videos and additionally from less noisy sources like PubMed articles.

• What data does each instance consist of? Each instance consists of an image, a
descriptive text for the image as a whole and for its regions of interest, an estimated
microscope magnification of the image, medical UMLS entities in the text, and the
subpathology type. Each instance is representative of a video chunk based on where
histopathology content is stable.

• Is there a label or target associated with each instance? We use the raw ASR and
LLM denoised captions as labels in this work as well as auxiliary information which
includes magnification, UMLS entities and pathology type.
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• Is any information missing from individual instances? Yes, for instances in the
dataset that are not from QUILT (i.e videos), e.g. from PubMed Article datapoints, the
additional auxiliary information is not included.

• Are relationships between individual instances made explicit? Not applicable – we
do not study relationships between disparate videos (even from the same narrator) nor
the relationship between chunks in the same video.

• Does the dataset contain all possible instances or is it a sample? Contains all
instances our curation pipeline collected, as the list of videos is not exhaustive of what
is available online, there is a high probability more instances can be collected in the
future.

• Are there recommended data splits (e.g., training, development/validation, test-
ing)? There are no recommended data splits, as this data was curated mainly for
pretraining rather than evaluation.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description. Yes. Despite our numerous attempts to reduce noise using
various models, algorithms and human knowledge databases, ASR is often noisy, and
there are many erros that we cannot fix.

• Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)? The dataset is self-contained.
However, we plan to only release the video URLs and some paired non-pixel data
points, rather than the videos themselves, so as to protect user privacy (allowing users
to delete videos).

3. Collection Process

• What mechanisms or procedures were used to collect the data? We leveraged the
YouTube API and the youtube-dl library.

• How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data? The data was directly
observable (public) (from YouTube).

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? We used a proba-
bilistic strategy with many algorithms and heuristics, more details are in Appendix A.1.

• Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)? Data collection was primarily done by the first authors of this paper.

• Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl
of old news articles)? If not, please describe the timeframe in which the data
associated with the instances was created. The data was collected from January 2023
to May 2023, even though the YouTube videos are often much older.

4. Data Preprocessing

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? Yes, we discuss this in Section ?? and
in Appendix A.1: of note, we use a large language model, UMLS database and a set of
algorithms to ‘denoise’ ASR transcripts, an ensemble of histopathology classifiers to
inform relevant segments of the video, and extract the representative image(s) for each
video segment.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other
access point to the ‘raw’ data. The raw data was saved, but at this time we do not
plan to release it directly due to copyright and privacy concerns.

• Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point. Yes, software for downloading and processing
the data is available on GitHub through our website.
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• Does this dataset collection/processing procedure achieve the motivation for cre-
ating the dataset stated in the first section of this datasheet? If not, what are the
limitations?
Yes, the dataset does allow for the study of our goal, as it covers various histopathology
sub-domains and provides crucial data points and metadata for pretraining. Some of
its limitations we are aware of involve various biases on YouTube, as well as various
inaccuracies of the models (e.g ASR model) within the curation pipeline, which we
discuss in Appendix A.1 and A.3.

5. Dataset Distribution

• How will the dataset be distributed? We distribute all the derived data (denoised
frames, captions, magnifications etc), as well as links to the YouTube videos that we
used under the MIT license and strictly for research purposes.

• When will the dataset be released/first distributed? What license (if any) is it
distributed under? The data has been released, under the permissible MIT license for
research-based use only.

• Are there any copyrights on the data? We believe our use is ‘fair use,’ however, due
to an abundance of caution, we will not be releasing any of the videos themselves.

• Are there any fees or access restrictions? No.

6. Dataset Maintenance

• Who is supporting/hosting/maintaining the dataset? The first authors of this paper.
• Will the dataset be updated? If so, how often and by whom? We do not plan to

update it at this time.
• Is there a repository to link to any/all papers/systems that use this dataset? Not

right now, but we encourage anyone who uses the dataset to cite our paper so it can be
easily found.

• If others want to extend/augment/build on this dataset, is there a mechanism for
them to do so? Not at this time.

7. Legal and Ethical Considerations

• Were any ethical review processes conducted (e.g., by an institutional review
board)? No official processes were done, as our research is not on human subjects,
however, because the dataset is in the medical domain we had significant internal
discussions and deliberations when choosing the scraping strategy.

• Does the dataset contain data that might be considered confidential? No, we only
use public videos.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why No –
because many of these videos are medical and educational in nature, we have not seen
any instance of offensive or abusive content.

• Does the dataset relate to people? Yes, it relates sometimes to deidentified patients,
typically studied by pathologists.

• Does the dataset identify any subpopulations (e.g., by age, gender)? Not explicitly
(e.g. through labels)

• Is it possible to identify individuals (i.e., one or more natural persons), either
directly or indirectly (i.e., in combination with other data) from the dataset?
Yes, some of our data includes content from known pathologists, albeit niche, they
sometimes include their faces in the corner of the video. All of the videos that we use
are of publicly available data, following the Terms of Service that users agreed to when
uploading to YouTube.
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