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Abstract

Unsupervised domain adaptation (UDA) has been widely applied in improving
model generalization on unlabeled target data. However, accurately selecting the
best UDA model for the target domain is challenging due to the absence of labeled
target data and domain distribution shifts. Traditional model selection approaches
involve training extra models with source data to estimate the target validation
risk. Recent studies propose practical methods that are based on measuring various
properties of model predictions on target data. Although effective for some UDA
models, these methods often lack stability and may lead to poor selections for other
UDA models. In this paper, we present MixVal, an innovative model selection
method that operates solely with unlabeled target data during inference. MixVal
leverages mixed target samples with pseudo labels to directly probe the learned tar-
get structure by each UDA model. Specifically, MixVal employs two distinct types
of probes: the intra-cluster mixed samples for evaluating neighborhood density and
the inter-cluster mixed samples for investigating the classification boundary. With
this comprehensive probing strategy, MixVal elegantly combines the strengths of
two state-of-the-art model selection methods, Entropy and SND. We extensively
evaluate MixVal on 11 UDA methods across 4 adaptation settings, including classi-
fication and segmentation tasks. Experimental results consistently demonstrate that
MixVal achieves state-of-the-art performance and maintains exceptional stability in
model selection. Code is available at https://github.com/LHXXHB/MixVal.

1 Introduction

Despite the remarkable achievements of supervised learning in visual recognition tasks [1–4], deep
neural networks face challenges when it comes to generalizing to out-of-distribution data [5]. As
for the obstacle of out-of-domain generalization, deep domain adaptation techniques [6] provide
an effective solution by transferring knowledge from a label-rich source domain to a related, yet
label-scarce, target domain. Unsupervised domain adaptation (UDA) has drawn significant interest
in recent years within the field of computer vision, including image classification [7–9], semantic
segmentation [10–12], and object detection [13, 14], thanks to its practical setup with completely
unlabeled target data. As the UDA landscape continues to evolve, various UDA settings have been
explored to consider real-world scenarios, such as variations in category overlaps between domains
and concerns related to source data privacy. These settings include closed-set UDA [7], partial-set
UDA [15, 16], open-set UDA [17], open-partial-set UDA [18], and source-free UDA [19–21]. To ef-
fectively address these UDA problems, researchers have developed various novel solutions, including
cross-domain alignment techniques [7, 9, 22, 11, 12], target-domain regularization methods [23–25],
and self-training strategies in the target domain [26, 27, 20].
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Nevertheless, it is worth emphasizing that hyperparameters, including those associated with both the
method-specific loss functions and the deep training pipeline, play a critical role in ensuring superior
performance of UDA models during deployment. Notably, even the model trained by a state-of-the-
art UDA approach can underperform the baseline source-trained model without adaptation if the
hyperparameters are not properly set [28]. Surprisingly, the selection of hyperparameters has been
largely overlooked in previous UDA studies, as highlighted by You et al. [18] and Saito et al. [29].

To further fill this research gap, this paper tackles the challenging problem of unsupervised model
selection * in domain adaptation. Figure 1(a) illustrates the UDA validation pipeline. During the
training stage, we employ different values of a hyperparameter β, denoted as β1, β2, β3, to train
corresponding UDA models denoted as M1,M2,M3. Subsequently, in the validation stage, our
objective is to identify the model with the minimal risk on the target domain and determine its
associated β value as the optimal choice for the UDA method. Dealing with model selection in UDA
presents two primary challenges. On one hand, the absence of labeled target data makes conventional
supervised target validation unfeasible. On the other hand, even if we had access to labeled source
data, relying solely on the source risk [7] cannot ensure accurate estimation of the target risk due
to domain distribution shifts between domains [29]. Therefore, advanced validation approaches are
necessary to ensure accurate model selection in UDA.

Existing validation solutions in UDA can be classified into two types. The first type consists of source-
based methods, which include the vanilla baseline of using source risk directly for target validation,
denoted as SourceVal [7]. Additionally, Importance-Weighted Cross-Validation (IWCV)[30] and
Deep Embedded Validation (DEV) [18] re-weight the source risk based on density similarity between
domains. Reverse Validation (RV) [31] builds a symmetric UDA task to estimate target risk by
reversing the source risk. However, source-based methods require training extra models involving
source data and are vulnerable to severe distribution shifts between domains. On the other hand,
the second type, target-only validation methods, is more straightforward and only utilizes unlabeled
target samples. Entropy [30], based on the assumption of low-density separation [32], selects the
model that produces target predictions with the lowest mean entropy. Soft Neighborhood Density
(SND) [29], which relies on the assumption of neighborhood consistency, chooses the model with
the highest consistency of predictions within the target neighborhood. While both Entropy and SND
outperform source-based methods in certain UDA tasks, they have not fully explored the learned
target structure for model selection, leading to instability across various UDA methods.

In this paper, we introduce MixVal, a novel target-only method for model selection in UDA. MixVal
leverages mixed target samples as validation probes. To achieve this, MixVal employs mixup [33]
with unlabeled target samples and their predictions, generating pseudo-labeled mixed samples. These
mixed samples are further categorized into two types, depending on whether mixup is performed
intra-cluster or inter-cluster. MixVal takes a novel strategy by evaluating inference-stage interpolation
consistency for both types of mixed samples. Compared to Entropy and SND, MixVal innovatively
employs mixed samples for probing the target structure, rather than directly measuring certain
properties of target predictions. Moreover, MixVal elegantly combines the advantages of both Entropy
and SND. On one hand, MixVal employs intra-cluster mixed samples to evaluate neighborhood
density, leveraging the neighborhood consistency assumption utilized in SND. On the other hand,
it utilizes inter-cluster mixed samples to evaluate the classification boundary, considering the low-
density separation assumption used in Entropy. The novel probing allows MixVal to benefit from the
strengths of both assumptions, making it a competitive UDA model selection method.

Our main contributions are highlighted as threefold:

• We study the significant yet under-explored model selection problem in UDA, providing
comprehensive empirical evaluations of existing validation baselines.

• We introduce MixVal, a novel target-only validation method that directly probes the target
structure using mixed samples. MixVal combines the strengths of both SND and Entropy
through novel consistency-based probing with inter-cluster and intra-cluster mixed samples.

• We conduct extensive experiments to evaluate MixVal’s effectiveness in model selection
across various UDA settings, including closed-set UDA, partial-set UDA, open-partial-
set UDA, and source-free UDA. The results highlight MixVal’s exceptional stability and
superior performance in UDA model selection compared to existing baselines.

*Throughout this paper, we use model selection, validation, and hyperparameter selection interchangeably.
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Table 1: Comparison of assumptions considered in validation methods using target data.

Validation Method neighborhood
consistency

no prior of
class diversity

low-density
separation

Entropy [42] ✗ ✓ ✓
InfoMax [28] ✗ ✗ ✓
SND [29] ✓ ✓ ✗
Corr-C [43] ✗ ✗ ✓
MixVal ✓ ✓ ✓

2 Related Work

2.1 Unsupervised Domain Adaptation

Domain adaptation aims to leverage labeled source domains to facilitate transductive learning in
a label-scarce target domain [34]. Unsupervised domain adaptation (UDA), which assumes that
the target domain is entirely unlabeled, has gained significant attention due to its practical nature.
Many traditional methods have been proposed to address UDA [35–38]. In recent years, deep
learning-based UDA methods have witnessed significant progress, with domain adversarial learning
emerging as a popular approach. Adversarial domain adaptation has been explored at multiple levels,
including input-level [39], feature-level [7, 9, 15], prediction-level [11, 22], and entropy-level [12].
Additionally, there has been growing interest in adapting UDA models with a specific focus on the
leverage of target data, leading to explorations in techniques such as target clustering [40, 27, 41] and
target output regularization [24, 25]. Notably, Xu et al. [23] proposed a feature-level regularization
approach that diverges from the popular mainstream methods. These UDA methods primarily address
conventional scenarios that require source data for adaptation. More recently, a practical variant
called source-free UDA has gained increasing attention [19, 20], where adaptation relies solely on
the source-trained model. To comprehensively compare different validation approaches, we conduct
hyperparameter selection for various representative UDA methods across diverse UDA settings.

2.2 Model Selection in Unsupervised Domain Adaptation

Model selection in UDA poses a significant challenge due to the absence of labeled target data and
the presence of domain distribution shifts between domains. Some pioneering efforts have been
made to address this issue. Ganin et al. [7] initially introduced the estimation of the unavailable
target risk using source risk for target-domain validation (SourceVal). However, SourceVal is
susceptible to severe domain shifts. Later, Ganin et al. [31] proposed Reverse Validation (RV), which
considers a symmetric UDA problem from target to source and employs the reversed source risk
for validation. Sugiyama et al. [30] introduced Importance-Weighted Cross-Validation (IWCV),
which estimates the target risk by re-weighting the source risk based on input-level domain similarity.
You et al. [18] further proposed Deep Embedded Validation (DEV), which considers feature-level
similarity and controls variance in IWCV. While these source-based methods have proven effective,
their practical applicability is limited by the need of extensive model training, access to source data,
and the challenge of dealing with severe domain shifts. Consequently, recent efforts have shifted
towards target-only validation methods, which rely solely on unlabeled target data. Morerio et
al. [42] pioneered the use of mean entropy (Entropy) of target predictions for validation, considering
the assumption of low-density separation [32]. Musgrave et al. [28] introduced the Information
Maximization (InfoMax) score, which further considers class diversity in addition to Entropy. Tu
et al. [43] introduced Corr-C, which prioritizes predictions with both large class diversity and high
confidence. However, class diversity serves as a strict prior that is unsuitable for UDA scenarios with
label shift [44]. Saito et al. [29] introduced Soft Neighborhood Density (SND), the state-of-the-art
target-only validation method that prioritizes high neighborhood consistency. SND has demonstrated
that target-only validation can outperform source-based methods, including IWCV and DEV. We also
align with the research line of target-only validation, which offers simplicity and adaptability across
various UDA settings. Table 1 showcases a comparison of how our method MixVal differs from other
target-only validation methods in terms of the consideration of common assumptions.
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2.3 Mixup

Mixup, a data augmentation technique originally proposed by Zhang et al. [33], is used during
model training to improve generalization. Mixup has been extended to different levels, such as
feature-level [45], patch-level [46], and token-level [47]. In addition to supervised learning, mixup
has been successfully applied in semi-supervised learning [48, 49] and domain adaptation [50–52].
Unlike existing studies that consider mixup as a small perturbation to regularize model training, we
employ mixup to generate in-between probing samples for model evaluation.

3 Methodology

3.1 Problem Setting

Unsupervised domain adaptation (UDA). We begin by introducing the UDA problem with a K-way
image classification task, easily extendable to semantic segmentation tasks. In this setup, we are
provided with a labeled source domain Ds = {(xi

s, y
i
s)}

ns
i=1 consisting of ns labeled images xs with

their corresponding labels ys, and an unlabeled target domain Dt = {xi
t}

nt
i=1 containing nt unlabeled

images xt. Here, xs and xt represent image vectors, and ys are one-hot ground truth labels. The
objective of UDA is to learn a discriminative model M using Ds and Dt, which can accurately predict
the target labels {yit}

nt
i=1 for the corresponding target images {xi

t}
nt
i=1, under covariate shift [30]

or label shift [44] between domains. Each image vector x ∈ Rd in the input space is associated
with a one-hot pseudo label encoding, denoted as ŷ ∈ RK , which is predicted by model M . We
denote |Cs| = K as the number of categories in the source domain and |Ct| as that in the target
domain. Besides the vanilla UDA, which refers to closed-set UDA where both domains share the
same label space (Cs = Ct), we also investigate other challenging UDA settings to evaluate the
versatility of model selection approaches. These include partial-set UDA [15], where the source
domain contains more categories than the target domain (Cs ⊃ Ct), and open-partial-set UDA [53],
where both domains have overlapping but not identical labels (Cs ∩ Ct ̸= ∅, Cs ̸⊇ Ct, Cs ̸⊆ Ct).
Traditional UDA settings [34, 6, 15, 53] typically require simultaneous access to source and target
data for effective target adaptation. The general optimization objective can be represented as follows:

Luda = Lsrc(M ;Ds) + βLadapt(M ;Ds,Dt, η).

Here, Lsrc is the cross-entropy loss with labeled source data, and Ladapt denotes the adaptation loss
that adapts the training of model M to unlabeled target data. The scalar coefficient β is a common
type of hyperparameter, and η is a hyperparameter specific to the adaptation loss. Additionally, there
are other training-related hyperparameters, such as learning rate, iterations, and network architecture.

Recently, source-free unsupervised domain adaptation (SFUDA) [19, 20] has gained significant
attention in the research community. Unlike traditional UDA, SFUDA decouples the source supervised
learning and unsupervised target adaptation into two sequential stages. The target adaptation stage in
SFUDA is typically guided by the following objective function:

Lsfuda = Ladapt(M ;Ms,Dt, η).

Here, Ms represents the source pre-trained model. During the target adaptation stage, a target model
M is learned with access to the source model Ms and unlabeled target data {xi

t}
nt
i=1.

Model selection. In UDA, the goal of model selection is to pinpoint the hyperparameter configuration
that offers the best performance on unlabeled target data. For example, let’s consider the hyperparam-
eter β, with a set of possible values {βi}mi=1, where m is the number of candidate values. We proceed
to train m distinct models {Mi}mi=1, each employing a different β value. Our aim is to identify the
model M that delivers the highest performance on Dt among all candidate UDA models {Mi}mi=1,
thus determining the optimal hyperparameter value. Figure 1(a) visually illustrates this process, using
3 as the value for m. Model selection in UDA confronts two key challenges. Firstly, the absence
of labeled target data renders traditional supervised validation methods, such as using a hold-out
dataset [54], unfeasible. Secondly, the presence of severe domain distribution shifts between domains
poses a risk when using source data for selecting the best model for the target data. Additionally,
concerns about source data privacy can limit direct source data utilization.
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Figure 1: Overview of the proposed method (MixVal) for model selection in UDA.

3.2 MixVal: Mixed Samples as Probes for Unsupervised Validation

Motivation. While existing target-only model selection methods [42, 29] have demonstrated com-
petitive performance, they sometimes result in extremely poor selections when applied to different
UDA methods and datasets, even within the standard closed-set UDA scenario. This phenomenon is
substantiated by a comprehensive large-scale empirical study conducted by Musgrave et al. [28]. We
highlight two common limitations in existing target-only validation methods that potentially hinder
their ability to generalize across various UDA scenarios. First, these methods primarily rely on raw
target predictions to calculate specific metrics for evaluating the learned target structure. However,
it’s important to note that these target data have already been utilized during the transductive model
training. Second, while both the assumptions of low-density separation and neighborhood consistency
are effective for model selection, existing validation methods often design their metrics based solely
on one of these assumptions, as summarized in Table 1.

To address these limitations, we present MixVal, a target-only validation method that thoroughly
evaluates the target structure through the use of mixed samples. We employ the mixup technique [33]
to create novel in-between target samples. These mixed samples are then used for consistency
evaluation to probe the learned target structure. With two distinct types of mixed samples, we ensure
a comprehensive assessment of the target structure acquired by each candidate UDA model.

Generation of mixed samples. We first generate a labeled set of mixed samples using mixup with
unlabeled target data and inference-stage UDA models. Specifically, we create a mixed sample xmix

and its label ymix by performing a convex combination of a pair of target samples xi
t, x

j
t and their

corresponding pseudo labels ŷit, ŷ
j
t which are predicted by the UDA model. The process of mixed

sample generation is formulated as follows:

xmix = λ ∗ xi
t + (1− λ) ∗ xj

t , ymix = λ ∗ ŷit + (1− λ) ∗ ŷjt .

where λ is a scalar used for interpolation, and ŷit and ŷjt denote the one-hot pseudo label encodings.
By performing mixup on random target samples for a single epoch in the inference stage, we generate
a set of mixed samples {(xi

mix, y
i
mix)}

nt
i=1, where nt represents the total number.

Interpolation consistency evaluation. Next, we leverage each candidate UDA model to infer
labels for all mixed samples, resulting in predicted labels {ŷimix}

nt
i=1. Using both the mixed labels

{yimix}
nt
i=1 and predicted labels, we assess the accuracy of mixed samples for each candidate model.

This assessment yields the Interpolation Consistency Evaluation (ICE) score, defined as follows:

ICE = Accuracy({yimix}
nt

i=1, {ŷ
i
mix}

nt

i=1).

For all UDA models {Mi}mi=1, we apply the same mixup operation to generate identical mixed
samples, but the mixed labels differ because model predictions for target samples vary among
different models. We subsequently calculate the ICE score for each candidate model Mi, yielding a
set of ICE scores {ICEi}mi=1. The candidate model with a higher ICE score is deemed superior.
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MixVal via two types of probes. Through a meticulous analysis of the mixup operation applied to
unlabeled target samples and their pseudo labels, we have identified two distinct categories of mixed
samples, as illustrated in Figure 1(b). The first type involves mixing target samples with the same
pseudo label, referred to as intra-cluster mixup. When we evaluate the ICE score after performing
intra-cluster mixup, we effectively measure the neighborhood density within each cluster. A higher
ICE score indicates a higher level of neighborhood consistency [29]. Conversely, the second type
involves mixing target samples with different pseudo labels, termed inter-cluster mixup. By evaluating
the ICE score in this context, we can assess the classification margin between clusters. A higher
ICE score in inter-cluster mixup signifies a larger margin of the classification boundary, indicating
low-density separation [42]. For comprehensive probing, MixVal uses both types of mixed samples
as probes. It separately ranks all candidate models in ascending order based on each type of ICE
score. Then, MixVal takes the average rank from both rankings to select the candidate model with the
highest average rank. Kindly refer to Appendix A for the pseudocode of MixVal.

Connection to interpolation consistency training. We provide a comprehensive comparison
between our MixVal approach and interpolation consistency training (ICT), a commonly used
technique in semi-supervised learning [48]. While our ICE score draws inspiration from ICT, there
are three significant distinctions between MixVal and ICT. ICT primarily employs inter-cluster mixup
as a minor training perturbation to regularize model learning with unlabeled data. In contrast, MixVal
explicitly applies mixup to create in-between target samples, encompassing both inter-cluster and
intra-cluster scenarios, during the inference stage without requiring model re-training.

4 Experiments

4.1 Setup

Datasets. For image classification tasks, we consider 4 popular UDA benchmarks of varied scales.
Office-31 [55] is a classic domain adaptation benchmark consisting of 31 object categories across 3
domains: Amazon (A), DSLR (D), and Webcam (W). Office-Home [56] is a challenging benchmark
with 65 different object categories in 4 domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World
(Re). VisDA [57] is a large-scale benchmark for the synthetic-to-real object recognition task, featuring
12 categories. It consists of a training (T) domain with 152k synthetic images and a validation (V)
domain with 55k realistic images. DomainNet [58] is a recent large-scale benchmark comprising
approximately 600k images across 345 categories in 6 distinct domains. For evaluation, we focus on
a subset of 126 classes with 7 tasks [59] from 4 domains: Real (R), Clipart (C), Painting (P), and
Sketch (S). For semantic segmentation tasks, we use the synthetic GTAV [60] dataset as the source
domain and the real-world Cityscapes [61] dataset as the target domain.

UDA methods. We use the validation baselines discussed in Section 2.2 to conduct model selection
for various UDA methods, with a specific emphasis on the practical target-only baselines. For closed-
set UDA, we consider ATDOC [27], BNM [24], CDAN [9], MCC [25], MDD [22], SAFN [23],
DMRL [50], AdaptSeg [11], and AdvEnt [12]. For partial-set UDA, we consider PADA [15] and
SAFN [23]. For source-free UDA, we consider SHOT [20]. For open-partial-set UDA, we consider
DANCE [41]. For ATDOC, BNM, CDAN, PADA, SAFN, SHOT, DMRL, and DANCE, we select the
loss coefficient among 7 varied candidate values. For MDD, we validate the margin factor, while for
MCC, we validate the temperature. For AdaptSeg and AdvEnt, we validate both the loss coefficient
and training iteration. For MCC and MDD, we also include a two-hyperparameter validation task,
where the bottleneck dimension is considered as an additional hyperparameter, with 4 possible values.
Kindly refer to Appendix B for details of hyperparameter settings.

Implementation details. We utilize the Transfer Learning Library† to train UDA models on a single
RTX TITAN 16GB GPU. The batch size is set to 32, and the total number of iterations is set to 5,000.
We save the final model as a checkpoint. For VisDA and GTAV2Cityscapes, we use ResNet-101 [3], for
DomainNet, we use ResNet-34 [3], and for the other benchmarks, we use ResNet-50 [3]. Regarding
SND [29], we employ the official implementation. For source-based methods, we split 80% of the
source data as the training set and the remaining 20% as the validation set. In our MixVal approach,
we use a fixed value of λ to ensure a fair comparison among candidate models. Specifically, we set
λ = 0.55 for all experiments, which allows us to probe with in-between samples.

†https://github.com/thuml/Transfer-Learning-Library
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Table 2: Validation accuracy (%) of closed-set UDA on Office-Home (Home). bold: Best value.

Method ATDOC [27] BNM [24] CDAN [9]
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

SourceVal 66.63 52.54 78.57 76.61 68.59 62.44 50.74 77.53 74.76 66.37 55.00 42.65 69.50 68.81 58.99
IWCV [30] 67.97 54.03 78.31 79.26 69.89 66.56 48.16 74.09 73.28 65.52 61.31 41.24 67.17 71.93 60.41
DEV [18] 67.39 54.23 77.78 79.39 69.70 65.76 56.39 73.92 77.59 68.41 67.23 57.04 68.76 76.91 67.49
RV [31] 68.68 56.13 78.93 79.64 70.85 68.25 56.75 78.08 78.67 70.44 67.66 56.74 76.01 77.68 69.52
Entropy [42] 63.67 55.83 76.54 78.36 68.60 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
InfoMax [28] 63.67 55.63 77.61 78.36 68.82 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
SND [29] 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.94 57.56 76.96 77.68 70.04
Corr-C [43] 63.51 50.39 73.89 73.88 65.42 58.10 45.37 68.97 70.59 60.76 53.84 41.21 64.96 67.65 56.91
MixVal 66.47 56.87 78.14 79.20 70.17 67.36 56.18 76.10 78.12 69.44 67.71 57.78 76.89 77.76 70.03
Worst 62.89 50.39 73.89 73.88 65.26 58.10 45.37 68.96 70.59 60.75 53.80 41.21 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04 68.93 57.51 78.43 79.57 71.11 68.19 57.90 77.44 78.19 70.43

Method MCC [25] MDD [22] SAFN [23] Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

SourceVal 66.57 56.53 79.55 80.90 70.89 62.53 54.43 75.27 75.55 66.94 63.54 51.34 73.66 74.54 65.77 66.26
IWCV [30] 68.69 58.93 80.37 80.08 72.02 64.20 56.50 73.78 74.28 67.19 64.31 52.36 72.31 74.29 65.82 66.81
DEV [18] 68.81 58.07 78.54 80.10 71.38 64.42 56.94 76.85 75.94 68.54 63.15 50.47 71.20 74.54 64.84 68.39
RV [31] 70.40 58.80 80.63 80.39 72.56 66.57 55.75 76.60 76.90 68.96 64.31 50.13 73.77 74.93 65.78 69.68
Entropy [42] 69.29 59.33 80.63 80.96 72.55 66.54 57.63 77.27 77.45 69.72 59.85 46.41 72.51 73.18 62.99 68.63
InfoMax [28] 66.58 58.48 79.12 80.81 71.25 66.54 57.74 77.27 77.45 69.75 64.56 49.71 73.77 73.18 65.31 68.84
SND [29] 69.05 55.61 79.72 79.10 70.87 51.34 38.01 77.61 68.46 58.86 57.90 46.41 67.04 68.18 59.88 66.02
Corr-C [43] 69.05 55.61 79.72 79.10 70.87 47.79 31.69 63.40 60.63 50.88 62.66 46.41 68.83 68.18 61.52 61.06
MixVal 69.79 59.24 80.47 80.74 72.56 65.73 58.01 77.36 76.91 69.50 65.98 53.14 74.76 75.40 67.32 69.84
Worst 62.72 54.63 76.19 78.19 67.93 47.79 31.69 63.40 60.63 50.88 57.90 46.41 67.04 68.18 59.88 60.26
Best 70.68 59.95 80.93 81.02 73.14 66.75 58.36 77.61 77.45 70.04 66.59 53.14 74.90 75.57 67.55 70.72

Table 3: Validation accuracy (%) of closed-set UDA on Office-31 (Office) and VisDA.

Method ATDOC [27] BNM [24] CDAN [9]
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

SourceVal 72.56 88.96 87.80 83.11 67.79 72.92 90.36 89.43 84.24 70.51 63.90 91.16 89.06 81.37 64.50
IWCV [30] 72.56 86.14 86.54 81.75 67.79 72.92 85.54 89.43 82.63 76.94 63.90 69.08 58.74 63.91 64.50
DEV [18] 72.56 86.14 86.54 81.75 70.34 72.92 85.54 89.43 82.63 76.94 63.90 91.16 88.30 81.12 64.50
RV [31] 74.93 89.96 87.23 84.04 77.37 70.71 88.55 89.43 82.90 74.58 73.27 91.16 88.30 84.24 76.02
Entropy [42] 73.29 86.14 87.80 82.41 62.85 72.67 85.54 83.14 80.45 58.36 71.62 91.16 89.06 83.95 80.46
InfoMax [28] 73.29 86.14 87.80 82.41 76.49 70.52 85.54 83.14 79.73 58.36 71.62 91.16 88.30 83.69 80.46
SND [29] 73.29 92.37 87.80 84.49 77.37 74.44 85.54 83.14 81.04 69.65 71.55 92.37 88.55 84.16 80.46
Corr-C [43] 71.05 90.96 84.40 82.14 67.79 67.16 84.34 78.99 76.83 70.51 58.29 67.67 59.62 61.86 64.50
MixVal 73.61 90.96 86.54 83.70 77.37 74.97 86.48 87.00 82.81 74.51 72.73 92.64 89.06 84.81 80.46
Worst 71.05 86.14 84.40 80.53 62.85 67.16 84.34 78.99 76.83 23.08 58.29 67.67 57.11 61.02 64.50
Best 75.31 92.37 87.80 85.16 77.37 75.52 90.36 89.43 85.10 76.94 73.38 92.77 89.06 85.07 80.46

Method MCC [25] MDD [22] SAFN [23] Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

SourceVal 73.11 90.96 91.07 85.05 80.46 75.72 91.06 86.23 84.34 72.25 69.20 83.73 87.17 80.03 70.71 83.02 71.04
IWCV [30] 73.11 91.16 88.55 84.27 81.48 75.49 91.16 89.18 85.28 72.25 69.32 86.55 80.38 78.75 66.33 79.43 71.55
DEV [18] 72.70 89.16 93.08 84.98 81.48 75.65 91.16 89.18 85.33 72.25 68.21 86.55 80.38 78.38 66.33 82.36 71.97
RV [31] 73.97 89.06 93.08 85.37 82.22 74.46 92.57 86.79 84.61 77.23 68.69 90.83 87.17 82.23 66.33 83.90 75.62
Entropy [42] 73.93 90.56 93.46 85.98 82.22 76.31 92.57 90.82 86.57 78.95 68.23 91.57 85.66 81.82 70.20 83.53 72.17
InfoMax [28] 73.93 89.16 88.55 83.88 81.48 76.50 92.57 90.82 86.63 78.95 68.23 91.57 87.42 82.41 70.20 83.13 74.32
SND [29] 73.93 91.97 93.46 86.45 69.35 76.50 92.17 90.82 86.50 78.95 68.23 89.96 85.66 81.28 58.15 83.99 72.32
Corr-C [43] 73.93 91.37 93.46 86.25 69.35 74.25 91.57 85.66 83.83 72.25 68.39 86.75 80.38 78.51 62.52 78.24 67.82
MixVal 74.09 91.77 93.21 86.36 81.48 75.97 91.77 91.74 86.49 78.95 69.61 89.96 86.83 82.13 74.41 84.39 77.86
Worst 70.56 86.75 87.17 81.49 69.35 73.06 87.35 85.66 82.02 72.25 67.27 83.73 80.38 77.13 58.15 76.50 58.36
Best 74.42 91.97 93.46 86.62 82.23 76.52 92.57 92.20 87.10 78.95 70.06 91.57 87.42 83.02 75.30 85.34 78.54

Table 4: Validation accuracy (%) of closed-set UDA on DomainNet.

Method CDAN [9] BNM [24] ATDOC [27]
→ C → P → R → S avg → C → P → R → S avg → C → P → R → S avg

Entropy [42] 67.09 65.80 74.42 59.34 66.66 63.36 64.28 74.31 48.69 62.66 63.75 61.85 79.60 52.17 64.34
InfoMax [28] 67.09 65.80 74.42 59.34 66.66 67.05 64.28 74.31 55.67 65.33 63.75 61.85 79.60 52.17 64.34
SND [29] 67.09 64.68 74.42 59.34 66.38 56.56 54.50 74.31 42.37 56.93 63.75 61.85 79.60 47.00 63.05
Corr-C [43] 57.35 62.88 74.42 54.63 62.32 59.75 63.41 77.62 42.37 60.79 59.98 62.27 74.42 53.69 62.59
MixVal 67.09 65.80 74.42 59.34 66.66 67.84 66.40 78.68 58.49 67.85 68.94 68.44 79.60 61.73 69.68
Worst 57.35 60.76 73.44 51.41 60.74 55.79 54.50 74.31 42.37 56.74 59.98 61.85 74.42 47.00 60.81
Best 67.09 65.80 74.44 59.34 66.66 67.86 66.50 78.68 58.49 67.88 70.30 68.44 80.38 62.23 70.34

4.2 Results

We report MixVal’s validation performance as averages from three random runs. In the tables, ‘Best’
signifies the optimal selection, and ‘Worst’ represents the worst one. For brevity, we report average
results for tasks with the same target domain. Kindly refer to Appendix D for detailed results.

Closed-set UDA. We begin by comparing the performance of validation baselines within the standard
closed-set UDA scenario. Specifically, we report the results for both source-based and target-only
validation methods across several well-established UDA benchmarks. Table 2 provides the results
on the medium-scale benchmark Office-Home, while Table 3 presents the results on the small-scale
benchmark Office-31 and the large-scale benchmark VisDA. Furthermore, Table 4 presents the results
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Table 5: Validation accuracy (%) of partial-set UDA on Office-Home.

Method PADA [15] SAFN [23]
→ Ar → Cl → Pr → Re avg → Ar → Cl → Pr → Re avg

SourceVal 57.21 41.90 64.48 71.89 58.87 66.82 54.71 74.41 76.48 68.11
IWCV [30] 59.65 50.51 66.84 72.96 62.49 69.36 53.91 71.78 76.38 67.86
DEV [18] 66.88 49.29 72.40 70.46 64.76 69.36 54.94 73.95 76.06 68.58
RV [31] 57.79 40.87 63.87 70.83 58.34 68.98 52.74 72.83 77.14 67.92
Entropy [42] 60.08 46.51 53.16 62.47 55.56 71.75 55.62 76.36 76.59 70.08
InfoMax [28] 60.08 51.40 60.20 66.67 59.59 63.67 51.74 69.64 73.62 64.67
SND [29] 67.80 50.71 59.46 67.13 61.27 71.75 51.74 76.36 78.36 69.55
Corr-C [43] 61.34 45.65 54.90 62.25 56.04 71.23 55.70 76.94 79.13 70.75
MixVal 67.68 51.01 72.94 78.64 67.57 71.70 57.91 77.08 78.94 71.41
Worst 56.29 39.76 50.49 59.31 51.46 62.48 49.91 68.50 73.62 63.63
Best 69.33 55.86 74.55 79.59 69.83 73.37 58.09 77.35 79.33 72.03

Table 6: HOS (%) of open-partial-set UDA and accuracy (%) of source-free UDA.

Method DANCE [41] Home SHOT [20] Office VisDA
→Ar →Cl →Pr →Re avg →A →D →W avg T→V

Entropy [42] 32.00 39.48 27.52 38.08 34.27 71.67 90.76 88.68 83.70 82.65
InfoMax [28] 32.00 39.48 27.52 38.01 34.25 71.67 90.76 88.68 83.70 82.65
SND [29] 15.05 4.33 23.75 16.79 14.98 71.67 90.76 88.68 83.70 82.65
Corr-C [43] 29.60 4.33 23.75 16.79 18.62 71.58 90.76 90.19 84.18 82.65
MixVal 71.54 52.90 78.61 65.01 67.01 72.04 92.37 92.32 85.58 83.12
Worst 15.05 4.33 15.17 16.79 12.84 71.56 90.76 88.68 83.67 80.57
Best 77.01 66.29 78.81 69.81 72.98 75.06 94.78 93.33 87.72 83.12

of practical target-only validation baselines on the large-scale benchmark DomainNet. The current
state-of-the-art source-based baseline is DEV [18], and for target-only methods, SND [29] holds the
state-of-the-art position. Nonetheless, our observations differ from previous findings. When consider-
ing the averaged validation accuracy across 6 popular UDA methods, we note that RV consistently
outperforms other source-based validation methods across three benchmarks. Regarding target-only
validation methods, entropy-based approaches like Entropy and InfoMax prove to be competitive,
particularly demonstrating a significant advantage over SND on the Office-Home benchmark. As
expected, our MixVal consistently attains the highest average accuracy across all four benchmarks,
surpassing the vanilla SourceVal baseline, while most existing validation methods may noticeably
underperform in comparison to this baseline. Notably, MixVal demonstrates exceptional performance
on large-scale benchmarks such as VisDA and DomainNet, approaching the upper bound of ‘Best’
and outperforming the second-best method by substantial margins. MixVal’s consistent advantages in
closed-set UDA highlight its effectiveness in this widely studied setting.

Partial-set UDA. Following [29], we assess validation performance in partial-set UDA, a scenario
with label shifts between domains. We validate two representative partial-set UDA methods, PADA
and SAFN, and present the validation accuracy of Office-Home in Table 5. We observe that MixVal
consistently outperforms all other validation baselines, maintaining performance close to the ‘Best’.
However, we notice some differences in comparison to closed-set UDA. Specifically, SND achieves
more stable validation performance than Entropy, because Entropy can be susceptible to structure
collapse [29]. Second, methods emphasizing ‘class diversity’, such as InfoMax and Corr-C, often
yield lower results than SourceVal. Additionally, RV consistently underperforms SourceVal in
scenarios without symmetric label distribution, making it unsuitable for UDA with label shifts.

Open-partial-set UDA. We extend our evaluation of UDA scenarios with label shifts, conducting
validation for a popular open-partial-set UDA method, DANCE. Table 6 presents the HOS [62, 63]
results on Office-Home. MixVal consistently provides strong validation performance, nearing the
‘Best’, while other validation baselines tend to align with the ‘Worst’.

Source-free UDA. Finally, we compare the target-only validation baselines in source-free UDA. We
conduct validation for a popular method, SHOT, and report the accuracy of Office-31 and VisDA in
Table 6. We find that MixVal consistently outperforms other baselines in this practical setting.

4.3 Analysis

Influence of pseudo label quality. Because MixVal utilizes pseudo labels of target data for the mixup
operation, it is crucial to assess the impact of pseudo label quality. When examining UDA tasks with
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Figure 2: (a) presents the effect of different consistency evaluation techniques. (b) provides compar-
isons between SND and our MixVal on a validation task involving two hyperparameters: MCC on
the Ar→Cl, where γ represents the bottleneck dimension and η represents the temperature. The SND
and MixVal scores of the 28 candidate models are ranked in ascending order. To enhance clarity, we
include the real target accuracy for each model in the left figure labeled as ‘Accuracy’.

low-quality pseudo labels (around 50% accuracy), such as the results of ‘→ Cl’, it becomes evident
that MixVal consistently maintains stable validation performance.

Influence of consistency evaluation. MixVal utilizes image-level mixup-based consistency evaluation
for the target probing. To gain a deeper understanding of its role in MixVal, we substitute it with other
consistency evaluation techniques, including instance-based augmentations such as RandAug [64]
and SSLAug [65], as well as mixup at other levels, such as CutMix [46] and FeatMix [45]. The
results in Figure 2(a) consistently demonstrate that image-level mixup outperforms other strategies.

Table 7: Two-hyperparameter validation accuracy (%) of closed-set UDA on Office-Home.

Method MDD [22] MCC [25]
Ar → Cl Cl → Pr Pr → Re Re → Ar avg Ar → Cl Cl → Pr Pr → Re Re → Ar avg

SourceVal 55.99 73.15 78.77 69.39 69.33 57.91 76.84 81.13 72.89 72.19
IWCV [30] 37.89 72.92 80.42 58.43 62.42 46.09 77.74 80.68 74.45 69.74
DEV [18] 52.60 72.11 53.36 67.70 61.44 59.47 76.84 81.94 74.08 73.08
RV [31] 57.59 72.25 80.83 70.79 70.37 59.13 76.84 82.03 71.98 72.50
Entropy [42] 57.21 73.19 80.06 72.31 70.69 59.75 77.77 82.37 74.33 73.56
InfoMax [28] 57.59 72.92 80.06 72.31 70.72 59.70 78.73 82.58 70.33 72.84
SND [29] 38.10 56.45 70.03 65.10 57.42 53.49 74.97 77.25 74.12 69.96
Corr-C [43] 30.17 44.74 57.15 50.76 45.71 44.90 56.75 74.32 67.61 60.90
MixVal 55.99 72.63 80.27 72.12 70.25 60.08 78.52 81.95 74.43 73.75
Worst 30.17 39.81 53.36 50.76 43.53 43.02 56.75 73.47 67.24 60.12
Best 57.59 73.35 80.93 72.52 71.10 61.10 78.94 83.04 75.36 74.61

Two-hyperparameter validation. We further evaluate all validation baselines in challenging tasks
that involve two hyperparameters. Quantitative comparisons in Table 7 consistently position MixVal
as one of the top-performance validators. Qualitative comparisons in Figure 2(b) clearly illustrate
that MixVal scores demonstrate a strong correlation with actual accuracy, whereas SND [29] scores
exhibit noticeable deviation, resulting in selections far from optimal.

Table 8: Validation accuracy (%) of a mixup-based closed-set UDA method DMRL [50].

Method DMRL [50] Home DMRL [50] Office
→Ar →Cl →Pr →Re avg →A →D →W avg

Entropy [42] 58.14 50.25 69.06 71.37 62.20 63.67 80.52 86.67 76.95
InfoMax [28] 58.14 50.75 69.06 71.37 62.33 63.67 80.52 86.67 76.95
SND [29] 57.74 49.96 69.28 71.42 62.10 61.84 84.14 86.67 77.55
Corr-C [43] 58.29 49.46 68.67 71.73 62.04 60.23 77.51 81.13 72.95
MixVal 59.13 50.41 69.28 72.07 62.72 64.89 82.93 86.67 78.16
Worst 57.71 48.99 67.78 70.72 61.30 60.23 76.31 81.13 72.55
Best 59.20 50.75 69.28 72.24 62.87 65.30 84.14 86.67 78.70

Validation of mixup-based UDA method. The ICE score of MixVal is based on the evaluation of
mixup-based interpolation consistency during the inference stage. To assess MixVal’s robustness,
we apply it in the validation of the UDA method DMRL [50], which incorporates mixup-based
consistency training within the target domain and across two domains at the same time. MixVal is
employed to determine the optimal consistency loss coefficient for DMRL, and the results are reported
in Table 8. Notably, MixVal consistently outperforms most of the existing target-only validation
baselines, even when subjected to the ‘attack’ posed by specialized UDA model training.
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Figure 3: Analysis of probing.

Method AdaptSegt [11] AdvEnt [12]

SourceVal 39.52 39.08
Entropy [42] 39.47 38.41
SND [29] 40.69 40.02
MixVal 42.20 40.02
Worst 33.84 33.06
Best 42.20 41.78

Table 9: Segmentation mIoU (%).

Method BNM [24]

Entropy [42] 28.21
InfoMax [28] 28.21
SND [29] 52.42
Corr-C [43] 28.21
MixVal 54.78
Worst 28.21
Best 55.16

Table 10: ViT results.

Analysis of probing. In MixVal, we generate mixed samples by applying mixup with a mix ratio λ
of 0.55 to both target samples and their hard pseudo labels. We then calculate ICE scores for both
intra-cluster and inter-cluster mixed samples. The final score for model selection is determined by
averaging ascending rankings of both types of ICE scores. Here, we present a comprehensive ablation
study to delve into these design choices within MixVal. To do this, we conduct validation experiments
for PADA on four partial-set UDA tasks (Ar→Cl, Cl→Pr, Pr→Re, Re→Ar) and report the average
accuracy results in Figure 3. ‘AccAvg’ represents the direct average of ICE scores (i.e., accuracy
values) as the final score for model selection. ‘RankAvg’ denotes the use of the average ranking
of ICE scores for selection. ‘RankInter’ relies solely on inter-cluster mixed samples for probing.
‘RankIntra’ employs only intra-cluster mixed samples for probing. ‘Hard’ and ‘Soft’ indicate the
utilization of hard and soft pseudo labels, respectively. It’s worth noting that for intra-cluster mixed
samples, there is no distinction between ‘Hard’ and ‘Soft’ labels, as all pseudo labels involved are
the same. The observations drawn from Figure 3 are as follows: (i) The mix ratio (λ) influences the
level of ambiguity in mixed samples. In MixVal, λ = 0.55 generates more ambiguous in-between
samples with greater probing capabilities than the easier samples created by λ = 0.9. Consequently,
validation performance at λ = 0.55 surpasses that at λ = 0.9. (ii) In MixVal, while soft pseudo labels
may provide additional performance improvements for inter-cluster probing, the use of hard pseudo
labels offers simplicity and stability advantages. (iii) The separate probing of each type of mixed
samples demonstrates effectiveness, and the combination of intra-cluster and inter-cluster probing
enhances MixVal’s stability. Kindly refer to Appendix C for more discussions on probing.

Extension to segmentation. We extend the use of MixVal to the domain adaptive segmentation task
on GTAV2Cityscapes, following the same configuration as SND [29]. Our model selection process
involves 66 candidate models generated by varying two hyperparameters: the loss coefficient and
training iteration. We save checkpoints every 2,000 iterations, starting from the 10,000th iteration to
the 30,000th iteration. The results in Table 9 demonstrate that MixVal consistently delivers the top
validation performance for both UDA methods, while Entropy consistently underperforms SourceVal.

Influence of backbone. In addition to ResNet backbones, we also utilize ViT-B [4] as the backbone
for the validation of BNM on the task R→S. Accuracies reported in Table 10 highlight MixVal’s
superior stability with ViT, especially in comparison to Entropy, InfoMax, and Corr-C.

Limitations and impacts. While MixVal excels in classification tasks, further research is needed to
address its limitations. This includes establishing the theoretical foundations of probing data structure
using pseudo-labeled mixed samples. Additionally, extending MixVal to other machine learning
tasks like object detection and regression presents challenges. Poor hyperparameter selections
could potentially have negative societal impacts on the real-world deployment of UDA models.
Nevertheless, we have not observed such situations during our extensive evaluation of MixVal.

5 Conclusion

In summary, we introduce MixVal, a novel and straightforward target-only method for model selection
in unsupervised domain adaptation (UDA). MixVal leverages inference-stage mixup to generate two
distinct types of mixed samples, facilitating effective probing of the learned target structure while
elegantly considering key assumptions used in previous approaches. Our extensive evaluations
encompass diverse UDA methods and adaptation scenarios, consistently affirming the superior and
reliable performance of MixVal when compared to existing model selection methods.
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A Algorithm

The PyTorch-style pseudocode for our validation approach MixVal is presented in Algorithm 1.

Algorithm 1 PyTorch-style pseudocode for MixVal.

# x: A batch of real target images with shuffled order.
# lam: The mix ratio , a fixed scalar value between 0.5 and 1.0.
# net: A trained UDA model in the evaluation mode.
# model_list: A list containing candidate UDA models.

# Calculate ICE scores for a mini -batch.
def ice_score(x, lam , net):

# Random batch index.
rand_idx = torch.randperm(x.shape [0])
inputs_a = x
inputs_b = x[rand_idx]
# Obtain model predictions and hard pseudo labels.
pred_a = net(inputs_a)
pl_a = pred_a.max(dim =1)[1]
pl_b = pl_a[rand_idx]
# Intra -cluster mixup.
same_idx = (pl_a == pl_b). nonzero(as_tuple=True )[0]
# Inter -cluster mixup.
diff_idx = (pl_a != pl_b). nonzero(as_tuple=True )[0]
# Mixup with images and hard pseudo labels.
mix_inputs = lam * inputs_a + (1 - lam) * inputs_b
if lam > 0.5:

mix_labels = pl_a
else:

mix_labels = pl_b
# Obtain predictions for the mixed samples.
mix_pred = net(mix_inputs)
mix_pred_labels = mix_pred.max(dim =1)[1]
# Calculate ICE scores for two -dimensional probing.
ice_same = torch.sum(mix_pred_labels[same_idx] \

== mix_labels[same_idx ]) / same_idx.shape [0]
ice_diff = torch.sum(mix_pred_labels[diff_idx] \

== mix_labels[diff_idx ]) / diff_idx.shape [0]
return ice_same , ice_diff

# Perform model selection based on ICE scores.
def mixVal(model_list , x, lam):

# Calculate ICE scores for all candidate models.
ice_same_list = []
ice_diff_list = []
for net in model_list:

ice_same , ice_diff = ice_score(x, lam , net)
ice_same_list.append(ice_same)
ice_diff_list.append(ice_diff)

# Calculate the average rank of two types of ICE scores.
ice_same_list = torch.tensor(ice_same_list)
ice_diff_list = torch.tensor(ice_diff_list)
ice_same_rank = torch.argsort(torch.argsort(ice_same_list ))
ice_diff_rank = torch.argsort(torch.argsort(ice_diff_list ))
average_rank = (ice_same_rank + ice_diff_rank) / 2
# Choose the model with the highest average rank.
return model_list[torch.argmax(average_rank )]
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B Hyperparameter Settings

In our main experiments, we follow the methodology of previous model selection studies [18, 29].
For simplicity, we tune a single hyperparameter for various UDA methods. In the case of two-
hyperparameter validation experiments, as in MCC [25] and MDD [22], we also tune the bottleneck
dimension, choosing from the candidate values {256, 512, 1024, 2048}. This variation is due to
observations that the bottleneck dimension varies across different datasets in the official code of
these UDA methods. For the validation of semantic segmentation tasks, we also consider two
hyperparameters with the training iteration as an additional hyperparameter selected from the set
{10, 000, 12, 000, 14, 000, 16, 000, 18, 000, 20, 000, 22, 000, 24, 000, 26, 000, 28, 000, 30, 000}, fol-
lowing SND [29]. Detailed hyperparameter settings are available in Table 11.

Table 11: Summary of the considered UDA methods and their corresponding hyperparameters.

UDA method UDA Type Hyperparameter Search Space Default Value

ATDOC [27] closed-set loss coefficient {0.02, 0.05, 0.1,
0.2self-training λ 0.2, 0.5, 1.0, 2.0}

BNM [24] closed-set loss coefficient {0.02, 0.05, 0.1,
1.0output regularization λ 0.2, 0.5, 1.0, 2.0}

CDAN [9] closed-set loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

MCC [25] closed-set temperature {1.0, 1.5, 2.0,
2.5output regularization T 2.5, 3.0, 3.5, 4.0}

MDD [22] closed-set margin factor {0.5, 1.0, 2.0,
4.0output alignment γ 3.0, 4.0, 5.0, 6.0}

SAFN [23] closed/partial-set loss coefficient {0.002, 0.005, 0.01,
0.05feature regularization λ 0.02, 0.05, 0.1, 0.2}

PADA [15] partial-set loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

DANCE [41] open-partial-set loss coefficient {0.02, 0.05, 0.1,
0.05self-supervision η 0.2, 0.5, 1.0, 2.0}

SHOT [20] source-free loss coefficient {0.03, 0.05, 0.1,
0.3hypothesis transfer β 0.3, 0.5, 1.0, 3.0}

DMRL [50] closed-set loss coefficient {0.1, 0.2, 0.5,
2.0mixup training λ 1.0, 2.0, 5.0, 10.0}

AdaptSeg [11] closed-set loss coefficient {0.0001, 0.0003, 0.001,
0.0002output alignment λ 0.003, 0.01, 0.03}

AdvEnt [12] closed-set loss coefficient {0.0001, 0.0003, 0.001,
0.001output alignment λ 0.003, 0.01, 0.03}

C Analysis of Intra-Cluster and Inter-Cluster Probing

In MixVal, we use mixed samples to directly probe the intra-cluster and inter-cluster structures within
the target representations learned by a UDA model. This strategy shares similar spirits with the
well-known Linear Discriminant Analysis (LDA) [66], which optimizes an objective focused on
minimizing intra-cluster variance while maximizing inter-cluster variance. Drawing inspiration from
the LDA optimization, we explore a straightforward validation baseline that employs an LDA-like
metric. In this context, let’s denote the number of target samples as N , the number of categories as
K, and the feature of a sample encoded by a UDA model as f . The formulation for the LDA score is
presented in Equation 1 below.
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Nm∑
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Nm∑
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Dintra
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In our implementation, we utilize the predicted logits as features and compute variance using the
L2 distance. We assess the LDA baseline against all target-only validation methods in both closed-
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set UDA (Table 12) and partial-set UDA (Table 13). In both UDA scenarios, LDA outperforms
existing validation methods in terms of average validation accuracy. This highlights the advantage
of considering two effective assumptions, in contrast to the single assumption used in SND and
Entropy. It’s worth noting that while LDA performs well, it still falls short of MixVal’s performance,
underscoring the benefits of MixVal’s direct probing approach using mixed samples compared to the
indirect probing via measurement of raw predictions used by SND, Entropy, and LDA.

Table 12: Validation accuracy (%) of closed-set UDA on Office-Home (Home). bold: Best value.

Method ATDOC [27] BNM [24] CDAN [9]
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

SourceVal 66.63 52.54 78.57 76.61 68.59 62.44 50.74 77.53 74.76 66.37 55.00 42.65 69.50 68.81 58.99
Entropy [42] 63.67 55.83 76.54 78.36 68.60 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
InfoMax [28] 63.67 55.63 77.61 78.36 68.82 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
SND [29] 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.94 57.56 76.96 77.68 70.04
Corr-C [43] 63.51 50.39 73.89 73.88 65.42 58.10 45.37 68.97 70.59 60.76 53.84 41.21 64.96 67.65 56.91
LDA 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
MixVal 66.47 56.87 78.14 79.20 70.17 67.36 56.18 76.10 78.12 69.44 67.71 57.78 76.89 77.76 70.03
Worst 62.89 50.39 73.89 73.88 65.26 58.10 45.37 68.96 70.59 60.75 53.80 41.21 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04 68.93 57.51 78.43 79.57 71.11 68.19 57.90 77.44 78.19 70.43

Method MCC [25] MDD [22] SAFN [23] Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

SourceVal 66.57 56.53 79.55 80.90 70.89 62.53 54.43 75.27 75.55 66.94 63.54 51.34 73.66 74.54 65.77 66.26
Entropy [42] 69.29 59.33 80.63 80.96 72.55 66.54 57.63 77.27 77.45 69.72 59.85 46.41 72.51 73.18 62.99 68.63
InfoMax [28] 66.58 58.48 79.12 80.81 71.25 66.54 57.74 77.27 77.45 69.75 64.56 49.71 73.77 73.18 65.31 68.84
SND [29] 69.05 55.61 79.72 79.10 70.87 51.34 38.01 77.61 68.46 58.86 57.90 46.41 67.04 68.18 59.88 66.02
Corr-C [43] 69.05 55.61 79.72 79.10 70.87 47.79 31.69 63.40 60.63 50.88 62.66 46.41 68.83 68.18 61.52 61.06
LDA 70.46 59.60 80.60 80.25 72.73 66.38 57.63 77.61 77.45 69.77 64.56 49.91 72.51 71.55 64.63 68.90
MixVal 69.79 59.24 80.47 80.74 72.56 65.73 58.01 77.36 76.91 69.50 65.98 53.14 74.76 75.40 67.32 69.84
Worst 62.72 54.63 76.19 78.19 67.93 47.79 31.69 63.40 60.63 50.88 57.90 46.41 67.04 68.18 59.88 60.26
Best 70.68 59.95 80.93 81.02 73.14 66.75 58.36 77.61 77.45 70.04 66.59 53.14 74.90 75.57 67.55 70.72

Table 13: Validation accuracy (%) of partial-set UDA on Office-Home.

Method PADA [15] SAFN [23] Home
→ Ar → Cl → Pr → Re avg → Ar → Cl → Pr → Re avg AVG

SourceVal 57.21 41.90 64.48 71.89 58.87 66.82 54.71 74.41 76.48 68.11 63.49
Entropy [42] 60.08 46.51 53.16 62.47 55.56 71.75 55.62 76.36 76.59 70.08 62.82
InfoMax [28] 60.08 51.40 60.20 66.67 59.59 63.67 51.74 69.64 73.62 64.67 62.13
SND [29] 67.80 50.71 59.46 67.13 61.27 71.75 51.74 76.36 78.36 69.55 65.41
Corr-C [43] 61.34 45.65 54.90 62.25 56.04 71.23 55.70 76.94 79.13 70.75 63.40
LDA 64.52 46.51 69.47 72.67 63.29 71.75 54.39 73.93 77.10 69.29 66.29
MixVal 67.68 51.01 72.94 78.64 67.57 71.70 57.91 77.08 78.94 71.41 69.49
Worst 56.29 39.76 50.49 59.31 51.46 62.48 49.91 68.50 73.62 63.63 57.55
Best 69.33 55.86 74.55 79.59 69.83 73.37 58.09 77.35 79.33 72.03 70.93

D Full Validation Results

For classification tasks in our evaluation, we utilize the HOS score (%) [62, 63] for open-partial-set
UDA and accuracy (%) for all other UDA tasks. In the case of segmentation tasks, we measure
mIoU (%) [11, 12]. To accommodate space constraints in this main text, we present the averaged
validation results for UDA tasks that share the same target domain. For example, ‘→ Ar’ represents
the averaged results of three tasks on the Office-Home benchmark, namely ‘Cl→ Ar’, ‘Pr→ Ar’, and
‘Re→ Ar’. Additionally, please note that the ‘avg’ row signifies the average of the rows preceding it
within each UDA method, while the ‘AVG’ row represents the average results of ‘avg’ rows across all
considered UDA methods. For more detailed validation results for each specific UDA task, please
refer to the corresponding tables, from Table 14 to Table 29.
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Table 14: Accuracy (%) of ATDOC [27], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 51.43 77.31 78.17 66.87 74.36 75.60 61.85 48.06 76.06 71.16 58.14 84.05 68.59
IWCV [30] 55.88 76.57 78.88 66.25 74.50 78.33 65.60 48.06 80.58 72.06 58.14 83.87 69.89
DEV [18] 51.43 76.55 78.88 66.25 74.36 77.67 64.77 51.29 81.62 71.16 59.98 82.43 69.70
RV [31] 56.38 76.12 80.01 66.25 76.80 78.33 67.82 55.62 80.58 71.98 56.40 83.87 70.85
Entropy [42] 55.88 74.14 78.88 59.25 74.52 77.67 64.19 54.39 78.54 67.57 57.23 80.96 68.60
InfoMax [28] 55.88 74.14 78.88 59.25 77.74 77.67 64.19 54.39 78.54 67.57 56.61 80.96 68.82
SND [29] 55.88 74.14 78.88 59.25 74.52 75.21 64.19 54.39 78.54 67.57 56.61 80.96 68.34
Corr-C [43] 51.41 72.00 76.04 59.37 69.36 69.54 61.85 48.04 76.06 69.30 51.71 80.31 65.42
MixVal 57.19 74.82 79.13 64.19 78.10 77.90 65.63 55.28 80.57 69.60 58.15 81.49 70.17
Worst 51.41 72.00 76.04 59.25 69.36 69.54 61.85 48.04 76.06 67.57 51.71 80.31 65.26
Best 58.01 77.31 81.04 66.91 79.48 78.52 67.94 57.07 82.17 72.06 59.98 84.03 72.04

Table 15: Accuracy (%) of BNM [24], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 56.93 77.00 77.74 57.64 73.33 69.36 56.45 42.38 77.19 73.22 52.90 82.26 66.37
IWCV [30] 46.46 77.00 79.30 63.86 61.34 62.54 63.95 42.38 78.01 71.86 55.65 83.92 65.52
DEV [18] 57.75 71.62 79.30 57.64 67.90 75.46 66.21 54.04 78.01 73.42 57.37 82.25 68.41
RV [31] 58.67 77.00 79.30 65.68 73.33 75.46 65.64 52.05 81.25 73.42 59.54 83.92 70.44
Entropy [42] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
InfoMax [28] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
SND [29] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
Corr-C [43] 46.46 67.06 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.76
MixVal 56.30 72.90 78.75 64.66 71.44 74.52 64.32 54.04 81.09 73.09 58.19 83.96 69.44
Worst 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.75
Best 58.67 77.00 80.61 67.16 74.16 76.75 66.21 54.04 81.36 73.42 59.82 84.12 71.11

Table 16: Accuracy (%) of CDAN [9], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 43.41 62.51 75.51 43.96 61.59 57.70 53.75 37.53 73.22 67.28 47.01 84.39 58.99
IWCV [30] 43.18 62.51 77.81 44.71 54.61 56.14 65.14 37.53 81.85 74.08 43.02 84.39 60.41
DEV [18] 57.16 71.75 77.81 62.46 55.64 71.08 65.14 56.54 81.85 74.08 57.43 78.89 67.49
RV [31] 57.16 71.75 77.78 63.62 72.92 73.40 65.14 54.50 81.85 74.21 58.56 83.37 69.52
Entropy [42] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
InfoMax [28] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
SND [29] 57.55 72.43 77.78 64.61 73.73 73.40 65.14 56.66 81.85 74.08 58.47 84.73 70.04
Corr-C [43] 43.14 63.05 73.61 43.96 54.58 56.12 51.75 37.50 73.22 65.80 43.00 77.25 56.91
MixVal 57.55 73.71 77.75 63.95 73.19 74.06 65.23 56.59 81.47 73.95 59.19 83.76 70.03
Worst 43.14 62.51 73.61 43.96 54.58 56.12 51.63 37.50 73.22 65.80 43.00 77.25 56.86
Best 57.55 73.71 78.33 64.61 73.89 74.39 65.76 56.66 81.85 74.21 59.50 84.73 70.43

Table 17: Accuracy (%) of MCC [25], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 57.23 78.19 81.75 60.65 76.50 78.79 64.15 53.15 82.17 74.91 59.20 83.96 70.89
IWCV [30] 60.02 78.15 81.34 68.73 78.51 77.85 64.15 57.85 81.04 73.18 58.92 84.46 72.02
DEV [18] 57.16 78.15 81.34 69.10 73.01 76.80 64.15 57.85 82.17 73.18 59.20 84.46 71.38
RV [31] 59.34 78.53 80.70 69.10 77.83 78.22 67.20 57.85 82.24 74.91 59.20 85.54 72.56
Entropy [42] 59.31 78.53 81.59 66.87 77.83 78.79 67.20 57.85 82.51 73.79 60.82 85.54 72.55
InfoMax [28] 60.02 74.66 81.75 64.98 78.24 78.49 64.15 54.52 82.19 70.62 60.89 84.46 71.25
SND [29] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
Corr-C [43] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
MixVal 59.08 77.81 81.61 68.40 78.45 78.40 67.56 57.65 82.21 73.41 61.00 85.15 72.56
Worst 53.56 73.44 79.25 60.65 73.01 75.76 59.74 53.15 79.55 67.78 57.18 82.11 67.93
Best 60.02 78.53 81.75 69.22 78.51 78.79 67.90 58.49 82.51 74.91 61.35 85.74 73.14

Table 18: Accuracy (%) of MDD [22], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 54.85 73.35 77.05 58.76 69.95 72.23 60.03 51.02 77.36 68.81 57.42 82.50 66.94
IWCV [30] 56.40 69.52 76.59 58.76 67.40 69.43 61.89 56.43 76.82 71.94 56.68 84.43 67.19
DEV [18] 57.71 75.42 77.05 58.76 72.99 70.51 63.95 56.43 80.26 70.54 56.68 82.14 68.54
RV [31] 58.05 75.42 76.59 63.54 69.95 73.74 63.95 51.02 80.38 72.23 58.17 84.43 68.96
Entropy [42] 57.73 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.72
InfoMax [28] 58.05 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.75
SND [29] 58.05 75.42 77.05 44.99 72.99 48.06 37.08 21.60 80.26 71.94 34.39 84.43 58.86
Corr-C [43] 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
MixVal 57.39 75.13 78.15 63.45 72.67 72.69 63.91 56.63 79.90 69.82 60.02 84.27 69.50
Worst 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
Best 58.05 75.42 78.22 64.07 72.99 73.74 63.95 57.02 80.38 72.23 60.02 84.43 70.04
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Table 19: Accuracy (%) of SAFN [23], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 50.78 69.72 76.06 59.66 70.29 69.86 60.90 46.07 77.71 70.05 57.16 80.96 65.77
IWCV [30] 50.24 69.72 77.28 62.63 67.24 69.86 58.84 49.69 75.72 71.45 57.16 79.97 65.82
DEV [18] 51.07 69.72 76.64 59.66 67.24 71.26 58.84 49.69 75.72 70.95 50.65 76.64 64.84
RV [31] 51.07 71.41 76.64 62.63 68.44 70.44 58.84 44.49 77.71 71.45 54.82 81.46 65.78
Entropy [42] 45.93 69.72 75.49 55.29 67.22 68.35 54.26 43.30 75.69 70.00 49.99 80.60 62.99
InfoMax [28] 50.47 69.72 75.49 62.46 70.98 68.35 61.23 43.30 75.69 70.00 55.37 80.60 65.31
SND [29] 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Corr-C [43] 45.93 69.72 70.60 55.29 60.13 62.50 61.23 43.30 71.43 71.45 49.99 76.64 61.52
MixVal 51.73 72.14 77.08 63.92 70.98 71.55 62.71 50.52 77.56 71.30 57.16 81.17 67.32
Worst 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Best 51.73 72.27 77.30 64.65 70.98 71.70 63.66 50.52 77.71 71.45 57.16 81.46 67.55

Table 20: Accuracy (%) of closed-set UDA methods on Office-31.

Method ATDOC [27] BNM [24] CDAN [9]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceVal 88.96 87.80 73.65 71.46 80.47 90.36 89.43 73.13 72.70 81.41 91.16 89.06 66.33 61.46 77.00
IWCV [30] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 69.08 58.74 66.33 61.46 63.90
DEV [18] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 91.16 88.30 66.33 61.46 76.81
RV [31] 89.96 87.23 74.28 75.58 81.76 88.55 89.43 74.90 66.52 79.85 91.16 88.30 76.18 70.36 81.50
Entropy [42] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 74.26 78.50 91.16 89.06 72.88 70.36 80.87
InfoMax [28] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 69.97 77.43 91.16 88.30 72.88 70.36 80.68
SND [29] 92.37 87.80 73.87 72.70 81.69 85.54 83.14 74.62 74.26 79.39 92.37 88.55 72.88 70.22 81.01
Corr-C [43] 90.96 84.40 71.88 70.22 79.37 84.34 78.99 67.80 66.52 74.41 67.67 59.62 58.15 58.43 60.97
MixVal 90.96 86.54 73.75 73.47 81.18 86.48 87.00 75.64 74.29 80.85 92.64 89.06 75.08 70.38 81.79
Worst 86.14 84.40 71.88 70.22 78.16 84.34 78.99 67.80 66.52 74.41 67.67 57.11 58.15 58.43 60.34
Best 92.37 87.80 75.04 75.58 82.70 90.36 89.43 75.75 75.29 82.71 92.77 89.06 76.18 70.57 82.15

Table 21: Accuracy (%) of closed-set UDA methods on Office-31.

Method MCC [25] MDD [22] SAFN [23]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceVal 90.96 91.07 73.33 72.89 82.06 91.06 86.23 76.68 74.76 82.18 83.73 87.17 68.96 69.44 77.33
IWCV [30] 91.16 88.55 73.33 72.89 81.48 91.16 89.18 76.68 74.30 82.83 86.55 80.38 68.96 69.68 76.39
DEV [18] 89.16 93.08 73.33 72.06 81.91 91.16 89.18 76.68 74.62 82.91 86.55 80.38 68.96 67.45 75.84
RV [31] 89.06 93.08 74.42 73.52 82.52 92.57 86.79 73.94 74.97 82.07 90.83 87.17 68.76 68.62 78.85
Entropy [42] 90.56 93.46 74.83 73.02 82.97 92.57 90.82 78.03 74.58 84.00 91.57 85.66 67.20 69.26 78.42
InfoMax [28] 89.16 88.55 74.16 73.70 81.39 92.57 90.82 78.03 74.97 84.10 91.57 87.42 67.20 69.26 78.86
SND [29] 91.97 93.46 74.83 73.02 83.32 92.17 90.82 78.03 74.97 84.00 89.96 85.66 67.20 69.26 78.02
Corr-C [43] 91.37 93.46 74.83 73.02 83.17 91.57 85.66 73.91 74.58 81.43 86.75 80.38 67.09 69.68 75.98
MixVal 91.77 93.21 74.74 73.44 83.29 91.77 91.74 77.35 74.58 83.86 89.96 86.83 69.91 69.31 79.00
Worst 86.75 87.17 71.18 69.93 78.76 87.35 85.66 73.91 72.20 79.78 83.73 80.38 67.09 67.45 74.66
Best 91.97 93.46 74.83 74.01 83.57 92.57 92.20 78.03 75.01 84.45 91.57 87.42 70.43 69.68 79.78

Table 22: Accuracy (%) of CDAN [9], a closed-set UDA method, on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [42] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
InfoMax [28] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
SND [29] 58.04 64.78 74.42 69.39 68.65 60.63 60.70 65.23
Corr-C [43] 58.04 57.73 74.42 56.98 65.07 51.23 60.70 60.60
MixVal 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
Worst 51.59 57.73 73.44 56.98 63.06 51.23 58.46 58.93
Best 58.04 64.78 74.44 69.39 68.65 60.63 62.94 65.55

Table 23: Accuracy (%) of BNM [24], a closed-set UDA method, on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [42] 56.42 61.57 74.31 65.15 65.15 40.95 63.42 61.00
InfoMax [28] 56.42 68.95 74.31 65.15 65.15 54.93 63.42 64.05
SND [29] 43.78 61.57 74.31 51.55 54.40 40.95 54.59 54.45
Corr-C [43] 43.78 60.03 77.62 59.47 67.19 40.95 59.64 58.38
MixVal 58.48 69.63 78.68 66.05 67.59 58.50 65.20 66.30
Worst 43.78 60.03 74.31 51.55 54.40 40.95 54.59 54.23
Best 58.48 69.63 78.68 66.10 67.79 58.50 65.20 66.34
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Table 24: Accuracy (%) of ATDOC [27], a closed-set UDA method, on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [42] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
InfoMax [28] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
SND [29] 46.43 65.98 79.60 61.52 64.24 47.58 59.46 60.69
Corr-C [43] 54.71 60.63 74.42 59.33 64.58 52.66 59.95 60.90
MixVal 62.11 69.64 79.60 68.24 69.79 61.35 67.10 68.26
Worst 46.43 60.63 74.42 59.33 64.24 47.58 59.46 58.87
Best 63.12 71.14 80.38 69.45 69.79 61.35 67.10 68.90

Table 25: Accuracy (%) of PADA [15], a partial-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 45.03 68.85 81.89 43.25 46.83 57.26 57.12 36.42 76.53 71.26 44.24 77.76 58.87
IWCV [30] 55.58 65.10 84.54 51.42 61.29 53.01 57.02 35.16 81.34 70.52 60.78 74.12 62.49
DEV [18] 54.81 78.15 78.02 58.13 61.29 50.14 67.86 35.16 83.21 74.66 57.91 77.76 64.76
RV [31] 43.22 65.10 81.89 42.70 48.74 52.79 57.21 35.16 77.80 73.46 44.24 77.76 58.34
Entropy [42] 40.12 40.11 55.94 52.43 37.25 50.14 57.30 47.22 81.34 70.52 52.18 82.13 55.56
InfoMax [28] 54.81 69.24 78.02 52.43 37.25 50.14 57.30 47.22 71.84 70.52 52.18 74.12 59.59
SND [29] 40.12 40.11 55.94 58.13 56.13 64.11 70.62 51.22 81.34 74.66 60.78 82.13 61.27
Corr-C [43] 40.12 40.11 55.94 54.18 46.89 53.01 58.59 38.93 77.80 71.26 57.91 77.70 56.04
MixVal 45.02 78.15 83.69 56.23 57.85 68.19 71.41 47.22 84.04 75.39 60.78 82.82 67.57
Worst 40.12 40.11 55.94 41.41 37.25 50.14 56.93 34.87 71.84 70.52 44.30 74.12 51.46
Best 55.58 78.15 86.53 58.13 61.29 68.19 73.00 51.22 84.04 76.86 60.78 84.20 69.83

Table 26: Accuracy (%) of SAFN [23], a partial-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceVal 59.40 77.14 81.34 63.97 67.00 71.29 65.60 46.21 76.81 70.89 58.51 79.10 68.11
IWCV [30] 52.24 74.45 82.16 70.98 62.41 70.18 63.45 53.49 76.81 73.65 56.00 78.49 67.86
DEV [18] 55.22 74.45 80.07 70.98 67.00 71.29 63.45 51.70 76.81 73.65 57.91 80.39 68.58
RV [31] 53.67 71.60 81.34 67.58 67.00 73.27 65.70 48.54 76.81 73.65 56.00 79.89 67.92
Entropy [42] 58.93 74.90 80.73 70.98 74.12 69.80 70.16 50.09 79.24 74.10 57.85 80.06 70.08
InfoMax [28] 51.82 67.62 76.97 64.65 65.77 69.80 59.69 50.09 74.10 66.67 53.31 75.52 64.67
SND [29] 51.82 74.90 80.73 70.98 74.12 75.10 70.16 50.09 79.24 74.10 53.31 80.06 69.55
Corr-C [43] 59.40 77.20 82.16 67.58 72.89 75.10 70.16 55.70 80.12 75.94 52.00 80.73 70.75
MixVal 59.24 76.90 81.28 68.96 73.71 74.82 70.19 55.34 80.73 75.94 59.16 80.62 71.41
Worst 51.52 67.62 76.97 61.07 62.35 69.80 59.69 46.21 74.10 66.67 52.00 75.52 63.63
Best 59.40 77.20 82.16 71.72 74.12 75.10 72.45 55.70 80.73 75.94 59.16 80.73 72.03

Table 27: HOS [62, 63] (%) of DANCE [41], an open-partial-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [42] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax [28] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND [29] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C [43] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
MixVal 47.93 76.36 66.57 67.87 75.17 59.05 69.18 58.93 69.40 77.57 51.83 84.31 67.01
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98

Table 28: Accuracy (%) of DMRL [50], a closed-set UDA method, on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [42] 47.03 62.09 73.42 55.29 64.34 66.54 51.92 48.96 74.16 67.20 54.75 80.74 62.20
InfoMax [28] 48.55 62.09 73.42 55.29 64.34 66.54 51.92 48.96 74.16 67.20 54.75 80.74 62.33
SND [29] 47.84 62.76 73.86 54.92 64.34 66.65 51.87 48.96 73.74 66.42 53.08 80.74 62.10
Corr-C [43] 47.74 62.76 72.53 55.29 64.34 68.12 53.11 47.56 74.55 66.46 53.08 78.91 62.04
MixVal 47.74 62.76 73.42 56.29 64.34 68.12 53.73 48.96 74.67 67.37 54.54 80.74 62.72
Worst 47.03 61.73 72.34 54.84 62.90 66.15 51.87 46.85 73.67 66.42 53.08 78.71 61.30
Best 48.55 62.76 73.86 56.41 64.34 68.12 53.73 48.96 74.73 67.45 54.75 80.74 62.87

Table 29: Accuracy (%) of DMRL [50] and SHOT [20] on Office-31.

Method DMRL [50] SHOT [20]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg

Entropy [42] 80.52 86.67 61.77 65.57 73.63 90.76 88.68 71.21 72.13 80.70
InfoMax [28] 80.52 86.67 61.77 65.57 73.63 90.76 88.68 71.21 72.13 80.70
SND [29] 84.14 86.67 61.77 61.91 73.62 90.76 88.68 71.21 72.13 80.70
Corr-C [43] 77.51 81.13 60.28 60.17 69.77 90.76 90.19 71.21 71.96 81.03
MixVal 82.93 86.67 63.40 66.38 74.85 92.37 92.32 71.21 72.88 82.20
Worst 76.31 81.13 60.28 60.17 69.47 90.76 88.68 71.21 71.92 80.64
Best 84.14 86.67 64.22 66.38 75.35 94.78 93.33 75.58 74.55 84.56
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